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for al f € Coom(G). If K isacompact set in G, we can apply (8.22)
toal f that are > the characteristic function of K. Taking the infimum
shows that du (Lg1K) = dw(K). Since G has a countable base, the
measure dy is automatically regular, and hence du (Lg+<E) = dw (E)
for al Borel sets E.

A nonzero Borel measure on G invariant under left trandation is
called aleft Haar measure on G. Theorem 8.21 thus says that a left
Haar measure exists.

In the construction of the left-invariant m form «» before Theorem
8.21, adifferent basis of G would have produced a multiple of », hence
a multiple of the left Haar measure in Theorem 8.21. If the second
basisisYy, ..., Ynandif Y; = Y}, & X;, then themultipleisdet(a;;) ~*.
When the determinant ispositive, we areled to orient G in the same way,
otherwise oppositely. The new left Haar measure is | det(a;;)|~* times
theold. The next result strengthens this assertion of uniqueness of Haar
measure.

Theorem 8.23. If G isaLie group, then any two left Haar measures
on G are proportional.

Proor. Let duy and du, be left Haar measures. Then the sum dy =
duy + duy isaleft Haar measure, and du(E) = O impliesdu 1 (E) = 0.
By the Radon-Nikodym Theorem there exists a Borel function h; > 0
suchthat duy = hydu. Fix gin G. By theleft invariance of dyu; and du,
we have

/G f 00ha(g™%) du(x) = /G F(@0hL(0) dpu(x) = /G (gx) dpa(x)

_ / £ (%) dpa () = / f (0hy(x) d(x)
G G

for every Borel function f > 0. Therefore the measures h;(g=*x) du(x)
and hy(x) du(x) are equal, and hy(g~1x) = hy(x) for amost every x € G
(with respect to du). We can regard h;(g=*x) and hy(x) as functions of
(g, X) € G x G, and these are Borel functions since the group operations
arecontinuous. For eachg, they areequal for amost every x. By Fubini’s
Theorem they are equal for almost every pair (g, x) (with respect to the
product measure), and then for almost every x they are equal for amost
every g. Pick such an x, say xo. Then it follows that hy(x) = h;(xo) for
amost every x. Thusdu; = hy(xo) du. SO duy isamultiple of du, and
soisdus.
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= / F (n)e2°A!%93 (Aman) di d; (man) by (8.39)
N-xMAN
= / F (Aman)¢ (Aman) di d, (man) by (8.47)
N-xMAN
= / F(X)p(x) dx by Proposition 8.45.
G
The proposition follows.

For an illustration of the use of Proposition 8.46, we shall prove a
theorem of Helgason that has important applications in the harmonic
analysis of G/K. We suppose that the reductive group G is semisimple
and has a complexification G¢. We fix an Iwasawa decomposition G =
KA,N,. Let t, beamaximal abelian subspace of m,,, sothat t, & a, isa
maximally noncompact ¢ stable Cartan subalgebraof g. Representations
of G yield representations of g, hence complex-linear representations
of g*. Then the theory of Chapter V is applicable, and we use the
complexification of t, @ a, as Cartan subalgebrafor that purpose. Let A
and ¥ be the sets of roots and restricted roots, respectively, and let =+
be the set of positive restricted roots relative to n,,.

Roots and weights are real onit, @ a,, and we introduce an ordering
such that the nonzero restriction to a, of a member of A* is a member
of =*. By arestricted weight of a finite-dimensional representation,
we mean the restriction to a, of aweight. We introduce in an obvious
fashion the nations of restricted-weight spaces and restricted-weight
vectors. Because of our choice of ordering, the restriction to a, of
the highest weight of afinite-dimensional representation is the highest
restricted weight.

Lemma 8.48. Let the reductive Lie group G be semisimple. If r is
an irreducible complex-linear representation of g©, thenm,, actsin each
restricted weight space of », and the action by m, isirreducible in the
highest restricted-weight space.

Proor. The first conclusion follows at once since m, commutes with
a,. Let v # 0 be ahighest restricted-weight vector, say with weight
v. Let V bethe space for =, and let V, be the restricted-weight space
corresponding to v. Wewrite g = 6n, & m, @ a, & n,,, €Xpress members
of U (g©) inthe corresponding basi s given by the Poincaré-Birkhoff-Witt
Theorem, and apply an element to v. Since n,, pushes restricted weights
up and a, actsby scalarsin Vv, and 6n, pushesweightsdown, weseefrom
the irreducibility of = on Vv that U(m(g)v = V,. Sincev is an arbitrary
nonzero member of V,, m, actsirreducibly onV,.
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Theorem 8.49 (Helgason). Let the reductive Lie group G be
semisimple and have a complexification G®. For an irreducible finite-
dimensional representation = of G, the following statements are
equivalent:

(@) = hasanonzero K fixed vector

(b) M, actsby the 1-dimensional trivial representation in the highest
restricted-weight space of =

(c) thehighest weight v of = vanisheson t,, and the restriction v of
7 to a, issuch that (v, B)/|8|? is an integer for every restricted
root g.

Conversely any dominant v e af, such that (v, 8)/|8|? is an integer for
every restricted root g isthe highest restricted weight of someirreducible
finite-dimensional = with anonzero K fixed vector.

