Theorem 2.9. Any finite-dimensional complex Lie algebra \mathfrak{g} has a Cartan subalgebra.

Before coming to the proof, we introduce “regular” elements of \mathfrak{g}. In $\mathfrak{sl}(n, \mathbb{C})$ the regular elements will be the matrices with distinct eigenvalues. Let us consider matters more generally.

If π is a representation of \mathfrak{g} on a finite-dimensional vector space V, we can regard each $X \in \mathfrak{g}$ as generating a 1-dimensional abelian subalgebra, and we can then form $V_{0,X}$, the generalized eigenspace for eigenvalue 0 under $\pi(X)$. Let

$$l_\mathfrak{g}(V) = \min_{X \in \mathfrak{g}} \dim V_{0,X},$$

and

$$R_\mathfrak{g}(V) = \{X \in \mathfrak{g} \mid \dim V_{0,X} = l_\mathfrak{g}(V)\}.$$

To understand $l_\mathfrak{g}(V)$ and $R_\mathfrak{g}(V)$ better, form the characteristic polynomial

$$\det(\lambda I - \pi(X)) = \lambda^n + \sum_{j=0}^{n-1} d_j(X)\lambda^j.$$

In any basis of \mathfrak{g}, the $d_j(X)$ are polynomial functions on \mathfrak{g}, as we see by expanding $\det(\lambda I - \sum \mu_i \pi(X_i))$. For given X, if j is the smallest value for which $d_j(X) \neq 0$, then $j = \dim V_{0,X}$, since the degree of the last term in the characteristic polynomial is the multiplicity of 0 as a generalized eigenvalue of $\pi(X)$. Thus $l_\mathfrak{g}(V)$ is the minimum j such that $d_j(X) \neq 0$, and

$$R_\mathfrak{g}(V) = \{X \in \mathfrak{g} \mid d_{l_\mathfrak{g}(V)}(X) \neq 0\}.$$

Let us apply these considerations to the adjoint representation of \mathfrak{g} on \mathfrak{g}. The elements of $R_\mathfrak{g}(\mathfrak{g})$, relative to the adjoint representation, are the regular elements of \mathfrak{g}. For any X in \mathfrak{g}, $\mathfrak{g}_{0,X}$ is a Lie subalgebra of \mathfrak{g} by the corollary of Proposition 2.5, with $\mathfrak{h} = \mathbb{C}X$.

Theorem 2.9'. If X is a regular element of the finite-dimensional complex Lie algebra \mathfrak{g}, then the Lie algebra $\mathfrak{g}_{0,X}$ is a Cartan subalgebra of \mathfrak{g}.

Proof. First we show that $\mathfrak{g}_{0,X}$ is nilpotent. Assuming the contrary, we construct two sets:

(i) the set of $Z \in \mathfrak{g}_{0,X}$ such that $(\text{ad } Z)|_{\mathfrak{g}_{0,X}}^{\dim \mathfrak{g}_{0,X}} \neq 0$, which is nonempty by Engel’s Theorem (Corollary 1.38) and is open

(ii) the set of $W \in \mathfrak{g}_{0,X}$ such that $\text{ad } W|_{\mathfrak{g}/\mathfrak{g}_{0,X}}$ is nonsingular, which is nonempty since X is in it (regularity is not used here) and is the set where some polynomial is nonvanishing, hence is dense (because if a polynomial vanishes on a nonempty open set, it vanishes identically).
These two sets must have nonempty intersection, and so we can find \(Z \in g_{0,X} \) such that

\[
(\text{ad } Z)|_{g_{0,X}} \neq 0 \quad \text{and} \quad \text{ad } Z|_{g/g_{0,X}} \text{ is nonsingular.}
\]

Then the generalized multiplicity of the eigenvalue 0 for \(\text{ad } Z \) is less than \(\dim g_{0,X} \), and hence \(\dim g_{0,Z} < \dim g_{0,X} \), in contradiction with the regularity of \(X \). We conclude that \(g_{0,X} \) is nilpotent.

