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Theorem 2.9. Any finite-dimensional complex Lie algebra g has a
Cartan subalgebra.

Before coming to the proof, weintroduce “regular” elementsof g. In
sl(n, C) the regular elements will be the matrices with distinct eigenval-
ues. Let us consider matters more generaly.

If = isarepresentation of g on afinite-dimensional vector spaceV, we
canregard each X € g asgenerating a 1-dimensional abelian subalgebra,
and we can then form V; x, the generalized eigenspace for eigenvalue 0
under 7 (X). Let

l4(V) = Télg]dlmvo.x

Ry(V) ={X egldimVyx =Il4(V)}.
Tounderstandl (V) and Ry (V) better, form the characteristic polynomial

n—1
det(r1— (X)) = A"+ > di (X))

j=0
In any basis of g, the d; (X) are polynomial functions on g, as we see by
expanding det(A1 — > wimw(Xi)). For given X, if j isthe smallest value
for which d; (X) # 0, then j = dimVj x, since the degree of the last term
in the characteristic polynomial isthe multiplicity of O as ageneralized
eigenvalue of 7(X). Thusly(V) isthe minimum j such that d; (X) = O,
and

Ry(V) = {X € g | diwv)(X) # O}
Let usapply these considerationsto the adjoint representation of g on

g. The elements of R,(g), relative to the adjoint representation, are the
regular elementsof g. For any X in g, go x iSaLie subalgebra of g by
the corollary of Proposition 2.5, with h = CX.

Theorem 2.9. If X isaregular element of the finite-dimensional
complex Lie algebra g, then the Lie algebra go x is a Cartan subalgebra
of g.

Proor. First we show that go x is nilpotent. Assuming the contrary,
we construct two sets:

(i) the set of Z € gox such that ((ad Z)|4,, )%™ x = 0, which is
nonempty by Engel’s Theorem (Corollary 1.38) and is open

(ii) the set of W € go x such that adW|g4,, IS nonsingular, which
is nonempty since X isin it (regularity is not used here) and is
the set where some polynomial is nonvanishing, hence is dense
(because if a polynomia vanishes on a nonempty open set, it
vanishes identicaly).
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These two sets must have nonempty intersection, and so we can find
Z € gox such that

(@ 2)|g,) M%x 20  and  adZ|y/g, iSHONsingular.

Then the generalized multiplicity of the eigenvalue O for ad Z is less
than dimgg x, and hence dimggy z < dimgg x, in contradiction with the
regularity of X. We conclude that go x is nilpotent.

Since go x 1S nilpotent, we can use go x to decompose g asin Propo-
sition 2.4. Let go be the O generalized weight space. Then we have

gox € go = ﬂ goy < go,x-
Yegox

S0 go.x = go, and go x is a Cartan subalgebra.

In this book we shall be interested in Cartan subalgebrast only when
g issemisimple. Inthis case  has special properties, as follows.

Proposition 2.10. If g isacomplex semisimple Lieagebraand b is
a Cartan subalgebra, then  is abelian.

Proor. Sincep isnilpotent and therefore solvable, adp issolvableasa
Lie algebra of transformations of g. By Lie's Theorem (Corollary 1.29)
it is simultaneoudly triangular in some basis. For any three triangular
matrices A, B, C, we have Tr(ABC) = Tr(BAC). Therefore

(211) Tr(ad[H]_, Hg]ad H) = 0 for Hi, Hy, H €.

Next let o be any nonzero generalized weight, let X bein g,, and
let H bein . By Proposition 2.5c, ad H ad X carries gs t0 go44. Thus
Proposition 2.5a shows that
(2.12) Tr(adH ad X) = 0.

Specializing (2.12) to H = [Hj, H,] and using (2.11) and Proposition
2.5a, we see that the Killing form B of g satisfies

B([Hl, Hg],X):O for all Xeg.

