INTRODUCTION

This Introduction provides historical background and motivation for cohomological
induction and gives an overview of the five main theorems. The section of Notes at
the end of the book points to expositions where more detail can be found, and it gives
references for the results that are cited. The Introduction is not logically necessary for
the remainder of the book, and it occasionally uses mathematics that is not otherwise a
prerequisite for the book.

The first part of the Introduction tells the sense in which representation theory of a
semisimple Lie group G with finite center reducesto the study of “(g, K) modules,” and
it describes the early constructions of infinite-dimensional group representations. One
of the constructions is from complex analysis and produces representations in spaces
of Dolbeault cohomology sections over a complex homogeneous space of G. This
construction is expected to lead often to irreducible unitary representations. Passage to
Taylor coefficients|eads to an algebraic analog of this construction and to the definition
of the left-exact Zuckerman functor T.

Cohomological induction involves more than the Zuckerman functor and its derived
functors; it involves also the passage from a parabolic subalgebra of g to g itself. The
original construction of Zuckerman's does not lend itself naturally to the introduction
of invariant Hermitian forms, and for this reason aright-exact version of the Zuckerman
functor, known as the Bernstein functor 11, is introduced. The definition of 1T depends
onintroduction of a“Hecke algebra’ R(g, K), and IT isthen given as achange of rings.

1. Originsof Algebraic Representation Theory

Harish-Chandra's first work in representation theory used particular
representations of specific noncompact groups to address problems in
mathematical physics. In the late 1940s, long after Elie Cartan and
Hermann Weyl had completed their development of the representation
theory of compact connected Lie groups, Harish-Chandra turned his
attention to compact groups and reworked the Cartan-Wey! theory in his
own way. Introducing what are now known as Verma modules, he gave
a uniform, completely algebraic construction of the irreducible repre-
sentations of such groups. (Chevalley independently gave a different
such algebraic construction. See the Notes for details.)

Motivated by a question in Mautner [1950] of whether connected
semisimple Lie groups are of “typel,” and perhaps emboldened by the
success with finite-dimensional representations, Harish-Chandra began
an algebraic treatment of the infinite-dimensiona representations of
noncompact groups, concentrating largely on connected real semisimple
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groups. Although he initially allowed arbitrary connected semisimple
groups, he eventually imposed the hypothesisthat the groups have finite
center, and we shall concentrate on that case. Let G be such a group.

Harish-Chandra worked with representations of G on a complex Ba-
nach space V, with the continuity property that the action G x V. — V
is continuous. His early goa was to strip away any need for real or
complex analysis with such representations and to handle them purely
in terms of algebra.

If = isacontinuous representation of G on the Banach space V, then
the norms of the operators  (x) are uniformly bounded for x in compact
neighborhoods of 1, and we can average = by L* functions of compact
support:

7(f)v =/ f (X)7 (x)v dx forv e V and f compactly
G supported in LY(G).

Here dx is a Haar measure on G and is two-sided invariant because G
issemisimple. Theintegral may be interpreted either as a vector-valued
“Bochner integral” or as an ordinary Lebesgue integral for the value of
every continuous linear functional (-, 1) on z(f)v, namely (z(f)v,1) =
Jo FOOmM)v, 1) dx.

We say that v € V isaC® vector if x — 7 (x)v isaC> function from
G into V. Garding observed that the subspace C>(V) of C*> vectorsis
densein V. Infact, if visinV andif f, > 0isasequence of compactly
supported C*> functions on G of integral 1 and with support shrinking
to {1}, then = (f,)v isaC> vector for each n and = (f,)v — v.

Let go be the Lie algebra of G. We can make g, act on the space of
C®> vectors by the definition

d
a(X)v = e m(eXptX)v|i—o for X € go, v e C®(V),

and one can check that = becomes a representation of go:
a([X, YD = 7a(X)z(Y) — w(Y)m(X) on C*(V).

Asaconsequence if g = go ®y C denotes the complexification of g, and
if U(g) denotes the universal enveloping algebra of g, then = extends
uniquely from alinear map = : go — Endq(C®(V)) to acomplex-linear
algebra homomorphism = : U(g) — End¢(C>(V)) sending 1to 1. In
thisway C>(V) becomesaU (g) module.

Under this construction agroup representation leadsto aU (g) module
insuch away that closed G invariant subspacesW yield U (g) submodules
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C>(W). This correspondence, however, is inadequate as a reduction
to algebra of the analytic aspects of representation theory. For one
thing, simple examples show that the closure of a U (g) submodule of
C>(V) need not be G invariant. For another, U (g) has countable vector-
space dimension while C>(V) typicaly has uncountable dimension;
thus C*(V) is usually not close to being irreducible (i.e., smple as a
U (g) module) even if V isirreducible.

Harish-Chandrarectified the first problem by using the U (g) invariant
subspace C»(V) € C>(V) of analytic vectors, the subspace of v’s for
which x — 7 (x)v isrea analytic on G. It isnot hard to check that the
closurein Vv of aU(g) invariant subspace of C*(V) is G invariant. Itis
still true that C»(V) isdensein V, but this fact is much more difficult to
prove than its C> analog and we state it as a theorem.

Theorem 0.1 (Harish-Chandra). If = is a continuous representation
of G on a Banach space V, then the subspace C» (V) of analytic vectors
isdensein V.

To deal with the problem that C>(V) and even C®(V) are too large,
Harish-Chandra made use of a maxima compact subgroup K of the
semisimple group G. We say that v € V is K finite if x(K)v spans a
finite-dimensional space. The subspace of K finite vectorsbreaksinto a
(possibly infinite) direct sum of finite-dimensional subspaces on which
K operatesirreducibly. The subspace Vi of K finite vectorsis densein
V, by an averaging argument similar to the proof that C>(V) is dense.
Actually even the subspace C(V)k of K finitevectorsinC®(V) isdense
and isadirect sum of finite-dimensional subspacesonwhich K operates
irreducibly.

It is asimple matter to show that C»(V)x and C> (V) are U (g) sub-
modules of C*(V). Thus C*>(V)x and C®(V)k are both U (g) modules
and representation spaces for K, and the U(g) and K structures evi-
dently satisfy certain compatibility conditions. Following terminology
introduced by Lepowsky [1973], we cal C>(V)k with itsU (g) and K
structures the underlying (g, K) module of V. (See Chapter | for the
precise definition of (g, K) module.) For consistency of terminology,
we often refer to the representation of = on V as“the representation V."

Even the correspondence V — C“(V)k isnot one-one. For example,
V might be the closurein asuitable norm of aG invariant space of func-
tions on a homogeneous space of G. If the L? norm isused, one version
of V results, while if an L? norm on the function and its first partial
derivatives is used, another version of V results. Especially because of
Theorem 0.6 below, it is customary to define away this problem. We say
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that V; and V, are infinitesimally equivalent if C®(Vy)x and C®(Vo)k
are equivalent algebraicaly—i.e., if thereisa C linear isomorphism of
C>(Vy)k onto C= (V)i respecting the U (g) and K actions.

The reduction to algebra works best for representations that are
irreducible or almost irreducible. Theorems 0.2 and 0.3 below prepare
thesetting. Wesay that V or itsunderlying (g, K) moduleisquasisimple
if the center Z(g) of U(g) operates as scalars in the (g, K) module.
Theorem 0.2 should be regarded as a version of Schur’'s Lemma.

Theorem 0.2 (Segal, Mautner). If V isan irreducible unitary repre-
sentation of G on aHilbert space, then V is quasisimple.

If ¢ is an irreducible finite-dimensional representation of K, let V,
be the sum of all K invariant subspaces of Vi for which the K action
under 7 is equivalent with r. We say that V is admissible if each Vv,
is finite-dimensional. From the denseness of C*(V)k in V given in
Theorem 0.1, it follows that C»(V), isdensein V,. Consequently if V,
isfinite-dimensional, then C*(V), = C®(V),; = V..

Theorem 0.3 (Harish-Chandra). If V is an irreducible quasisimple
representation of G on a Banach space, then V isadmissible.

Thusadmissibility of a(g, K) moduleisareasonableway to make pre-
cisetheideaof being almost irreducible. Theorem 0.1 hasthefollowing
easy but important consequence.

Theorem 0.4 (Harish-Chandra). If V isan admissible representation
of G on a Banach space, then the closed G invariant subspaces W of v
stand in one-one correspondence with the U (g) invariant subspaces S of
Vk = C*®(V), the correspondence W « S being

S= W and W=S

For many purposesit isthe unitary representationsthat are of primary
interest. In the case of a unitary representation = on a Hilbert space
V with Hermitian inner product (-, -), we see immediately that the
underlying (g, K) module C>(V)k has the properties that

(0 5) (r(X)v1, v2) = —(v1, T(X)v2) for X e do and vy, vp eV
' (r Ky, T(K)vo) = (v, v2) fork e K and vy, vy € V.
In the reverse direction, we say that aHermitian form (-, -) ona(g, K)

module is invariant if (0.5) holds. The (g, K) module is infinitesi-
mally unitary if it admits a positive definite invariant Hermitian form.
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Classifyingirreducible unitary representationsisthe same as classifying
irreducible admissibleinfinitesimally unitary (g, K) modules, asaresult
of the following theorem. The theorem is due to Harish-Chandrafor G
linear. For general G, extra steps due independently to Lepowsky and
Rader are needed for the proof.

