Theorem 2.9. Any finite-dimensional complex Lie algebra \mathfrak{g} has a Cartan subalgebra.

Before coming to the proof, we introduce "regular" elements of \mathfrak{g} . In $\mathfrak{sl}(n, \mathbb{C})$ the regular elements will be the matrices with distinct eigenvalues. Let us consider matters more generally.

If π is a representation of \mathfrak{g} on a finite-dimensional vector space V, we can regard each $X \in \mathfrak{g}$ as generating a 1-dimensional abelian subalgebra, and we can then form $V_{0,X}$, the generalized eigenspace for eigenvalue 0 under $\pi(X)$. Let

$$l_{\mathfrak{g}}(V) = \min_{X \in \mathfrak{g}} \dim V_{0,X}$$
$$R_{\mathfrak{g}}(V) = \{X \in \mathfrak{g} \mid \dim V_{0,X} = l_{\mathfrak{g}}(V)\}$$

To understand $l_{\mathfrak{q}}(V)$ and $R_{\mathfrak{q}}(V)$ better, form the characteristic polynomial

$$\det(\lambda 1 - \pi(X)) = \lambda^n + \sum_{j=0}^{n-1} d_j(X)\lambda^j.$$

In any basis of g, the $d_j(X)$ are polynomial functions on g, as we see by expanding det $(\lambda 1 - \sum \mu_i \pi(X_i))$. For given X, if j is the smallest value for which $d_j(X) \neq 0$, then $j = \dim V_{0,X}$, since the degree of the last term in the characteristic polynomial is the multiplicity of 0 as a generalized eigenvalue of $\pi(X)$. Thus $l_g(V)$ is the minimum j such that $d_j(X) \neq 0$, and

$$R_{\mathfrak{g}}(V) = \{ X \in \mathfrak{g} \mid d_{l_{\mathfrak{g}}(V)}(X) \neq 0 \}.$$

Let us apply these considerations to the adjoint representation of \mathfrak{g} on \mathfrak{g} . The elements of $R_{\mathfrak{g}}(\mathfrak{g})$, relative to the adjoint representation, are the **regular elements** of \mathfrak{g} . For any *X* in \mathfrak{g} , $\mathfrak{g}_{0,X}$ is a Lie subalgebra of \mathfrak{g} by the corollary of Proposition 2.5, with $\mathfrak{h} = \mathbb{C}X$.

Theorem 2.9'. If *X* is a regular element of the finite-dimensional complex Lie algebra \mathfrak{g} , then the Lie algebra $\mathfrak{g}_{0,X}$ is a Cartan subalgebra of \mathfrak{g} .

PROOF. First we show that $\mathfrak{g}_{0,X}$ is nilpotent. Assuming the contrary, we construct two sets:

- (i) the set of $Z \in \mathfrak{g}_{0,X}$ such that $((\operatorname{ad} Z)|_{\mathfrak{g}_{0,X}})^{\dim \mathfrak{g}_{0,X}} \neq 0$, which is nonempty by Engel's Theorem (Corollary 1.38) and is open
- (ii) the set of $W \in \mathfrak{g}_{0,X}$ such that ad $W|_{\mathfrak{g}/\mathfrak{g}_{0,X}}$ is nonsingular, which is nonempty since X is in it (regularity is not used here) and is the set where some polynomial is nonvanishing, hence is dense (because if a polynomial vanishes on a nonempty open set, it vanishes identically).

These two sets must have nonempty intersection, and so we can find $Z \in \mathfrak{g}_{0,X}$ such that

$$((\operatorname{ad} Z)|_{\mathfrak{g}_{0,X}})^{\dim \mathfrak{g}_{0,X}} \neq 0$$
 and $\operatorname{ad} Z|_{\mathfrak{g}/\mathfrak{g}_{0,X}}$ is nonsingular.

Then the generalized multiplicity of the eigenvalue 0 for ad *Z* is less than dim $\mathfrak{g}_{0,X}$, and hence dim $\mathfrak{g}_{0,Z} < \dim \mathfrak{g}_{0,X}$, in contradiction with the regularity of *X*. We conclude that $\mathfrak{g}_{0,X}$ is nilpotent.

