380 VII. Advanced Structure Theory

converges. Since the polar decomposition of GL(V®) is a homeomor-
phism, it follows that exp X, haslimit exp X for some X € p(V®). Since
poisclosed inp(V®), X isinpo. Therefore g = kexp X exhibits g asin
G, and G isclosed.

Corollary 7.10. Let G be an analytic subgroup of real or complex
matriceswhose Lie algebra g isreductive, and suppose that the identity
component of the center of G is compact. Then G is a closed linear
group.

RemARK. Inthisresult and someto follow, we shall work with analytic
groups whose Lie algebras are direct sums. If G is an analytic group
whose Lie algebra go isadirect sum go = ap @ bo of idealsand if A and
B are the analytic subgroups corresponding to ag and bo, then G is a
commuting product G = AB. This fact follows from Proposition 1.99
or may be derived directly, asin the proof of Theorem 4.29.

Proor. Write go = Zg, @ [go, go] by Corollary 1.53. The analytic
subgroup of G corresponding to Z,, iS (Zg)o, and we let Gg be the
analytic subgroup corresponding to [go, go]. By the remarks before the
proof, G isthe commuting product (Zg)oGss. The group G is closed
as a group of matrices by Proposition 7.9, and (Zg)o iS compact by
assumption. Hence the set of products, which is G, is closed.

Corollary 7.11. Let G beaconnected closed linear group whoseLie
algebra g is reductive. Then the analytic subgroup Ggs of G with Lie
algebra[go, go] isclosed, and G isthe commuting product G = (Zg)oGes.

Proor. The subgroup Gss is closed by Proposition 7.9, and G is the
commuting product (Zg)oGss by the remarks with Corollary 7.10.

Proposition 7.12. Let G be a compact connected linear Lie group,
and let go beitslinear Lie algebra. Then the complex analytic group G©
of matriceswith linear Lie algebrag = go @ i go isaclosed linear group.

RemaRrks. If G isacompact connected Lie group, then Corollary 4.22
implies that G is isomorphic to a closed linear group. If G is redized
as a closed linear group in two different ways, then this proposition
in principle produces two different groups G®. However, Proposition
7.5 shows that the two groups G® are isomorphic. Therefore with no
reference to linear groups, we can speak of the complexification G©
of a compact connected Lie group G, and G is unique up to isomor-
phism. Proposition 7.5 shows that a homomorphism between two such
groups G and G’ induces a holomorphic homomorphism between their
complexifications.
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of the unitary group with the closed group of matrices G. Properties
(iv) and (vi) follow from Propositions 1.122 and 7.9, respectively. The
closed linear group of real matrices of determinant 41 satisfies property
(v) since

Addiag(-1, 1, ..., 1)) = Addiage™™1/n e7m/n e/,

But as noted in Example 3, the orthogonal group O(n) does not satisfy
property (v) if niseven.

5) G is the centralizer in a reductive group G of a6 stable abelian
subalgebra of the Lie algebraof G. Here K is obtained by intersection,
and ¢ and B are abtained by restriction. The verification that G is a
reductive Lie group will be given below in Proposition 7.25.

If G issemisimple with finite center and if K, 6, and B are specified
so that G is considered as a reductive group, then o is forced to be
a Cartan involution in the sense of Chapter VI. This is the content of
Proposition 7.17. Hencethe new terms* Cartan involution” and “Cartan
decomposition” are consistent with the terminology of Chapter VI in
the casethat G issemismple.

An alternative way of saying (iii) isthat the symmetric bilinear form

(7.18) By(X,Y) = —B(X, 0Y)

is positive definite on go.

We use the notation g, &, p, €tc., to denote the complexifications of
do, Lo, Po, €tC. Using complex linearity, we extend 6 from go to g and B
fromgo x gotog x g.

Proposition 7.19. If G isareductive Lie group, then

() K isamaximal compact subgroup of G

(b) K meets every component of G, i.e,, G = KGq

(c) each member of Ad(K) leaves ¢, and po stable and therefore
commutes with 6

(d) @dX)* = —adoX relativeto By if X isin gg

(e) 0 leaves Z,, and [go, go] Stable, and the restriction of 6 to [go, go]
isa Cartan involution

() theidentity component Gy is areductive Lie group (with maxi-
mal compact subgroup obtained by intersection and with Cartan
involution and invariant form unchanged).
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whereagN[go, go] iSamaximal abelian subspaceof poN[go, go]- Theorem
6.51 shows that any two maximal abelian subspaces of po N [go, go] are
conjugate via Ad(K), and it follows from (7.28) that this result extends
to our reductive go.

Proposition 7.29. Let G be areductive Lie group. If ao and aj are
two maximal abelian subspaces of po, then there is a member k of K
with Ad(k)ay = ao. The member k of K can be taken to bein K N Ggs.
Hence po = Uk, AdK)ao.