Theorem 0.6.

(a) Any irreducible admissible infinitesimally unitary (g, K) module
isthe underlying (g, K) module of an irreducible unitary representation
of G on aHilbert space.

(b) Two irreducible unitary representations of G on Hilbert spacesare
unitarily equivalent if and only if they are infinitesimally equivalent.

2. Early Constructions of Representations

One of the fundamental problems in the representation theory of
semisimple groups is to classify and categorize the irreducible unitary
representations. Bargmann classified the irreducible unitary represen-

tations of

by classifying the candidates for underlying (g, K) modules and then
exhibiting unitary representationscorresponding to each. About thetime
of Bargmann's work, Gelfand and Naimark classified the irreducible
unitary representations of SL (2, C) by using global methods. The rep-
resentations for these two groups were later taken by other people as
models for constructions in other semisimple groups.

Let us describe two of the series of representations obtained by
Bargmann. The first of these, now known as the principal series,
consists of one representation of G = SL(2,R) for each parameter
(£, iv), where+ isasignandiv isapurely imaginary complex number.
The space in each case is L2(R), and the action for the representation
with parameter (£, iv) is

ax—cCc

(25 )00~ e e
cd SON(—bx + d)| — bx +d| 1" f (FE=E) if —.
For the second series, now known as the discrete series, it is more

convenient to work with the isomorphic group
_ _)fa B 2 a2 _
G‘SU(“)‘{(B &)\m |/3|—1}.
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This series consists of onerepresentation of G for each parameter (+, n),
where + isasign and nisan integer > 2. For the serieswith thesign —,
the Hilbert space isthe set of analytic f in the unit disc for which

I 112 =[ | (221 - |z1»"2dx dy < oo,
|z|<1

and the action is

(v (32) 1) @ = =hzvar e (£

The series with the sign + is obtained by taking the complex conjugate
of (; z) before applying = as above.

Meanwhile Mackey was developing a theory of induced represen-
tations for locally compact groups, and he was apparently the first to
realize that the principal-series representations of SL (2, k) were of this
form. (SeetheNotes.) Moreparticularly the principal serieswereacase
of what we shall call “parabolic induction.” An account of the general
case appearsin Chapter X1 below. Inthe specia caseof SL(2, R), define
subgroups of G = SL(2, R) by

cosd  Siné
K=o} = {(—sine cose)}’

w=lG D) A={(8 A) v={G D)

To the parameter (+, iv), we associate a one-dimensional character of
M and the differential of a one-dimensional character of A by

e 0 _{8 if +is
0<0 s>_ 1 if+is+
and v(é _Ot)zivt.

Then man — €"'%9%5(m) is a representation of the upper triangular
subgroup M AN, and we shall definethe corresponding classical induced
representation 7 of G. The definition of 7 involves a shift in parameter

by
t 0
(o %)=t
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in order to get the representation 7 to be unitary. A dense subspace of
the Hilbert spaceis

{F:G — Cof classC™ | F(xman) = e "*+?1%935 m)~1F (x)}
with
JINERY T
IF Il —Z/O |F (ko) | d0,
and the action is simply

(#(@F)(X) = F(g7x).

The actual Hilbert space is the completion of the above dense sub-
space, with action by the continuous extension of each 7(g). The
correspondence F — f with the more classical realization is given

by f(y)=F (i 2) except that a constant factor needs to be introduced

if the correspondence isto be unitary.

Generalizing the principal series to semisimple groups is then just
a matter of a little structure theory. The upper triangular subgroup
gets replaced by a parabolic subgroup of G, this parabolic subgroup
decomposes suitably as M AN, o gets replaced by a suitable kind of
irreducible unitary representation of M, and v gets replaced by an
imaginary-valued linear functional on the Lie algebra of A. The result
is parabolic induction. When p is correctly generalized, parabolic
induction carries unitary representations to unitary representations.

It wasHarish-Chandrawho found how to generalizethediscrete series.
While the generalization of the principal series used real analysis, the
generdization of the discrete series required complex analysis. For the
group G = SU(1, 1), the analytic group of matrices with Lie algebra g
iISGe = SL(2, C). Within Gg, let

=1 )]

Then we readily check that

(a) every element of thesubset GB < G hasauniquedecomposition
as aproduct

-1
(0.7) (é‘ i)(yO S)(g_‘ 2) withz e C, y e C%, |z] < 1,

and every matrix (0.7) isin GB.

(b) GB isanopen subset of SL(2, C), and its product complex struc-
tureobtained from (0.7) isthesameaswhat itinheritsfrom G¢. In
particular, |eft trandation by any member of G isaholomorphic
automorphism of GB.
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To construct the generalizabl e version of the discrete series with param-
eter (—, n), let &, be the one-dimensional holomorphic representation of

B given by
(2 )=

The Hilbert spaceis taken as

(0.8
(i) Fisholomorphic
{F :GB — C | (i) F(xb) =& (b)*F(x)forxeGB,be B ¢,
(iii) IF12 =[5 IF)[2dx < oo

and the action is
7 (@F)(X) = F(g~1x) for F asin (0.8), g€ G, x € GB.

Except for a constant depending on the normalization of dx, the cor-
respondence F — f with the more classical realization is given by
f(2) = F(z 1,0 relative to the coordinates (0.7), and the inverse is
f—> FWwithF(z y,0) =y {(2.

The generalization of this construction to other semisimple groups
involves some specia assumption on the group, and the resulting repre-
sentations (when nonzero) are called the “ holomorphic discrete series”
If G is noncompact simple, the special assumption is that G/K is a
complex manifold on which G operates holomorphically, and then G/K
arises from the generalization of (0.7) asthe z's allowed in the matrices

(; i) But Harish-Chandra phrased the condition in terms of roots.

He assumed that a maximal torus of K is maximal abelian in G, and
he hypothesized that in some ordering on the roots “every noncompact
positive root is totally positive.” With the terminology of roots stripped
away, this condition says that the centralizer in G of the identity com-
ponent of the center of K isK itself.

At any rate the condition is satisfied if G is compact connected,
and Harish-Chandra's construction therefore gives global realizations
of the irreducible representations of compact connected groups. Other
authors came upon the same realizations of representations of compact
connected groups independently at about the same time, starting from
the point of view of algebraic geometry, and the result has come to be
known as the Borel-Weil Theorem. Let us give a precise statement.
The irreducible representations of a compact connected G are given
by the Theorem of the Highest Weight, and we shall describe a global
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realization in terms of the highest weight as parameter. Regard G as a
matrix group, let G beits complexification, introduce a maximal torus
T of G, andfix asystem of positiveroots. Let B betheanalytic subgroup
of G¢ whose Lie algebra contains the complexified Lie algebra t of T,
aswell astheroot spacesfor al the negative roots. It turns out that GB
isopen and closed in G¢ and hence G = GB.

Theorem 0.9 (Borel-Weil Theorem). For the compact connected Lie
group G, if A € t* isdominant and analytically integral and if &, denotes
the corresponding holomorphic one-dimensional representation of B,
then a readlization of an irreducible representation of G with highest
weight A isin the space

(0.10)
(i) F isholomorphic
[F :GB — C | (ii) F(xb) =& (b)"1F(x)forx e GB, be B
(iii) IFI2 =[5 IF)[?dx < o0

with G acting by
(7(@F)(x) = F(g™1x) for F asin (0.10), g € G, x € GB.

Condition (iii) isautomatic in the presence of (i), and we can drop it.
Also we can replace GB by G, but we prefer to emphasize the parallel
with the construction for G noncompact by leaving GB in place.

From ageometric point of view the setting underlying the Borel-Weil
Theorem is a bundle that we can view two ways

GB — > Gg

l !

G/T —— G¢/B

The left column is the one of interest for representations, and the map
is the quotient by B. The horizontal maps are inclusions with image
opensince GN B = T, and they are onto since G is compact. The map
on the right is the quotient map by the closed complex subgroup B. At
the bottom right the quotient G¢/B is a complex manifold, and G/ T
therefore acquires an invariant complex structure. In away that will be
described in the next section, the functions F of (0.10) may beidentified
with the holomorphic sections of the holomorphiclinebundleover G/ T
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associated to the character &, , and G acts on the space of sectionsin the
natural way. In short, theirreducible representation with highest weight
) is redlized as the space of global holomorphic sections of a certain
holomorphic line bundle.

