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converges. Since the polar decomposition of GL(V C) is a homeomor-
phism, it follows that exp Xn has limit exp X for some X ∈ p(V C). Since
p0 is closed in p(V C), X is in p0. Therefore g = k exp X exhibits g as in
G, and G is closed.

Corollary 7.10. Let G be an analytic subgroup of real or complex
matrices whose Lie algebra g0 is reductive, and suppose that the identity
component of the center of G is compact. Then G is a closed linear
group.

REMARK. In this result and some to follow, we shall work with analytic
groups whose Lie algebras are direct sums. If G is an analytic group
whose Lie algebra g0 is a direct sum g0 = a0 ⊕ b0 of ideals and if A and
B are the analytic subgroups corresponding to a0 and b0, then G is a
commuting product G = AB. This fact follows from Proposition 1.99
or may be derived directly, as in the proof of Theorem 4.29.

PROOF. Write g0 = Zg0 ⊕ [g0, g0] by Corollary 1.53. The analytic
subgroup of G corresponding to Zg0 is (ZG)0, and we let Gss be the
analytic subgroup corresponding to [g0, g0]. By the remarks before the
proof, G is the commuting product (ZG)0Gss . The group Gss is closed
as a group of matrices by Proposition 7.9, and (ZG)0 is compact by
assumption. Hence the set of products, which is G, is closed.

Corollary 7.11. Let G be a connected closed linear group whose Lie
algebra g0 is reductive. Then the analytic subgroup Gss of G with Lie
algebra [g0, g0] is closed, and G is the commuting product G = (ZG)0Gss .

PROOF. The subgroup Gss is closed by Proposition 7.9, and G is the
commuting product (ZG)0Gss by the remarks with Corollary 7.10.

Proposition 7.12. Let G be a compact connected linear Lie group,
and let g0 be its linear Lie algebra. Then the complex analytic group GC

of matrices with linear Lie algebra g = g0 ⊕ ig0 is a closed linear group.

REMARKS. If G is a compact connected Lie group, then Corollary 4.22
implies that G is isomorphic to a closed linear group. If G is realized
as a closed linear group in two different ways, then this proposition
in principle produces two different groups GC. However, Proposition
7.5 shows that the two groups GC are isomorphic. Therefore with no
reference to linear groups, we can speak of the complexification GC

of a compact connected Lie group G, and GC is unique up to isomor-
phism. Proposition 7.5 shows that a homomorphism between two such
groups G and G ′ induces a holomorphic homomorphism between their
complexifications.
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of the unitary group with the closed group of matrices G. Properties
(iv) and (vi) follow from Propositions 1.122 and 7.9, respectively. The
closed linear group of real matrices of determinant ±1 satisfies property
(v) since

Ad(diag(−1, 1, . . . , 1)) = Ad(diag(eiπ(n−1)/n, e−iπ/n, . . . , e−iπ/n)).

But as noted in Example 3, the orthogonal group O(n) does not satisfy
property (v) if n is even.

5) G is the centralizer in a reductive group G̃ of a θ stable abelian
subalgebra of the Lie algebra of G̃. Here K is obtained by intersection,
and θ and B are obtained by restriction. The verification that G is a
reductive Lie group will be given below in Proposition 7.25.

If G is semisimple with finite center and if K , θ , and B are specified
so that G is considered as a reductive group, then θ is forced to be
a Cartan involution in the sense of Chapter VI. This is the content of
Proposition 7.17. Hence the new terms “Cartan involution” and “Cartan
decomposition” are consistent with the terminology of Chapter VI in
the case that G is semisimple.

An alternative way of saying (iii) is that the symmetric bilinear form

(7.18) Bθ (X, Y ) = −B(X, θY )

is positive definite on g0.
We use the notation g, k, p, etc., to denote the complexifications of

g0, k0, p0, etc. Using complex linearity, we extend θ from g0 to g and B
from g0 × g0 to g × g.

Proposition 7.19. If G is a reductive Lie group, then

(a) K is a maximal compact subgroup of G
(b) K meets every component of G, i.e., G = K G0

(c) each member of Ad(K ) leaves k0 and p0 stable and therefore
commutes with θ

(d) (ad X)∗ = −ad θ X relative to Bθ if X is in g0

(e) θ leaves Zg0 and [g0, g0] stable, and the restriction of θ to [g0, g0]
is a Cartan involution

(f) the identity component G0 is a reductive Lie group (with maxi-
mal compact subgroup obtained by intersection and with Cartan
involution and invariant form unchanged).
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where a0∩[g0, g0] is a maximal abelian subspace of p0∩[g0, g0]. Theorem
6.51 shows that any two maximal abelian subspaces of p0 ∩ [g0, g0] are
conjugate via Ad(K ), and it follows from (7.28) that this result extends
to our reductive g0.

Proposition 7.29. Let G be a reductive Lie group. If a0 and a′
0 are

two maximal abelian subspaces of p0, then there is a member k of K
with Ad(k)a′

0 = a0. The member k of K can be taken to be in K ∩ Gss .
Hence p0 = ⋃

k∈Kss
Ad(k)a0.

Relative to a0, we can form restricted roots just as in §VI.4. A
restricted root of g0, also called a root of (g0, a0), is a nonzero λ ∈ a∗

0
such that the space

(g0)λ = {X ∈ g0 | (ad H)X = λ(H)X for all H ∈ a0}

is nonzero. It is apparent that such a restricted root is obtained by taking
a restricted root for [g0, g0] and extending it from a0 ∩ [g0, g0] to a0 by
making it be 0 on p0 ∩ Zg0 . The restricted-root space decomposition for
[g0, g0] gives us a restricted-root space decomposition for g0. We define
m0 = Zk0(a0), so that the centralizer of a0 in g0 is m0 ⊕ a0.