Relative to ag, we can form restricted roots just as in §VI1.4. A
restricted root of go, also called aroot of (go, ao), iS@anonzero x € a;
such that the space

(90), = {X €go| (@H)X =A(H)X for al H € ag}

isnonzero. It isapparent that such arestricted root is obtained by taking
arestricted root for [go, go] and extending it from ag N [go, go] tO ag by
making it be 0 on po N Z,,. The restricted-root space decomposition for
[g0. go] gives usarestricted-root space decomposition for go. We define
mo = Z,(ap), SO that the centralizer of ag in go iISmg @ ao.

The set of restricted rootsis denoted ©. Choose anotion of positivity
for af in the manner of 8l1.5, as for example by using a lexicographic
ordering. Let =t be the set of positive restricted roots, and define
no = P, 5+ (g0)2. Then ng is anilpotent Lie subalgebra of go, and we
have an Iwasawa decomposition

(7.30) go="to® ap® ng
with all the propertiesin Proposition 6.43.

Proposition 7.31. Let G be areductive Lie group, let (7.30) be an
Iwasawa decomposition of the Lie algebra go of G, and let A and N
be the analytic subgroups of G with Lie algebras ag and n,. Then the
multiplication map K x A x N — G given by (k,a,n) — kan isa
diffeomorphism onto. The groups A and N are simply connected.

Proor. Multiplicationis certainly smooth, anditisregular by Lemma
6.44. To seethat it is one-one, it is enough, as in the proof of Theorem
6.46, to see that we cannot havekan = 1 nontrivialy. Theidentity kan =
1wouldforcetheorthogonal transformation Ad(k) to be upper triangular
with positive diagonal entries in the matrix realization of Lemma 6.45,
and consequently we may assume that Adkk) = Ad(@) = Ad(n) = 1.
Thusk, a, and n arein Zg(go). By Lemma7.22, a is the exponential of
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something in Zy(go) = Z4. Henceaisin Z,e. By construction n is
in Gss, and hence k and n are in °G. By Proposition 7.27f, a = 1 and
kn = 1. But then the identity kn = 1 isvalid in Gs, and Theorem 6.46
impliesthatk =n = 1.

To see that multiplication is onto G, we observe from Theorem 6.46
that exp(po N [g0, 90]) iSin the image. By Proposition 7.27a, the image
contains °G. Also Z,e isin theimage (of 1 x A x 1), and Z,e. COM-
mutes with °G. Hence the image contains °GZ,... Thisisall of G by
Proposition 7.27f.

We definen; = @, 5+ (go)—». Thenng isanilpotent Lie subalgebra
of go, andwelet N~ bethe corresponding analytic subgroup. Since—x+
istheset of positiverestricted rootsfor another notion of positivity on aj,
go = oD apdny isanother Iwasawadecompositionof goand G = K AN~
is another Iwasawa decomposition of G. The identity 6(go), = (go0)_»
given in Proposition 6.40c implies that 6ng = ny. By Proposition 7.21,
®ON = N".

Wewrite M for the group Zk (ap). Thisisacompact subgroup sinceit
isclosed in K, and its Lie algebrais Z,(ag). This subgroup normalizes
each (go),. since

ad(H)(Ad(m)X;) = Ad(m)ad(Ad(m)~tH) X,
= Ad(m)ad(H)X; = A(H)Adm)X,

forme M, H € ag, and X; € (go)». Consequently M normalizes n,.
Thus M centralizes A and normalizes N. Since M is compact and AN
isclosed, M AN isaclosed subgroup.

Reflections in the restricted roots generate a group W(x%), which we
call the Weyl group of ©. The elements of W(x) are nothing more
than the elements of the Weyl group for the restricted roots of [go, go],
with each element extended to af by being defined to be the identity on
poN Zgo'

We define W(G, A) = Nk (ao)/Zk (ag). By the same proof as for
Lemma 6.56, the Lie algebra of Nk (ap) ismg. Therefore W(G, A) isa
finite group.

Proposition 7.32. If G is a reductive Lie group, then the group
W(G, A) coincideswith W(X).

Proor. Just as with the corresponding result in the semisimple case
(Theorem 6.57), we know that W(Z) € W(G, A). Fix asimple system
»* for =. Asin the proof of Theorem 6.57, it suffices to show that
if Kk € Nk(ap) has Ad(k)=+ = =, then k isin Zg(ag). By Lemma
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Proposition 7.35. Let G be a reductive Lie group. If two 6 stable
Cartan subalgebras of go are conjugate via G, then they are conjugate
viaGg andinfact by K N Gg.