Since \(g_{0,X} \) is nilpotent, we can use \(g_{0,X} \) to decompose \(g \) as in Proposition 2.4. Let \(g_0 \) be the 0 generalized weight space. Then we have

\[
g_{0,X} \subseteq g_0 = \bigcap_{Y \in g_{0,X}} g_{0,Y} \subseteq g_{0,X}.
\]

So \(g_{0,X} = g_0 \), and \(g_{0,X} \) is a Cartan subalgebra.

In this book we shall be interested in Cartan subalgebras \(\mathfrak{h} \) only when \(g \) is semisimple. In this case \(\mathfrak{h} \) has special properties, as follows.

Proposition 2.10. If \(g \) is a complex semisimple Lie algebra and \(\mathfrak{h} \) is a Cartan subalgebra, then \(\mathfrak{h} \) is abelian.

Proof. Since \(\mathfrak{h} \) is nilpotent and therefore solvable, \(\text{ad } \mathfrak{h} \) is solvable as a Lie algebra of transformations of \(g \). By Lie’s Theorem (Corollary 1.29) it is simultaneously triangular in some basis. For any three triangular matrices \(A, B, C \), we have \(\text{Tr}(ABC) = \text{Tr}(BAC) \). Therefore

\[
(2.11) \quad \text{Tr}(\text{ad}[H_1, H_2]\text{ad } H) = 0 \quad \text{for } H_1, H_2, H \in \mathfrak{h}.
\]

Next let \(\alpha \) be any nonzero generalized weight, let \(X \) be in \(g_{\alpha} \), and let \(H \) be in \(\mathfrak{h} \). By Proposition 2.5c, \(\text{ad } H \) ad \(X \) carries \(g_{\beta} \) to \(g_{\alpha + \beta} \). Thus Proposition 2.5a shows that

\[
(2.12) \quad \text{Tr}(\text{ad } H \text{ ad } X) = 0.
\]

Specializing (2.12) to \(H = [H_1, H_2] \) and using (2.11) and Proposition 2.5a, we see that the Killing form \(B \) of \(g \) satisfies

\[
B([H_1, H_2], X) = 0 \quad \text{for all } X \in g.
\]

By Cartan’s Criterion for Semisimplicity (Theorem 1.42), \(B \) is nondegenerate. Therefore \([H_1, H_2] = 0 \), and \(\mathfrak{h} \) is abelian.
Corollary 2.13. In a complex semisimple Lie algebra \(g \), a Lie subalgebra \(h \) is a Cartan subalgebra if \(h \) is maximal abelian and \(\text{ad}_g h \) is simultaneously diagonable.

Remarks.
1) It is immediate from this corollary that the subalgebras \(h \) in the examples of §1 are Cartan subalgebras.
2) In the direction converse to the corollary, Proposition 2.10 shows that a Cartan subalgebra \(h \) is abelian, and it is maximal abelian since \(h = g_0 \). Corollary 2.23 will show for a Cartan subalgebra \(h \) that \(\text{ad}_g h \) is simultaneously diagonable.

Proof. Since \(h \) is abelian and hence nilpotent, Proposition 2.4 shows that \(g \) has a weight-space decomposition \(g = g_0 \oplus \bigoplus_{\beta \neq 0} g_\beta \). Since \(\text{ad}_g h \) is simultaneously diagonable, \(g_0 = h \oplus r \) with \([h, r] = 0 \). In view of Proposition 2.7, we are to prove that \(h = N_g(h) \subseteq g_0 \) by (2.8), and it is enough to show that \(r = 0 \). If \(X \neq 0 \) is in \(r \), then \(h \oplus \mathbb{C}X \) is an abelian subalgebra properly containing \(h \), in contradiction with \(h \) maximal abelian. The result follows.

3. Uniqueness of Cartan Subalgebras

We turn to the question of uniqueness of Cartan subalgebras. We begin with a lemma about polynomial mappings.

Lemma 2.14. Let \(P : \mathbb{C}^m \rightarrow \mathbb{C}^n \) be a holomorphic polynomial function not identically 0. Then the set of vectors \(z \) in \(\mathbb{C}^m \) for which \(P(z) \) is not the 0 vector is connected in \(\mathbb{C}^m \).