Suppose now that A is analytically integral but no longer dominant.
The space (0.10) still makes sense, but it is now zero, i.e., the holomor-
phicline bundlehasno nontrivial sections. Inorder to find an interesting
representation, we need an additional idea.

In complex geometry an operator d allows the introduction of a co-
homology theory in such away that the 0"-degree cohomology is just
the space of global holomorphic sections. The operator 8 has aformula
like that of the deRham d, except that % and dx; get replaced by %

J |
and dz;. We shall describe 8 more precisely in the next section.

Inany event, inthe holomorphiclinebundle associated to the character
£, it is possible to speak of smooth (0, k) cochain sections, and the
image of one level of 3 is contained in the kernel of the next level.
L et the representation space of the one-dimensional representation &, be
denoted C,, and let the spaces of cocycles and coboundaries be called

z°%G/T,C) and  BOKG/T,Cy),

respectively. The group G acts on these, and the quotient

HOK(G/T, C) = Z%G/T, Cy)/BK(G/T, Cy)
is called the (0, k)" space of Dolbeault cohomology sections. From
the point of view of representation theory, it is desirable to have a
topology on these spaces such that the topology on HoX(G/T, C;) is
obtained as the quotient topology from the other two. The Hilbert-
space topology on z%k(G/T, C,) from square integrability on G is not
convenient, because use of the compl etion makesit necessary to address
the meaning of 8 on nonsmooth cochain sections. But we shall be able
to give Z°K(G/T, C,) a satisfactory C* type topology below. Since
HOK(G/ T, C,) will be Hausdorff if and only if B®K(G/ T, C,) isaclosed
subspace, it is important to know whether B®K(G/ T, C,) is closed in
Z%%(G/T, ;). For G compact it isindeed closed, but it is not atrivial
matter to prove this fact. The Bott-Borel-Weil Theorem identifies the
space HOK(G/T, C,). Thenotation is

A = {rootsof (g, 1)}

AT = apositive system for A

§= 3 X:aeAJr «
(011) W =2Weyl group of A

B = Borel subgroup built from negative roots

G/T'scomplex structure from G¢/B.
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Theorem 0.12 (Bott-Borel-Weil Theorem, first form). With G
compact and with notation asin (0.11), and let & € t* beintegral.

(@ If (x4, ) = 0for somea € A, then HOX(G/T, C;) = Ofor al k.

(b) If (A +6, a) #0foral a € A, let

(0.13) g=#ae AT | (A+6, a) <0}
Choose w € W with w(x + §) dominant, and put . = w(x +8) — 5. Then
0 ifk#q
0,k _

where F* is a finite-dimensional irreducible representation of G with
highest weight 1.

Before taking up the detailed discussion of representations in spaces
of Dolbeault cohnomology sections, let us generalize our definition of
representation suitably. Let V be alocally convex, complete, complex
linear topological (Hausdorff) space. A (continuous) representation of
the Lie group G on V is a homomorphism = : G — AutV such that
themap G x V — V is continuous. With no change in the formalism,
we can define the subspace C>(V) of C> vectors. The assumption
that V islocally convex and complete allows us to define the integral of
a continuous function from a compact Hausdorff space X into Vv, with
respecttoaBorel measureon X. Taking X to beacompact neighborhood
of 1in G, we can apply Garding's argument given above to see that
C>®(V) isdensein V.

For G semisimple with maximal compact subgroup K, we can again
speak of the subspace Vi of K finitevectors. If z isanirreduciblefinite-
dimensional representation of K and if ®,« and d, are the character and
degree of the contragredient of z, define

(X )V = / d. 0. (K (k)vdk forv e V.
K

Then n(x.) is a continuous projection whose image is V, and whose
kernel contains all V.. for «’ inequivalent with . With this definition in
place, we can argue that Vi isdensein V and that C*(V), isdensein
V;.
A representation = on V as aboveissaid to be smooth if C>*(V) = V.
When arepresentation is given to us on a Banach space, the subspace of
C® vectors becomes a smooth representation if C*°(V) isretopologized
using the family of seminorms || - ||, parametrized by u € U(g) and
defined by |lvly = |7 (Wv]||. Any smooth representation becomesau (g)
module under the definition u - v = 7 (u)v, and its subspace of K finite
vectorsisa (g, K) module called the underlying (g, K) module of V.
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3. Sections of Homogeneous Vector Bundles

This section describes arepresentation-theoretic construction by com-
plex analysisthat generalizeswhat happensfor the holomorphic discrete
series and the Bott-Borel-Weil Theorem. The expectation is that many
of the resulting representations will be irreducible unitary and that we
will therefore have a complex-analysis construction to complement the
real-analysis construction given by parabolic induction. It is assumed
that the reader is acquainted with some elementary structure theory of
semisimple groups; discussion of this topic may be found in Chapter
IV below. We shall make use of vector bundles in the construction.
Although a full analytic theory requires understanding vector bundles
withinfinite-dimensional fiber, weshall restrict to thefinite-dimensional
case.

Throughout this section we work with the following setting, some-
times limiting ourselvesto specia cases. G isaconnected linear reduc-
tive Lie group with complexification G¢, K isafixed maximal compact
subgroup, T is a compact connected abelian subgroup of K (hence a
torus), and L = Zg(T) isthe centralizer of T in G. From Lemma5.10
below, it is known that L is connected. Therefore the complexification
L is meaningful as a subgroup of G, namely the analytic subgroup
of G with Lie algebra the complex subalgebra generated by the Lie
algebraof L. Let Q beaparabolic subgroup of G with Levi factor L.

WedenoteLiealgebrasof Liegroups A, B, etc., by ag, bo, €tc., andwe
denotetheir complexificationsby a, b, etc. Thecomplex Liealgebras of
complex Lie groups Ge, L¢, Q aredenoted g, [, q. We use an overbar
to denote the conjugation of g with respect to go.

We can decompose the Lie algebra q of Q as a vector-space direct
sum g = [@ u, whereu isthenilradical. Thenu and i are both nil potent
complex Lie algebras, and we have [[,u] Cuand[(,i] C ii.

We assume that q isa 6 stable parabolic; this condition means that

(0.143) goNq=Il.

It is equivalent to assume a vector-space direct-sum decomposition
(0.14b) g=ud(du

Under the condition (0.14), the natural mapping G/L — G¢/Q isan

inclusion, and the image is an open set. Thus the choice of Q has made
G/L into acomplex manifold with G operating holomorphically.
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A noncompact example to keep in mind is the group G = U(m, n)
of complex matrices that preserve an indefinite Hermitian form. Here
Ge = GL(m+n, C). If wetake T to be any closed connected subgroup
of the diagonal of the form

T =diagEe?®,...,e% &%, ... &% ... % .. €&

then L will be a block-diagonal subgroup within G with r blocks, and
L will necessarily be connected. We can choose u to be the complex
Lie algebra of corresponding block-upper-triangular matrices and u to
consist of the corresponding block-lower-triangular matrices.

We take as known that

(0.15) p:G— G/L

isaC® principal fiber bundle with structure group L. Let V be afinite-
dimensional real or complex vector space, let GL (V) beitsgeneral linear
group, andlet p : L — GL (V) beaC> homomorphism. Theassociated
vector bundle

(0.16a) pv:Gx_V = G/L

is a vector bundle with structure group GL (V) whose bundle space is
given by

(016b)  Gx LV ={(@v/~  with (g,v) ~ (@ o))

forge G,l e L,andv € V. Let [(g, v)] denote the class of (g, v). We
omit a description of the bundle structure.

The space of C* sectionsof (0.16) isdenoted £(G x| V). Thegroup G
actson G x| V by left trandation: go[(g, v)] = [(gog, v)] in the notation
of (0.16b). Thisaction induces awell-defined action of G on £(G x| V)
by (9oy)(9L) = go(y (g5 *gL)) for y € £(G x. V). When V is complex,
this construction yields a representation of G (understood to be on a
complex vector space). This representation is continuous in the sense
that (go, y) — goy iscontinuous from G x £(G x V) to £(G x V) if
E(G x| V) isgivenitsusual C> topology. It isasmooth representation
in the sense of 82.

Similarly

(0.17) p:Ge— Ge/Q

is a holomorphic principal fiber bundle with structure group Q. In
the above situation if V is complex and if p extends to a holomorphic
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homomorphism p : Q — GL(V), then we can construct an associated
vector bundle

(0183) pv : Ge xeV — G¢/Q
with bundle space given by

(0.180) Ge xqV ={(ge,v)/~}  With  (geq, v) ~ (ge, P(@V).
The bundle (0.18) is a holomorphic vector bundle.

The inclusion G/L — Gg/Q induces via pullback from (0.18a) a
bundle map

(019) GXLV‘—>G@ XQV.

In terms of (0.16b) and (0.18b), this map is given simply by (g, v) —
(g, v). Theresult isthat the C> complex vector bundle G x| V acquires
the structure of a holomorphic vector bundle. We can regard the space
of holomorphic sections O(G x| V) of G x V asavector subspace of
E(G x V). (Actualy lessis needed about p than extendibility to Q in
order to get the homomorphic structure on G x| V. See the Notes for
details.)