The set of restricted roots is denoted �. Choose a notion of positivity
for a∗

0 in the manner of §II.5, as for example by using a lexicographic
ordering. Let �+ be the set of positive restricted roots, and define
n0 = ⊕

λ∈�+(g0)λ. Then n0 is a nilpotent Lie subalgebra of g0, and we
have an Iwasawa decomposition

(7.30) g0 = k0 ⊕ a0 ⊕ n0

with all the properties in Proposition 6.43.

Proposition 7.31. Let G be a reductive Lie group, let (7.30) be an
Iwasawa decomposition of the Lie algebra g0 of G, and let A and N
be the analytic subgroups of G with Lie algebras a0 and n0. Then the
multiplication map K × A × N → G given by (k, a, n) �→ kan is a
diffeomorphism onto. The groups A and N are simply connected.

PROOF. Multiplication is certainly smooth, and it is regular by Lemma
6.44. To see that it is one-one, it is enough, as in the proof of Theorem
6.46, to see that we cannot have kan = 1 nontrivially. The identity kan =
1 would force the orthogonal transformation Ad(k) to be upper triangular
with positive diagonal entries in the matrix realization of Lemma 6.45,
and consequently we may assume that Ad(k) = Ad(a) = Ad(n) = 1.
Thus k, a, and n are in ZG(g0). By Lemma 7.22, a is the exponential of
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something in Zg0(g0) = Zg0 . Hence a is in Zvec. By construction n is
in Gss , and hence k and n are in 0G. By Proposition 7.27f, a = 1 and
kn = 1. But then the identity kn = 1 is valid in Gss , and Theorem 6.46
implies that k = n = 1.

To see that multiplication is onto G, we observe from Theorem 6.46
that exp(p0 ∩ [g0, g0]) is in the image. By Proposition 7.27a, the image
contains 0G. Also Zvec is in the image (of 1 × A × 1), and Zvec com-
mutes with 0G. Hence the image contains 0G Zvec. This is all of G by
Proposition 7.27f.

We define n
−
0 = ⊕

λ∈�+(g0)−λ. Then n
−
0 is a nilpotent Lie subalgebra

of g0, and we let N− be the corresponding analytic subgroup. Since −�+

is the set of positive restricted roots for another notion of positivity on a∗
0,

g0 = k0⊕a0⊕n
−
0 is another Iwasawa decomposition of g0 and G = K AN−

is another Iwasawa decomposition of G. The identity θ(g0)λ = (g0)−λ

given in Proposition 6.40c implies that θn0 = n
−
0 . By Proposition 7.21,

	N = N−.
We write M for the group Z K (a0). This is a compact subgroup since it

is closed in K , and its Lie algebra is Zk0(a0). This subgroup normalizes
each (g0)λ since

ad(H)(Ad(m)Xλ) = Ad(m)ad(Ad(m)−1 H)Xλ

= Ad(m)ad(H)Xλ = λ(H)Ad(m)Xλ

for m ∈ M , H ∈ a0, and Xλ ∈ (g0)λ. Consequently M normalizes n0.
Thus M centralizes A and normalizes N . Since M is compact and AN
is closed, M AN is a closed subgroup.

Reflections in the restricted roots generate a group W (�), which we
call the Weyl group of �. The elements of W (�) are nothing more
than the elements of the Weyl group for the restricted roots of [g0, g0],
with each element extended to a∗

0 by being defined to be the identity on
p0 ∩ Zg0 .

We define W (G, A) = NK (a0)/Z K (a0). By the same proof as for
Lemma 6.56, the Lie algebra of NK (a0) is m0. Therefore W (G, A) is a
finite group.

Proposition 7.32. If G is a reductive Lie group, then the group
W (G, A) coincides with W (�).

PROOF. Just as with the corresponding result in the semisimple case
(Theorem 6.57), we know that W (�) ⊆ W (G, A). Fix a simple system
�+ for �. As in the proof of Theorem 6.57, it suffices to show that
if k ∈ NK (a0) has Ad(k)�+ = �+, then k is in Z K (a0). By Lemma
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Proposition 7.35. Let G be a reductive Lie group. If two θ stable
Cartan subalgebras of g0 are conjugate via G, then they are conjugate
via Gss and in fact by K ∩ Gss .

PROOF. Let h0 and h′
0 be θ stable Cartan subalgebras, and suppose that

Ad(g)(h0) = h′
0. By (7.23), Ad(�g)(h0) = h′

0. If g = k exp X with k ∈ K
and X ∈ p0, then it follows that Ad of (�g)−1g = exp 2X normalizes h0.
Applying Lemma 7.22 to exp 2X , we see that [X, h0] ⊆ h0. Therefore
exp X normalizes h0, and Ad(k) carries h0 to h′

0.
Since Ad(k) commutes with θ , Ad(k) carries h0∩p0 to h′

0∩p0. Let a0 be
a maximal abelian subspace of p0 containing h0 ∩p0, and choose k0 ∈ K0

by Proposition 7.29 so that Ad(k0k)(a0) = a0. Comparing Proposition
7.32 and Theorem 6.57, we can find k1 ∈ K0 so that k1k0k centralizes
a0. Then Ad(k)|a0 = Ad(k−1

0 k−1
1 )|a0 , and the element k ′ = k−1

0 k−1
1 of K0

has the property that Ad(k ′)(h0 ∩ p0) = h′
0 ∩ p0. The θ stable Cartan

subalgebras h0 and Ad(k ′)−1(h′
0) therefore have the same p0 part, and

Lemma 6.62 shows that they are conjugate via K ∩ Gss .