ProoF. Let ho and by, be o stable Cartan subal gebras, and suppose that
Ad(9)(ho) = bp. By (7.23), Ad(©g)(ho) = bp. If g = kexp X withk € K
and X e po, then it follows that Ad of (©g)~1g = exp2X normalizes ho.
Applying Lemma 7.22 to exp2X, we see that [X, ho] < ho. Therefore
exp X normalizes ho, and Ad(k) carries o to by

Since Ad(k) commuteswith 6, Ad(k) carrieshoNpo to hyNpo. Let ag be
amaximal abelian subspace of po containing b N po, and chooseky € Ko
by Proposition 7.29 so that Ad(kok)(ag) = ag. Comparing Proposition
7.32 and Theorem 6.57, we can find k; € Kg so that kikok centralizes
ao. Then Ad(K) |, = Ad(ky 'Ky H)la,, and the element k' = ky 'k, * of Ko
has the property that Ad(k')(ho N po) = bhy N po. The o stable Cartan
subalgebras ho and Ad(k')~1(h,) therefore have the same po part, and
Lemma 6.62 shows that they are conjugate via K N Ggs.

3. KAK Decomposition

Throughout this section we let G be areductive Lie group, and we let
other notation be asin §2.

From the global Cartan decomposition G = K exppo and from the
equality po = Uk Ad(k)ag of Proposition 7.29, it is immediate that
G = K AK in the sense that every element of G can be decomposed as
aproduct of an element of K, an element of A, and asecond element of
K. Inthis section we shall examine the degree of nonuniqueness of this
decompasition.

Lemma 7.36. If X isin pg, then Zg(exp X) = Zg(RX).

Proor. Certainly Zg(RX) € Zg(exp X). In the reverse direction
if gisin Zg(expX), then Ad(g)Ad(exp X) = Ad(exp X)Ad(g). By
Proposition 7.19d, Ad(exp X) is positive definite on go, thus diagonable.
Consequently Ad(g) carries each eigenspace of Ad(exp X) to itself, and
it follows that Ad(g)ad(X) = ad(X)Ad(g). By Lemma1.95,

(7.37) ad(Ad(g)X) = ad(X).

Write X =Y + Z withY € Z,, and Z € [go, go]. By property (v) of a
reductive group, Ad(g)Y = Y. Comparing this equality with (7.37), we
see that ad(Ad(g)Z) = ad(Z), hence that Ad(g)Z — Z isin the center of
go. Sinceitisin[go, go] A0, itis0. Therefore Ad(g)X = X,and gisin
the centralizer of RX.
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The Bruhat decomposition describes the double coset decomposition
M AN\G/M AN of G with respect to MAN. Hereisan example.

g a?l . The nor-

malizer Nk (ao) consistsof thefour matrices+ ((l) 2) and+ <_8 é)

while the centralizer Zk (ag) consists of the two matrices + (1 O).

01
Thus (W(G, A)| = 2, and & = ((1J _é) is a representative of the

nontrivial element of W(G, A). Let g = <‘2 3

c=0,thengisin MAN. If ¢ # 0, then

(£ 0) (¢ d)=( )= (e D)5 &)
(20)(6 )R o) &)

ExAMPLE. Let G = SL(2, R). Here MAN =

) be given in G. If

Hence
a by (1 act'\/0 -1\(/c d
c d/"\0 1 1 0)\0 ¢t
exhibits (‘2 2 as in MANwWMAN. Thus the double-coset space

MAN\G/MAN consists of two elements, with 1 and @ as represen-
tatives.

Theorem 7.40 (Bruhat decomposition). The double cosets of
M AN\G/M AN are parametrized in a one-one fashion by W(G, A), the
double coset corresponding to w € W(G, A) being MANwM AN, where
w IS any representative of w in Nk (ag).

PROOF OF UNIQUENESS. Suppose that w; and w, are in W(G, A), with
w1 and w, as representatives, and that x; and x; in M AN have

(741) X1W1 = WoXo.

Now Ad(N) = exp(ad(ng)) by Theorem 1.104, and hence Ad(N) carries
ap t0 ap @ ng While leaving the ag component unchanged. Meanwhile
under Ad, Nk (ap) permutes the restricted-root spaces and thus carries
mo® P, 5, (90); toitself. Apply Ad of both sides of (7.41) to an element
H € ap and project to ap along mo & P, 5. (go)». Theresulting left side
IS N ag @ ng With ag component Ad(w;)H, while the right side is in
Ad(wy)H + Ad(w,) (mg @ ng). Hence Ad(w)H = Ad(w2)H. Since H is
arbitrary, w, 'w, centralizes ap. Therefore wy = wy.
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So Z = Ad(x~!npH isin sy. Since ad, Z and ad, H have the same
eigenvalues, Lemma7.43b showsthat Z isin ag @ no @ (mgN Zg,). Since
Ad(x~tny)~tfixes z,, (by property (v)), Zisinag®mg. WriteZ = H'+X’
correspondingly. Here adH and ad H’ have the same eigenvalues, so
that A(H") # Oforal A € ©. By Lemma 7.42 there exists n, € N with
Ad(ny)"1H' — H' = X’. Then Ad(ny)"'H' = H'+ X' = Z, and

H’ = Ad(n,)Z = Ad(n,x ) H.
The centralizers of H’ and H are both ap & mp by Lemma 6.50. Thus
(747) Ad(nzxflnl)(ao @ mg) = ag D mo.