Proor. For the proofs that (a) through (c) are equivalent, there is no
loss in generality in assuming that G® is simply connected, as we may
otherwise take a simply connected cover of G¢ and replace G by the
analytic subgroup of this cover with Lie algebra g. With G© simply
connected, therepresentation = of G yieldsarepresentation of g = ¢@ p,
then of ¢©, and then of the compact formu = ¢@ip. Since GC issimply
connected, so is the analytic subgroup U with Lie algebra u (Theorem
6.31). The representation = therefore lifts from u to U. By Proposition
4.6 we can introduce a Hermitian inner product on the representation
space so that U acts by unitary operators. Thenit followsthat K acts by
unitary operatorsand i t, @ a, acts by Hermitian operators. In particular,
distinct weight spaces are orthogonal, and so are distinct restricted-
weight spaces.

(8) = (b). Let ¢, be anonzero highest restricted-weight vector, and
let g« be anonzero K fixed vector. Since n, pushes restricted weights
up and since the exponential map carries n, onto N, (Theorem 1.104),
7(N)¢, = ¢, for n € N,. Therefore

(w(kan),, ¢x) = (T(@ by, 7(K) LpK) = €%, P).

By theirreducibility of = and thefact that G = K A,N,, theleft side can-
not beidentically 0, and hence (¢,, ¢«) ontheright sideisnonzero. The
inner product with ¢ isthen an everywhere-nonzero linear functional
on the highest restricted-weight space, and the highest restricted-weight
space must be 1-dimensiona. If ¢, is a nonzero vector of norm 1 in
this space, then (¢« , ¢.)¢, is the orthogonal projection of ¢« into this
space. Since M,, commutes with a,, the action by M, commutes with
this projection. But M, actstrivialy on ¢« since M, < K, and therefore
M, actstrivialy on ¢,.



480 VIII. Integration

and to be the respective Lie algebras. Let m = dimG and| = dimT.
Asin 8VII.8, an element g of G isregular if the eigenspace of Ad(g)
for eigenvalue 1 has dimension |. Let G’ and T’ be the sets of regular
elementsin G and T; these are open subsets of G and T, respectively.

Theorem 4.36 implies that the smooth map G x T — G given by
¥(g.t) = gtg~tisonto G. Fix g e Gandt e T. If weidentify tangent
spacesat g, t, and gtg~* with g, to, and go by |€ft translation, then (4.45)
computes the differential of v at (g, t) as

dy (X, H) = Ad(g)((Adt™Y) — DX + H) for X € go, H € to.
The map v descendsto G/T x T — G, and we call the descended map
¥ aso. We may identify the tangent space of G/ T with an orthogonal
complement t; to to in go (relative to an invariant inner product). The
space ty isinvariant under Ad(t~1) — 1, and we can write

dy (X, H) = Ad(@((Adt™) — DX+ H)  for X e tg, H € to.

Now dv at (g, t) isessentially amap of g, to itself, with matrix

to tOL
(dy) gy = Ad(g) (0 Adt-1) — 1) '

Since det Ad(g) = 1 by compactness and connectedness of G,

(8.53) det(dy) g = det((Adt™) — D).

We can think of building aleft-invariant (m — 1) form on G/ T from the
dualsof the X’sintg and aleft-invariant| formon T from thedual s of the
H’sin to. We may think of aleft-invariant m form on G as the wedge of

these forms. Referring to Proposition 8.19 and (8.7b) and taking (8.53)
into account, we at first expect an integral formula

(8.54a)
/ f(x)dxé/ [/ f(gtg‘l)d(gT)]\det(Ad(t‘l)—l)|%|dt
G T G/T

if the measures are normalized so that

(8.54b) /f(x)dx:/ [f f(xt)dt]d(xT).
G /T LT
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But Proposition 8.19 fails to be applicable in two ways. Oneisthat the
ontomap vy : G/T x T — G hasdifferential of determinant O at some
points, and the other is that v is not one-one even if we exclude points
of the domain where the differential has determinant 0.

From (8.53) we can exclude the points where the differential has
determinant Oif werestricty toamapy : G/ T xT' — G’. Tounderstand
T’, consider Ad(t 1) —1 asalinear map of the complexification g toitself.
If A = A(g, t) isthe set of roots, then Ad(t~') — 1 is diagonable with
eigenvalues 0 with multiplicity | and also &, (t~1) — 1 with multiplicity
1 each. Hence | det(Adt=1) — 1)|tOLy = |[Tpes Gt = D). If wefixa
positive system A* and recognize that &,(t™1) = £_,(t~1), then we see
that

(8.55) |det(Adt™) - Dly| = [] let™ —172

aeAt

Puttingt = expi H withiH e tg, wehave&, (t~1) = e'*™, Thusthe set
in the torus where (8.55) is 0 is a countable union of lower-dimensional
sets and is alower-dimensional set. By (8.25) the singular set in T has
dt measure 0. The singular set in G is the smooth image of the product
of G/T and the singular set in T, hence is lower dimensional and is of
measure O for duu(gT). Therefore we may disregard the singular set and
consider v asamap G/T x T' — G'.

Themap v : G/T x T" — G’ is not, however, one-one. If w isin
NG (o), then

(8.56) v(gwT, w ltw) = ¢ (gT, t).

Since gwT # gT when w isnot in Zg(tg) = T, each member of G’ has
at least |W(G, T)| preimages.

Lemma 8.57. Each member of G’ has exactly |W(G, T)| preimages
underthemap v : G/T x T’ — G'.
Proor. Let us call two members of G/ T x T’ equivalent, written ~,
if they are related by a member w of Ng(tp) asin (8.56), namely
(qwT, w ttw) ~ (gT, 1).

