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PREFACE TO THE SECOND EDITION

With the first edition out of print, we decided to arrange for republi-
cation of Denumerable Markov Chains with additional bibliographic
material. The new edition contains a section Additional Notes that
indicates some of the developments in Markov chain theory over the
last ten years. As in the first edition and for the same reasons, we have
resisted the temptation to follow the theory in directions that deal with
uncountable state spaces or continuous time. A section entitled
Additional References complements the Additional Notes.

J. W. Pitman pointed out an error in Theorem 9-53 of the first
edition, which we have corrected. More detail about the correction
appears in the Additional Notes. Aside from this change, we have left
intact the text of the first eleven chapters.

The second edition contains a twelfth chapter, written by David
Griffeath, on Markov random fields. We are grateful to Ted Cox for
his help in preparing this material. Notes for the chapter appear in the
section Additional Notes.

J.GK., JLS, AWK.
March, 1976



PREFACE TO THE FIRST EDITION

Our purpose in writing this monograph has been to provide a syste-
matic treatment of denumerable Markov chains, covering both the
foundations of the subject and some topics in potential theory and
boundary theory. Much of the material included is now available only
in recent research papers. The book’s theme is a discussion of relations
among what might be called the descriptive quantities associated with
Markov chains—probabilities of events and means of random variables
that give insight into the behavior of the chains.

We make no pretense of being complete. Indeed, we have omitted
many results which we feel are not directly related to the main theme,
especially when they are available in easily accessible sources. Thus,
for example, we have only touched on independent trials processes,
sums of independent random variables, and limit theorems. On the other
hand, we have made an attempt to see that the book is self-contained,
in order that a mathematician can read it without continually referring
to outside sources. It may therefore prove useful in graduate seminars.

Denumerable Markov chains are in a peculiar position in that the
methods of functional analysis which are used in handling more general
chains apply only to a relatively small class of denumerable chains. In-
stead, another approach has been necessary, and we have chosen to use
infinite matrices. They simplify the notation, shorten statements and
proofs of theorems, and often suggest new results. They also enable one
to exploit the duality between measures and functions to the fullest.

The monograph divides naturally into four parts, the first three con-
sisting of three chapters each and the fourth containing the last two
chapters.

Part I provides background material for the theory of Markov chains.
It is included to help make the book self-contained and should facilitate
the use of the book in advanced seminars. Part II contains basic results
on denumerable Markov chains, and Part III deals with discrete poten-
tial theory. Part IV treats boundary theory for both transient and re-
current chains. The analytical prerequisites for the two chapters in this
last part exceed those for the earlier parts of the book and are not all
included in Part I. Primarily, Part IV presumes that the reader is
familiar with the topology and measure theory of compact metric
spaces, in addition to the contents of Part I.

vi



vil Preface

Two chapters—Chapters 1 and T—require special comments. Chap-
ter 1 contains prerequisites from the theory of infinite matrices and
some other topics in analysis. In it Sections 1 and 5 are the most impor-
tant for an understanding of the later chapters. Chapter 7, entitled
“Introduction to Potential Theory,” is a chapter of motivation and should
be read as such. Its intent is to point out why classical potential theory
and Markov chains should be at all related.

The book contains 239 problems, some at the end of each chapter
except Chapters 1 and 7.

For the most part, historical references do not appear in the text
but are collected in one segment at the end of the book.

Some remarks about notation may be helpful. We use sparingly
the word “Theorem” to indicate the most significant results of the
monograph; other results are labeled “Lemma,” “Proposition,” and
“Corollary” in accordance with common usage. The end of each proof
is indicated by a blank line. Several examples of Markov chains are
worked out in detail and recur at intervals; although there is normally
little interdependence between distinct examples, different instances of
the same example may be expected to build on one another.

A complete list of symbols used in the book appears in a list separate
from the index.

We wish to thank Susan Knapp for typing and proof-reading the
manuscript.

We are doubly indebted to the National Science Foundation: First,
a number of original results and simplified proofs of known results were
developed as part of a research project supported by the Foundation.
And second, we are grateful for the support provided toward the
preparation of this manuscript.
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A.
Dartmouth College
Massachusetts Institute of Technologi
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