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PREFACE

For introductory purposes, an elliptic curve over the rationals is an
equation y2 = P (x), where P is a monic polynomial of degree three with
rational coefficients and with distinct complex roots.

The points on such a curve, together with a point at infinity, form an
abelian group under a geometric definition of addition. Namely if we
take two points on the curve and connect them by a line, the line will
intersect the curve in a third point. The reflection of that third point in
the x-axis is taken as the sum of the given points. The identity is the
point at infinity. According to Mordell’s Theorem, the abelian group of
points on the curve with rational coordinates is finitely generated. A
theorem of Lutz and Nagell describes the torsion subgroup completely,
but the rank of the free abelian part is as yet not fully understood.

This is the essence of the basic theory of rational elliptic curves. The
first five of the twelve chapters of this book give an account of this theory,
together with many examples and number-theoretic applications. This
is beautiful mathematics, of interest to people in many fields. Except for
one small part of the proof of Mordell’s Theorem, it is elementary, re-
quiring only undergraduate mathematics. Accordingly the presentation
avoids most of the machinery of algebraic geometry.

A related theory concerns elliptic curves over the complex numbers, or
Riemann surfaces of genus one. This subject requires complex variable
theory and is discussed in Chapter VI. It leads naturally to the topic of
modular forms, which is the subject of Chapters VIII and IX.

But the book is really about something deeper, the twentieth-century
discovery of a remarkable connection between automorphy and arith-
metic algebraic geometry. This connection first shows up in the coinci-
dence of L functions that arise from some very special modular forms
(“automorphic” L functions) with L functions that arise from number
theory (“arithmetic” or “geometric” L functions, also called “motivic”).
Chapter VII introduces this theme. The automorphic L functions have
manageable analytic properties, while the arithmetic L functions en-
code subtle number-theoretic information. The fact that the arithmetic
L functions are automorphic enables one to bring a great deal of mathe-
matics to bear on extracting the number-theoretic information from the
L function.

The prototype for this phenomenon is the Riemann zeta function ζ(s),
which should be considered as an arithmetic L function defined initially
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for Re s > 1. An example of subtle number-theoretic information that
ζ(s) encodes is the Prime Number Theorem, which follows from the
nanvanishing of ζ(s) for Re s = 1. In particular, this property of ζ(s)
is a property of points s outside the initial domain of ζ(s). To get
a handle on analytic properties of ζ(s), one proves that ζ(s) has an
analytic continuation and a functional equation. These properties are
completely formal once one establishes a relationship between ζ(s) and
a theta function with known transformation properties. Establishing
this relationship is the same as proving that ζ(s) is an automorphic L
function.

The main examples of Chapter VII are the Dirichlet L functions
L(s, χ). These too are arithmetic L functions defined initially for
Re s > 1. They encode Dirichlet’s Theorem on primes in arithmetic pro-
gressions, which follows from the nonvanishing of all L(s, χ) at s = 1.
As with ζ(s), the relevant properties of L(s, χ) are outside the initial
domain. Also as with ζ(s), one gets at the analytic continuation and
functional equation of L(s, χ) by identifying L(s, χ) with an automorphic
L function.

The examples at the level of Chapter VII are fairly easy. Further
examples, generalizing the Dirichlet L functions in a natural way, arise
in abelian class field theory, are well understood even if not easy, and
will not be discussed in this book. The simplest L functions that are
not well understood come from elliptic curves. An elliptic curve has a
geometric L function L(s, E) initially defined for Re s > 3

2 . An example
conjecturally of the subtle information that L(s, E) encodes is the rank
of the free abelian group of rational points on the curve. This rank is
believed to be the order of vanishing of L(s, E) at s = 1. Once again,
the relevant property of L(s, E) is outside the initial domain. To address
the necessary analytic continuation, one would like to know that L(s, E)
is an automorphic L function. Work of Eichler and Shimura provides a
clue where to look for such a relationship. Eichler and Shimura gave a
construction for passing from certain cusp forms of weight two for Hecke
subgroups of the modular group to rational elliptic curves. Under this
construction, the L function of the cusp form (which is an automorphic
L function) equals the L function of the elliptic curve. The Taniyama-
Weil Conjecture expects conversely that every elliptic curve arises from
this construction, followed by a relatively simple map between elliptic
curves. This conjecture appears to be very deep; a theorem of Frey,
Serre, and Ribet says that it implies Fermat’s Last Theorem. The final
three chapters discuss these matters; the last two take for granted more
mathematics than do the earlier chapters.

If the theme were continued beyond the twelve chapters that are here,
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eventually it would lead to the Langlands program, which brings in
representation theory on the automorphic side of this correspondence.
As a representation theorist, I come to elliptic curves from the point of
view of the Langlands program. Although the book neither uses nor
develops any representation theory, elliptic curves do give the simplest
case of the program where the correspondence of L functions is not
completely understood. Furthermore representation-theoretic methods
occasionally yield results about elliptic curves that seem inaccessible by
classical methods. From my point of view, they are an appropriate place
to begin to study and appreciate the Langlands program. A beginning
guide to the literature in this area appears in the section of Notes at the
end of the book.

This book grew out of a brilliant series of a half dozen lectures by
Don Zagier at the Tata Institute of Fundamental Research in Bombay
in January 1988. The book incorporates notes from parts of courses
that I gave at SUNY Stony Brook in Spring 1989 and Spring 1990. The
organization owes a great deal to Zagier’s lectures, and I have reproduced
a number of illuminating examples of his. I am indebted to Zagier for
offering his series of lectures.

Much of the mathematics here can already be found in other books,
even if it has not been assembled in quite this way. Some sections of this
book follow sections of other books rather closely. Notable among these
other books are Fulton [1989],* Hartshorne [1977], Husemoller [1987],
Lang [1976] and [1987], Ogg [1969a], Serre [1973a], Shimura [1971a],
Silverman [1986], and Walker [1950]. The expository paper Swinnerton-
Dyer and Birch [1975] was also especially helpful. Detailed acknowledg-
ments of these dependences may be found in the section of Notes at the
end.

In addition, I would like to thank the following people for help in vari-
ous ways, some large and some small: H. Farkas, N. Katz, S. Kudla, R. P.
Langlands, S. Lichtenbaum, H. Matumoto, C.-H. Sah, V. Schechtman,
and R. Stingley. The type-setting was by AMS-TEX, and the Figures
were drawn with Mathematicar . Financial support in part was from
the National Science Foundation in the form of grants DMS 87-23046
and DMS 91-00367.

A. W. Knapp
January, 1992

*A name followed by a bracketed year is an allusion to the list of References at the
end of the book. The date is followed by a letter in case of ambiguity.