Each equivalence class has exactly |W(G, T)| members.
Now suppose that v (gT, s) = ¥ (hT, t) with s and t regular. We shall
show that

(8.58) (gT,s) ~ (hT, 1),
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and then the lemmawill follow. The given equality v (gT, s) = ¥ (hT, 1)
means that gsg=! = hth=!. Proposition 4.53 shows that s and t are
conjugate via Ng(t). Say s = w™'tw. Then hth™! = gw twg™?,
and wg~th centralizes the element t. Sincet is regular and G has a
complexification, Corollary 7.106 shows that wg=th isin Ng(tp), say
wg~th = w’. Then h = gw—tw’, and we have

(hT.0) = (g w'T, 1)
= (qw tw'T, w " ttw)
~ (QuT'T, 1)
~ (9T, w™ltw)
=(gT,s).
This proves (8.58) and the lemma.
Now we return to Proposition 8.19. Instead of assuming that
® : M — N is an orientation-preserving diffeomorphism, we assume
for somen that ® isan everywhereregular n-to-1 map of M onto N with

dimM = dimN. Then the proof of Proposition 8.19 applies with easy
modifications to give

(8.59) n/ fow =/ (f o ®)P*w.
N M
Therefore we have the following result in place of (8.54).
Theorem 8.60 (Weyl Integration Formula). Let T beamaximal torus

of the compact connected Lie group G, and let invariant measureson G,
T,and G/ T be normalized so that

/f(x)dx:/ [/ f(xt)dt]d(xT)
G /T LJT

for all continuous f on G. Then every Borel function F > 0 on G
satisfies

1
FOOdx = —=—— F(gtg™Hd(gT)|ID®)[?dt,
/G () dx |W<G,T>|/T[/G/T (gtg ™ d(@D)] D)

where DW= ] 11-&a™HP

aeAt
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Theintegration formulain Theorem 8.60 isastarting point for an an-
alytic treatment of parts of representation theory for compact connected
Lie groups. For agiven such group for which s is analytically integral,
let us sketch how the theorem leads simultaneously to a construction of
an irreducible representation with given dominant analytically integral
highest weight and to a proof of the Weyl Character Formula.

Define

(8.61) D) =&® [ A—&at).

aeAT

so that Theorem 8.60 for any Borel function f constant on conjugacy
classes and either nonnegative or integrable reduces to

1
8.62 fx)dx = ———— | f)|D@)[%dt
(8.62) fG<x> x |W(G’T)|/T ®IDO)

if wetakedx, dt, and d(gT) to havetotal massone. For A € t* dominant
and analytically integral, define

> sew(e,m) E(9Esiits (1)
D()

x.(t) =

Then y, isinvariant under W(G, T), and Proposition 4.53 showsthat ; (t)
extendsto afunction y; on G constant on conjugacy classes. Applying
(8.62) with f = |x,|?, we seethat

(8.633) / s [2dx = 1.
G
Applying (8.62) with f = x; x5, we see that
(8.63b) / OO Idx =0 if A A
G

Let x bethecharacter of anirreduciblefinite-dimensional representation
of G. On T, x(t) must be of the form 3_ &, (t), where the u's are the
weights repeated according to their multiplicities. Also x(t) is even
under W(G, T). Then D(t)x(t) is odd under W(G, T) and is of the
form " n,&,(t) with each n, in Z. Focusing on the dominant v’s and
seeing that the v's orthogonal to a root must drop out, we find that
x(t) = Zk a () with a, € Z. By (863),

[ xoorax= Y ja
G Y



484 VIII. Integration

For an irreducible character Corollary 4.16 shows that the left sideis 1.
Sooneg; is+1andtheothersare0. Since x (t) isof theform}_ £, (t), we
readily findthat a; = +1for somei. Henceevery irreduciblecharacteris
of theform x = x, for some . Thisprovesthe Weyl Character Formula.
Using the Peter-Weyl Theorem (Theorem 4.20), we readily see that no
L2 function on G that is constant on conjugacy classes can be orthogonal
to all irreducible characters. Then it follows from (8.63b) that every x;
is an irreducible character. This proves the existence of an irreducible
representation corresponding to a given dominant analytically integral
form as highest weight.

For reductive Lie groups that are not necessarily compact, thereisa
formula analogous to Theorem 8.60. This formula is a starting point
for the analytic treatment of representation theory on such groups. We
state the result as Theorem 8.64 but omit the proof. The proof makes
use of Theorem 7.108 and of other variants of results that we applied in
the compact case.

Theorem 8.64 (Harish-Chandra). Let G be areductive Lie group, let
(bo)os - . ., (hr)o beamaximal set of nonconjugate ¢ stable Cartan subal-
gebrasof go, and let Hy, ..., H, bethe corresponding Cartan subgroups.
Let the invariant measures on each H; and G/H; be normalized so that

/f(x)dx:/ [ f(gh)dh]d(gHj) foral f € Ceom(G).
G G/H b JH;

Then every Borel function F > 0 on G satisfies

. - 1 -1 _ 2
/(;F(X)dx‘j;m L, Fng ™t iow oo an.

where Dy mP= [] 1-&b ™l

a€A(g,bj)

6. Problems

1. Provethat if M isan oriented m-dimensional manifold, then M admits a
nowhere-vani shing smooth m form.

2. Prove that the zero locus of a nonzero real analytic function on a cubein
R" has Lebesgue measure 0.
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a b
01
a—?dadbisaleft Haar measureand that a—* da dbisaright Haar measure.