Proof. Suppose that \(z_0 \) and \(w_0 \) in \(\mathbb{C}^m \) have \(P(z_0) \neq 0 \) and \(P(w_0) \neq 0 \). As a function of \(z \in \mathbb{C} \), \(P(z_0 + z(w_0 - z_0)) \) is a vector-valued holomorphic polynomial nonvanishing at \(z = 0 \) and \(z = 1 \). The subset of \(z \in \mathbb{C} \) where it vanishes is finite, and the complement in \(\mathbb{C} \) is connected. Thus \(z_0 \) and \(w_0 \) lie in a connected set in \(\mathbb{C}^m \) where \(P \) is nonvanishing. Taking the union of these connected sets with \(z_0 \) fixed and \(w_0 \) varying, we see that the set where \(P(w_0) \neq 0 \) is connected.

Theorem 2.15. If \(h_1 \) and \(h_2 \) are Cartan subalgebras of a finite-dimensional complex Lie algebra \(g \), then there exists \(a \in \text{Int} g \) with \(a(h_1) = h_2 \).

Remarks.
1) In particular any two Cartan subalgebras are conjugate by an automorphism of \(g \). As was explained after the introduction of \(\text{Int} g \) in §1.11,
Proposition 2.78. The abstract Dynkin diagram associated to the l-by-l abstract Cartan matrix A has the following properties:

(a) there are at most l pairs of vertices $i < j$ with at least one edge connecting them
(b) there are no loops
(c) at most three edges issue from any point of the diagram.

Proof.
(a) With α_i as in (2.75), put $\alpha = \sum_{i=1}^{l} \frac{\alpha_i}{|\alpha_i|}$. Then

$$0 < |\alpha|^2 = \sum_{i,j} \left(\frac{\alpha_i}{|\alpha_i|}, \frac{\alpha_j}{|\alpha_j|} \right)$$
$$= \sum_i \left(\frac{\alpha_i}{|\alpha_i|}, \frac{\alpha_i}{|\alpha_i|} \right) + 2 \sum_{i<j} \left(\frac{\alpha_i}{|\alpha_i|}, \frac{\alpha_j}{|\alpha_j|} \right)$$
$$= l + \sum_{i<j} \frac{2(\alpha_i, \alpha_j)}{|\alpha_i||\alpha_j|}$$

(2.79)
$$= l - \sum_{i<j} \sqrt{A_{ij}A_{ji}}.$$

By Proposition 2.74, $\sqrt{A_{ij}A_{ji}}$ is 0 or 1 or $\sqrt{2}$ or $\sqrt{3}$. When nonzero, it is therefore ≥ 1. Therefore the right side of (2.79) is

$$\leq l - \sum_{i<j, \text{ connected}} 1.$$

Hence the number of connected pairs of vertices is $< l$.

(b) If there were a loop, we could use Operation #1 to remove all vertices except those in a loop. Then (a) would be violated for the loop.

(c) Fix $\alpha = \alpha_i$ as in (2.75). Consider the vertices that are connected by edges to the ith vertex. Write β_1, \ldots, β_r for the α_j’s associated to these vertices, and let there be l_1, \ldots, l_r edges to the ith vertex. Let U be the $(r+1)$-dimensional vector subspace of \mathbb{R}^l spanned by $\beta_1, \ldots, \beta_r, \alpha$. Then $\langle \beta_i, \beta_j \rangle = 0$ for $i \neq j$ by (b), and hence $\{\beta_k/|\beta_k|\}_{k=1}^r$ is an orthonormal set. Adjoin $\delta \in U$ to this set to make an orthonormal basis of U. Then $\langle \alpha, \delta \rangle \neq 0$ since $\{\beta_1, \ldots, \beta_r, \alpha\}$ is linearly independent. By Parseval’s equality,
have an isomorphism, and then compute what the map is in terms of a basis. Let \(T_n(\mathfrak{g}) = \bigoplus_{k=0}^{n} T^k(\mathfrak{g}) \) be the \(n \)th member of the usual filtration of \(T(\mathfrak{g}) \). We have defined \(U_n(\mathfrak{g}) \) to be the image in \(U(\mathfrak{g}) \) of \(T_n(\mathfrak{g}) \) under the passage \(T(\mathfrak{g}) \to T(\mathfrak{g})/J \). Thus we can form the composition