If X isin ao, then ad,(X) has real eigenvalues by Lemma 7.43b. Since
adg(Ad(nxtny) X) and ady(X) have the same eigenvalues, Lemma
7.43bshowsthat Ad(nx~1ny) X isinag®(moNnZy,). SinceAd(nxng)—t
fixes z,, (by property (v)), Ad(nzx~ny)X isin ap. We conclude that
n2X71n1 isin Ng (ap).

Let n,x'ny = uexpXo be the globa Cartan decomposition of
nx~!n;. By Lemma 7.22, u isin Nk (ag) and Xo iSin Ng,(ap). By
the same argument as in Lemma 6.56, Ny, (ag) = ao & mo. Since Xg is
iN po, XoiSin ag. Therefore u isin N (ag) and exp Xq isin A. In other
words, nox~1n; isinuA, and x isin the same M AN double coset as the
member u~t of Nk (ag).

5. Structure of M

We continue to assume that G isareductive Lie group and that other
notationisasin 82. The fundamental source of disconnectednessin the
structure theory of semisimple groups is the behavior of the subgroup
M = Zk(ag). We shall examine M in this section, paying particular
attention to its component structure. For the first time we shall make
serious use of results from Chapter V.

Proposition 7.48. M isareductive Lie group.

Proor. Proposition 7.25 shows that Zg(ag) is a reductive Lie group,
necessarily of the form Zg (ag) €Xp(Z4,(a0) N po) = M A. By Proposition
7.27,°(M A) = M isareductive Lie group.

Proposition 7.33 aready tellsusthat M meets every component of G.
But M can be disconnected even when G is connected. (Recall from the
examplesin 8VI1.5that M isdisconnected when G = SL(n, R).) Choose
and fix amaximal abelian subspace t, of mg. Then ag @ to is a Cartan
subalgebra of go.
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Proposition 7.49. Every component of M contains a member of M
that centralizes tg, so that M = Zy (tg) Mo.

RemARK. The proposition says that we may focus our attention on
Zm(to). After this proof we shall study Zy (to) by considering it as a
subgroup of Z (o).

Proor. If m € M isgiven, then Ad(m)t, isamaximal abelian subspace
of mg. By Theorem 4.34 (applied to My), there exists mg € Mg such that
Ad(mg)Ad(m)tyg = tg. Then mem isin Ny(mp). Introduce a positive
system A* for the root system A = A(m,t). Then Adimgm)A~* is a
positive system for A, and Theorems 4.54 and 2.63 together say that we
can find my € Mg such that Ad(mymem) maps AT to itself. By Propo-
sition 7.48, M satisfies property (v) of reductive Lie groups. Therefore
Ad,,(mimgm) isin Intm. Then Ad,(m:mem) must be induced by an
eement in Int, [m, m], and Theorem 7.8 says that this element fixes
each member of At. Therefore mimym centralizes t,, and the result
follows.

Supposethat theroot o in A(g, adt) isred, i.e., o vanishesont. Asin
the discussion following (6.66), the root space g, in g isinvariant under
the conjugation of g with respect to go. Sincedime g, = 1, g, containsa
nonzero root vector E, that isin go. Also asin the discussion following
(6.66), we may normalize E, by area constant so that B(E,, fE,) =
—2/|e|?. PutH, = 2|a|7?H,. Then{H., E,, 6 E,} spansacopy of s[(2, R)
with

(7.50) H, < h, E, < € 0E, < —f.
Let uswrite (go), for RE, and (go)_, for ROE,.
Proposition 7.51. The subgroup Zs(to) of G
(8 isreductive with global Cartan decomposition
Zg(tg) = Zk (to) XP(po N Zg,(to))
(b) hasLieagebra

Zo(t) =to®a0® P (@0
aeA(g,egléDt).

ar
which is the direct sum of its center with areal semisimple Lie
algebrathat isasplit real form of its complexification
(c) is such that the component groups of G, K, Zg(to), and Zk (to)
are al isomorphic.
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PrOOF.

(a) Every member of Kgyit N expiag centralizes ap and lies in Kgyit,
henceliesin F. Forthereverseinclusonwehave F € Ky by definition.
Toseethat F C expiao, let Ugyi betheanalytic subgroup of G© with Lie
algebrathe intersection of uo with the Lie algebra[Z(to), Z4(to)]. Then
Ugpiit iIScompact, and i ag N[ Z,(to), Z4(to)] isamaximal abelian subspace
of its Lie algebra. By Corollary 4.52 the corresponding torusisits own
centralizer. Hence the centralizer of ag in Ugyi IS contained in expi ao.
Since Kgiit € Ugit, it follows that F < expi ao.

(b, ¢) Corollary 7.52 saysthat M = FM,. By (a), every element of
F commutes with any element that centralizes ap. Hence F iscentral in
M, and (b) and (c) follow.

(d) Since Ggyir has finite center, F is compact. Its Lie algebrais O,
and thus it is finite. By (b), F is abelian. We till have to prove that
every element f £ 1in F hasorder 2.