Let G be the group of al real matrices ( ) witha > 0. Show that

Let G be a noncompact semisimple Lie group with finite center, and let
M, A, N, beaminimal parabolic subgroup. Provethat G/ M, A, N, hasno
nonzero G invariant Borel measure.

Prove that the complement of the set of regular points in a reductive Lie
group G isaclosed set of Haar measure 0.

Problems 6-8 concern Haar measure on GL (n, R).

6.
7.

Why is Haar measure on GL (n, R) two-sided invariant?

Regard gl(n, R) as an n?-dimensional vector space over R. For each

X € GL(n, R), let Ly denote left multiplication by x. Provethat det Ly =

(detx)".

Let Eij bethematrix thatislinthe(i, )" placeandis0 elsewhere. Regard

{Ei;} as the standard basis of gl(n, R), and introduce L ebesgue measure

accordingly.

(@ Why is the set of x € gl(n, R) with detx = 0 a set of Lebesgue
measure 0?

(b) Deduce from Problem 7 that |dety|™"dy is a Haar measure for
GL(n, R).

Problems 9-12 concern the function e”H»® for asemisimple Lie group G with
a complexification G€. Here it is assumed that G = K A,N, is an Iwasawa
decomposition of G and that elements decompose as X = «(g) exXp H,(X) n.
Let a, betheLiealgebraof Ay, and let v bein ajy.

9.

10.

Let 7 be an irreducible finite-dimensiona representation of G on V, and
introduce a Hermitian inner product in V asin the proof of Theorem 8.49.
If 7 hashighest restricted weight v and if v isin therestricted-weight space
for v, prove that || (X)v||? = e |v]2.

InG = SL(3,R), let K = SO(3) and let M, A, N, be upper-triangular.

1 00
Introduce parametersfor N~ by writing N~ = {ﬁ = (x 1 0) } Let
f1 — f,, f — f3,and f; — f3 bethe positive restricted cmJotsyas &sual, and
let p, denote half their sum (namely fi — f3).
(@ Showthate?ftHr™ = 14x2472ande? it He MW = 14 y24 (z—xy)?
forne N, .
(b) Deducethat e®»"*™ = (14x242%)(1+y?+(z—xy)») forA e N, .
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11. InG = SO(n, 1)0, let K = SO(n) x {1} and ap, = R(E1’n+1 + En_;,_]_,]_),
with E;j; asin Problem 8. If A(E1ny1 + Eny11) > 0, say that & € aj is
positive, and obtain G = K A, N, accordingly.

(@ Using the standard representation of SO(n, 1)o, compute e2+H»®) for
asuitabler and al x € G.

(b) Deduce aformulafor e?»"® from the result of (3). Here p,, is half
the sum of the positive restricted roots repeated according to their
multiplicities.

12. InG =SU(n, D), let K = S(U(n) x U(1)), and let a, and positivity be
asin Problem 11. Repeat the two parts of Problem 11 for this group.
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and let o : T"(E) — T"(E) be its linear extension. We call o the
symmetrizer operator. The image of o is denoted S"(E), and the
members of this subspace are called symmetrized tensors.

Corollary A.23. Let k have characteristic O, and let E be a vector
space over k. Then the symmetrizer operator o satisfies 0? = 0. The
kernel of o isexactly T"(E) N I, and therefore

TNE)=S"E)e (T(E)NI).

RemARK. In view of this corollary, the quotient map T"(E) — S"(E)
carries S'(E) one-one onto S'(E). Thus S'(E) can be viewed as a copy
of S"(E) embedded as adirect summand of T"(E).

Proor. We have

1
02(U1®"‘®Un) = W Z Upr(1) ®"'®Upr(n)

p,7€Gy

1
:W Z Vo) ® -+ @ Vy(n)

peESH weGy,
(w=p1)

1
=52 0w® - ®u)

T peGn
=01 ® - Quvp).

Hence 02 = o. Consequently T"(E) is the direct sum of images and
kero. Wethus are left with identifying kero as T"(E) N I.

The subspace T"(E) N | is spanned by elements
X1® - QX% QUAVAYI® - QYs—X1® QX% QUAURY1I® - ®Ys

withr +2+s = n, anditisclear that o vanisheson such elements. Hence
T'(E)NI < kero. Supposethat theinclusionisstrict, say witht inker o
butt notin T"(E) N 1. Let q bethe quotient map T"(E) — S'(E). The
kernel of qisT"(E) N I, and thus q(t) # 0. From Proposition A.21 it is
clear that q carries '(E) = imageo onto S"(E). Thuschooset’ € S'(E)
with gt’) = q(t). Thent' —tisinkerq = T"(E)Nn | < ker o. Since
o(t) = 0, weseethat o (t') = 0. Consequentlyt’isinker o nimageo = 0,
and we obtaint’ = 0 and q(t) = q(t’) = 0, contradiction.
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Proor. Sincemultiplicationin A (E) satisfies (A.26) and since mono-
mials span T"(E), the indicated set spans /\"(E). Let us see indepen-
dence. Fori € A, let ur be the member of E* with u*(u;) equal to 1 for
j=iandequa toOfor j #i. Fixry <--- <ry, and define

|(w1,...,wn)=det{ufi(wj)} for wy, ..., wnyINE.

Then| is aternating n-multilinear from E x --- x E into k and extends
by Proposition A.27ato L : A"(E) — k. If k; < --- < kg, then

L(ug A= Al) =1 (Ug, - .., Ug,) = det{uy (ug)},

and theright sideisO unlessr; = kg, ..., rn = ko, inwhich caseitis 1.
This provesthat theu,, A --- A u;, arelinearly independent in A\"(E).