To any section y of G x V we can associate afunction¢, : G - V
by the definition

(0.20a) y(gL) = [(9. ¢,(9)] € G x_ V.

Under this correspondence, C* sections y go to C* functions ¢,, and
we obtain an isomorphism
(0.20b)

~ ] . ¢ of classC*,

sex oo [P OIS et cLgeo |

The group G acts on the right member of (0.20b) by the left regular
action, and the isomorphism respects the actions by G. The usual C*®
topology on £(G x| V) corresponds to the C> topology on the space of
¢’s. Itisunder this correspondence that we can identify the functions F
in (0.8) and (0.10) with sections of holomorphic line bundles.

The correspondence y <« ¢, works locally as well, with sections
over an open set U € G/L corresponding to functions ¢ on the open
subset p~1(U) of G transforming asin (0.20b). Again y of class C*®
corresponds to ¢, of class C™. Let £(U) be the space of C> sections
over U.

In the special casethat G x V admits the structure of a holomorphic
vector bundle because of (0.19) and (0.18), we can speak of the space of
holomorphic sections O(U) over anopenset U € G/L. Theproposition
below tells how to use ¢, to decide whether y is holomorphic.
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Proposition 0.21. Supposethat p extendsto aholomorphichomomor-
phism p : Q — GL(V) and thereby makes G x| V into a holomorphic
vector bundle. Let U < G/L be open, let y bein £U), and let ¢, be
the corresponding function from p~1(U) to Vv given by (0.20). Then y
isholomorphic if and only if

(0.229) (Zey)(@) = —p(Z2) (¢, (9))

foral g e p~}(U) and Z € q, with Z acting on ¢, as a complex left-
invariant vector field.

In typical applications to representation theory, p in the proposition
is given on L and extends holomorphically to Lq. The extension to Q
is taken to be trivial on the unipotent radical of Q. Equation (0.22a)
holdsfor Z € I, for any C* section, and it extendsto Z [ by complex
linearity. Thus (0.22a) may bereplaced in thissituation by the condition

(0.22b) Zg, =0 foral Zeuw

The special case p = 1 shows how to recognize holomorphic functions
on open subsets of G/L.

Let M beacomplex manifold, and let p bein M. We denote by T,(M)
the tangent space of M (considered asaC> manifold) at p, consisting of
derivations of the algebra of smooth germs at p, and welet T (M) bethe
tangent bundle. Alsowe denoteby T ,(M) the complex vector space of
derivations of the algebra of holomorphic germsat p, and we let To(M)
be the corresponding bundle. There isacanonical R isomorphism

(0.233) To(M) = Te p(M)
given by
(0.23b) £ ¢, wherec(u+iv) =£&U) +i&(v).

Let J, be the member of GL(T,(M)) that corresponds under (0.23) to
multiplication by i in T p(M). Then J = {J,} is a bundle map from
T(M) to itself whose squareis —1.

The following proposition alows us to relate these considerations to
associated vector bundles.

Proposition 0.24. There are canonical bundle isomorphisms

(0.253) T(G/L) = G x (go/lo)
and
(0.25b) Te(Ge/Q) = Ge xq (g/9)

with L and Q acting on go/lo and g/q, respectively, by Ad.
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Theinclusion G/L < G./Q alows usto regard
(0.26) Te(G/L) = GQ xq (g/9).
Atany point p = gL of G/L, theleft sides of (0.25a) and (0.26), namely
T(G/L) and Te(G/L), are R isomorphic via (0.23). It is easy to check
that the corresponding isomorphism of the right sides of (0.25a) and
(0.26) at p isgiven by

(9, X+1p) = (g, X+ q) forge G, X e go.

Thisresult allows us to compute the effect of J.
Complexifying (0.25a), we have

T(G/L)e = G xi (go/lo)c,
and J actsin the fiber at each point. Welet T(G/L)*° and T(G/L)%! be

the subbundles of T(G/L)¢ corresponding to the respective eigenvalues
i and —i of J, so that

(0.279) T(G/L)e = T(G/L)2 @ T(G/L)%L
We have
(0.270) (go/lo)c =g/I=udu

as L modules, and a little calculation shows that (0.27b) gives the de-
composition of the fibers under J corresponding to (0.27a). In other
words

TG/LY=Gx 1
(0.27¢) ©/b t
TG/L)T =G x
Taking dualsin (0.27a) and forming alternating tensors, we have
(0.28) APAT*(G/L)e = G x| (API)* ® (A%w)*).
Via (0.28), members of £E(APIT*(G/L)e) correspond to functions from
G to (AP)* ® (A%w)* transforming on the right under L by Ad* ® Ad*.
The scalar 9 operator for acomplex manifold M is an operator

3 EAPITH (M) = ENPIFITH (M),
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and it has 9> = 0. For the case that M = G/L, we can interpret 3 in
terms of (0.28).

We can construct also avector-valued version of 3. Namely let G x|V
be a holomorphic vector bundle as above. We introduce dy = 9 ® 1 as
an operator

Iy EAPITHG/L)e ® (G x1 V) = ENPITFITH(G/L)e ® (G x1 V));

ay iswell defi ned because the transition functions for G x_ V are holo-
morphic. Also 32 = 0. Using (0.28) and dropping the subscript “V” on
dy, We can interpret 8, as an operator

918G xL (APW)* @ (AW)* @ V) — E(G x (API)* ®@ (ATTw)* @ V).
In representation theory one works with the case p = 0. We define
COU(G/L, V) = E(G xL (A%w)* ®@ V)).

As aways, thisis the representation space for a continuous representa-
tion of G. The operator 3 is continuous and the kernel is closed. H.-W.
Wong has shown (under the standing hypothesis of finite-dimensional V)
that theimage of 3 isclosed and therefore that the quotient is Hausdorff.
Thus we can define the Dolbeault cohomology space H®9(G/L, V) as

(0.29) H%9(G/L, V) = ker(dlcoa,L.v))/iMaged|coa-1c/L v))-

Since 3 commutes with G, the topological vector space H%9(G/L, V)
carries a continuous representation of G.

The Bott-Borel-Weil Theorem identifies the spaces H®9(G/L, V) of
(0.29) in the case that G is compact. In this situation it has long been
known that  has closed image. If one introduces a Hermitian inner
product on V, then the formal adjoint 5* of 3 is meaningful, and it has
long been known also that (0.29) can be computed alternatively as the
representationonker anker 9*inC%4(G/L, V). Membersof ker anker *
are caled strongly harmonic; this alternate approach shows that each
cohomology class has exactly one strongly harmonic representative.

We have aready stated the Bott-Borel-Weil Theorem in the special
casethat L = T and Q = B. For general G/L with G compact and L the
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centralizer of atorus, the notation is

G = compact connected Lie group
T = atorusin G
L =2s(T)
T extended to amaximal torus T in L
A = {roots of (g, )}
(0.30) A(l) = {rootsof (1,9} € A
AT chosen with A(1) generated by simple roots
3= % ZaeA+ o
W = Weyl group
Q = built from [ and negative roots
G/L’s complex structure from G¢/Q.

Theorem 0.31 (Bott-Borel-Weil Theorem, second form). With G
compact and with notation asin (0.30), let V* beirreducible for L with
highest weight A.

@ If (A +6, ) =0for somea € A, then H®I(G/L, V*) = Ofor all
j.
(D) If (\+6, a) # 0foral « € A, defineq asin (0.13), choose w € W
so that w(r + 6) isdominant, and put u = w(x + 8) — 8. Then

. 0 ifj#q
HOI(G/L, V) =

erv={o i 2q
where F# is a finite-dimensional irreducible representation of G with
highest weight .

Historically the next cases of our construction to be considered were
those for discrete-series representations. For a unimodular group G, an
irreducibleunitary representation r isinthediscreteseriesif itisadirect
summand of the right regular representation on L2(G), or equivalently
if some (or equivalently every) nonzero matrix coefficient (w(g)vy, v2) is
in L?(G). Holomorphic discrete seriesfor SU(1, 1) asin (0.7) and (0.8)
provide examples.

L et G belinear connected semisimple, andlet K beamaximal compact
subgroup. For G compact (so that K = G), every irreducible unitary
representation isin the discrete series. For G noncompact, the discrete-
series representations were parametrized by Harish-Chandra. We shall
not recite the parametrization now, but it has features in common with
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the Theorem of the Highest Weight and the Weyl character formula. At
thistime we need to know only that discrete-series representations exist
for G if and only if amaximal torus T of K is maximal abelianin G.