By Cartan’s Criterion for Semisimplicity (Theorem 1.42), B is nonde-
generate. Therefore [Hy, Ho] = 0, and b is abelian.
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Corollary 2.13. In acomplex semisimple Lie algebra g, a Lie sub-
algebra b is a Cartan subalgebra if  is maximal abelian and ad, b is
simultaneously diagonable.

REMARKS.

1) It is immediate from this corollary that the subalgebras  in the
examples of 81 are Cartan subalgebras.

2) In the direction converse to the corollary, Proposition 2.10 shows
that a Cartan subalgebra p is abelian, and it is maximal abelian since
h = go. Corollary 2.23 will show for a Cartan subalgebraf) that ad, b is
simultaneously diagonable.

Proor. Since b is abelian and hence nilpotent, Proposition 2.4 shows
that g has a weight-space decomposition g = go ® ..o 95- Sincead, b
is simultaneously diagonable, go = h @ © with [h,t] = 0. In view of
Proposition 2.7, we areto provethat h = Ng(h). Hereh < Ny(h) < go by
(2.8), and it isenough to show that + = 0. If X # 0isint, thenh @ CX
is an abelian subalgebra properly containing b, in contradiction with
maximal abelian. The result follows.

3. Uniqueness of Cartan Subalgebras

We turn to the question of uniqueness of Cartan subalgebras. We
begin with alemma about polynomial mappings.

Lemma 214. Let P : C™ — C" be a holomorphic polynomial
function not identically 0. Then the set of vectorszin C™ for which P(z)
is not the O vector is connected in C™.

Proor. Suppose that zo and wo in C™ have P(zy) # 0 and P(wg) # 0.
Asafunctionof z € C, P(z+ z(wo — 20)) isavector-valued holomorphic
polynomial nonvanishing at z= 0 and z = 1. The subset of z € C where
it vanishesisfinite, and the complement in C is connected. Thus z, and
wo lie in a connected set in C™ where P is nonvanishing. Taking the
union of these connected sets with z, fixed and wo varying, we see that
the set where P (wg) # 0 is connected.

Theorem 2.15. If p; and b, are Cartan subalgebras of a finite-
dimensional complex Lie algebra g, then there exists a € Intg with

a(hy) = ho.
REMARKS.

1) In particular any two Cartan subal gebras are conjugate by an auto-
morphism of g. Aswasexplained after theintroduction of Intgin 81.11,
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Proposition 2.78. The abstract Dynkin diagram associated to the
I-by-I abstract Cartan matrix A has the following properties:

(a) there are at most | pairs of verticesi < j with at least one edge
connecting them

(b) there are no loops

(c) a most three edges issue from any point of the diagram.

PRrROOF.
(a) With o; asin (2.75), pute = Y _,

% Then

m-
2 _ & 9
0< el _Z<|ai|’|a;|>
O o o (041
v (a w) <_'_1>
i <|Oli| Iai|> Z levi | et |

i<j

(2.79) =1->"JAjA;.

By Proposition 2.74, /A A;; isOor 1 or +/2 or +/3. When nonzero, it
istherefore > 1. Therefore theright side of (2.79) is

<I- Z 1.

i<j,
connected

Hence the number of connected pairs of verticesis < I.

(b) If there were a loop, we could use Operation #1 to remove all
vertices except thosein aloop. Then (@) would be violated for the loop.

(c) FiX o = o5 asin (2.75). Consider the vertices that are connected
by edgestotheit" vertex. Writepgs, .. ., B for thea;’sassociated to these
vertices, and let there bely, ..., I, edgesto theit" vertex. Let U be the
(r +1)-dimensional vector subspaceof R' spannedby s, ..., B, a. Then
(Bi, Bj) = Ofori # j by (b), and hence {Bx/|B«l}_, iS an orthonormal
set. Adjoin § € U to this set to make an orthonormal basis of U. Then
(a, 8) # 0 since {B, ..., B, a} islinearly independent. By Parseva’s
equality,
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have an isomorphism, and then compute what the map isin terms of a
basis. Let Th(g) = @r_o T*(g) be the n'™ member of the usud filtration
of T(g). We have defined U, (g) to be theimage in U (g) of T,(g) under
the passage T (g) — T(g)/J. Thuswe can form the composition

Ta(9) = (Ta(g) + J3)/J = Un(g) = Un(9)/Un-1(9).