Corollary A.30. Let E be afinite-dimensional vector space over k
of dimension N. Then

(@ dimA"(E) = (':) forO<n<Nand=0forn> N.

(b) A"(E*) iscanonicaly isomorphicto A\"(E)* by

(fin- A f)(wy, ..., wn) = det{ fi (wj)}.

Proor. Part (a) is an immediate consequence of Proposition A.29,
and (b) isproved in the same way as Corollary A.22b, using Proposition
A.27aasatool.

Now let us suppose that k has characteristic 0. We define an
n-multilinear function from E x --- x E into T"(E) by

1
(v, ..., vp) ] TEZ@: (SINT)v7(1) ® - -+ @ V(s
and let ¢’ : T"(E) — T™E) be its linear extension. We call ¢’ the

antisymmetrizer operator. The image of ¢’ is denoted /\n(E), and the
members of this subspace are called antisymmetrized tensors.

Corollary A.31. Let k have characteristic 0, and let E be a vector
space over k. Then the antisymmetrizer operator ¢’ satisfies 0’2 = o'.
The kernel of o’ isexactly T"(E) N I/, and therefore

TE) =A"(E)® (T(E)N1).

ReMARK. In view of this corollary, the quotient map T"(E) — A"(E)

carries A\"(E) one-one onto A"(E). Thus A"(E) can be viewed as a
copy of A\"(E) embedded as a direct summand of T"(E).
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Es

V={veR?|(ve—e) = (v,& +es) =0)}
A={te+eg|i<j<BUiY?, -D"VgeV]| X ni)even)

Al =72
dimg =78

W =27.3*.5
det(Ai,-)=3

At={eLegli>j}
Uffe—e—e+ Y, (~)"De)| 37, n(i) even}
IT = {a1, a2, a3, as, as, as}
=& -—&s-&-—a-—eg-e+e),
€ +€, e —€, 63— €, & —€ 6 — ey
Numbering of simple rootsin Dynkin diagram = <65£2131>
Fundamental weightsin terms of ssimple roots:
ZD’1=:—13(4()[1+3O[2+ Sa3 + 6a4+ 4das + 206)
wor = log+2a+ 203+ 3osa+ 205+ log
w3 = 3(5a1 + 6oz + 1003 + 1204 + 8as + 4a)
ws= 201+30x+ daz+ Gas+ das+ 206
ws = %(40!1 + 6ar + 8az + 12a4 + 10as + Sag)
we = 5(201 + 302+ 4oz + 6as+ Sos+ dag)
Positive roots having a coefficient > 2:

1 1 1 1 1 1

( 01210) ’ ( 11210) ’ ( 01211) ’ ( 12210) : < 11211) ’ ( 01221> ’
1 1 1 1 2

( 12211) : < 11221) ’ ( 12221) ’ ( 12321) ’ < 12321)

=6+ 263+ 3es+ des — des — der + deg
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E;

V={veR¥| (ve+e) =0}
A={te +g|i<|=<6lU{x(e—ep)
UEY?  (~DDe e V| 32 n(i) even}

|A| = 126

dimg = 133

W =210.3*.5.7
det(Aij)=2

AT={e+g|i>]jlU{eg—er}
U{3(es— e+ X0, (-D)"Ve) | Y7, n(i) odd)
M= {a1, a2, a3, aa, as, as, o7}
={J(—e-&-6&——&G—&+te),
& +6, e —e, 63— 6, € — 6 65— € & — 65}

. . . . 2
Numbering of simple rootsin Dynkin diagram = <765431>

Fundamental weightsin terms of ssmple roots:
w1 = 201+20+ 3az+ das+ 3os+ 206+ laz
wy = %(40!14—70{24- 8az + 1204 + Qo5+ 6o + 3007)
w3= 3a1+4ax+ 6az+ 8Basa+ 6Gus+ dos+ 207
wa= 4dog+6ar+ Bauz+ 1204+ a5+ 6og + 307
w5 = %(60[1 + 95 + 1203 + 18a4 + 15a5 + 10ag + 50(7)
we= 201+32+ daz+ 6as+ Sas+ dos+ 207
w7 = 3201+ 302+ 4oz + 6as+ Sas+ 4os+ 307)

Positive roots having a coefficient > 2 and involving «7:

1 1 1 1
111?10 111211 )’ \ 112210 111221 )’ \ 112211

1
22210 <112221> (122211) (122221) (112321 !

123421 < 123431) ( 123432)
(26, + 4e3 + 664 + 8es + 1085 — 17e; + 17ey)

(112

(s2ho)

( 122321) < 112321> ( 123321)
=)

2
122321) (123321 !
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Eg

V =R8
={te e |i <]}
U320, (—)"e | X7 n() even)

|A| = 240

dimg = 248
W|=2¥.3°.52.7
det(Aj) =1

At ={a+teg|i>j}
Ui+ (~D"De)| S/ n(i) even)
= {1, @, a3, oa, as, as, o7, og)
=@ -&-—&-—&-—a—eg-e+e),
&+€, &—€, 63— €, e — € 6 —€, 6 — €5, € — €5}

_ _ _ N 2
Numbering of simple roots in Dynkin diagram = < 8765431)