Langlands conjectured that all of Harish-Chandra's discrete series
could be realized globally in a fashion similar to that in the Bott-
Borel-Weil Theorem (with base space G/ T). In making this conjecture,
Langlands imposed square integrability on his allowable cocycles and
coboundaries. The virtue of this choice is that it makes the conjecture
correct (as was later shown by Schmid); the difficulty is that parallel
square-integrability restrictions are not available in the general setting
of (0.29) when L is noncompact.

The problem with allowing arbitrary cocycles and coboundaries can
aready be seenin SU (1, 1). Sincethe unit disc is a Stein manifold, we
can get nonzero cohomology only in degree O (by H. Cartan’s Theorem
B). Thusif wefix the one-dimensional holomorphic representation &, of
B, the interest is the space of functions F : GB — C satisfying (i) and
(ii) in (0.8). A feature of thetheory of holomorphic discrete seriesisthat
al nonzero K finite F's satisfying (i) and (ii) also satisfy (iii), or else
none do. Whenn > 1, (iii) holds and we get a unitary representation.
But when n < 1, (iii) fails. For example, when n = —1, the space of
functions F has a two-dimensional invariant subspace equivalent with
the standard representation of SU (1, 1), which is not unitary.

It would be nice to have a setting where the L? cohomology and the
Dolbeault cohomology are compatible, and Schmid discovered such a
setting. His idea was to adapt AT (and hence the complex structure)
to the parameter, making the parameter dominant. Then the degree of
interest for conomology is S= dim¢(K/T) = dime(un€). Under some
hypotheses Schmid proved that the natural map from L? cohomology in
degree Sinto Dolbeault cohnomology is one-one.

If we rephrase the Bott-Borel-Weil Theorem with this idea in place,
the notationisasfollows: Welet G, T, and A beasin (0.11). Let i € t*
be a given nonsingular parameter (1o correspondsto i + § in Theorem
0.31), and suppose that 1o — 8o isanalytically integral for the half sum &y
of positive rootsin some (or equivalently each) positive system. Define

AT ={a e A| (ho, a) > 0}

§= % z:ozeAJr o
A=Xio— 8
(0.32) V* = irreducible finite-dimensional representation

of L with highest weight o
Q built fromrand A instead of —A*
G/L’s complex structure from G¢/Q.
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Theorem 0.33 (Bott-Borel-Weil Theorem, third form). Let G be
compact connected, with notation asin (0.32). Then

0 if j #dimg(G/L)

0.j N top, \ _
H(G/L, VF ®c A u)—{ = if j =dime(G/L).

Schmid proved an anal ogous theorem about realizing discrete series.
For Schmid's setting, G is a noncompact semisimple group, K is a
maximal compact subgroup, and T isamaximal torus of K that is aso
maximal abelian in G. In this setting under the assumption that the
parameter is dominant and very nonsingular, Schmid proved that 3 has
closed image, that nonzero Dol beault cohomology occursonly in degree
S = dime(K/T) = dime(u N €), and that the smooth representation
in degree S is infinitesimally equivalent with the expected discrete-
series representation.  Aguilar-Rodriguez extended Schmid's theorem
to handle all discrete series.

Handling further casesof H%1(G/L, V) presentsformidableproblems.
Onedifficulty isin proving that 8 has closed image; this step was carried
out for general G and finite-dimensional v by H.-W. Wong. Another
difficulty is that H®I(G/L, V) carries no obvious inner product. In
parabolic induction, the inner products arise by integration, with the
norm given by that for a vector-valued L?(K). However, H®I (G/L, v)
is a space of Dolbeault cohomology classes on a noncompact complex
manifold. To construct aninner product analytically, one must show that
the K finite conomology classes have strongly harmonic representatives,
facethefact that the L invariant Hermitianformoneachfiber (A'u)*®cV
may not be positive definite if L is noncompact, and prove that the
strongly harmonic representatives of the K finite cohomology classes
are square integrable on G/L. Except in isolated specia cases chiefly
in mathematical physics, the first progressin this direction was due to
Rawnsley, Schmid, and Wolf, and came under various complex-analysis
assumptionson G/L. Barchini, Knapp, and Zierau showed how to obtain
strongly harmonic representatives with a mild real-analysis restriction
on G/L, and Barchini was able to drop this restriction (retaining only
the assumption of finite-dimensional fiber). Zierau has shown how in
some cases squareintegrability on G/L may be deduced for the strongly
harmonic representatives.

In any event, direct progress with the analytic setting hasbeen slow in
coming. Zuckerman's contribution, introduced in the next section, was
to create an algebraic analog of this complex-analysis setting, thereby
bypassing many of the analytic difficulties.
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4. Zuckerman Functors

Zuckerman functors provide an algebraic analog of the complex-
analysis construction in 83. They were introduced by Zuckerman in a
series of lecturesin 1978 and were devel oped further by Vogan [19814).
For this section we use the following notation:

G = linear connected reductive Lie group
K = amaximal compact subgroup
T =atorusin G

(0.34) L =Zs(T)
Q = parabolic subgroup in G¢ asin 81
g=[®u

(o, V) = smooth representation of L.

The space V can be infinite dimensional, but we shall treat it as finite
dimensional for the current purposes of motivation. The representation
(o, V) givesusarepresentation of [, and we extend thisto arepresentation
of g by making u act as 0. It will be helpful for purposes of motivation
to think of the representation of ¢ on V as coming from a holomorphic
representation of Q on V, but this assumption can be avoided.

In the analytic setting,  is an operator

(0.35) 3:EG x (N @ V)) = £G xL (A T)* @ V).

Using the isomorphism (0.20), we regard o as an operator with domain
equal tothespace of smooth functions¢ from G into (A!u)*®V satisfying

(0.36) e@h)=Adh ™ @cl) hHe(@ forgeG,lel

and with range equal to the corresponding space of functions into
(AFH)* @ V.

In the algebraic analog wetry to construct only the K finite vectors of
HO%J, thus obtaining a (g, K) module. Let C(g, K) be the category of all
(g, K) modules.

Theideaistowork withthe Taylor coefficientsat g = 1 of thefunction
@ in (0.36), regarding each coefficient as attached to a left-invariant
complex derivative (of some order) of ¢ at g = 1. Thus the idea of
passing to Taylor coefficients gives us alinear map

¢ — ¢" e Home (U (g), (A w)* @ V).
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The transformation law (0.36) forces
(0.37) 9" e Hom U (g), (A'w)* ®@ V),

where [ actson U (g) on theright. If we assume that ¢ is K finite, then
the action of L n K on the left of ¢ gives an action of L N K on ¢*
by Hom(Ad, Ad* ® o), and ¢* will be L N K finite. Thus ¢* liesin a
subspace that we denote

(0.38) Hom; (U (g), (Aw)* ® V)i

toindicatethe L N K finiteness. On (0.38) we have arepresentation of g
(viathe action of U (g) on the left) and the representation of L N K, and
(0.38) isa(g, L N K) module.

The passage from the space of ¢’s asin (0.36) to the space of ¢*'sin
(0.38) loses information because

(@) ¢ need not be analytic, and hence ¢ — ¢* is not one-one
(b) formal power seriesdo not haveto convergeand convergent power
series do not have to globalize, and hence ¢ — ¢* is not onto.

We can get around the difficultiesin (a) and (b) by defining away the
problem. Let I' = 1'%, bethe functor

I':C(g,LNK)— C(g, K)
given by

(V) = sum of al finite-dimensional ¢ invariant subspaces
of V for which the action of ¢ globalizesto K,

L) =virw if v e Hom(Vv, w).

The functor T is covariant and left exact and is called the Zuckerman
functor.

IDEA. Impose § between spaces
(0.39) T'(Homy(U (), (Aw)* ® V)ink),

and take the kernel/image as a (g, K) module analog of H%I(G/L, V).
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L et usbringinhomol ogical algebra, temporarily assumingthat L € K.
Then we make the following observations:

1) For the case j = O at least when V is finite dimensional, the
condition that 9¢* = Oisthat Zgp = Ofor al Z € u, in view of (0.22b).
Thus the kernel/image space for j = 0 should be regarded as

(0.40) I'(Hom, (U (g), V)Lnk)-

2) ldentification of (0.40) as the space of interest for j = 0 suggests
looking at the sequence

(0.41)
0 — Hom, (U(g), V)Lrk — Hom (U (g), (A\°w)* ® V) Lk

— Homy(U(g), (A\'w)* ® V)iak — -+

in the category C(g, L N K). In fact, it can be proved that (0.41) is an
injective resolution of Hom, (U (g), V) L~k in the category C(g, L N K).

3) Thecategory C(g, L NK) hasenough injectives. Combining (2) and
the idea above about (0.39), we see that the j space of interest, namely
the j™ kernel/image of (0.39), is

(0.42) I (Hom, (U (g), V) LK),

where 'l isthe j" right derived functor of I'. (In fact, (0.42) is defined
asthe j™ cohomology of the complex obtained by applying I to (0.41),
since (0.41) isan injective resolution.)