Since G has a complexification, so does Ggyir. Call this group Gg)m,
let Ggpm be asimply connected covering group, and let ¢ be the covering
map. Let G4t bethe analytic subgroup with the same Lie algebraasfor
Gapiit, and form the subgroups Kgyi and F of Ggyit. The subgroup F is
the completeinverseimage of F under ¢. Let Ugyi play the samerolefor
GS,i that U playsfor G©. Theautomorphism of theLiealgebraof Gyt

complexifies and lifts to an automorphism 6 of Gg,; that carries Ugit
into itself. The automorphism 6 acts as x +— x~ on expiag and as the
identity on K. The elementsof F arethe elementsof theintersection,
by (a), and hence f-1 = f for every element f of F. That is f2 = 1.
Applying ¢ and using the fact that ¢ maps F onto F, we conclude that
every element f # 1in F hasorder 2.

ExampLE. When G does not have a compl exification, the subgroup F
need not be abelian. For an example we observe that the group K for
SL(3,R) is SO(3), which has SU (2) as a 2-sheeted simply connected
covering group. Thus SL(3, R) has a 2-sheeted simply connected cov-
ering group, and we take this covering group as G. We already noted in
8VI.5 that the group M for SL(3, R) consists of the diagonal matrices
with diagonal entries +£1 and determinant 1. Thus M is the direct sum
of two 2-element groups. The subgroup F of G isthe complete inverse
image of M under the covering map and thus has order 8. Moreover it
isasubgroup of SU (2), which has only one element of order 2. Thus F
isagroup of order 8 with only one element of order 2 and no element
of order 8. Of the five abstract groups of order 8, only the 8-element
subgroup {#1, +i, £j, £k} of the quaternions has this property. This
group is nonabelian, and hence F is nonabelian.
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H € ag suchthat A(H) # Ofor al » € ¥, then
AdX)H —H = e®*H — H

=X, HI+ 3[X. [X H] 4+
= [X,,, H] + terms for lower restricted roots.

In particular, Ad(x)H — H isinng and isnot 0. On the other hand, if x
isin MAN, then Ad(x)H — H isinng. Sinceny Nng = 0, we must have
N~ N MAN = {1}.

Lemma 7.65. The map K/M — G/M AN induced by inclusionisa
diffeomorphism.

Proor. The given map is certainly smooth. If «(g) denotes the K
component of g inthe lwasawadecomposition G = K AN of Proposition
7.31, then g — «(g) issmooth, and the map gM AN — «(g)M isatwo-
sided inverse to the given map.

Theorem 7.66. Supposethat thereductiveLiegroup G issemisimple,
isof real rank one, and has acomplexification G¢. Then M is connected
unlessdimng = 1.

RemARKs. Since G is semisimple, it isin the Harish-Chandra class.
The above remarks about simple components are therefore applicable.
The condition dimny = 1 is the same as the condition that the simple
component of gy containing ag is isomorphic to si(2, R). In fact, if
dimng = 1, then ng is of the form RX for some X. Then X, X, and
[X, 0X] span acopy of s((2, R), and we obtain go = s[(2, R) & mp. The
Lie subalgebra my must centralize X, X, and [ X, 8 X] and hence must
be anideal in go. The complementary ideal iss((2, R), as asserted.

Proor. The multiplication map N= x MgAN — G is smooth and
everywhere regular by Lemma 6.44. Hence the map N~ — G/MpAN
induced by inclusion is smooth and regular, and so is the map

(7.67) N~ — G/MAN,

which is the composition of N- — G/MgAN and a covering map.
Also the map (7.67) is one-one by Lemma 7.64. Therefore (7.67) is
a diffeomorphism onto an open set.

Since G issemisimple and has real rank 1, the Weyl group W(x) has
two elements. By Proposition 7.32, W(G, A) has two elements. Let
w € Nk (ag) represent the nontrivial element of W(G, A). By the Bruhat
decomposition (Theorem 7.40),

(7.68) G=MANUMANwMAN = MAN U NwM AN.
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ExAMPLES.

1) Let G = SL(n,K), where K isR, C, or H. When g isreadized as
matrices, the Lie subalgebra of upper-triangular matrices is a minimal
parabolic subalgebra q, 0. The other examples of parabolic subalge-
bras qo containing g, and written as in (7.70) and (7.71) are the Lie
subalgebras of block upper-triangular matrices, one subalgebrafor each
arrangement of blocks.

2) Let G have compact center and be of real rank one. The examples
asin (7.70) and (7.71) are the minimal parabolic subalgebras and go
itself.

We shall work with a vector X in the restricted-root space (go), and
withé6X in (go)—,. (See Proposition 6.40c.) Proposition 6.52 shows that
B(X, 6X)H, isanegative multiple of H,. Normalizing, we may assume
that B(X, 6X) = —2/|y|%. Put H) = 2|y|~2H,. Then the linear span six
of {X,6X, H)) isisomorphic to s[(2, R) under the isomorphism

(7.72) H < h, X < e, OX < —f.