This composition is onto and carries T,_1(g) to 0. Since T"(g) is a
vector-space complement to T,_1(g) in Ty(g), we obtain an onto linear
map

T"(g) — Un(g)/Un-1(9).

Taking the direct sum over n gives an onto linear map

¥ T(e) = gru(e

that respects the grading.
Appendix A usesthe notation | for the two-sided ideal in T (g) such
that S(g) = T(g)/!:

(3.15) X®Y—Y®X with X and Y

(two-sided ideal generated by all )
| = .
inT(g)

Proposition 3.16. The linear map v : T(g) — grU(g) respects
multiplication and annihilates the defining ideal | for S(g). Therefore
descends to an algebra homomorphism

(3.17) ¥ S(g) — gru(g)

that respects the grading. This homomorphism is an isomorphism.

Proor. Let x bein T (g) and let y bein TS(g). Thenx + Jisin U, (g),
andwemay regard s (x) asthecoset x+ T, _1(g)+J inU, (g) /U, _1(g), with
0 in al other coordinates of gruU (g) since x is homogeneous. Arguing
in asimilar fashion with y and xy, we obtain

U(x)=x+Ta(g) + J, V(YY) =y+ Tsa(g) + J,

and V(Xy) =Xy + Trys-1(g) + J.

Since Jisanideal, ¥ (x)¥ (y) = ¥ (xy). General membersx andy of T(g)
aresumsof homogeneouselements, and hence v respects multiplication.
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The direct sum of the maps o, for n > 0 (with op(1) = 1) isalinear
map o : S(g) — U(g) such that

1
o(XaXn) = 25 D0 Xewy Koo

" 1e6y

The map o iscalled symmetrization.

Lemma 3.22. The symmetrization map o : S(g) — U (g) has associ-
ated graded map v : S(g) — grU(g), with ¢ asin (3.17).

RemARK. See 8A .4 for “associated graded map.”
ProoF. Let {X;} beabasisof g, andlet X - - - X}, with Y, jm = n, be

abasisvector of S'(g). Under o, thisvector issent to asymmetrized sum,
but each term of the sum is congruent mod U,_1(g) to (nh)=2X/* - X"

i . I’
by Lemma 3.9. Hence the image of X" --- X/* under the associated
graded map is

= X2 XN Una(e) = w O XD,
as asserted.

Proposition 3.23. Symmetrization o is a vector-space isomorphism
of S(g) onto U (g) satisfying

(3.24) Un(g) = 0(S'(9)) ® Un_1(9).

Proor. Formula (3.24) is a restatement of (3.21), and the other con-
clusion follows by combining Lemma 3.22 and Proposition A.37.

The canonical decomposition of U (g) from g = a & b when a and b
are merely vector spacesis given in the following proposition.

Proposition 3.25. Suppose g = a @ b and suppose a and b are
subspaces of g. Then the mapping a® b — o(a)o(b) of S(a) ®c S(b)
into U (g) is a vector-space isomorphism onto.

Proor. The vector space S(a) ®c¢ S(b) is graded consistently for the
given mapping, then™ space of the grading being @;_, SP(a)®c S"P(b).
The given mapping operates on an element of this space by

n n
Y ap®byp> Yo (@)o(bnp),
p=0 p=0
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for all x e G whenever y; 'y, isinU. Then

Ih(y; %) = h(y; ™)z < I1h(y; %) — c(y; %) [l2.x
+ lle(y; ™) = ey M%) ll2.x
+ lle(y3 M%) = h(y; ™) 2.
= 2[lh — cll2 + llety; %) — e(¥5 %) [l2x
< 2|lh — cll2 + Sup[c(y; %) — (¥ )]

xeG

<2¢/3+¢/3=¢.