4) The space (0.42) gives the underlying (g, K) module of K finite
vectorsof H%1(G/L, V) for the cases of compact groups and the discrete
series. These results are due essentially to Zuckerman and are proved
in Vogan [19814].

These observations lead us to the second crucial idea.

IpeA. Evenwhen L isnot compact, define the j space of interest to
be (0.42).

In short, the Zuckerman construction is to pass from V in
C(, L n K) first to Hom,(U(g), V)Lrk in C(g, L N K) and then to
r'l(Hom, (U(g), V)Lnk) inC(g, K).
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5. Cohomological Induction

L et G be connected semisimplewith finite center. In keeping with the
ideas of 84, we call

RI(Z) =TI (prof [ (2%)
acohomological induction functor. Here
Z"=Z®c \u and prodnk (V) =Hom, (U (g). V)Lrk.

The passage Z — z* is anormalization included to be consistent with
the notation in the third form of the Bott-Borel-Weil Theorem (Theorem
0.33), and the compositions R/ carry C(I, L N K) to C(g, K).

What 84 showsisthat the functors R! provide areasonable algebraic
analog of the Dolbeault cohomology functors H%1(G/L, Z#). In order
to discuss unitarity, we need to see how these functors affect Hermitian
forms. Here we find an unpleasant surprise: R! cannot be applied
naturally to Hermitian forms. Roughly speaking, the problem is that

prof'thk (2% = Hom, (U (@), Z¥)Lnk = Home(U (@), Z*%)Lak

is simply too large to carry such aform. (Actualy theimposed L N K
finiteness allows one to find invariant Hermitian forms on pro' (¢ (2%,
but not in any natural way.) The only consolation is that the Dolbeault
cohomology hasaparallel problem: For Z finite-dimensiond, it follows
from thework of Wong that H%1(G/L, Zz*#) can carry aninvariant Hermi-
tian form only when the cohomology is finite dimensional. The forms
arising in Schmid’s construction of the discrete series, for example, are
defined only on certain dense subspaces of cohomology.

So we start over. Suppose again that Z isan (I, L N K) module. The
first step isto regard Z# as a (g, L N K) module on which i acts by O.
The second step is to apply an “algebraic induction” functor to form a
(g, L N K) module

indd' 1k (Z%) = U(g) ®; Z* = Uw) ®c Z%.

The third step isto apply some projective version IT; = (nﬁ:fﬂK),- of I'l
to get a (g, K) module:

£i(Z) = T (ind2 1 (Z%).
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We refer to £; also as acohomological induction functor.

The geometric setting of 83 does not suggest what I should be.
Instead we look for a direct algebraic definition, aiming to have many
maps associated with IT go in the opposite direction of maps for I' and
to have I beright exact rather than left exact. With thisgoa in mind, I1
should be related to “largest K finite quotients’ in the same way that T
isrelated to “largest K finite subspaces.” But largest K finite quotients
do not always exist, and the definition of IT takes a little care. The
first rigorous definition of IT was given by Bernstein in 1983. Let us
postpone discussion of what ishecessary to the next section. Historically
the original attacks on unitarizability took Theorem 0.44a below as a
definition of 1T and its derived functors, and we can use this somewhat
unsatisfactory approach as an interim measure.

An invariant sesquilinear form on a module V arises from a map of
V into its Hermitian dual Vv". (See 8VI.2 below for the definition of
V") To carry an invariant Hermitian form from Z to £;(Z), we need a
procedure for passing fromamap Z — Z"toamap £;(2) — [£;(2)]".
We givethisprocedure onestep at atime. In our three-step construction,
the map z — z" easily gives a map from z# to [z#]" and then a map
fromthe (g, LN K) module Z to the (g, L N K) module[z#]". The second
and third steps are handled by the proposition and theorem that follow.

We say that the (I, L N K) module Z hasfinitelength if Z hasa(finite)
composition series whose quotients are irreducible. In this case, any
irreducible representation of the compact group L N K occursin Z with
only finite multiplicity (see Theorem 10.1 below).

Proposition 0.43. Suppose Z isan (I, L N K) module. Then
(a) thereisanatura (g, L N K) map

ind2 LK (%) — pro%inK (z*)
that isnonzero if Z is nonzero,
(b) thereisanatural isomorphism

[ind® LAk (29]" = prof Lok (217,
(c) any nonzero invariant Hermitian form (-, -). on Z induces a
nonzero invariant Hermitian form (-, ), onindd ¢ (2%).

This proposition is elementary and is addressed at the beginning of
8V1.4 below. In particular, the composition of the map in (a), followed
by pro of the map z# — [z#]" and then the inverse of the map in (b),
carries ind?'[ ¢ (Z*) to its Hermitian dual and defines the form (-, -),

in (c).
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Theorem 0.44. Let S=dimunt. Then
(a) thereisanatura isomorphism of functors

(M0 = @01 for0<j<2s
(b) for W € C(g, L N K), thereisanatural isomorphism
mwi"=riw"y  for0O<j<2s

(c) any invariant Hermitian form (-, -), ona(g, L N K) module W
induces an invariant Hermitian form (-, - )g on IMg(W).

In the approach that we shall take in this book, parts (a) and (b) are
substantially the Duality Theorem, the first main theorem of the book,
which is proved in Chapter |11 below. Part () is most of Hard Duality,
and part (b) is an instance of Easy Duality. Part (c) is then a formal
consequence. If, as an interim measure as suggested above, (a) istaken
as a definition of IT and its derived functors, then (b) is substantially
the Duality Theorem in its original form as stated by Zuckerman and
Enright-Wallach [1980].

Corollary 0.45. If Z isan (1, L n K) module of finite length, then an
invariant Hermitian form (-, -). on Z induces an invariant Hermitian
form (-, -)g on Lg(2).

Recall that we have been seeking a complex-analysis construction
(or an algebraic analog of one) yielding irreducible unitary represen-
tations and complementing the real-analysis construction of parabolic
induction. We intend for cohomological induction with £s to be that
construction. Before considering how close we are to the desired goal,
we mention one more theorem as background.

Theorem 0.46. If Z isan (I, L N K) module of finite length, then

(8 indd 1k (z*) and prof [ (z#) have finite length, and they have

the same irreducible composition factors and multiplicities
(b) al the (g, K) modules £;(Z) and R1(Z) have finite length, and

YD) =) (-DIRI2)
] j

in the Grothendieck group of finite-length (g, K) modules.
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Part (a) is proved in 8V.2 and 8V.7 under a positivity hypothesis on
Z, and the genera case may be deduced from the special case by an
argument with tensor products. The conclusion of finite length in (b)
isproved in 8V.2 and 8V.4, and the identity in the Grothendieck group
follows from part (a), Theorem 0.44a, and the long exact sequences for
the derived functorsof T and I".

The discussion before Theorem 0.33 suggests aiming for interesting
(g, K) modulestooccur asR} (Z) with j = S, and Corollary 0.45 suggests
that the (g, K) module to consider for unitarity is £;(Z) with j = S.
Referring to Theorem 0.46, we see a way for £s(Z) to match RS(2),
namely that they be irreducible and that £;(Z) = R1(Z) = Ofor j # S.
We are thus led to consider the following two problems.

ProsLEM A. Under what conditions can we conclude that £;(Z) and
Ri(z) are0for j # Sandthat £s(Z) isirreducible?

ProBLEM B. When is £s(Z) infinitesimally unitary?

For the most part, we shall need to assume some positivity condition
on Z in order to make much progress. But there is one thing that can
be said without assuming any positivity condition. Starting from the
(I, L N K) module Z, we can forget part of the action and regard Z asan
(tne, LN K) module. The cohomological induction functor £s for G
has an analog for K given by

L£5(Z) = (g ) sinds 5 (Z9).

and this operates summand by summand on the irreducibl e constituents
of thefully reducible ({n¢, LNK) module Z. A version of thethird form
of the Bott-Borel-Weil Theorem (Theorem 0.33) for £5 shows that an
LNK irreducibleconstituent of Z mapstoanirreducible K representation
or O depending on whether a certain trandate of its highest weight is
dominant for K. A K type (i.e., an equivalence class of irreducible
representations of K) is said to be in the bottom layer if it occurs in
L£(Z). In 8V.6 below it is shown that the bottom-layer map

B:LK(Z) - Ls(2) given by s oinclusion

is one-one onto the full K isotypic subspaces for the K types of the
bottom layer in Ls(Z).

The second main theorem of the book is the Signature Theorem. A
specia case of it says that if (-, -)_ is positive definite on the L N K
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types of Z for which £ isnonzero, then (-, - ) is positive definite on
the K types of the bottom layer in £s(Z). Moregenerally it saysthat an
invariant notion of signature is preserved in passing from these L N K
types of Z tothe K types of the bottom layer in Ls(2).

