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Theorem 2.9. Any finite-dimensional complex Lie algebra g has a
Cartan subalgebra.

Before coming to the proof, we introduce “regular” elements of g. In
sl(n, C) the regular elements will be the matrices with distinct eigenval-
ues. Let us consider matters more generally.

If π is a representation of g on a finite-dimensional vector space V, we
can regard each X ∈ g as generating a 1-dimensional abelian subalgebra,
and we can then form V0,X , the generalized eigenspace for eigenvalue 0
under π(X). Let

lg(V ) = min
X∈g

dim V0,X

Rg(V ) = {X ∈ g | dim V0,X = lg(V )}.
To understand lg(V ) and Rg(V ) better, form the characteristic polynomial

det(λ1 − π(X)) = λn +
n−1∑

j=0

dj (X)λ j .

In any basis of g, the dj (X) are polynomial functions on g, as we see by
expanding det(λ1 − ∑

µiπ(Xi )). For given X , if j is the smallest value
for which dj (X) 	= 0, then j = dim V0,X , since the degree of the last term
in the characteristic polynomial is the multiplicity of 0 as a generalized
eigenvalue of π(X). Thus lg(V ) is the minimum j such that dj (X) ≡/ 0,
and

Rg(V ) = {X ∈ g | dlg(V )(X) 	= 0}.
Let us apply these considerations to the adjoint representation of g on

g. The elements of Rg(g), relative to the adjoint representation, are the
regular elements of g. For any X in g, g0,X is a Lie subalgebra of g by
the corollary of Proposition 2.5, with h = CX .

Theorem 2.9′. If X is a regular element of the finite-dimensional
complex Lie algebra g, then the Lie algebra g0,X is a Cartan subalgebra
of g.

PROOF. First we show that g0,X is nilpotent. Assuming the contrary,
we construct two sets:

(i) the set of Z ∈ g0,X such that ((ad Z)|g0,X )dim g0,X 	= 0, which is
nonempty by Engel’s Theorem (Corollary 1.38) and is open

(ii) the set of W ∈ g0,X such that ad W |g/g0,X is nonsingular, which
is nonempty since X is in it (regularity is not used here) and is
the set where some polynomial is nonvanishing, hence is dense
(because if a polynomial vanishes on a nonempty open set, it
vanishes identically).



2. Existence of Cartan Subalgebras 91

These two sets must have nonempty intersection, and so we can find
Z ∈ g0,X such that

((ad Z)|g0,X )dim g0,X 	= 0 and ad Z |g/g0,X is nonsingular.

Then the generalized multiplicity of the eigenvalue 0 for ad Z is less
than dim g0,X , and hence dim g0,Z < dim g0,X , in contradiction with the
regularity of X . We conclude that g0,X is nilpotent.

Since g0,X is nilpotent, we can use g0,X to decompose g as in Propo-
sition 2.4. Let g0 be the 0 generalized weight space. Then we have

g0,X ⊆ g0 =
⋂

Y∈g0,X

g0,Y ⊆ g0,X .

So g0,X = g0, and g0,X is a Cartan subalgebra.

In this book we shall be interested in Cartan subalgebras h only when
g is semisimple. In this case h has special properties, as follows.

Proposition 2.10. If g is a complex semisimple Lie algebra and h is
a Cartan subalgebra, then h is abelian.

PROOF. Since h is nilpotent and therefore solvable, ad h is solvable as a
Lie algebra of transformations of g. By Lie’s Theorem (Corollary 1.29)
it is simultaneously triangular in some basis. For any three triangular
matrices A, B, C , we have Tr(ABC) = Tr(B AC). Therefore

(2.11) Tr(ad[H1, H2]ad H) = 0 for H1, H2, H ∈ h.

Next let α be any nonzero generalized weight, let X be in gα, and
let H be in h. By Proposition 2.5c, ad H ad X carries gβ to gα+β . Thus
Proposition 2.5a shows that

(2.12) Tr(ad H ad X) = 0.

Specializing (2.12) to H = [H1, H2] and using (2.11) and Proposition
2.5a, we see that the Killing form B of g satisfies

B([H1, H2], X) = 0 for all X ∈ g.

By Cartan’s Criterion for Semisimplicity (Theorem 1.42), B is nonde-
generate. Therefore [H1, H2] = 0, and h is abelian.
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Corollary 2.13. In a complex semisimple Lie algebra g, a Lie sub-
algebra h is a Cartan subalgebra if h is maximal abelian and adg h is
simultaneously diagonable.