3. K AK Decomposition

Throughout this section we let G be a reductive Lie group, and we let
other notation be as in §2.

From the global Cartan decomposition G = K exp p0 and from the
equality p0 = ⋃

k∈K Ad(k)a0 of Proposition 7.29, it is immediate that
G = K AK in the sense that every element of G can be decomposed as
a product of an element of K , an element of A, and a second element of
K . In this section we shall examine the degree of nonuniqueness of this
decomposition.

Lemma 7.36. If X is in p0, then ZG(exp X) = ZG(RX).

PROOF. Certainly ZG(RX) ⊆ ZG(exp X). In the reverse direction
if g is in ZG(exp X), then Ad(g)Ad(exp X) = Ad(exp X)Ad(g). By
Proposition 7.19d, Ad(exp X) is positive definite on g0, thus diagonable.
Consequently Ad(g) carries each eigenspace of Ad(exp X) to itself, and
it follows that Ad(g)ad(X) = ad(X)Ad(g). By Lemma 1.95,

(7.37) ad(Ad(g)X) = ad(X).

Write X = Y + Z with Y ∈ Zg0 and Z ∈ [g0, g0]. By property (v) of a
reductive group, Ad(g)Y = Y . Comparing this equality with (7.37), we
see that ad(Ad(g)Z) = ad(Z), hence that Ad(g)Z − Z is in the center of
g0. Since it is in [g0, g0] also, it is 0. Therefore Ad(g)X = X , and g is in
the centralizer of RX .
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The Bruhat decomposition describes the double coset decomposition
M AN\G/M AN of G with respect to M AN . Here is an example.

EXAMPLE. Let G = SL(2, R). Here M AN =
{(

a b
0 a−1

)}
. The nor-

malizer NK (a0) consists of the four matrices ±
(

1 0
0 1

)
and ±

(
0 1

−1 0

)
,

while the centralizer Z K (a0) consists of the two matrices ±
(

1 0
0 1

)
.

Thus |W (G, A)| = 2, and w̃ =
(

0 −1
1 0

)
is a representative of the

nontrivial element of W (G, A). Let g =
(

a b
c d

)
be given in G. If

c = 0, then g is in M AN . If c �= 0, then(
0 1

−1 0

) (
a b
c d

)
=

(
c d

−a −b

)
=

(
1 0

−ac−1 1

) (
c d
0 c−1

)

=
(

0 1
−1 0

) (
1 ac−1

0 1

) (
0 −1
1 0

) (
c d
0 c−1

)
.

Hence (
a b
c d

)
=

(
1 ac−1

0 1

) (
0 −1
1 0

) (
c d
0 c−1

)

exhibits
(

a b
c d

)
as in M AN w̃M AN . Thus the double-coset space

M AN\G/M AN consists of two elements, with 1 and w̃ as represen-
tatives.

Theorem 7.40 (Bruhat decomposition). The double cosets of
M AN\G/M AN are parametrized in a one-one fashion by W (G, A), the
double coset corresponding to w ∈ W (G, A) being M AN w̃M AN , where
w̃ is any representative of w in NK (a0).

PROOF OF UNIQUENESS. Suppose that w1 and w2 are in W (G, A), with
w̃1 and w̃2 as representatives, and that x1 and x2 in M AN have

(7.41) x1w̃1 = w̃2x2.

Now Ad(N ) = exp(ad(n0)) by Theorem 1.104, and hence Ad(N ) carries
a0 to a0 ⊕ n0 while leaving the a0 component unchanged. Meanwhile
under Ad, NK (a0) permutes the restricted-root spaces and thus carries
m0 ⊕⊕

λ∈	 (g0)λ to itself. Apply Ad of both sides of (7.41) to an element
H ∈ a0 and project to a0 along m0 ⊕ ⊕

λ∈	 (g0)λ. The resulting left side
is in a0 ⊕ n0 with a0 component Ad(w̃1)H , while the right side is in
Ad(w̃2)H + Ad(w̃2)(m0 ⊕ n0). Hence Ad(w̃1)H = Ad(w̃2)H . Since H is
arbitrary, w̃−1

2 w̃1 centralizes a0. Therefore w1 = w2.
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So Z = Ad(x−1n1)H is in s0. Since adg Z and adg H have the same
eigenvalues, Lemma 7.43b shows that Z is in a0 ⊕n0 ⊕ (m0 ∩ Zg0). Since
Ad(x−1n1)

−1 fixes Zg0 (by property (v)), Z is in a0⊕m0. Write Z = H ′+X ′

correspondingly. Here ad H and ad H ′ have the same eigenvalues, so
that λ(H ′) �= 0 for all λ ∈ �. By Lemma 7.42 there exists n2 ∈ N with
Ad(n2)

−1 H ′ − H ′ = X ′. Then Ad(n2)
−1 H ′ = H ′ + X ′ = Z , and

H ′ = Ad(n2)Z = Ad(n2x−1n1)H.