\[
T_n(\mathfrak{g}) \to (T_n(\mathfrak{g}) + J)/J = U_n(\mathfrak{g}) \to U_n(\mathfrak{g})/U_{n-1}(\mathfrak{g})
\]

This composition is onto and carries \(T_{n-1}(\mathfrak{g}) \) to 0. Since \(T_n(\mathfrak{g}) \) is a vector-space complement to \(T_{n-1}(\mathfrak{g}) \) in \(T_n(\mathfrak{g}) \), we obtain an onto linear map

\[
T_n(\mathfrak{g}) \to U_n(\mathfrak{g})/U_{n-1}(\mathfrak{g})
\]

Taking the direct sum over \(n \) gives an onto linear map

\[
\tilde{\psi} : T(\mathfrak{g}) \to \text{gr} U(\mathfrak{g})
\]

that respects the grading.

Appendix A uses the notation \(I \) for the two-sided ideal in \(T(\mathfrak{g}) \) such that \(S(\mathfrak{g}) = T(\mathfrak{g})/I \):

\[
I = \left(\text{two-sided ideal generated by all } X \otimes Y - Y \otimes X \text{ with } X \text{ and } Y \right) \text{ in } T^1(\mathfrak{g}).
\]

Proposition 3.16. The linear map \(\tilde{\psi} : T(\mathfrak{g}) \to \text{gr} U(\mathfrak{g}) \) respects multiplication and annihilates the defining ideal \(I \) for \(S(\mathfrak{g}) \). Therefore \(\psi \) descends to an algebra homomorphism

\[
(3.17) \quad \psi : S(\mathfrak{g}) \to \text{gr} U(\mathfrak{g})
\]

that respects the grading. This homomorphism is an isomorphism.

Proof. Let \(x \) be in \(T'(\mathfrak{g}) \) and let \(y \) be in \(T''(\mathfrak{g}) \). Then \(x + J \) is in \(U_r(\mathfrak{g}) \), and we may regard \(\tilde{\psi}(x) \) as the coset \(x + T_{r-1}(\mathfrak{g}) + J \) in \(U_r(\mathfrak{g})/U_{r-1}(\mathfrak{g}) \), with 0 in all other coordinates of \(\text{gr} U(\mathfrak{g}) \) since \(x \) is homogeneous. Arguing in a similar fashion with \(y \) and \(xy \), we obtain

\[
\tilde{\psi}(x) = x + T_{r-1}(\mathfrak{g}) + J, \quad \tilde{\psi}(y) = y + T_{r-1}(\mathfrak{g}) + J,
\]

and

\[
\tilde{\psi}(xy) = xy + T_{r+s-1}(\mathfrak{g}) + J.
\]

Since \(J \) is an ideal, \(\tilde{\psi}(x) \tilde{\psi}(y) = \tilde{\psi}(xy) \). General members \(x \) and \(y \) of \(T(\mathfrak{g}) \) are sums of homogeneous elements, and hence \(\tilde{\psi} \) respects multiplication.
The direct sum of the maps σ_n for $n \geq 0$ (with $\sigma_0(1) = 1$) is a linear map $\sigma : S(g) \to U(g)$ such that

$$\sigma(X_1 \cdots X_n) = \frac{1}{n!} \sum_{\tau \in S_n} X_{\tau(1)} \cdots X_{\tau(n)}.$$

The map σ is called **symmetrization**.

Lemma 3.22. The symmetrization map $\sigma : S(g) \to U(g)$ has associated graded map $\psi : S(g) \to \text{gr } U(g)$, with ψ as in (3.17).

Remark. See §A.4 for “associated graded map.”