REMARKS.
1) It is immediate from this corollary that the subalgebras h in the

examples of §1 are Cartan subalgebras.
2) In the direction converse to the corollary, Proposition 2.10 shows

that a Cartan subalgebra h is abelian, and it is maximal abelian since
h = g0. Corollary 2.23 will show for a Cartan subalgebra h that adg h is
simultaneously diagonable.

PROOF. Since h is abelian and hence nilpotent, Proposition 2.4 shows
that g has a weight-space decomposition g = g0 ⊕ ⊕

β 	=0 gβ . Since adg h

is simultaneously diagonable, g0 = h ⊕ r with [h, r] = 0. In view of
Proposition 2.7, we are to prove that h = Ng(h). Here h ⊆ Ng(h) ⊆ g0 by
(2.8), and it is enough to show that r = 0. If X 	= 0 is in r, then h ⊕ CX
is an abelian subalgebra properly containing h, in contradiction with h

maximal abelian. The result follows.

3. Uniqueness of Cartan Subalgebras

We turn to the question of uniqueness of Cartan subalgebras. We
begin with a lemma about polynomial mappings.

Lemma 2.14. Let P : C
m → C

n be a holomorphic polynomial
function not identically 0. Then the set of vectors z in C

m for which P(z)
is not the 0 vector is connected in C

m .

PROOF. Suppose that z0 and w0 in C
m have P(z0) 	= 0 and P(w0) 	= 0.

As a function of z ∈ C, P(z0 + z(w0 − z0)) is a vector-valued holomorphic
polynomial nonvanishing at z = 0 and z = 1. The subset of z ∈ C where
it vanishes is finite, and the complement in C is connected. Thus z0 and
w0 lie in a connected set in C

m where P is nonvanishing. Taking the
union of these connected sets with z0 fixed and w0 varying, we see that
the set where P(w0) 	= 0 is connected.

Theorem 2.15. If h1 and h2 are Cartan subalgebras of a finite-
dimensional complex Lie algebra g, then there exists a ∈ Int g with
a(h1) = h2.

REMARKS.
1) In particular any two Cartan subalgebras are conjugate by an auto-

morphism of g. As was explained after the introduction of Int g in §I.11,
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Proposition 2.78. The abstract Dynkin diagram associated to the
l-by-l abstract Cartan matrix A has the following properties:

(a) there are at most l pairs of vertices i < j with at least one edge
connecting them

(b) there are no loops
(c) at most three edges issue from any point of the diagram.

PROOF.
(a) With αi as in (2.75), put α = ∑l

i=1

αi

|αi | . Then

0 < |α|2 =
∑
i, j

〈
αi

|αi | ,
αj

|αj |
〉

=
∑

i

〈
αi

|αi | ,
αi

|αi |
〉
+ 2

∑
i< j

〈
αi

|αi | ,
αj

|αj |
〉

= l +
∑
i< j

2〈αi , αj 〉
|αi ||αj |

= l −
∑
i< j

√
Ai j Aji .(2.79)

By Proposition 2.74,
√

Ai j Aji is 0 or 1 or
√

2 or
√

3. When nonzero, it
is therefore ≥ 1. Therefore the right side of (2.79) is

≤ l −
∑
i< j,

connected

1.

Hence the number of connected pairs of vertices is < l.
(b) If there were a loop, we could use Operation #1 to remove all

vertices except those in a loop. Then (a) would be violated for the loop.
(c) Fix α = αi as in (2.75). Consider the vertices that are connected

by edges to the i th vertex. Write β1, . . . , βr for the αj ’s associated to these
vertices, and let there be l1, . . . , lr edges to the i th vertex. Let U be the
(r +1)-dimensional vector subspace of R

l spanned by β1, . . . , βr , α. Then
〈βi , βj 〉 = 0 for i �= j by (b), and hence {βk/|βk |}r

k=1 is an orthonormal
set. Adjoin δ ∈ U to this set to make an orthonormal basis of U . Then
〈α, δ〉 �= 0 since {β1, . . . , βr , α} is linearly independent. By Parseval’s
equality,
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have an isomorphism, and then compute what the map is in terms of a
basis. Let Tn(g) = ⊕n

k=0 T k(g) be the nth member of the usual filtration
of T (g). We have defined Un(g) to be the image in U (g) of Tn(g) under
the passage T (g) → T (g)/J . Thus we can form the composition

Tn(g) → (Tn(g) + J )/J = Un(g) → Un(g)/Un−1(g).