We shall make use of the copy slx of s[(2, R) in the same way as
in the proof of Corollary 6.53. This subalgebra of g acts by ad on g
and hence acts on g. We know from Theorem 1.64 that the resulting
representation of sly iscompletely reducible, and we know the structure
of each irreducible subspace from Theorem 1.63.

Lemma 7.73. Let y be arestricted root, and let X # 0 bein (go), .
Then

() ad X carries (go), ONnto (go)2y
(b) (ad6X)? carries (go), ONto (go)—,
(c) (adeX)* carries (go)2, ONtO (go)—2, -

Proor. Without loss of generality, we may assume that X is nhormal-
ized asin (7.72). The complexification of ., (go)c, IS an invariant
subspace of g under the representation ad of slyx. Using Theorem 1.64,
we decompose it as the direct sum of irreducible representations. Each
member of (go)c, isan eigenvector for ad H) with eigenvalue 2c, and H,
corresponds to the member h of si(2, R). From Theorem 1.63 we see
that the only possibilities for irreducible subspaces are 5-dimensional
subspaces consisting of one dimension each from

(90)2y» (90)y> Mo, (go)—y, (90)—2y;
3-dimensional subspaces consisting of one dimension each from

(90)y> Mo, (g0)—y;
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Proposition 7.78. A parabolic subal gebra g, containing the minimal
parabolic subalgebram, o ® a, 0 ® n, o has the properties that

(&) mo, ag, and ng are Lie subalgebras, and ng isanideal in qq
(b) ao isabelian, and ng is nilpotent

(©) ao ® mg isthe centralizer of ag in go

(d) q0N6Bgg = ag ® mg, and ag ® mg iSreductive

(€ apo=ao®amo

(f) npo = no® nwm o as vector spaces

(9) g0 = ap ® mp @ np ® Hnp orthogonally with respect to 6
(h) mo=my 0@ amo® nmo®Onwm,o.

PRrOOF.

(a b, e f) All parts of these are clear.

(c) The centralizer of ag isspanned by a,, o, m;, 0, and al the restricted
root spaces for restricted roots vanishing on ap. The sum of these is
ag @ mg.

(d) Since 6(go)s = (go)—p by Proposition 6.40c, qo N Oq0 = ag & mo.
Then ag ® mo isreductive by Corollary 6.29.

(g9, h) These follow from Proposition 6.40.

Proposition 7.79. Among the parabolic subalgebras containing gj.o,
let qo bethe one corresponding to the subset I’ of simplerestricted roots.
Forn #0inag, let

@w = P ©os-

ﬂea;o,
ﬁ|a0=77

Then (go) ) < 1o OF (go) ;) S Ono.

Proor. We have

avo=az=( () kerp)"=( [ Hi) = D RHz=) RHs

pgern-r gern—T Bel'n—T Bell’

Let g and g’ be restricted roots with a common nonzero restriction n to
membersof ao. Then g — B is0 0N ag, and Hg — Hg iSinay 0. Fromthe
formulafor ay o, the expansion of 8 — g’ in terms of simple restricted
roots involves only the members of ’. Since n # O, the individual
expansions of g and g’ involve nonzero coefficients for at least one
simple restricted root other than the onesin IT'. The coefficientsfor this
other simple restricted root must be equal and in particular of the same
sign. By Proposition 2.49, g and g’ are both positive or both negative,
and the result follows.
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Proor.

(a, b) Thesubgroups Zg (ao) and °Z¢ (a) arereductive by Propositions
7.25and 7.27. By Proposition 7.78, Z 4, (ap) = ao ® mo. Thus the space
Z, for the group Zg(ap) is the analytic subgroup corresponding to the
intersection of po withthe center of ag®mg. Fromthedefinition of mg, the
center of Z,,(ap) hasto be contained in a,, o & m,, o, and the po part of this
isay 0. Thepart of a, o that commutes with mg is ap by definition of mg.
Therefore Z,e. = expap = A, and Zg(ag) = (°Zg(ag)) A by Proposition
7.27. Then (a) and (b) follow.

(c) By (&), M isreductive. Itisclear that ay o isamaximal abelian
subspace of poNmgp, SiNCemgNag = 0. Therestricted roots of m, relative
to ay o are then the members of I' N —I, and the sum of the restricted-
root spaces for the positive such restricted roots is ny 0. Therefore
the minimal parabolic subgroup in question for M is My AyNy. The
computation

Mm = Zknm(am,0) = MAN Zk (am,0)
= Zg(ap) N Zk (am,0) = Zk (ap,0) = M,

identifies My, and M = Ky Ay Ny by the lwasawa decomposition for
M (Proposition 7.31).

(d) By (@), M isreductive. Hence M = My Mg by Proposition 7.33.
But (c) shows that My = M,, and Corollary 7.52 shows that M, =
F(M,)o. Hence M = F Mo.

(e) Thisfollows from Proposition 7.78e and the simple connectivity
of A,.