6. Hecke Algebra and the Definition of I1

The beginnings of a definition of 1T date back to Zuckerman’'s 1978
lectures and to ideas proposed at the time by Trauber and Borel. In
connection with a possible proof of Hard Duality for I', Trauber and
Borel suggested introducing the complex convolution algebra R(g, K)
of al left and right K finite distributions on G with support in K. In
the same way that g modules amount to the same thing as left U (g)
modulesinwhich 1 actsas 1, (g, K) modules are identified with certain
R(g, K) modules. Thealgebra R(g, K) usualy doesnot have anidentity,
only an “approximate identity,” and the condition that 1 act as 1 should
be replaced by the condition “approximately unital,” i.e., that, on each
element of the module, members far out in the approximate identity act
as 1. With this definition, (g, K) modules amount to the same thing as
left R(g, K) modules that are approximately unital. (See 81.4 below.)

We cdl R(g, K) the Hecke algebra for (g, K). As is shown in
Proposition 2.70 below, the functor I' = Fﬁ,’me is then given by

['(W) = HOMg(, Lak) (R(g, K), V)k.

Inthe language of homol ogical agebraof ringsand modules, I' isaHom
type change-of-rings functor (except for the condition of K finiteness
carried in the subscript K). The theory of change-of-rings functors
suggests looking also at the corresponding tensor-product type functor,
and this we may take as IT:

(W) = R(g, K) ®Rr(g,Lnk) W.

Thisis the definition that was used in Knapp-Vogan [1986]. Bernstein
[1983] had earlier introduced an equivalent definition of IT in the course
of investigating the correspondence between two different classifications
of irreducible (g, K) modules, and consequently we call T the Bernstein
functor.

The definitions of ind and pro as

indd (V) = U (@) ®u) V
and proﬁjme(V) = Homy (U (9), V)L
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appear to be further changes of rings, at first glancefromu (q) or U (g) to
U (g). Butuseof U(g), U(§), and U (g) astheringsignores the operation
of L N K. The changes of rings should be from the rings appropriate to
(g, LN K) or (g, L N K) modules to the algebra R(g, L N K), which is
appropriate for (g, L N K) modules.

Here we encounter acomplication. The definition of R(g, K) interms
of distributions assumed that g isthe complexification of the Lie algebra
go Of agroup G inwhich K isasubgroup, and (g, LNK) and (g, LNK) do
not fit this description. Thus we cannot immediately define R(q, L N K)
and R(g, L N K) interms of distributions. Of course, we could attempt a
definition of R(q, L N K) and R(g, L N K) assubalgebras of R(g, L N K),
but fixing a total g in which to operate would surely result in trouble
eventualy.

Thus what is needed is an algebraic construction of R(g, K). Early
joint work of Knapp and Vogan on such a construction appears in
Knapp [1988]. By separating the paralel and transverse parts of the
distributions that appear in R(g, K), we show in §l.4 that

(0.473) R(g, K) = R(K) ®u e U (g).

where R(K) denotes the algebra of left and right K finite distributions
on K (which are simply the K finite functions times Haar measure).
The trouble with the isomorphism (0.47a) is that the multiplication law
islost. By separating parts in the reverse order, however, we obtain a
second isomorphism

(0.470) R(g, K) = U(g) Qu R(K).

Understanding the relationship between (0.47a) and (0.47b) leadsto the
multiplication rule, which can then be used to define an abstract version
of R(g, K).

Chapter | below gives a version of this algebraic construction that
improves on what is in Knapp [1988]. With the construction in place,
Chapter |1 takes up the question of change of rings. In an expression

e dndt ik (V) withV e C@. LN K),
both operations IT and ind are changes of rings, first from R(g, L N K) to
R(g, L N K) and then from R(g, L N K) to R(g, K). They can therefore
be telescoped into a single change from R(g, L N K) to R(g, K):

Pk (V) = R(@, K) ®ra.Lrk) V.
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Similar remarks apply to I" and pro. The one-step Hom type change-of -
rings functor is

124k (V) = Homgg Lok (R(g, K). V).

More generally we seethat P{5 and I;)Jg make sense whenever h € g
and B < K compatibly. In fact, the inclusions can be replaced by maps
iag 1 h— gandig : B — K with suitable compatibility properties. The
extended definitions of the functors P and | for this situation are

PYa (V) = R(@g. K) ®r.8) V
and 'f?,’g (V) = Homg 8y (R(g, K), V)k.

Chapter Il develops the theory in this generality. The functors P and |
will have as special cases 1 and I', ind and pro, IToind and T o pro, and
coinvariants and invariants. Thederived functorsof P and | will haveas
specia casesT1j and I'/, (IToind); = ITj oind and (I" o pro)! = I/ o pro,
and Lie algebra homology and cohomology. Thus P and I, along with
their derived functors, are pervasive in the theory.

7. Positivity and the Good Range

Let us return to Problems A and B in 85. Again G is a connected
semisimple Lie group with finite center, K is a maximal compact sub-
group, and g is the complexified Lie algebra of G. As mentioned, we
need to assume some positivity condition on the (I, L N K) module Z in
order to make much progress on the two problems.

Atthesametimethat Harish-Chandrawasintroducing Vermamodul es
(see 81), he investigated the center Z(g) of the universal enveloping
algebra U(g). Let h be any Cartan subalgebra of g. Harish-Chandra
introduced a map y, from Z(g) into the symmetric algebra S(h) and
showed that y, is an agebraisomorphism of Z(g) onto the agebra of
Weyl-group invariantsin S(h). (See 8IV.7 below.) In terms of this map
he proved that every homomorphism x : Z(g) — Cisof theform x = yx;
for some i € b*, where

X.(2) = Ay, (2)).

Moreover, x, = x. if and only if A and A’ are in the same orbit of the
Wey! group. (See 81V.8 below.)
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We say that aU (g) module V has infinitesimal character i if Z(g)
operatesby scalarsin v and if thehomomorphism x : Z(g) — C defined
by those scalarsis y = x;. For any irreducible U (g) module V, aversion
of Schur’s Lemma due to Dixmier (Proposition 4.87 below) saysthat vV
has an infinitesimal character.

For our situation with L and G, let i be aCartan subalgebraof [. Then
h isalso a Cartan subalgebra of g, and infinitesimal charactersfor [ and
g can both be given as members of h*. We shall assume from now on
that our (I, L N K) module Z has an infinitessimal character, as well as
finite length.

Let us pause for some examples. Let A(g, h) be the set of roots of g,
and let A(w) and A(, i) denote the subsets of roots whose root vectors
liein u and I, respectively. If we introduce a positive system A*((, b)
for I, then we can take A(u) U AT (I, h) as a positive system At (g, h)
for g. Let 5., §(u), and § be half the sum of the members of AT (1, p),
A(w), and A*(g, ), respectively. Notethat § = §. + ). If Z isan
irreducible finite-dimensional [ module with highest weight ., then Z
hasinfinitesimal character 1 + §_. The unique weight of A" Puis25),
and thus, in this case, Z* has highest weight 1 + 26(u) and infinitesimal
character u + 8 + §(u). The following proposition is proved below in
8V.2.

Proposition 0.48. If the (1, LNK) module Z hasinfinitesimal character
A, then Z# has infinitesimal character A + 25 (u), while

indd 0k (2%, profthk(zh.  £(2). and RI(Z)

al have infinitesimal character A + §(u).

In order toformulate positivity conditions, let ( -, -) denotetheKilling
form on go. More generally, if go = £o & po isthe Cartan decomposition
of go relativeto ¢y, we canuseas (-, -) any Ad(G) invariant nondegen-

erate symmetric bilinear form on g, that is negative definite on ¢, is
positive definite on pg, and has ¢, orthogonal to pe. This form extends
by complexificationto all of g, by restriction to nondegenerate forms on
both 1 and f, and by dualization to h*. The form is positive definite on
the real span of the roots in K*. For purposes of this Introduction, we
make the following definition.

DEFINITION 0.49. With (-, ) as above, suppose that the (I, L N K)
module Z has an infinitesimal character ». We say that Z or A isin the
good range or that Z isgood (relativeto g and g) if

Re(x +s(w),a) >0 foral a € Au).
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We say that Z or A isweakly good if
Re(A +6w),a) >0 foral a e A).

These definitions are independent of the choice of theform (-, -) on
go, Of the choice of Cartan subalgebrat of [, and of the choice of A from
within its orbit under the Weyl group of 1. A first answer to Problem A
in 85isasfollows.

Theorem 0.50. Let Z be an (I, L N K) module of finite length with
infinitesimal character A, and suppose that Z isweakly good. Then

(@ £j(2)=RI(Z)=0forj#S

(b) Ls(Z) =R3%2)

(c) zirreducibleimplies £s(Z) isirreducible or zero.
If Z isassumed actually to be good, then (c) can be strengthened to

(¢) zirreducible implies £Ls(2) isirreducible.

Parts (a) and (b) are given as a vanishing theorem in 8V.7. Parts (c)
and (') are essentialy the Irreducibility Theorem (Theorem 8.2 below),
the third main theorem of the book.