Since $\mathfrak{g}_{0,X}$ is nilpotent, we can use $\mathfrak{g}_{0,X}$ to decompose \mathfrak{g} as in Proposition 2.4. Let \mathfrak{g}_0 be the 0 generalized weight space. Then we have

$$\mathfrak{g}_{0,X} \subseteq \mathfrak{g}_0 = \bigcap_{Y \in \mathfrak{g}_{0,X}} \mathfrak{g}_{0,Y} \subseteq \mathfrak{g}_{0,X}.$$

So $\mathfrak{g}_{0,X} = \mathfrak{g}_0$, and $\mathfrak{g}_{0,X}$ is a Cartan subalgebra.

In this book we shall be interested in Cartan subalgebras \mathfrak{h} only when \mathfrak{g} is semisimple. In this case \mathfrak{h} has special properties, as follows.

Proposition 2.10. If \mathfrak{g} is a complex semisimple Lie algebra and \mathfrak{h} is a Cartan subalgebra, then \mathfrak{h} is abelian.

PROOF. Since \mathfrak{h} is nilpotent and therefore solvable, ad \mathfrak{h} is solvable as a Lie algebra of transformations of \mathfrak{g} . By Lie's Theorem (Corollary 1.29) it is simultaneously triangular in some basis. For any three triangular matrices *A*, *B*, *C*, we have Tr(ABC) = Tr(BAC). Therefore

(2.11)
$$\operatorname{Tr}(\operatorname{ad}[H_1, H_2] \operatorname{ad} H) = 0$$
 for $H_1, H_2, H \in \mathfrak{h}$.

Next let α be any nonzero generalized weight, let *X* be in \mathfrak{g}_{α} , and let *H* be in \mathfrak{h} . By Proposition 2.5c, ad *H* ad *X* carries \mathfrak{g}_{β} to $\mathfrak{g}_{\alpha+\beta}$. Thus Proposition 2.5a shows that

$$(2.12) Tr(ad H ad X) = 0.$$

Specializing (2.12) to $H = [H_1, H_2]$ and using (2.11) and Proposition 2.5a, we see that the Killing form *B* of g satisfies

$$B([H_1, H_2], X) = 0$$
 for all $X \in \mathfrak{g}$.

By Cartan's Criterion for Semisimplicity (Theorem 1.42), *B* is nondegenerate. Therefore $[H_1, H_2] = 0$, and \mathfrak{h} is abelian.

Corollary 2.13. In a complex semisimple Lie algebra \mathfrak{g} , a Lie subalgebra \mathfrak{h} is a Cartan subalgebra if \mathfrak{h} is maximal abelian and $ad_{\mathfrak{g}}\mathfrak{h}$ is simultaneously diagonable.

REMARKS.

1) It is immediate from this corollary that the subalgebras \mathfrak{h} in the examples of §1 are Cartan subalgebras.

2) In the direction converse to the corollary, Proposition 2.10 shows that a Cartan subalgebra \mathfrak{h} is abelian, and it is maximal abelian since $\mathfrak{h} = \mathfrak{g}_0$. Corollary 2.23 will show for a Cartan subalgebra \mathfrak{h} that $ad_{\mathfrak{g}}\mathfrak{h}$ is simultaneously diagonable.

PROOF. Since \mathfrak{h} is abelian and hence nilpotent, Proposition 2.4 shows that \mathfrak{g} has a weight-space decomposition $\mathfrak{g} = \mathfrak{g}_0 \oplus \bigoplus_{\beta \neq 0} \mathfrak{g}_\beta$. Since $\mathrm{ad}_{\mathfrak{g}}\mathfrak{h}$ is simultaneously diagonable, $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{r}$ with $[\mathfrak{h}, \mathfrak{r}] = 0$. In view of Proposition 2.7, we are to prove that $\mathfrak{h} = N_{\mathfrak{g}}(\mathfrak{h})$. Here $\mathfrak{h} \subseteq N_{\mathfrak{g}}(\mathfrak{h}) \subseteq \mathfrak{g}_0$ by (2.8), and it is enough to show that $\mathfrak{r} = 0$. If $X \neq 0$ is in \mathfrak{r} , then $\mathfrak{h} \oplus \mathbb{C}X$ is an abelian subalgebra properly containing \mathfrak{h} , in contradiction with \mathfrak{h} maximal abelian. The result follows.

3. Uniqueness of Cartan Subalgebras

We turn to the question of uniqueness of Cartan subalgebras. We begin with a lemma about polynomial mappings.