Fundamental weightsin terms of simple roots:
w1 = 4do1+ Bos+ Taz+ 1004 + 8Bas+ 6ag+ a7 + 2ag
wo = Sag+ 8o+ 1003 + 15a4 + 1205 + 9ug + 67 + g
w3 = (o1 + 100 + 14a3 + 2004 + 1605 + 1206 + 8oz + 4dag
wy = 100!1 =+ 150[2 =+ 200[3 + 30@4 + 240(5 =+ 180!5 =+ 120[7 =+ 60[3
ws = 8a1 + 1207 + 1603 + 2404 + 2005 + 1506 + 1007 + Serg
we = 60[1 + 9052 + 120[3 + 180[4 + 15a5 + 120{6 + 8057 + dag
w7 = 4da1+ 6ar+ 8Buz+ 1204 + 1005 + 8wg+ 6o7 + g
wg= 201+ 3oo+ daz+ 6as+ Sas+ dag+ 3w7 + 208

Positive roots having a coefficient > 2 and involving ag:

1 1 1 1 1
1111210 111??10 ’ 1111?11 11???10 1111221

1
1112321

1

2

2

3

)
)
(’I??? 21 )’
(228m)
)

1112211 1112221 1122211 1222210

11 ?7??1 1 ????1 1 111 ???1 11 ????1 >

) )
() () (i)
(11????1) (11??321) (1?????1) (11?'3321
(rozsior)- (sazston) - (12258

1222321

2

1223321 1123421 1223321 1233321 (1123431 '
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Fy

V = R4
A={te teg|i<jlU{talU{j(xertetestey}

|A| = 48

dimg =52
W| =27.32
det(Aj) =1

At ={ateg|i<jlula)UijEete+e+e)
IT = {1, az, a3, aa}

=@ —&—e—&), &, 65— €, & — €3}
Numbering of simple rootsin Dynkin diagram = (1234)

Fundamental weightsin terms of ssimple roots:
w1 = 201 + 300 + 203 + lous
@y = 301 + Borz + bz + 204
w3 = 41 + 8oz + Bz + 304
wa = 201 + 4oy + 3oz + 204
Positive roots having a coefficient > 2:
(0210), (0211), (1210), (0221), (1211), (2210), (1221),
(2211), (1321), (2221), (2321), (2421), (2431), (2432)

§=11e; +56 + 35+ &4
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G>

V=WweR¥| (v,e;+e&+e) =0}
A ={X(er — &), (& — &), £(61 — &)}
U{t(2e — e — &), £(2e, — &1 — €3), £ (283 — €, — &)}

A =12

dimg=14
IW| =22.3
det(Aj) =1

IT = {1, a2}
= {e1 — &, —2e; + & + €3}
Numbering of simple roots in Dynkin diagram = (12)
AT ={(10), (01), (11), (21), (31), (32)}
Fundamental weightsin terms of simple roots:
w1 = 201 + oo
wo = 3oy + 20
8 = Bay + 3ap
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s0(2p,2q+1),1<p=<q

Vogan diagram:
Bp-q, trivial automorphism,
p" simple root e, — e,;1 painted
to=s50(2p) ®so(29+ 1)
Simple roots for ¢: compact simple roots and
e-1+ewhenp>1
{ no other when p = 1}

Real rank = 2p
Cayley transform list:
dle tepiforl<i<p

¥ = By
Real-rank-one subalgebras:
sl(2, R) for all long restricted roots
s50(2q — 2p + 2, 1) for al short restricted roots
my o =s0(2q —2p+ 1),
simplerootswhen p < q by Cayley transform from
eprg andal expi —eppripaforl<i<qg-p-1

G = SO(2p, 29 + 1)
K = SO2p) x SO(2q + 1)
IMp/(My)o| = 22P~1

Special features:
G/K isHermitian when p = 1,
go isasplit real form when p = q

Further information:
For M,, see Example 3in 8§V1.5.
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s0(2p,2q+1),p>q>0

Vogan diagram:
Bp-q, trivial automorphism,
p" simple root e, — e,;1 painted
to=s50(2p) ®so(29+ 1)
Simple roots for ¢: compact simple roots and
e-1+ewhenp>1
{ no other when p=1andq =O}

Red rank =2g +1
Cayley transform list:
e-qandale tepiforp—qg+1l<i<p

¥ = Byg1
Real-rank-one subalgebras:
sl(2, R) for all long restricted roots
s0(2p — 2q, 1) for al short restricted roots
mpo=s0(2p—2q9—1),
simple rootswhen p > q + 1 by Cayley transform from
e-grandale —eforl<i<p-q-2

G = SO(2p, 29 + 1)o
K = SO(2p) x SO(2q + 1)
IMp/(Mp)o| = 2%

Specia feature:
G/K isHermitianwhen p=1andq =0,
goisasplitreal formwhen p=q+1

Further information:
For M,, see Example 3in 8§V1.5.




554 Hints for Solutions of Problems

16. Write the 1" highest weight vector asv = > . .,/ (v, ® vy), a-
lowing more than one term per choice of p and taking the v,,,’sto be linearly
independent. Choose i = g as large as possible so that there is a honzero
term v, ® v, Apply root vectors for positive roots and see that v, is highest
for @, .

17. Changing notation, suppose that the weights of ¢;, have multiplicity
one. Let ¢, occur more than once. By Problem 16 write A" = A + u’ for
aweight u’ of ¢,. The solution to Problem 16 shows that a highest weight
vector for each occurrence of ¢, contains aterm equal to a nonzero multiple
of v, ® v,y. A suitable linear combination of these vectors does not contain
such aterm, in contradiction with Problem 16.

18. By Chevalley’s Lemma, (A, a) = O for some root az. Rewrite the sum
as an iterated sum, the inner sum over {1, s,} and the outer sum over cosets of
this subgroup.