The centralizers of H ′ and H are both a0 ⊕ m0 by Lemma 6.50. Thus

(7.47) Ad(n2x−1n1)(a0 ⊕ m0) = a0 ⊕ m0.

If X is in a0, then adg(X) has real eigenvalues by Lemma 7.43b. Since
adg(Ad(n2x−1n1)X) and adg(X) have the same eigenvalues, Lemma
7.43b shows that Ad(n2x−1n1)X is in a0⊕(m0∩Zg0). Since Ad(n2x−1n1)

−1

fixes Zg0 (by property (v)), Ad(n2x−1n1)X is in a0. We conclude that
n2x−1n1 is in NG(a0).

Let n2x−1n1 = u exp X0 be the global Cartan decomposition of
n2x−1n1. By Lemma 7.22, u is in NK (a0) and X0 is in Ng0(a0). By
the same argument as in Lemma 6.56, Ng0(a0) = a0 ⊕ m0. Since X0 is
in p0, X0 is in a0. Therefore u is in NK (a0) and exp X0 is in A. In other
words, n2x−1n1 is in u A, and x is in the same M AN double coset as the
member u−1 of NK (a0).

5. Structure of M

We continue to assume that G is a reductive Lie group and that other
notation is as in §2. The fundamental source of disconnectedness in the
structure theory of semisimple groups is the behavior of the subgroup
M = Z K (a0). We shall examine M in this section, paying particular
attention to its component structure. For the first time we shall make
serious use of results from Chapter V.

Proposition 7.48. M is a reductive Lie group.

PROOF. Proposition 7.25 shows that ZG(a0) is a reductive Lie group,
necessarily of the form Z K (a0) exp(Zg0(a0) ∩ p0) = M A. By Proposition
7.27, 0(M A) = M is a reductive Lie group.

Proposition 7.33 already tells us that M meets every component of G.
But M can be disconnected even when G is connected. (Recall from the
examples in §VI.5 that M is disconnected when G = SL(n, R).) Choose
and fix a maximal abelian subspace t0 of m0. Then a0 ⊕ t0 is a Cartan
subalgebra of g0.
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Proposition 7.49. Every component of M contains a member of M
that centralizes t0, so that M = Z M(t0)M0.

REMARK. The proposition says that we may focus our attention on
Z M(t0). After this proof we shall study Z M(t0) by considering it as a
subgroup of Z K (t0).

PROOF. If m ∈ M is given, then Ad(m)t0 is a maximal abelian subspace
of m0. By Theorem 4.34 (applied to M0), there exists m0 ∈ M0 such that
Ad(m0)Ad(m)t0 = t0. Then m0m is in NM(m0). Introduce a positive
system �+ for the root system � = �(m, t). Then Ad(m0m)�+ is a
positive system for �, and Theorems 4.54 and 2.63 together say that we
can find m1 ∈ M0 such that Ad(m1m0m) maps �+ to itself. By Propo-
sition 7.48, M satisfies property (v) of reductive Lie groups. Therefore
Adm(m1m0m) is in Int m. Then Adm(m1m0m) must be induced by an
element in Intm [m, m], and Theorem 7.8 says that this element fixes
each member of �+. Therefore m1m0m centralizes t0, and the result
follows.

Suppose that the root α in �(g, a⊕t) is real, i.e., α vanishes on t. As in
the discussion following (6.66), the root space gα in g is invariant under
the conjugation of g with respect to g0. Since dimC gα = 1, gα contains a
nonzero root vector Eα that is in g0. Also as in the discussion following
(6.66), we may normalize Eα by a real constant so that B(Eα, θ Eα) =
−2/|α|2. Put H ′

α = 2|α|−2 Hα. Then {H ′
α, Eα, θ Eα} spans a copy of sl(2, R)

with

(7.50) H ′
α ↔ h, Eα ↔ e, θ Eα ↔ − f.

Let us write (g0)α for REα and (g0)−α for Rθ Eα.

Proposition 7.51. The subgroup ZG(t0) of G

(a) is reductive with global Cartan decomposition

ZG(t0) = Z K (t0) exp(p0 ∩ Zg0(t0))

(b) has Lie algebra

Zg0(t0) = t0 ⊕ a0 ⊕
⊕

α∈�(g,a⊕t),
α real

(g0)α,

which is the direct sum of its center with a real semisimple Lie
algebra that is a split real form of its complexification

(c) is such that the component groups of G, K , ZG(t0), and Z K (t0)

are all isomorphic.
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PROOF.
(a) Every member of Ksplit ∩ exp ia0 centralizes a0 and lies in Ksplit,

hence lies in F . For the reverse inclusion we have F ⊆ Ksplit by definition.
To see that F ⊆ exp ia0, let Usplit be the analytic subgroup of GC with Lie
algebra the intersection of u0 with the Lie algebra [Zg(t0), Zg(t0)]. Then
Usplit is compact, and ia0 ∩ [Zg(t0), Zg(t0)] is a maximal abelian subspace
of its Lie algebra. By Corollary 4.52 the corresponding torus is its own
centralizer. Hence the centralizer of a0 in Usplit is contained in exp ia0.
Since Ksplit ⊆ Usplit, it follows that F ⊆ exp ia0.

(b, c) Corollary 7.52 says that M = F M0. By (a), every element of
F commutes with any element that centralizes a0. Hence F is central in
M , and (b) and (c) follow.

(d) Since Gsplit has finite center, F is compact. Its Lie algebra is 0,
and thus it is finite. By (b), F is abelian. We still have to prove that
every element f �= 1 in F has order 2.