Lemma 2.14. Let $P : \mathbb{C}^m \to \mathbb{C}^n$ be a holomorphic polynomial function not identically 0. Then the set of vectors z in \mathbb{C}^m for which P(z) is not the 0 vector is connected in \mathbb{C}^m .

PROOF. Suppose that z_0 and w_0 in \mathbb{C}^m have $P(z_0) \neq 0$ and $P(w_0) \neq 0$. As a function of $z \in \mathbb{C}$, $P(z_0 + z(w_0 - z_0))$ is a vector-valued holomorphic polynomial nonvanishing at z = 0 and z = 1. The subset of $z \in \mathbb{C}$ where it vanishes is finite, and the complement in \mathbb{C} is connected. Thus z_0 and w_0 lie in a connected set in \mathbb{C}^m where P is nonvanishing. Taking the union of these connected sets with z_0 fixed and w_0 varying, we see that the set where $P(w_0) \neq 0$ is connected.

Theorem 2.15. If \mathfrak{h}_1 and \mathfrak{h}_2 are Cartan subalgebras of a finitedimensional complex Lie algebra \mathfrak{g} , then there exists $a \in \operatorname{Int} \mathfrak{g}$ with $a(\mathfrak{h}_1) = \mathfrak{h}_2$.

Remarks.

1) In particular any two Cartan subalgebras are conjugate by an automorphism of g. As was explained after the introduction of Int g in §I.11, **Proposition 2.78.** The abstract Dynkin diagram associated to the *l*-by-*l* abstract Cartan matrix *A* has the following properties:

- (a) there are at most *l* pairs of vertices i < j with at least one edge connecting them
- (b) there are no loops
- (c) at most three edges issue from any point of the diagram.

PROOF.

(a) With α_i as in (2.75), put $\alpha = \sum_{i=1}^{l} \frac{\alpha_i}{|\alpha_i|}$. Then

$$0 < |\alpha|^{2} = \sum_{i,j} \left\langle \frac{\alpha_{i}}{|\alpha_{i}|}, \frac{\alpha_{j}}{|\alpha_{j}|} \right\rangle$$
$$= \sum_{i} \left\langle \frac{\alpha_{i}}{|\alpha_{i}|}, \frac{\alpha_{i}}{|\alpha_{i}|} \right\rangle + 2 \sum_{i < j} \left\langle \frac{\alpha_{i}}{|\alpha_{i}|}, \frac{\alpha_{j}}{|\alpha_{j}|} \right\rangle$$
$$= l + \sum_{i < j} \frac{2 \langle \alpha_{i}, \alpha_{j} \rangle}{|\alpha_{i}| |\alpha_{j}|}$$
$$= l - \sum_{i < j} \sqrt{A_{ij} A_{ji}}.$$

By Proposition 2.74, $\sqrt{A_{ij}A_{ji}}$ is 0 or 1 or $\sqrt{2}$ or $\sqrt{3}$. When nonzero, it is therefore ≥ 1 . Therefore the right side of (2.79) is

$$\leq l - \sum_{\substack{i < j, \\ \text{connected}}} 1.$$

Hence the number of connected pairs of vertices is < l.

(b) If there were a loop, we could use Operation #1 to remove all vertices except those in a loop. Then (a) would be violated for the loop.

(c) Fix $\alpha = \alpha_i$ as in (2.75). Consider the vertices that are connected by edges to the *i*th vertex. Write β_1, \ldots, β_r for the α_j 's associated to these vertices, and let there be l_1, \ldots, l_r edges to the *i*th vertex. Let *U* be the (r+1)-dimensional vector subspace of \mathbb{R}^l spanned by $\beta_1, \ldots, \beta_r, \alpha$. Then $\langle \beta_i, \beta_j \rangle = 0$ for $i \neq j$ by (b), and hence $\{\beta_k/|\beta_k|\}_{k=1}^r$ is an orthonormal set. Adjoin $\delta \in U$ to this set to make an orthonormal basis of *U*. Then $\langle \alpha, \delta \rangle \neq 0$ since $\{\beta_1, \ldots, \beta_r, \alpha\}$ is linearly independent. By Parseval's equality,