19. Putting 1" = wA” and using that m; (wA”) = m; ("), we have

-1
X =d Z Z M () e (W& Ewiy+o)
weW p”=weight of ¢,

=d™ Z Z M (A e (W)&wGortir+5)

weW 1"=weight of ¢;

=d™ Y MGG+ N +8) Y eWburaes

A"=weight of ¢; weW
-1
=d > mO)SINR + A+ 8) Xy s
A”=weight of ¢;

20. The lowest weight —u has m;, (—u) = 1 by Theorem 5.5e. If A’ — 1
is dominant, then sgn(—u + A’ +68) = 1. So A” = —u contributes +1 to the
coefficient of x;_,.. Supposesomeother A” contributes. Then (A" +1'+8)Y —
=N —w. SO +N+8) =N —pu+8V +1V+8=sA —pu+08) =
N=—p+8—=>, oNee,andr” = —pu— 3" _oNea. Thissaysthat 1" islower
than the lowest weight unless A" = —pu.

22. Write (W + 8+ A" =X +wr +8, X +8+ 1" = s(A' + wh +3).
Subtract 2’ 4+ § from both sides and compute the length squared, taking into
account that A’ + § is strictly dominant and 2" + w + § is dominant:

V2= ISV + wh +8) — () + )2
=N 4wk + 82 —2(s(\ +wr +8), A +8) + |1 + 5|
>N+ wh 4812 =20 +wr 48,1 +8) + [V + 8
= | 4+ wr+8) — W\ +8)
=P
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(SL(2,R) x {0})/(D N (SL(2, R) x {0})), and the intersection on the bottom
istrivial. Thus Gg hasinfinite center. If Ggs were closed in G, Kss would be
closed in G, henceiin K. Then K¢ would be compact, contradiction.

5. Let M AN beblock upper-triangular with respective blocks of sizes 2 and
1. Then M isisomorphic to the group of 2-by-2 real matrices of determinant
+1 and has a compact Cartan subalgebra. The group M is disconnected, and
itscenter Zy, = {£1} iscontained in Mg. Therefore M £ MgZy.

6. Refer to the diagram of theroot system G in Figure 2.2. Takethisto be
the diagram of the restricted roots. Arrangefor ag to correspond to the vertical
axisand for tq to correspond to the horizontal axis. The nonzero projections of
the roots on the ag axis are of the required form.

7. In(b) one MAis= GL'(2,R) x Z/27 (the plus referring to positive
determinant), and the other is= GL (2, R). If thetwo Cartan subalgebraswere
conjugate, the two M A’s would be conjugate.

8. Itiseasier to work with SO(2, n)o. For (a), conjugate the Lie algebra
by diag(i,i, 1,...,1). In(b), coc comes from the upper left 2-by-2 block. For
(c) the Cartan subalgebra b given in 8l1.1 is fixed by the conjugation in (a)
and intersects with gg in a compact Cartan subalgebra of go. The noncompact
roots are those that involve +e;, and al others are compact. For (d) the usual
ordering makes e; + g and e, larger than al compact roots; henceiit is good.

9. Itisone-one since Nk (ag) N Zg(ag) = Zk (ag). To seethat it is onto,
let g € Ng(ap) be given, and write g = kexp X. By Lemma 7.22, k and X
normalize ag. Then X centralizes ag. Hence g can be adjusted by the member
exp X of Zg(ag) so astobein Nk (ag).

10. Imitate the proof of Proposition 7.85.

11. For (a) when « isreal, form the associated Lie subalgebra s((2, R) and
argue as in Proposition 6.52c. When « is compact imaginary, reduce matters
to SU(2). For (b), fix a positive system A* (¢, h) of compact roots. If s, is
in W(G, H), choose w € W(A(¥, b)) with ws, AT(¢, h) = AT(E, b). Let i
and §, be representatives. By Theorem 7.8, Ad(w&,) = 1 onh. Hences,
isin W(A(t, b)). By Chevalley’s Lemma some multiple of « isin A(t, b),
contradiction. For (c) usethe group of 2-by-2 real matrices of determinant 4-1.

12. Parts (@) and (c) aretrivia. In (b) put M = °Zg(ap). If kisin Nk (ao),
then Ad(k) carries to to a compact Cartan subalgebra of mg and can be carried
back to to by Ad of amember of K N M, essentially by Proposition 6.61.

13. The given ordering on rootsis compatible with an ordering on restricted
roots. Any real or complex root whose restriction to ag is positive contributes
to both b and b. Any imaginary root contributes either to b or to b. Therefore
m@a®n=">b+b.

14. Otherwise Ny, (o) would contain a nonzero member X of po. Then
ad X carries £ to £y because X isin the normalizer, and ad X carries £ to po
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One result about structure theory that we have omitted in 83, having no Lie-
theoretic proof, isthe theorem of Cartan [1929a] that any compact subgroup of
G isconjugate to a subgroup of K.

Cartan [1927b] shows that there is a Euclidean subgroup A of G such that
any element of G/K can be reached from the identity coset by applying a
member of A and then amember of K. Thisisthe subgroup A of 84, and the
geometric result establishes Theorem 6.51 in 85 and the K AK decomposition
in Theorem 7.39. Cartan [1927Db] introduces restricted roots. The introduction
of N in 84 isdueto Iwasawa[1949], and the decomposition given as Theorem
6.46 appears in the same paper. Lemma 6.44 came after Iwasawa's original
proof and appears as Lemma 26 of Harish-Chandra [1953]. Cartan [1927b]
uses the group W(G, A) of 85, and Theorem 6.57 isimplicit in that paper.