Lemma 4.18. Let G be acompact group, and let h bein L?(G). For
any e > 0, there exist finitely many y; € G and Borel sets E; < G such
that the E; digointly cover G and

Ih(y ™) —h(y *x)|2x <€e  foraliandforaly e E.

Proor. By Lemma 4.17 choose an open neighborhood U of 1 so
that |h(gx) — h(x)|l.x < € whenever g isin U. For each zp € G,
Ih(gzox) — h(zoX)|l2x < € Whenever g isin U. The set Uz, is an open
neighborhood of z,, and such sets cover G as z, varies. Find a finite
subcover, say Uz, ..., Uz, andletU; = Uz. Define Fj = U; — /2, U
Then the lemmafollowswithy; = z ' and E; = F .

Lemma4.19. Let G be acompact group, let f bein L(G), andleth
beinL2(G). Put F(x) = f; f(y)h(y~*x)dy. Then F isthelimitin L%(G)
of a sequence of functions, each of which is afinite linear combination
of left trandates of h.

Proor. Given ¢ > 0, choose y; and E; as in Lemma 4.18, and put
G = fEi f(y)dy. Then

| /G f(yhty ™ x) dy — Z ah(y %) HZ’X
=[5 [ rromoo - nororay],
=3 [ 1001150 = oy 0l

=3 [ 1t edy =€l tih.

Theorem 4.20 (Peter-Weyl Theorem). If G is a compact group,
then the linear span of all matrix coefficients for al finite-dimensional
irreducible unitary representations of G isdensein L?(G).



9. Problems 217

11. Deduce from Problem 10 that A carries Vy onto Vi _o.
12. Deduce from Problem 10 that each p € Vy decomposes uniquely as

p=hn + XIPhn_z + [X[*hNg + -

withhy, hy_2, hy_s, . . . homogeneous harmonic of theindicated degrees.

13. Compute the dimension of Hy.

Problems 14—16 concern Example 2 for SU (n) in 81. Let Vy be the space of
polynomialsinz, ..., z,, 3, ..., Z, that are homogeneous of degree N.

14. Show for each pair (p, ) with p 4+ g = N that the subspace V, q of
polynomials with p z-type factors and q z-type factors is an invariant
subspace under SU (n).

_ ' . : 92 .
15. The Laplacian in these coordinates is a multiple of Zj 3797 Using the
04
result of Problem 11, prove that the Laplacian carries V,  onto Vp_1 q_1.

16. Compute the dimension of the subspace of harmonic polynomialsin V q.
Problems 17-20 deal with integral forms. In each case the maximal torus T is

understood to be as in the corresponding example of 85, and the notation for
members of t* isto be asin the corresponding example of 811.1 (with b = t).

17. For SU (n), ageneral member of t* may be written uniquely as Zj”:l Cig

with 31, ¢ = 0.
(@ Prove that the Z combinations of roots are those forms with all ¢; in
Z

(b) Prove that the algebraically integral forms are those for which al ¢;
areinZ + ¥ for somek.

(c) Provethat every algebraically integral form isanalytically integral.

(d) Provethat the quotient of the lattice of algebraically integral forms by
the lattice of Z combinations of rootsisacyclic group of order n.

18. For SO(2n + 1), ageneral member of t*isY"; cjg;.
(a8 Prove that the Z combinations of roots are those forms with all ¢; in
Z.
(b) Prove thet the algebraically integral forms are those forms with all ¢;
inZoralcinZ+ 3.
(c) Provethat every analytically integral formisaZ combination of roots.
19. For Sp(n, C) N U(2n), ageneral member of t* is Z?:l cg.
(&) Prove that the Z combinations of roots are those forms with all ¢; in
Zandwith 1, ¢; even.