126

have an isomorphism, and then compute what the map is in terms of a basis. Let $T_n(\mathfrak{g}) = \bigoplus_{k=0}^n T^k(\mathfrak{g})$ be the *n*th member of the usual filtration of $T(\mathfrak{g})$. We have defined $U_n(\mathfrak{g})$ to be the image in $U(\mathfrak{g})$ of $T_n(\mathfrak{g})$ under the passage $T(\mathfrak{g}) \to T(\mathfrak{g})/J$. Thus we can form the composition

$$T_n(\mathfrak{g}) \to (T_n(\mathfrak{g}) + J)/J = U_n(\mathfrak{g}) \to U_n(\mathfrak{g})/U_{n-1}(\mathfrak{g})$$

This composition is onto and carries $T_{n-1}(\mathfrak{g})$ to 0. Since $T^n(\mathfrak{g})$ is a vector-space complement to $T_{n-1}(\mathfrak{g})$ in $T_n(\mathfrak{g})$, we obtain an onto linear map

$$T^{n}(\mathfrak{g}) \to U_{n}(\mathfrak{g})/U_{n-1}(\mathfrak{g}).$$

Taking the direct sum over n gives an onto linear map

$$\tilde{\psi}: T(\mathfrak{g}) \to \operatorname{gr} U(\mathfrak{g})$$

that respects the grading.

Appendix A uses the notation *I* for the two-sided ideal in $T(\mathfrak{g})$ such that $S(\mathfrak{g}) = T(\mathfrak{g})/I$:

(3.15)
$$I = \begin{pmatrix} \text{two-sided ideal generated by all} \\ X \otimes Y - Y \otimes X \text{ with } X \text{ and } Y \\ \text{in } T^{1}(\mathfrak{g}) \end{pmatrix}.$$

Proposition 3.16. The linear map $\tilde{\psi} : T(\mathfrak{g}) \to \operatorname{gr} U(\mathfrak{g})$ respects multiplication and annihilates the defining ideal *I* for $S(\mathfrak{g})$. Therefore ψ descends to an algebra homomorphism

$$(3.17) \qquad \qquad \psi: S(\mathfrak{g}) \to \operatorname{gr} U(\mathfrak{g})$$

that respects the grading. This homomorphism is an isomorphism.

PROOF. Let x be in $T^r(\mathfrak{g})$ and let y be in $T^s(\mathfrak{g})$. Then x + J is in $U_r(\mathfrak{g})$, and we may regard $\tilde{\psi}(x)$ as the coset $x + T_{r-1}(\mathfrak{g}) + J$ in $U_r(\mathfrak{g})/U_{r-1}(\mathfrak{g})$, with 0 in all other coordinates of gr $U(\mathfrak{g})$ since x is homogeneous. Arguing in a similar fashion with y and xy, we obtain

$$\tilde{\psi}(x) = x + T_{r-1}(\mathfrak{g}) + J, \qquad \tilde{\psi}(y) = y + T_{s-1}(\mathfrak{g}) + J,$$

and $\tilde{\psi}(xy) = xy + T_{r+s-1}(\mathfrak{g}) + J.$

Since *J* is an ideal, $\tilde{\psi}(x)\tilde{\psi}(y) = \tilde{\psi}(xy)$. General members *x* and *y* of *T*(\mathfrak{g}) are sums of homogeneous elements, and hence $\tilde{\psi}$ respects multiplication.

The direct sum of the maps σ_n for $n \ge 0$ (with $\sigma_0(1) = 1$) is a linear map $\sigma : S(\mathfrak{g}) \to U(\mathfrak{g})$ such that

$$\sigma(X_1\cdots X_n)=\frac{1}{n!}\sum_{\tau\in\mathfrak{S}_n}X_{\tau(1)}\cdots X_{\tau(n)}.$$

The map σ is called **symmetrization**.

Lemma 3.22. The symmetrization map $\sigma : S(\mathfrak{g}) \to U(\mathfrak{g})$ has associated graded map $\psi : S(\mathfrak{g}) \to \operatorname{gr} U(\mathfrak{g})$, with ψ as in (3.17).

REMARK. See §A.4 for "associated graded map."