It was apparent from the work of Harish-Chandra and Gelfand-Graev in the
early 1950s that Cartan subalgebras would play an important role in harmonic
analysis on semisimple Lie groups. The results of 86 appear in Kostant [1955]
and Harish-Chandra [1956a]. Kostant [1955] announces the existence of a
classification of Cartan subalgebras up to conjugacy, but the appearance of
Harish-Chandra [19564a] blocked the appearance of proofs for the results of
that paper. Sugiura[1959] states and proves the classification.

In effect Cayley transforms as in 87 appear in Harish-Chandra [1957], 82.
For further information, see the Notesfor 8V11.9.

In 88 the name “Vogan diagram” isnew. Inthe casethat ap = 0, theidea of
adapting a system of positive roots to given data was present in the late 1960s
and early 1970s in the work of Schmid on discrete series representations (see
Schmid [1975], for example), and a Vogan diagram could capture thisideain
apicture. Vogan used the same idea in the mid 1970s for genera maximally
compact Cartan subalgebras. He introduced the notion of a# stable parabolic
subalgebra of g to handle representation-theoretic data and used the diagrams
to help in understanding these subalgebras. The paper [1979] contains initial
results from this investigation but no diagrams.

Because of Theorem 6.74 VVogan diagrams provide control in the problem of
classifying simplereal Lie algebras. Thistheorem was perhaps understood for
along timeto be true, but Knapp [1996] gives a proof. Theorem 6.88 isdueto
Vogan.

The results of 89 were aready recognized in Cartan [1914]. The classi-
fication in 810, as was said earlier, is in Cartan [1914]; it is the result of a
remarkable computation made before the discovery of the Cartan involution.
Lie algebraswith agiven complexification are to be classified in that paper, and
the signature of the Killing form is the key invariant. The classification over
Risrecalled in Cartan [19278], and £, isidentified in each case. In this paper
Cartan provided a numbering for the noncomplex noncompact simplereal Lie
algebras. This numbering has been retained by Helgason [1978], and we use
the same numbering for the exceptional casesin Figures 6.2 and 6.3.
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Cartan [1927b] improves the classification by relating Lie algebras and
geometry. This paper contains tables giving more extensive information about
the exceptional Lie algebras. Gantmacher [1939a] and [1939b] approached
classification as aproblem in classifying automorphisms and then succeeded in
simplifying the proof of classification. This method was further simplified by
Murakami [1965] and Wallach [1966] and [1968] independently. Murakami
and Wallach made use of the Borel and de Siebenthal Theorem (Borel and de
Siebenthal [1949]), whichissimilar to Theorem 6.96 but slightly different. The
original purpose of the theorem wasto find astandard form for automorphisms,
and Murakami and Wallach both use the theorem that way. Helgason [1978]
gives a proof of classification that is based on classifying automorphisms in
a different way. The paper Knapp [1996] gives the quick proof of Theorem
6.96 and then deduces the classification as a consequence of Theorem 6.74; no
additional consideration of automorphismsis needed.

The above approaches to classification make use of a maximally compact
Cartan subalgebra. An aternative line of attack starts from a maximally non-
compact Cartan subal gebraandisthe subject of Araki [1962]. Theclassification
isstatedintermsof “ Satakediagrams,” which aredescribed by Helgason[1978],
531. Problem 7 at the end of Chapter VI establishes the facts due to Satake
[1960] needed to justify the definition of a Satake diagram.

Theinformationin (6.107) and (6.108) appearsin Cartan [1927b]. Appendix
C shows how thisinformation can be obtained from Vogan diagrams.

Chapter VII

81. The essence of Theorem 7.8 isalready in Cartan [1925b]. Goto [1948]
and M ostow [ 1950] investigated conditionsthat ensurethat an anal ytic subgroup
isclosed. Thecircleof ideasinthisdirectionin 81isbased ultimately on Goto's
work. Theunitary trick isdueto Weyl [1925-26] and consists of two parts—the
existence of compact real forms and the comparison of g and uy.

82. The necessity for considering reductive groups emerged from the work
of Harish-Chandra, who for a semisimple group G was led to form a series of
infinite-dimensional representations constructed from the M of each cuspidal
parabolic subgroup. The subgroup M is not necessarily semisimple, however,
and it was helpful to have a class of groups that would include arich supply of
semisimple groups G and would have the property that the M of each cuspidal
parabolic subgroup of G is again in the class. Various classes have been
proposed for this purpose. The Harish-Chandra class is the class defined by
axioms in 83 of Harish-Chandra [1975], and its properties are developed in
the first part of that paper. We have used axioms from Knapp-Vogan [1995],
based on Vogan [1981]. These axioms, though more complicated to state than
Harish-Chandra's axioms, have the advantage of being easier to check. The
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vector field
|eft-invariant, 3, 43
smooth, 3

Vermamodule, 231, 576

Vogan diagram, 339, 578
abstract, 344

weight, 86, 113, 130, 222
fundamental, 289, 508, 511
highest, 225
restricted, 476
space, 222

weight vector, 222

generalized, 86, 222

highest, 230
weight-space decomposition, 86
Weyl Character Formula, 264, 282, 484
Wey| denominator, 263
Weyl Denominator Formula, 264
Weyl Dimension Formula, 267
Wey! Integration Formula, 482
Weyl group, 117, 207, 394, 421
Weyl's Theorem, 214
Weyl’s unitary trick, 259, 382