Since G has a complexification, so does Gsplit. Call this group GC

split,
let G̃C

split be a simply connected covering group, and let ϕ be the covering
map. Let G̃split be the analytic subgroup with the same Lie algebra as for
Gsplit, and form the subgroups K̃split and F̃ of G̃split. The subgroup F̃ is
the complete inverse image of F under ϕ. Let Ũsplit play the same role for
G̃C

split that U plays for GC. The automorphism θ of the Lie algebra of Gsplit

complexifies and lifts to an automorphism θ̃ of G̃C

split that carries Ũsplit

into itself. The automorphism θ̃ acts as x �→ x−1 on exp ia0 and as the
identity on K̃split. The elements of F̃ are the elements of the intersection,
by (a), and hence f̃ −1 = f̃ for every element f̃ of F̃ . That is f̃ 2 = 1.
Applying ϕ and using the fact that ϕ maps F̃ onto F , we conclude that
every element f �= 1 in F has order 2.

EXAMPLE. When G does not have a complexification, the subgroup F
need not be abelian. For an example we observe that the group K for
SL(3, R) is SO(3), which has SU (2) as a 2-sheeted simply connected
covering group. Thus SL(3, R) has a 2-sheeted simply connected cov-
ering group, and we take this covering group as G. We already noted in
§VI.5 that the group M for SL(3, R) consists of the diagonal matrices
with diagonal entries ±1 and determinant 1. Thus M is the direct sum
of two 2-element groups. The subgroup F of G is the complete inverse
image of M under the covering map and thus has order 8. Moreover it
is a subgroup of SU (2), which has only one element of order 2. Thus F
is a group of order 8 with only one element of order 2 and no element
of order 8. Of the five abstract groups of order 8, only the 8-element
subgroup {±1, ±i, ± j, ±k} of the quaternions has this property. This
group is nonabelian, and hence F is nonabelian.
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H ∈ a0 such that λ(H) �= 0 for all λ ∈ �, then

Ad(x)H − H = ead X H − H

= [X, H] + 1
2 [X, [X, H]] + · · ·

= [Xµ0 , H] + terms for lower restricted roots.

In particular, Ad(x)H − H is in n
−
0 and is not 0. On the other hand, if x

is in M AN , then Ad(x)H − H is in n0. Since n
−
0 ∩ n0 = 0, we must have

N− ∩ M AN = {1}.

Lemma 7.65. The map K/M → G/M AN induced by inclusion is a
diffeomorphism.

PROOF. The given map is certainly smooth. If κ(g) denotes the K
component of g in the Iwasawa decomposition G = K AN of Proposition
7.31, then g �→ κ(g) is smooth, and the map gM AN �→ κ(g)M is a two-
sided inverse to the given map.

Theorem 7.66. Suppose that the reductive Lie group G is semisimple,
is of real rank one, and has a complexification GC. Then M is connected
unless dim n0 = 1.

REMARKS. Since G is semisimple, it is in the Harish-Chandra class.
The above remarks about simple components are therefore applicable.
The condition dim n0 = 1 is the same as the condition that the simple
component of g0 containing a0 is isomorphic to sl(2, R). In fact, if
dim n0 = 1, then n0 is of the form RX for some X . Then X , θ X , and
[X, θ X] span a copy of sl(2, R), and we obtain g0

∼= sl(2, R) ⊕ m0. The
Lie subalgebra m0 must centralize X , θ X , and [X, θ X] and hence must
be an ideal in g0. The complementary ideal is sl(2, R), as asserted.

PROOF. The multiplication map N− × M0 AN → G is smooth and
everywhere regular by Lemma 6.44. Hence the map N− → G/M0 AN
induced by inclusion is smooth and regular, and so is the map

(7.67) N− → G/M AN ,

which is the composition of N− → G/M0 AN and a covering map.
Also the map (7.67) is one-one by Lemma 7.64. Therefore (7.67) is
a diffeomorphism onto an open set.

Since G is semisimple and has real rank 1, the Weyl group W (�) has
two elements. By Proposition 7.32, W (G, A) has two elements. Let
w̃ ∈ NK (a0) represent the nontrivial element of W (G, A). By the Bruhat
decomposition (Theorem 7.40),

(7.68) G = M AN ∪ M AN w̃M AN = M AN ∪ N w̃M AN .
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EXAMPLES.
1) Let G = SL(n, K), where K is R, C, or H. When g0 is realized as

matrices, the Lie subalgebra of upper-triangular matrices is a minimal
parabolic subalgebra qp,0. The other examples of parabolic subalge-
bras q0 containing qp,0 and written as in (7.70) and (7.71) are the Lie
subalgebras of block upper-triangular matrices, one subalgebra for each
arrangement of blocks.

2) Let G have compact center and be of real rank one. The examples
as in (7.70) and (7.71) are the minimal parabolic subalgebras and g0

itself.

We shall work with a vector X in the restricted-root space (g0)γ and
with θ X in (g0)−γ . (See Proposition 6.40c.) Proposition 6.52 shows that
B(X, θ X)Hγ is a negative multiple of Hγ . Normalizing, we may assume
that B(X, θ X) = −2/|γ |2. Put H ′

γ = 2|γ |−2 Hγ . Then the linear span slX

of {X, θ X, H ′
γ } is isomorphic to sl(2, R) under the isomorphism

(7.72) H ′
γ ↔ h, X ↔ e, θ X ↔ − f.