PROOF. Let $\{X_i\}$ be a basis of \mathfrak{g} , and let $X_{i_1}^{j_1} \cdots X_{i_k}^{j_k}$, with $\sum_m j_m = n$, be a basis vector of $S^n(\mathfrak{g})$. Under σ , this vector is sent to a symmetrized sum, but each term of the sum is congruent mod $U_{n-1}(\mathfrak{g})$ to $(n!)^{-1}X_{i_1}^{j_1} \cdots X_{i_k}^{j_k}$, by Lemma 3.9. Hence the image of $X_{i_1}^{j_1} \cdots X_{i_k}^{j_k}$ under the associated graded map is

$$= X_{i_1}^{j_1} \cdots X_{i_k}^{j_k} + U_{n-1}(\mathfrak{g}) = \psi(X_{i_1}^{j_1} \cdots X_{i_k}^{j_k}),$$

as asserted.

Proposition 3.23. Symmetrization σ is a vector-space isomorphism of $S(\mathfrak{g})$ onto $U(\mathfrak{g})$ satisfying

(3.24)
$$U_n(\mathfrak{g}) = \sigma(S^n(\mathfrak{g})) \oplus U_{n-1}(\mathfrak{g}).$$

PROOF. Formula (3.24) is a restatement of (3.21), and the other conclusion follows by combining Lemma 3.22 and Proposition A.37.

The canonical decomposition of $U(\mathfrak{g})$ from $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b}$ when \mathfrak{a} and \mathfrak{b} are merely vector spaces is given in the following proposition.

Proposition 3.25. Suppose $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b}$ and suppose \mathfrak{a} and \mathfrak{b} are subspaces of \mathfrak{g} . Then the mapping $a \otimes b \mapsto \sigma(a)\sigma(b)$ of $S(\mathfrak{a}) \otimes_{\mathbb{C}} S(\mathfrak{b})$ into $U(\mathfrak{g})$ is a vector-space isomorphism onto.

PROOF. The vector space $S(\mathfrak{a}) \otimes_{\mathbb{C}} S(\mathfrak{b})$ is graded consistently for the given mapping, the *n*th space of the grading being $\bigoplus_{p=0}^{n} S^{p}(\mathfrak{a}) \otimes_{\mathbb{C}} S^{n-p}(\mathfrak{b})$. The given mapping operates on an element of this space by

$$\sum_{p=0}^{n} a_p \otimes b_{n-p} \mapsto \sum_{p=0}^{n} \sigma(a_p) \sigma(b_{n-p}),$$

176

for all $x \in G$ whenever $y_1^{-1}y_2$ is in U. Then

$$\begin{split} \|h(y_1^{-1}x) - h(y_2^{-1}x)\|_{2,x} &\leq \|h(y_1^{-1}x) - c(y_1^{-1}x)\|_{2,x} \\ &+ \|c(y_1^{-1}x) - c(y_2^{-1}x)\|_{2,x} \\ &+ \|c(y_2^{-1}x) - h(y_2^{-1}x)\|_{2,x} \\ &= 2\|h - c\|_2 + \|c(y_1^{-1}x) - c(y_2^{-1}x)\|_{2,x} \\ &\leq 2\|h - c\|_2 + \sup_{x \in G} |c(y_1^{-1}x) - c(y_2^{-1}x)| \\ &< 2\epsilon/3 + \epsilon/3 = \epsilon. \end{split}$$

Lemma 4.18. Let *G* be a compact group, and let *h* be in $L^2(G)$. For any $\epsilon > 0$, there exist finitely many $y_i \in G$ and Borel sets $E_i \subseteq G$ such that the E_i disjointly cover *G* and

$$||h(y^{-1}x) - h(y_i^{-1}x)||_{2,x} < \epsilon$$
 for all *i* and for all $y \in E_i$

PROOF. By Lemma 4.17 choose an open neighborhood U of 1 so that $||h(gx) - h(x)||_{2,x} < \epsilon$ whenever g is in U. For each $z_0 \in G$, $||h(gz_0x) - h(z_0x)||_{2,x} < \epsilon$ whenever g is in U. The set Uz_0 is an open neighborhood of z_0 , and such sets cover G as z_0 varies. Find a finite subcover, say Uz_1, \ldots, Uz_n , and let $U_i = Uz_i$. Define $F_j = U_j - \bigcup_{i=1}^{j-1} U_i$. Then the lemma follows with $y_i = z_i^{-1}$ and $E_i = F_i^{-1}$.

