
CHAPTER IX

Induced Representations and Branching Theorems

Abstract. The definition of unitary representation of a compact group extends to the
case that the vector space is replaced by an infinite-dimensional Hilbert space, provided
care is taken to incorporate a suitable notion of continuity. The theorem is that each unitary
representation of a compact groupG splits as the orthogonal sum of finite-dimensional
irreducible invariant subspaces. These invariant subspaces may be grouped according to
the equivalence class of the irreducible representation, and there is an explicit formula for
the orthogonal projection on the closure of the sum of all the spaces of a given type. As a
result of this formula, one can speak of the multiplicity of each irreducible representation
in the given representation.

The left-regular and right-regular representations ofG onL2(G) are examples of unitary
representations. So is the left-regular representation ofG on L2(G/H) for any closed
subgroupH. More generally, ifH is a closed subgroup andσ is a unitary representation
of H, the induced representation ofσ from H to G is an example. Ifσ is irreducible,
Frobenius reciprocity says that the multiplicity of any irreducible representationτ of G in
the induced representation equals the multiplicity ofσ in the restriction ofτ to H .

Branching theorems give multiplicities of irreducible representations ofH in the re-
striction of irreducible representations ofG. Three classical branching theorems deal with
passing fromU (n) to U (n − 1), from SO(n) to SO(n − 1), and fromSp(n) to Sp(n − 1).
These may all be derived from Kostant’s Branching Theorem, which gives a formula for
multiplicities when passing from a compact connected Lie group to a closed connected
subgroup. Under a favorable hypothesis the Kostant formula expresses each multiplicity as
an alternating sum of values of a certain partition function.

Some further branching theorems of interest are those for whichG/H is a compact
symmetric space in the sense thatH is the identity component of the group of fixed elements
under an involution ofG. Helgason’s Theorem translates into a theorem in this setting for
the case of the trivial representation ofH by means of Riemannian duality. An important
example of a compact symmetric space is(G × G)/diagG; a branching theorem for this
situation tells how the tensor product of two irreducible representations ofG decomposes.

A cancellation-free combinatorial algorithm for decomposing tensor products for the uni-
tary groupU (n) is of great utility. It leads to branching theorems for the compact symmetric
spacesU (n)/SO(n) andU (2n)/Sp(n). In turn the first of these branching theorems helps in
understanding branching for the compact symmetric spaceSO(n+m)/(SO(n)× SO(m)).

Iteration of branching theorems for compact symmetric spaces permits analysis of some
complicated induced representations. Of special note isL2(K/(K ∩ M0)) whenG is a
reductive Lie group,K is the fixed group under the global Cartan involution, andM AN is
the Langlands decomposition of any maximal parabolic subgroup.
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