We shall make use of the copy slX of sl(2, R) in the same way as
in the proof of Corollary 6.53. This subalgebra of g0 acts by ad on g0

and hence acts on g. We know from Theorem 1.64 that the resulting
representation of slX is completely reducible, and we know the structure
of each irreducible subspace from Theorem 1.63.

Lemma 7.73. Let γ be a restricted root, and let X 	= 0 be in (g0)γ .
Then

(a) ad X carries (g0)γ onto (g0)2γ

(b) (ad θ X)2 carries (g0)γ onto (g0)−γ

(c) (ad θ X)4 carries (g0)2γ onto (g0)−2γ .

PROOF. Without loss of generality, we may assume that X is normal-
ized as in (7.72). The complexification of

⊕
c∈Z

(g0)cγ is an invariant
subspace of g under the representation ad of slX . Using Theorem 1.64,
we decompose it as the direct sum of irreducible representations. Each
member of (g0)cγ is an eigenvector for ad H ′

γ with eigenvalue 2c, and H ′
γ

corresponds to the member h of sl(2, R). From Theorem 1.63 we see
that the only possibilities for irreducible subspaces are 5-dimensional
subspaces consisting of one dimension each from

(g0)2γ , (g0)γ , m0, (g0)−γ , (g0)−2γ ;
3-dimensional subspaces consisting of one dimension each from

(g0)γ , m0, (g0)−γ ;
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Proposition 7.78. A parabolic subalgebra q0 containing the minimal
parabolic subalgebra mp,0 ⊕ ap,0 ⊕ np,0 has the properties that

(a) m0, a0, and n0 are Lie subalgebras, and n0 is an ideal in q0

(b) a0 is abelian, and n0 is nilpotent
(c) a0 ⊕ m0 is the centralizer of a0 in g0

(d) q0 ∩ θq0 = a0 ⊕ m0, and a0 ⊕ m0 is reductive
(e) ap,0 = a0 ⊕ aM,0

(f) np,0 = n0 ⊕ nM,0 as vector spaces
(g) g0 = a0 ⊕ m0 ⊕ n0 ⊕ θn0 orthogonally with respect to θ

(h) m0 = mp,0 ⊕ aM,0 ⊕ nM,0 ⊕ θnM,0.

PROOF.
(a, b, e, f) All parts of these are clear.
(c) The centralizer of a0 is spanned by ap,0, mp,0, and all the restricted

root spaces for restricted roots vanishing on a0. The sum of these is
a0 ⊕ m0.

(d) Since θ(g0)β = (g0)−β by Proposition 6.40c, q0 ∩ θq0 = a0 ⊕ m0.
Then a0 ⊕ m0 is reductive by Corollary 6.29.

(g, h) These follow from Proposition 6.40.

Proposition 7.79. Among the parabolic subalgebras containing qp,0,
let q0 be the one corresponding to the subset �′ of simple restricted roots.
For η �= 0 in a∗

0, let
(g0)(η) =

⊕

β∈a∗
p,0,

β|a0 =η

(g0)β .

Then (g0)(η) ⊆ n0 or (g0)(η) ⊆ θn0.

PROOF. We have

aM,0 = a⊥
0 = ( ⋂

β∈
∩−


ker β
)⊥ = ( ⋂

β∈
∩−


H⊥
β

)⊥ =
∑

β∈
∩−


RHβ =
∑

β∈�′
RHβ.

Let β and β ′ be restricted roots with a common nonzero restriction η to
members of a0. Then β −β ′ is 0 on a0, and Hβ − Hβ ′ is in aM,0. From the
formula for aM,0, the expansion of β − β ′ in terms of simple restricted
roots involves only the members of �′. Since η �= 0, the individual
expansions of β and β ′ involve nonzero coefficients for at least one
simple restricted root other than the ones in �′. The coefficients for this
other simple restricted root must be equal and in particular of the same
sign. By Proposition 2.49, β and β ′ are both positive or both negative,
and the result follows.
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PROOF.
(a, b) The subgroups ZG(a0) and 0 ZG(a0) are reductive by Propositions

7.25 and 7.27. By Proposition 7.78, Zg0(a0) = a0 ⊕ m0. Thus the space
Zvec for the group ZG(a0) is the analytic subgroup corresponding to the
intersection of p0 with the center of a0⊕m0. From the definition of m0, the
center of Zg0(a0) has to be contained in ap,0 ⊕mp,0, and the p0 part of this
is ap,0. The part of ap,0 that commutes with m0 is a0 by definition of m0.
Therefore Zvec = exp a0 = A, and ZG(a0) = ( 0 ZG(a0))A by Proposition
7.27. Then (a) and (b) follow.

(c) By (a), M is reductive. It is clear that aM,0 is a maximal abelian
subspace of p0 ∩m0, since m0 ∩a0 = 0. The restricted roots of m0 relative
to aM,0 are then the members of � ∩ −�, and the sum of the restricted-
root spaces for the positive such restricted roots is nM,0. Therefore
the minimal parabolic subgroup in question for M is MM AM NM . The
computation

MM = Z K∩M(aM,0) = M A ∩ Z K (aM,0)

= ZG(a0) ∩ Z K (aM,0) = Z K (ap,0) = Mp

identifies MM , and M = KM AM NM by the Iwasawa decomposition for
M (Proposition 7.31).

(d) By (a), M is reductive. Hence M = MM M0 by Proposition 7.33.
But (c) shows that MM = Mp, and Corollary 7.52 shows that Mp =
F(Mp)0. Hence M = F M0.