Proof. Let $\{X_i\}$ be a basis of g, and let $X_{i_1}^{j_1} \cdots X_{i_k}^{j_k}$, with $\sum_{m} j_m = n$, be a basis vector of $S^n(g)$. Under σ, this vector is sent to a symmetrized sum, but each term of the sum is congruent mod $U_{n-1}(g)$ to $(n!)^{-1} X_{i_1}^{j_1} \cdots X_{i_k}^{j_k}$, by Lemma 3.9. Hence the image of $X_{i_1}^{j_1} \cdots X_{i_k}^{j_k}$ under the associated graded map is

$$= X_{i_1}^{j_1} \cdots X_{i_k}^{j_k} + U_{n-1}(g) = \psi(X_{i_1}^{j_1} \cdots X_{i_k}^{j_k}),$$

as asserted.

Proposition 3.23. Symmetrization σ is a vector-space isomorphism of $S(g)$ onto $U(g)$ satisfying

(3.24) \hspace{1cm} U_n(g) = \sigma(S^n(g)) \oplus U_{n-1}(g).

Proof. Formula (3.24) is a restatement of (3.21), and the other conclusion follows by combining Lemma 3.22 and Proposition A.37.

The canonical decomposition of $U(g)$ from $g = a \oplus b$ when a and b are merely vector spaces is given in the following proposition.

Proposition 3.25. Suppose $g = a \oplus b$ and suppose a and b are subspaces of g. Then the mapping $a \otimes b \mapsto \sigma(a) \sigma(b)$ of $S(a) \otimes S(b)$ into $U(g)$ is a vector-space isomorphism onto.

Proof. The vector space $S(a) \otimes S(b)$ is graded consistently for the given mapping, the n^{th} space of the grading being $\bigoplus_{p=0}^{n} S^{p}(a) \otimes S^{n-p}(b)$. The given mapping operates on an element of this space by

$$\sum_{p=0}^{n} a_p \otimes b_{n-p} \mapsto \sum_{p=0}^{n} \sigma(a_p) \sigma(b_{n-p}),$$
for all $x \in G$ whenever $y_1^{-1}y_2$ is in U. Then
\[
\|h(y_1^{-1}x) - h(y_2^{-1}x)\|_{2,x} \leq \|h(y_1^{-1}x) - c(y_1^{-1}x)\|_{2,x} \\
+ \|c(y_1^{-1}x) - c(y_2^{-1}x)\|_{2,x} \\
+ \|c(y_2^{-1}x) - h(y_2^{-1}x)\|_{2,x}
\]
\[
= 2\|h - c\|_2 + \|c(y_1^{-1}x) - c(y_2^{-1}x)\|_{2,x} \\
\leq 2\|h - c\|_2 + \sup_{x \in G} |c(y_1^{-1}x) - c(y_2^{-1}x)|
\]
\[
< 2\varepsilon/3 + \varepsilon/3 = \varepsilon.
\]

Lemma 4.18. Let G be a compact group, and let h be in $L^2(G)$. For any $\varepsilon > 0$, there exist finitely many $y_i \in G$ and Borel sets $E_i \subseteq G$ such that the E_i disjointly cover G and
\[
\|h(y_1^{-1}x) - h(y_1^{-1}x)\|_{2,x} < \varepsilon \quad \text{for all } i \text{ and for all } y \in E_i.
\]

Proof. By Lemma 4.17 choose an open neighborhood U of 1 so that $\|h(gx) - h(x)\|_{2,x} < \varepsilon$ whenever g is in U. For each $z_0 \in G$, $\|h(z_0x) - h(z_0)\|_{2,x} < \varepsilon$ whenever y is in U. The set Uz_0 is an open neighborhood of z_0, and such sets cover G as z_0 varies. Find a finite subcover, say Uz_1, \ldots, Uz_n, and let $U_i = Uz_i$. Define $F_j = U_j - \bigcup_{i=1}^{j-1} U_i$. Then the lemma follows with $y_i = z_i^{-1}$ and $E_i = F_i^{-1}$.