This composition is onto and carries Tn−1(g) to 0. Since T n(g) is a
vector-space complement to Tn−1(g) in Tn(g), we obtain an onto linear
map

T n(g) → Un(g)/Un−1(g).

Taking the direct sum over n gives an onto linear map

ψ̃ : T (g) → gr U (g)

that respects the grading.
Appendix A uses the notation I for the two-sided ideal in T (g) such

that S(g) = T (g)/I :

(3.15) I =
( two-sided ideal generated by all

X ⊗ Y − Y ⊗ X with X and Y
in T 1(g)

)
.

Proposition 3.16. The linear map ψ̃ : T (g) → gr U (g) respects
multiplication and annihilates the defining ideal I for S(g). Therefore ψ

descends to an algebra homomorphism

(3.17) ψ : S(g) → gr U (g)

that respects the grading. This homomorphism is an isomorphism.

PROOF. Let x be in T r (g) and let y be in T s(g). Then x + J is in Ur (g),
and we may regard ψ̃(x) as the coset x+Tr−1(g)+J in Ur (g)/Ur−1(g), with
0 in all other coordinates of gr U (g) since x is homogeneous. Arguing
in a similar fashion with y and xy, we obtain

ψ̃(x) = x + Tr−1(g) + J, ψ̃(y) = y + Ts−1(g) + J,

and ψ̃(xy) = xy + Tr+s−1(g) + J.

Since J is an ideal, ψ̃(x)ψ̃(y) = ψ̃(xy). General members x and y of T (g)

are sums of homogeneous elements, and hence ψ̃ respects multiplication.
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The direct sum of the maps σn for n ≥ 0 (with σ0(1) = 1) is a linear
map σ : S(g) → U (g) such that

σ(X1 · · · Xn) = 1
n!

∑

τ∈Sn

Xτ(1) · · · Xτ(n).

The map σ is called symmetrization.

Lemma 3.22. The symmetrization map σ : S(g) → U (g) has associ-
ated graded map ψ : S(g) → gr U (g), with ψ as in (3.17).

REMARK. See §A.4 for “associated graded map.”

PROOF. Let {Xi } be a basis of g, and let X j1
i1

· · · X jk
ik

, with
∑

m jm = n, be
a basis vector of Sn(g). Under σ , this vector is sent to a symmetrized sum,
but each term of the sum is congruent mod Un−1(g) to (n!)−1 X j1

i1
· · · X jk

ik
,

by Lemma 3.9. Hence the image of X j1
i1

· · · X jk
ik

under the associated
graded map is

= X j1
i1

· · · X jk
ik

+ Un−1(g) = ψ(X j1
i1

· · · X jk
ik

),

as asserted.

Proposition 3.23. Symmetrization σ is a vector-space isomorphism
of S(g) onto U (g) satisfying

(3.24) Un(g) = σ(Sn(g)) ⊕ Un−1(g).

PROOF. Formula (3.24) is a restatement of (3.21), and the other con-
clusion follows by combining Lemma 3.22 and Proposition A.37.

The canonical decomposition of U (g) from g = a ⊕ b when a and b

are merely vector spaces is given in the following proposition.

Proposition 3.25. Suppose g = a ⊕ b and suppose a and b are
subspaces of g. Then the mapping a ⊗ b → σ(a)σ (b) of S(a) ⊗C S(b)

into U (g) is a vector-space isomorphism onto.

PROOF. The vector space S(a) ⊗C S(b) is graded consistently for the
given mapping, the nth space of the grading being

⊕n
p=0 S p(a)⊗C Sn−p(b).

The given mapping operates on an element of this space by

n∑

p=0

ap ⊗ bn−p →
n∑

p=0

σ(ap)σ (bn−p),
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for all x ∈ G whenever y−1
1 y2 is in U . Then

‖h(y−1
1 x) − h(y−1

2 x)‖2,x ≤ ‖h(y−1
1 x) − c(y−1

1 x)‖2,x

+ ‖c(y−1
1 x) − c(y−1

2 x)‖2,x

+ ‖c(y−1
2 x) − h(y−1

2 x)‖2,x

= 2‖h − c‖2 + ‖c(y−1
1 x) − c(y−1

2 x)‖2,x

≤ 2‖h − c‖2 + sup
x∈G

|c(y−1
1 x) − c(y−1

2 x)|

< 2ε/3 + ε/3 = ε.