(e) This follows from Proposition 7.78e and the simple connectivity
of Ap.

(f) This follows from Proposition 7.78f, Theorem 1.102, and the
simple connectivity of Np.

Proposition 7.83. The subgroups M , A, and N have the properties
that

(a) M A normalizes N , so that Q = M AN is a group
(b) Q = NG(m0 ⊕ a0 ⊕ n0), and hence Q is a closed subgroup
(c) Q has Lie algebra q0 = m0 ⊕ a0 ⊕ n0

(d) multiplication M × A × N → Q is a diffeomorphism
(e) N− ∩ Q = {1}
(f) G = K Q.

PROOF.
(a) Let z be in M A = ZG(a0), and fix (g0)(η) ⊆ n0 as in (7.80). If X is

in (g0)(η) and H is in a0, then

[H, Ad(z)X] = [Ad(z)H, Ad(z)X] = Ad(z)[H, X] = η(H)Ad(z)X.
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according to M = KM AM NM be m = kM aM nM . If this element is to be in
AN , then kM = 1, aM is in AM ∩ A, and nM is in NM ∩ N , by uniqueness of
the Iwasawa decomposition in G. But AM ∩ A = {1} and NM ∩ N = {1}
by (e) and (f) of Proposition 7.82. Therefore m = 1, and we conclude
that M ∩ AN = {1}.

(e) This is proved in the same way as Lemma 7.64, which is stated
for a minimal parabolic subgroup.

(f) Since Q ⊇ ApNp, G = K Q by the Iwasawa decomposition for G
(Proposition 7.31).

Although the set of a0 roots does not necessarily form an abstract root
system, it is still meaningful to define

(7.84a) W (G, A) = NK (a0)/Z K (a0),

just as we did in the case that a0 is maximal abelian in p0. Corollary 7.81
and Proposition 7.78c show that NK (a0) and Z K (a0) both have k0 ∩m0 as
Lie algebra. Hence W (G, A) is a compact 0-dimensional group, and we
conclude that W (G, A) is finite. An alternative formula for W (G, A) is

(7.84b) W (G, A) = NG(a0)/ZG(a0).

The equality of the right sides of (7.84a) and (7.84b) is an immediate
consequence of Lemma 7.22 and Corollary 7.81. To compute NK (a0),
it is sometimes handy to use the following proposition.

Proposition 7.85. Every element of NK (a0) decomposes as a product
zn, where n is in NK (ap,0) and z is in Z K (a0).

PROOF. Let k be in NK (a0) and form Ad(k)aM,0. Since aM,0 commutes
with a0, Ad(k)aM,0 commutes with Ad(k)a0 = a0. By Proposition 7.78c,
Ad(k)aM,0 is contained in a0⊕m0. Since aM,0 is orthogonal to a0 under Bθ ,
Ad(k)aM,0 is orthogonal to Ad(k)a0 = a0. Hence Ad(k)aM,0 is contained
in m0 and therefore in p0 ∩ m0. By Proposition 7.29 there exists z in
K ∩ M with Ad(z)−1Ad(k)aM,0 = aM,0. Then n = z−1k is in NK (a0) and
in NK (aM,0), hence in NK (ap,0).

EXAMPLE. Let G = SL(3, R). Take ap,0 to be the diagonal subalgebra,
and let �+ = { f1 − f2, f2 − f3, f1 − f3} in the notation of Example 1 of
§VI.4. Define a parabolic subalgebra q0 by using 	′ = { f1 − f2}. The
corresponding parabolic subgroup is the block upper-triangular group
with blocks of sizes 2 and 1, respectively. The subalgebra a0 equals
{diag(r, r, −2r)}. Suppose that w is in W (G, A). Proposition 7.85 says
that w extends to a member of W (G, Ap) leaving a0 and aM,0 individually
stable. Here W (G, Ap) = W (�), and the only member of W (�) sending
a0 to itself is the identity. So W (G, A) = {1}.



7. Parabolic Subgroups 423

Proposition 7.87. Let h0 = t0 ⊕ a0 be the decomposition of a θ

stable Cartan subalgebra according to θ , and suppose that a lexicographic
ordering taking a0 before it0 is used to define a positive system �+(g, h).
Define

m0 = g0 ∩ (
t ⊕

⊕

α∈�(g,h),
α|a=0

gα

)

n0 = g0 ∩ ( ⊕

α∈�+(g,h),
α|a�=0

gα

)
.and

Then q0 = m0 ⊕ a0 ⊕ n0 is the Langlands decomposition of a cuspidal
parabolic subalgebra of g0.

PROOF. In view of the definitions, we have to relate q0 to a minimal
parabolic subalgebra. Let bar denote conjugation of g with respect to
g0. If α = αa + αt is a root, let ᾱ = −θα = αa − αt. Then gα = gᾱ, and it
follows that

(7.88) m = t ⊕
⊕

α∈�(g,h),
α|a=0

gα and n =
⊕

α∈�+(g,h),
α|a�=0

gα.

In particular, m0 is θ stable, hence reductive. Let hM,0 = tM,0⊕aM,0 be the
decomposition of a maximally noncompact θ stable Cartan subalgebra
of m0 according to θ . Since Theorem 2.15 shows that hM is conjugate to
t via Int m, h′ = a ⊕ hM is conjugate to h = a ⊕ t via a member of Int g
that fixes a0. In particular, h′

0 = a0 ⊕ hM,0 is a Cartan subalgebra of g0.
Applying our constructed member of Int g to (7.88), we obtain

(7.89) m = hM ⊕
⊕

α∈�(g,h′),
α|a=0

gα and n =
⊕

α∈�+(g,h′),
α|a�=0

gα

for the positive system �+(g, h′) obtained by transferring positivity from
�+(g, h).