(f§ This follows from Proposition 7.78f, Theorem 1.102, and the
simple connectivity of N,.

Proposition 7.83. The subgroups M, A, and N have the properties
that

(& MAnormalizes N, sothat Q = MAN isagroup

(b) Q = Ng(mp @ ap @ ng), and hence Q is aclosed subgroup
(c) QhasLiealgebrago=mo® ap® no

(d) multiplication M x A x N — Q isadiffeomorphism

(& N"NQ={1

(f) G=KQ.

Proor.
(a) Let zbein MA = Zg(ag), and fix (go)(;) < no asin(7.80). If Xis
in (go)¢; and H isin ag, then

[H,Ad(®X] = [Ad(®)H, Ad(2)X] = Ad®[H, X] = n(H)Ad(2) X.
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accordingto M = Ky Ay Ny bem = kyayny. If thiselementisto bein
AN, thenky = 1, ay isin Ay N A, andny isin Ny N N, by uniqueness of
the lwasawa decomposition in G. But Ay N A= {1} and Ny N N = {1}
by (e) and (f) of Proposition 7.82. Therefore m = 1, and we conclude
that M N AN = {1}.

(e) Thisis proved in the same way as Lemma 7.64, which is stated
for aminimal parabolic subgroup.

(f) Since Q > AN, G = KQ by the Iwasawa decomposition for G
(Proposition 7.31).

Although the set of a4 roots does not necessarily form an abstract root
system, it is still meaningful to define

(7.843) W(G, A) = N (ag)/Zk (do),

just aswedid inthe casethat ag ismaximal abelianinpg. Corollary 7.81
and Proposition 7.78c show that Nk (ap) and Zk (ag) both have &g Nmg as
Liealgebra. Hence W(G, A) isacompact O-dimensiona group, and we
conclude that W(G, A) isfinite. An alternative formulafor W(G, A) is

(784b) W(G, A) = NG (ao)/ZG (ao).

The equality of the right sides of (7.84a) and (7.84b) is an immediate
consequence of Lemma 7.22 and Corollary 7.81. To compute N (ao),
it is sometimes handy to use the following proposition.

Proposition 7.85. Every element of Nk (ag) decomposes as a product
zn, wheren isin Nk (a, o) and zisin Zk (ao).

Proor. Let k bein Nk (ag) and form Ad(k)am 0. Since ay o commutes
with ag, Ad(k)am.o commutes with Ad(k)ap = ao. By Proposition 7.78c,
Adk)an oiscontainedinap®mg. Sinceay o isorthogonal to ap under By,
Ad(k)awm o isorthogonal to Ad(k)ap = ag. Hence Ad(k)awm o is contained
in mp and therefore in po N mp. By Proposition 7.29 there exists z in
K N M with Ad(Z)ilAd(k)aM,o = amMm,0- Thenn =z %kisin Nk (ag) and
in Nk (am,0), hencein Nk (ay0).

ExampLE. Let G = SL(3, R). Takea, o to be the diagonal subalgebra,
andlet =+ = {f; - f,, fo— f3, f; — f3} inthe notation of Example 1 of
8V1.4. Define a parabolic subalgebra qo by using I’ = {f; — f,}. The
corresponding parabolic subgroup is the block upper-triangular group
with blocks of sizes 2 and 1, respectively. The subalgebra oo equals
{diag(r,r, —2r)}. Suppose that w isin W(G, A). Proposition 7.85 says
that w extendsto amember of W(G, A,) leaving ap and aw o individually
stable. Here W(G, A,) = W(X), and the only member of W(%) sending
ap toitself isthe identity. So W(G, A) = {1}.
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Proposition 7.87. Let hy = to @ ag be the decomposition of a 6
stable Cartan subal gebraaccording tod, and supposethat alexicographic
ordering taking ao beforeity isused to define apositive system A* (g, b).
Define

mo=goN(t® P aa)

a€A(g.h),
o|=0

and no =goN ( @ Ga)-

aeA*(g,h),
alq#0

Then gqo = mp @ ap ® ng is the Langlands decomposition of a cuspidal
parabolic subalgebra of g,.

Proor. In view of the definitions, we have to relate qo to a minimal
parabolic subalgebra. Let bar denote conjugation of g with respect to
go. Ifa =, +a¢isaroot, let @ = —a = aq — a¢. Theng, = g5, and it
follows that

(7.88) m=t® @ Oor and n= @ O

aeA(g.h). aeAt(g,h),
a|,=0 a|q#0

In particular, mg isé stable, hencereductive. Lethy o = tm.oDam o bethe
decomposition of a maximally noncompact ¢ stable Cartan subalgebra
of mp according to 9. Since Theorem 2.15 showsthat by is conjugate to
tvialntm, b’ = a @ hy isconjugateto h = a & t viaamember of Intg
that fixes ao. In particular, hy = ao @ hwm o is a Cartan subalgebra of go.
Applying our constructed member of Int g to (7.88), we obtain

(7.89) m=bhy @ O and n= @ Oa

aeA(g.h), aeAt(g,h),
a|q=0 afq#0

for the positive system A (g, §’) obtained by transferring positivity from
A* (g, b).