Lemma 4.18. Let G be a compact group, and let h be in L2(G). For
any ε > 0, there exist finitely many yi ∈ G and Borel sets Ei ⊆ G such
that the Ei disjointly cover G and

‖h(y−1x) − h(y−1
i x)‖2,x < ε for all i and for all y ∈ Ei .

PROOF. By Lemma 4.17 choose an open neighborhood U of 1 so
that ‖h(gx) − h(x)‖2,x < ε whenever g is in U . For each z0 ∈ G,
‖h(gz0x) − h(z0x)‖2,x < ε whenever g is in U . The set U z0 is an open
neighborhood of z0, and such sets cover G as z0 varies. Find a finite
subcover, say U z1, . . . , U zn, and let Ui = U zi . Define Fj = Uj −

⋃ j−1
i=1 Ui .

Then the lemma follows with yi = z−1
i and Ei = F−1

i .

Lemma 4.19. Let G be a compact group, let f be in L1(G), and let h
be in L2(G). Put F(x) = ∫

G f (y)h(y−1x) dy. Then F is the limit in L2(G)

of a sequence of functions, each of which is a finite linear combination
of left translates of h.

PROOF. Given ε > 0, choose yi and Ei as in Lemma 4.18, and put
ci = ∫

Ei
f (y) dy. Then

∥∥∥
∫

G
f (y)h(y−1x) dy −

∑
i

ci h(y−1
i x)

∥∥∥
2,x

≤
∥∥∥ ∑

i

∫
Ei

| f (y)||h(y−1x) − h(y−1
i x)| dy

∥∥∥
2,x

≤
∑

i

∫
Ei

| f (y)| ‖h(y−1x) − h(y−1
i x)‖2,x dy

≤
∑

i

∫
Ei

| f (y)|ε dy = ε‖ f ‖1.

Theorem 4.20 (Peter-Weyl Theorem). If G is a compact group,
then the linear span of all matrix coefficients for all finite-dimensional
irreducible unitary representations of G is dense in L2(G).
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11. Deduce from Problem 10 that � carries VN onto VN−2.

12. Deduce from Problem 10 that each p ∈ VN decomposes uniquely as

p = hN + |x |2hN−2 + |x |4hN−4 + · · ·

with hN , hN−2, hN−4, . . . homogeneous harmonic of the indicated degrees.

13. Compute the dimension of HN .

Problems 14–16 concern Example 2 for SU (n) in §1. Let VN be the space of
polynomials in z1, . . . , zn, z̄1, . . . , z̄n that are homogeneous of degree N .

14. Show for each pair (p, q) with p + q = N that the subspace Vp,q of
polynomials with p z-type factors and q z̄-type factors is an invariant
subspace under SU (n).

15. The Laplacian in these coordinates is a multiple of
∑

j

∂2

∂zj∂ z̄ j
. Using the

result of Problem 11, prove that the Laplacian carries Vp,q onto Vp−1,q−1.

16. Compute the dimension of the subspace of harmonic polynomials in Vp,q .

Problems 17–20 deal with integral forms. In each case the maximal torus T is
understood to be as in the corresponding example of §5, and the notation for
members of t∗ is to be as in the corresponding example of §II.1 (with h = t).

17. For SU (n), a general member of t∗ may be written uniquely as
∑n

j=1 cj ej

with
∑n

j=1 cj = 0.
(a) Prove that the Z combinations of roots are those forms with all cj in

Z.
(b) Prove that the algebraically integral forms are those for which all cj

are in Z + k
n for some k.

(c) Prove that every algebraically integral form is analytically integral.
(d) Prove that the quotient of the lattice of algebraically integral forms by

the lattice of Z combinations of roots is a cyclic group of order n.

18. For SO(2n + 1), a general member of t∗ is
∑n

j=1 cj ej .
(a) Prove that the Z combinations of roots are those forms with all cj in

Z.
(b) Prove that the algebraically integral forms are those forms with all cj

in Z or all cj in Z + 1
2 .

(c) Prove that every analytically integral form is a Z combination of roots.

19. For Sp(n, C) ∩ U (2n), a general member of t∗ is
∑n

j=1 cj ej .
(a) Prove that the Z combinations of roots are those forms with all cj in

Z and with
∑n

j=1 cj even.