Lemma 4.19. Let G be a compact group, let f be in $L^1(G)$, and let h be in $L^2(G)$. Put $F(x) = \int_G f(y)h(y^{-1}x)dy$. Then F is the limit in $L^2(G)$ of a sequence of functions, each of which is a finite linear combination of left translates of h.

Proof. Given $\varepsilon > 0$, choose y_i and E_i as in Lemma 4.18, and put $c_i = \int_{E_i} f(y)dy$. Then
\[
\left\| \int_G f(y)h(y^{-1}x)dy - \sum_i c_i h(y_i^{-1}x) \right\|_{2,x}
\]
\[
\leq \left\| \sum_i \int_{E_i} |f(y)||h(y_i^{-1}x) - h(y_i^{-1}x)|dy \right\|_{2,x}
\]
\[
\leq \sum_i \int_{E_i} |f(y)||h(y_i^{-1}x) - h(y_i^{-1}x)|_{2,x}dy
\]
\[
\leq \sum_i \int_{E_i} |f(y)|\varepsilon \ dy = \varepsilon \|f\|_1.
\]

Theorem 4.20 (Peter-Weyl Theorem). If G is a compact group, then the linear span of all matrix coefficients for all finite-dimensional irreducible unitary representations of G is dense in $L^2(G)$.

IV. Compact Lie Groups
11. Deduce from Problem 10 that Δ carries V_N onto V_{N-2}.

12. Deduce from Problem 10 that each $p \in V_N$ decomposes uniquely as

$$p = h_N + |x|^2h_{N-2} + |x|^4h_{N-4} + \cdots$$

with $h_N, h_{N-2}, h_{N-4}, \ldots$ homogeneous harmonic of the indicated degrees.

13. Compute the dimension of H_N.

Problems 14–16 concern Example 2 for $SU(n)$ in §1. Let V_N be the space of polynomials in $z_1, \ldots, z_n, \bar{z}_1, \ldots, \bar{z}_n$ that are homogeneous of degree N.

14. Show for each pair (p, q) with $p + q = N$ that the subspace $V_{p,q}$ of polynomials with p z-type factors and q \bar{z}-type factors is an invariant subspace under $SU(n)$.

15. The Laplacian in these coordinates is a multiple of $\sum_j \frac{\partial^2}{\partial z_j \partial \bar{z}_j}$. Using the result of Problem 11, prove that the Laplacian carries $V_{p,q}$ onto $V_{p-1,q-1}$.

16. Compute the dimension of the subspace of harmonic polynomials in $V_{p,q}$.

Problems 17–20 deal with integral forms. In each case the maximal torus T is understood to be as in the corresponding example of §5, and the notation for members of t^* is to be as in the corresponding example of §II.1 (with $h = 0$).

17. For $SU(n)$, a general member of t^* may be written uniquely as $\sum_{j=1}^n c_j e_j$ with $\sum_{j=1}^n c_j = 0$.

(a) Prove that the \mathbb{Z} combinations of roots are those forms with all c_j in \mathbb{Z}.

(b) Prove that the algebraically integral forms are those for which all c_j are in $\mathbb{Z} + \frac{k}{n}$ for some k.

(c) Prove that every algebraically integral form is analytically integral.

(d) Prove that the quotient of the lattice of algebraically integral forms by the lattice of \mathbb{Z} combinations of roots is a cyclic group of order n.

18. For $SO(2n + 1)$, a general member of t^* is $\sum_{j=1}^n c_j e_j$.

(a) Prove that the \mathbb{Z} combinations of roots are those forms with all c_j in \mathbb{Z}.

(b) Prove that the algebraically integral forms are those forms with all c_j in \mathbb{Z} or all c_j in $\mathbb{Z} + \frac{1}{2}$.

(c) Prove that every analytically integral form is a \mathbb{Z} combination of roots.

19. For $Sp(n, \mathbb{C}) \cap U(2n)$, a general member of t^* is $\sum_{j=1}^n c_j e_j$.

(a) Prove that the \mathbb{Z} combinations of roots are those forms with all c_j in \mathbb{Z} and with $\sum_{j=1}^n c_j$ even.