Lemma 4.19. Let *G* be a compact group, let *f* be in $L^1(G)$, and let *h* be in $L^2(G)$. Put $F(x) = \int_G f(y)h(y^{-1}x) dy$. Then *F* is the limit in $L^2(G)$ of a sequence of functions, each of which is a finite linear combination of left translates of *h*.

PROOF. Given $\epsilon > 0$, choose y_i and E_i as in Lemma 4.18, and put $c_i = \int_{E_i} f(y) dy$. Then

$$\begin{split} \left\| \int_{G} f(y)h(y^{-1}x) \, dy - \sum_{i} c_{i}h(y_{i}^{-1}x) \right\|_{2,x} \\ &\leq \left\| \sum_{i} \int_{E_{i}} |f(y)| |h(y^{-1}x) - h(y_{i}^{-1}x)| \, dy \right\|_{2,x} \\ &\leq \sum_{i} \int_{E_{i}} |f(y)| \, \|h(y^{-1}x) - h(y_{i}^{-1}x)\|_{2,x} \, dy \\ &\leq \sum_{i} \int_{E_{i}} |f(y)| \epsilon \, dy = \epsilon \|f\|_{1}. \end{split}$$

Theorem 4.20 (Peter-Weyl Theorem). If G is a compact group, then the linear span of all matrix coefficients for all finite-dimensional irreducible unitary representations of G is dense in $L^2(G)$.

- 11. Deduce from Problem 10 that Δ carries V_N onto V_{N-2} .
- 12. Deduce from Problem 10 that each $p \in V_N$ decomposes uniquely as

$$p = h_N + |x|^2 h_{N-2} + |x|^4 h_{N-4} + \cdots$$

with h_N , h_{N-2} , h_{N-4} , ... homogeneous harmonic of the indicated degrees.

13. Compute the dimension of H_N .

Problems 14–16 concern Example 2 for SU(n) in §1. Let V_N be the space of polynomials in $z_1, \ldots, z_n, \overline{z}_1, \ldots, \overline{z}_n$ that are homogeneous of degree N.

- 14. Show for each pair (p, q) with p + q = N that the subspace $V_{p,q}$ of polynomials with p z-type factors and q \bar{z} -type factors is an invariant subspace under SU(n).
- 15. The Laplacian in these coordinates is a multiple of $\sum_{j} \frac{\partial^2}{\partial z_j \partial \bar{z}_j}$. Using the result of Problem 11, prove that the Laplacian carries $V_{p,q}$ onto $V_{p-1,q-1}$.
- 16. Compute the dimension of the subspace of harmonic polynomials in $V_{p,q}$.

Problems 17–20 deal with integral forms. In each case the maximal torus *T* is understood to be as in the corresponding example of §5, and the notation for members of t^* is to be as in the corresponding example of §II.1 (with $\mathfrak{h} = \mathfrak{t}$).

- 17. For SU(n), a general member of \mathfrak{t}^* may be written uniquely as $\sum_{j=1}^n c_j e_j$ with $\sum_{i=1}^n c_i = 0$.
 - (a) Prove that the \mathbb{Z} combinations of roots are those forms with all c_j in \mathbb{Z} .
 - (b) Prove that the algebraically integral forms are those for which all c_j are in $\mathbb{Z} + \frac{k}{n}$ for some *k*.
 - (c) Prove that every algebraically integral form is analytically integral.
 - (d) Prove that the quotient of the lattice of algebraically integral forms by the lattice of \mathbb{Z} combinations of roots is a cyclic group of order *n*.
- 18. For SO(2n + 1), a general member of t^{*} is $\sum_{j=1}^{n} c_j e_j$.
 - (a) Prove that the \mathbb{Z} combinations of roots are those forms with all c_j in \mathbb{Z} .
 - (b) Prove that the algebraically integral forms are those forms with all c_j in \mathbb{Z} or all c_j in $\mathbb{Z} + \frac{1}{2}$.
 - (c) Prove that every analytically integral form is a \mathbb{Z} combination of roots.
- 19. For $Sp(n, \mathbb{C}) \cap U(2n)$, a general member of \mathfrak{t}^* is $\sum_{j=1}^n c_j e_j$.
 - (a) Prove that the \mathbb{Z} combinations of roots are those forms with all c_j in \mathbb{Z} and with $\sum_{j=1}^{n} c_j$ even.