Let us note that ap,0 = a0 ⊕ aM,0 is a maximal abelian subspace of p0.
In fact, the centralizer of a0 in g0 is a0 ⊕ m0, and aM,0 is maximal abelian
in m0 ∩ p0; hence the assertion follows. We introduce a lexicographic
ordering for h′

0 that is as before on a0, takes a0 before aM,0, and takes
aM,0 before itM,0. Then we obtain a positive system �+′(g, h′) with
the property that a root α with α|a0 �= 0 is positive if and only if α|a0

is the restriction to a0 of a member of �+(g, h). Consequently we
can replace �+(g, h′) in (7.89) by �+′(g, h′). Then it is apparent that
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PROOF. By Proposition 7.90a, G = G0 H . If z is in ZG0 , then Ad(z) = 1
on h0, and hence z is in ZG(h0) = H . Let g ∈ G be given, and write
g = g0h with g ∈ G0 and h ∈ H . Then zg0 = g0z since z commutes with
members of G0, and zh = hz since z is in H and H is abelian. Hence
zg = gz, and z is in ZG .

If H is a Cartan subgroup of G with Lie algebra h0, we define

(7.92a) W (G, H) = NG(h0)/ZG(h0).

Here ZG(h0) is nothing more than H itself, by definition. When h0 is θ

stable, an alternative formula for W (G, H) is

(7.92b) W (G, H) = NK (h0)/Z K (h0).

The equality of the right sides of (7.92a) and (7.92b) is an immedi-
ate consequence of Lemma 7.22 and Proposition 2.7. Proposition 2.7
shows that NK (h0) and Z K (h0) both have k0 ∩ h0 = t0 as Lie algebra.
Hence W (G, H) is a compact 0-dimensional group, and we conclude
that W (G, H) is finite.

Each member of NG(h0) sends roots of � = �(g, h) to roots, and the
action of NG(h0) on � descends to W (G, H). It is clear that only the
identity in W (G, H) acts as the identity on �. Since Adg(G) ⊆ Int g, it
follows from Theorem 7.8 that

(7.93) W (G, H) ⊆ W (�(g, h)).

EXAMPLE. Let G = SL(2, R). For any h, W (g, h) has order 2. When
h0 =

{(
r 0

0 −r

)}
, W (G, H) has order 2, a representative of the nontrivial

coset being
(

0 1

−1 0

)
. When h0 =

{(
0 r

−r 0

)}
, W (G, H) has order 1.

Now we begin to work toward the main result of this section, that the
union of all Cartan subgroups of G exhausts almost all of G. We shall
use the notion of a “regular element” of G. Recall that in Chapter II
we introduced regular elements in the complexified Lie algebra g. Let
dim g = n. For X ∈ g, we formed the characteristic polynomial

(7.94) det(λ1 − ad X) = λn +
n−1∑
j=0

dj (X)λ j .

Here each dj is a holomorphic polynomial function on g. The rank of g

is the minimum index l such that dl(X) ≡/ 0, and the regular elements
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and (7.132) follows since members of g0 equal their own conjugates. The
real dimension of it0 ⊕ n− is half the real dimension of t ⊕ n ⊕ n− = g,
and hence

(7.133) dimR(g0 ⊕ (it0 ⊕ n−)) = dimR g.

Combining (7.132) and (7.133), we see that

(7.134) g = g0 ⊕ (it0 ⊕ n−).

The subgroup HR N− of GC is closed by Proposition 7.83, and hence
HR N− is an analytic subgroup, necessarily with Lie algebra it0 ⊕n−. By
Lemma 6.44 it follows from (7.134) that multiplication G×HR N− → GC

is everywhere regular. The dimension relation (7.133) therefore implies
that G HR N− is open in GC. Since B = T HR N− and T ⊆ G, G B equals
G HR N− and is open in GC.

The subgroups P+ and P− are the N groups of parabolic subalgebras,
and their Lie algebras are abelian by Lemma 7.128. Hence P+ and P−

are Euclidean groups. Then exp : p+ → P+ is biholomorphic, and P+

is biholomorphic with C
n for some n. Similarly P− is biholomorphic

with C
n.

The subgroup K C is a reductive group, being connected and having bar
as a Cartan involution for its Lie algebra. It is the product of the identity
component of its center by a complex semisimple Lie group, and our
above considerations show that its parabolic subgroups are connected.
Then BK is a parabolic subgroup, and

(7.135) K C = K BK

by Proposition 7.83f.
Let A denote a specific Ap component for the Iwasawa decomposition

of G, to be specified in Lemma 7.143 below. We shall show in Lemma
7.145 that this A satisfies

(7.136a) A ⊆ P+K C P−

and

(7.136b) P+ components of members of A are bounded.

Theorem 7.39 shows that G = K AK . Since b ⊆ k ⊕ p−, we have
B ⊆ K C P−. Since Lemma 7.128 shows that K C normalizes P+ and P−,
(7.136a) gives

(7.137)
G B ⊆ G K C P− ⊆ K AK K C P−

⊆ K P+K C P−K C P− = P+K C P−.