The need for the hypotheses in Theorem 0.50 can be understood
aready in the compact case. When G is compact and Z is not good,
Ls(Z) iszero. If Z isnot good and no root is orthogonal to A + §(u), the
vanishing result in (a) will fail.

A first answer to Problem B in 85 isas follows.

Theorem 0.51. Let Z bean (I, L N K) module of finite length with
infinitesimal character A, let (-, -). be a nonzero invariant Hermitian
form on z, and let (-, -)g be the corresponding invariant Hermitian
formon Ls(2). If Z isweakly good, then

(@ (-, -)L nondegenerateimplies (-, - ) hondegenerate

(b) (-, -)L positive definite implies (-, - )¢ positive definite.
In particular, if Z isweakly good and Z is infinitesimally unitary, then
Ls(Z) isinfinitesmally unitary.

Part (a) isan observationin 8V 1.4 below. Part (b) isthe Unitarizability
Theorem (Theorem 9.1 below), the fourth main theorem of the book.
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8. One-Dimensional Z and the Fair Range

We continue with the notation of 87. For special kinds of (I, L N K)
modules Z, someimprovementispossiblein Theorems0.50and 0.51. In
this section we examine especially the case of one-dimensional Z. If A’
isthe uniqueweight of Z, wewrite Z = C,,. Theinfinitesimal character
of C,, isA = A’ + 46, and thegood rangeisgiven by (A + (), o) > Ofor
a e A(u).

Let ; bethe center of [. Thisisautomatically a subspace of the Cartan
subalgebra f.

DEFINITION 0.52. With (-, -) as above, suppose that the (I, L N K)
module Z has an infinitesimal character ». We say that Z or  isin the
fair rangeor that Z isfair (relativeto q and g) if

Re(x + §(u), al;) > 0 foral a e A(w).
We say that Z or & isweakly fair if
Re(h +8(u), «l;) > 0 foral a € Au).
When Z = C, and A = A" + §,, we have
(A48, al;) = (A +8w), a).

Thus the conditions “fair” and “weakly fair” say for al « € A(u) that
(M +8w),a)is> 0or > 0, respectively.

Whether or not Z is one-dimensional, it is not hard to see that if Z is
in the good range, then Z isin thefair range. Alsoif Z isin the weakly
good range, then Z isin the weskly fair range.

Unfortunately the “fair” hypothesis does not imply analogs of Theo-
rems 0.50 and 0.51 of 87 ingenera. But hereisafirst hint that there are
positive results to be found.

Theorem 0.53. If Zisaweakly fair one-dimensional (I, LNK) module
with infinitesimal character 1, then
(@ £j(z)y=RI(Z)=0forj#S
(b) £s(2) =R3%2)
(c) the action of U(g) on Ls(Z) extends naturally to an algebra
D(Ge/Q)orswy, Of “twisted differential operators,” and Ls(2),
asaD(Ge/Q)u+swy, Module, isirreducible or zero.
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Parts (a) and (b) are in 8V.7 below, along with parts (a) and (b) of
Theorem 0.50. Discussion of (c) beginsin 8VI11.5 below and continues
in Chapter XII. The definition of D(Ge/Q) .45y, Will not concern us
at thistime. The pointisthat U (g) can be enlarged to anaturally defined
algebrathat always acts irreducibly on £s(2) if £s(Z) # 0. However,
U (g) itself sometimes acts irreducibly and sometimes acts reducibly.
Strengthening the hypothesis “weakly fair” to “fair” in Theorem 0.53
does not yield a conclusion (c) that is closer to (c) or (¢') of Theorem
0.50; for example, one cannot guarantee that £s(Z) is nonzero, or that
itisirreducible or zero asa (g, K) module.

Thereisagain aparallel result for unitarity.

Theorem 0.54. If Z isaweakly fair one-dimensional infinitesimally
unitary (I, L N K) module with invariant form (-, -)_, then the corre-
sponding form (-, -)g 0N Ls(Z) is positive definite, and consequently
Ls(Z) isinfinitesimally unitary.

It is natural to try to understand what it is about one-dimensional
representations that makes Theorems 0.53 and 0.54 work. Doing so
involves looking in detail at the proofs, and we postpone this project
to Chapter XII. Examination of the proof of Theorem 0.54 leads to
the definition of “weakly unipotent” (I, L N K) modules. When such a
module Z isweakly fair, we obtain the same conclusion asin Theorem
0.54, that Z infinitesimally unitary implies £Ls(2) infinitesimally unitary.
Thesituation with generalizing Theorem 0.53 ismore complicated. The
algebraD(Ge/Q)p+suy), I€adsto”Dixmier algebras,” and irreducibility
is expressed in terms of them. The algebra U (g) maps into a Dixmier
algebra, with very large image, and a conclusion of irreducibility of
Ls(Z) isvalidwhen U (g) mapsonto the Dixmier algebra. These matters
are discussed in Chapter XI1 below.

9. Transfer Theorem

Now that we have a construction that often yields irreducible unitary
representations, we want to be able to use them. In practice, being able
to use these representations requires understanding how they fit into a
classification and understanding how they can be constructed in other
ways.

Thefirst ingredient inthisanalysisisto realize parabolic induction on
thelevel of (g, K) modules. Inparabolicinductionweinduceasmooth or
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Hilbert-space representation from a parabolic subgroup of G to G itself.
The usual convention is to start with an irreducible representation of
M, aone-dimensional representation of A, and thetrivial representation
of N, and then to proceed asin 82. Trandating the data by a certain
nonunitary one-dimensional representation e’ on A ensures that unitary
representationsof M A lead to unitary representationsof G. Letl = m@a
be the complexified Lie algebra of M A, let n be the complexified Lie
algebraof N, and put g = [@n. If wewrite Z for theunderlying (I, LNK)
modul e of therepresentation of M A and denoteby z* theeffect of putting
o in place, then the underlying (g, K) module turns out to be

K LNK
FS,mK(Pfoﬁ,mK(ZJ))-

This conclusion remainsvalid if Z isreplaced by any (1, L n K) module
of finite length. Moreover

CrE O (Prof oz =0 forj > 0.

Thus the (g, K) analog of parabolic induction is notationally similar
to cohomological induction except on two points:

(@) the normalization Z — Zz* is different from the earlier normal-
ization Z > Z*

(b) the representation of interest occurs in cohomology of degree 0
rather than degree S.

L et us drop the normalizations for the remainder of this Introduction.
(In practice, we eventually want some normalization back in place in
order to make unitary representations go to unitary representations.)
Suppose q is any parabolic subalgebra of g and g~ is the opposite
parabolic. Let us suppose that ¢ N g~ = I is the complexification of
ared Lie subalgebraly of go. We write u for the nilpotent radical of q,
sothat q = [® u. By L N K we mean any closed subgroup of K whose
Liealgebraisiyn ¢ such that Ad(L N K)u € u. Then we can form

(055) (M0 (Erof @) and  (I8f,0;(nddHi)2)).

The problemisto understand the (g, K) modules (0.55), relating them
to each other asu and j vary. There are two toolsfor doing so, and they
can then be iterated:

(a) the Transfer Theorem addresses a one-step change in u in the
special case that [ reduces to a Cartan subalgebra. Under a
condition on Z, the theorem matches the module in degree |
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for one choice of u with the module in degree j + 1 for another
choice of wu.

(b) the double-induction spectral sequence addresses what happens
when two I" type constructions or two IT type constructions are
composed.

These results are made precise and proven in Chapter XI. The Transfer
Theorem isthe fifth main theorem of the book.

The Transfer Theorem leads to striking relationships among (g, K)
modules (0.55) when L is a Cartan subgroup of G. Under some restric-
tionson Z, such a (g, K) module is called standard. Various classi-
fication theorems are formulated in terms of quotients or submodules
of standard modules. One such is the Langlands classification, which
realizes irreducible representations as the result of a three-step process
consisting of

(i) construction of discrete series and “limits of discrete series’
(ii) passage to a standard representation by Mackey induction
(iii) extraction of an irreducible quotient or subrepresentation (de-
pending on the particular version of the Langlands classification,
and depending on the use of TT or T in the classification).
Step (i) is given by cohomological induction, and step (ii) is parabolic
induction. The Transfer Theorem implies that the same (g, K) modules
result if one goes through athree-step process consisting of
(i) construction of a “principal-series’ representation of a group
“split modulo center,” using Mackey parabolic induction

(ii) passageto astandard representation by cohomological induction

(iii) extraction of an irreducible subrepresentation or quotient (de-

pending on the use of I or T in the classification).

One of the uses of these results is to place cohomologically induced
modules in the Langlands classification, at least in the weakly good
range. Using the results, one can transfer the Signature Theorem to a
theorem cast solely in terms of the Langlands classification. The trans-
ferred theorem is a powerful tool for exhibiting Langlands parameters
that do not correspond to unitary representations.