Let us note that a, o = ap ® am o isamaximal abelian subspace of po.
In fact, the centralizer of ag in go iSag® mop, and ay o ismaximal abelian
in mo N po; hence the assertion follows. We introduce a lexicographic
ordering for b that is as before on ao, takes ay before ay o, and takes
amo before ity o. Then we obtain a positive system A*/(g, h') with
the property that a root « with «|,, # O is positive if and only if «/q,
is the restriction to ap of a member of A*(g,h). Consequently we
can replace At (g, ') in (7.89) by A™'(g, ). Then it is apparent that
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Proor. By Proposition 7.90a, G = GoH. If zisin Zg,, thenAd(z) = 1
on ho, and hence zisin Zg(hy) = H. Let g € G be given, and write
g = goh withg € Gogand h € H. Then zgy = goz Since zcommutes with
members of Gy, and zh = hzsincezisin H and H is abelian. Hence
zg =gz,and zisin Zg.

If H isa Cartan subgroup of G with Lie algebra ho, we define
(7.92q) W(G, H) = Ng(ho)/Za(ho)-

Here Zg (ho) is hothing more than H itself, by definition. When bo is6
stable, an alternative formulafor W(G, H) is

(7.92b) W(G, H) = Nk (ho)/Zk (ho)-

The equality of the right sides of (7.92a) and (7.92b) is an immedi-
ate consequence of Lemma 7.22 and Proposition 2.7. Proposition 2.7
shows that N (ho) and Zg (ho) both have € N by = to as Lie algebra.
Hence W(G, H) is a compact 0-dimensional group, and we conclude
that W(G, H) isfinite.

Each member of Ng(ho) sendsroots of A = A(g, h) to roots, and the
action of Ng(ho) on A descends to W(G, H). It is clear that only the
identity in W(G, H) acts as the identity on A. Since Ad,(G) < Intg, it
follows from Theorem 7.8 that

(7.93) W(G, H) € W(A(g. b)).

ExaMmPLE. Let G = SL(2, R). For any b, W(g, h) has order 2. When
ho = {(; _?)} W(G, H) has order 2, a representative of the nontrivial

coset being (_01 é) When b, = {(_? ;)] W(G, H) has order 1.

Now we begin to work toward the main result of this section, that the
union of al Cartan subgroups of G exhausts almost al of G. We shall
use the notion of a “regular element” of G. Recall that in Chapter |1
we introduced regular elements in the complexified Lie algebrag. Let
dimg = n. For X e g, we formed the characteristic polynomial

n-1
(7.94) det(l—ad X) = A"+ ) dj(X)n).

j=0

Here each d; isaholomorphic polynomial function on g. Therank of g
isthe minimum index | such that d(X) # 0O, and the regular elements
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and (7.132) followssincemembersof g, equal their own conjugates. The
real dimension of ity @ n~ ishalf thereal dimensonof t&ondn™ =g,
and hence

(7.133) dimg(go ® (ito®n7)) =dimg g.
Combining (7.132) and (7.133), we see that
(7.134) g=0g0D (to®n").

The subgroup Hg N~ of G® is closed by Proposition 7.83, and hence
Hg N~ isan analytic subgroup, necessarily with Lie algebraito®n~. By
Lemma6.44 it followsfrom (7.134) that multiplication G x HgkN~ — G©
iseverywhereregular. The dimension relation (7.133) thereforeimplies
that GHzkN~ isopenin G®. Since B = THxN- and T € G, GB equals
GHrN~ and isopenin GC.

Thesubgroups P+ and P~ arethe N groups of parabolic subalgebras,
and their Lie algebras are abelian by Lemma 7.128. Hence P and P~
are Euclidean groups. Then exp : p* — P is biholomorphic, and P+
is biholomorphic with C" for some n. Similarly P~ is biholomorphic
with C".

Thesubgroup K € isareductivegroup, being connected and having bar
asaCartaninvolution for itsLieagebra. Itisthe product of theidentity
component of its center by a complex semisimple Lie group, and our
above considerations show that its parabolic subgroups are connected.
Then By isaparabolic subgroup, and

(7.135) K® = KBk

by Proposition 7.83f.

Let Adenoteaspecific A, component for the lwasawadecomposition
of G, to be specified in Lemma 7.143 below. We shall show in Lemma
7.145 that this A satisfies

(7.1364) AcC PtKEpP-
and
(7.136Db) P+ components of members of A are bounded.

Theorem 7.39 shows that G = KAK. Sinceb C ¢ @ p~, we have
B < K€P~. Since Lemma7.128 showsthat K€ normalizes P+ and P,
(7.1364a) gives

GB C GKEP~ € KAKKCP-

7.137
( ) C KPTKCP~KEP~ = PtKCP~.



