CONTENTS

	Con	Х	
	List	xi	
	Prej	xiii	
	Dep	xvii	
	Star	xviii	
	Gui	xix	
I.	PRE	ELIMINARIES ABOUT THE INTEGERS,	1
	PUI	LY NOWHALS, AND MATRICES	1
	1.	Division and Euclidean Algorithms	1
	2.	Unique Factorization of Integers	4
	3.	Unique Factorization of Polynomials	9
	4.	Permutations and Their Signs	15
	5.	Row Reduction	19
	6. 7	Matrix Operations	24
	7.	Problems	30
II.	VE	CTOR SPACES OVER $\mathbb{Q}, \mathbb{R},$ AND \mathbb{C}	33
	1.	Spanning, Linear Independence, and Bases	33
	2.	Vector Spaces Defined by Matrices	38
	3.	Linear Maps	42
	4.	Dual Spaces	50
	5.	Quotients of Vector Spaces	54
	6.	Direct Sums and Direct Products of Vector Spaces	58
	7.	Determinants	65
	8.	Eigenvectors and Characteristic Polynomials	73
	9.	Bases in the Infinite-Dimensional Case	77
	10.	Problems	82
III.	INN	ER-PRODUCT SPACES	88
	1.	Inner Products and Orthonormal Sets	88
	2.	Adjoints	98
	3.	Spectral Theorem	104
	4.	Problems	111

Contents

IV.	GR	OUPS AND GROUP ACTIONS	116
	1.	Groups and Subgroups	117
	2.	Quotient Spaces and Homomorphisms	128
	3.	Direct Products and Direct Sums	134
	4.	Rings and Fields	140
	5.	Polynomials and Vector Spaces	147
	6.	Group Actions and Examples	158
	7.	Semidirect Products	166
	8.	Simple Groups and Composition Series	170
	9.	Structure of Finitely Generated Abelian Groups	174
	10.	Sylow Theorems	183
	11.	Categories and Functors	188
	12.	Problems	198
V.	TH	EORY OF A SINGLE LINEAR TRANSFORMATION	209
	1.	Introduction	209
	2.	Determinants over Commutative Rings with Identity	212
	3.	Characteristic and Minimal Polynomials	216
	4.	Projection Operators	224
	5.	Primary Decomposition	226
	6.	Jordan Canonical Form	229
	7.	Computations with Jordan Form	235
	8.	Problems	239
VI.	MU	LTILINEAR ALGEBRA	245
	1.	Bilinear Forms and Matrices	246
	2.	Symmetric Bilinear Forms	250
	3.	Alternating Bilinear Forms	253
	4.	Hermitian Forms	255
	5.	Groups Leaving a Bilinear Form Invariant	257
	6.	Tensor Product of Two Vector Spaces	260
	7.	Tensor Algebra	274
	8.	Symmetric Algebra	280
	9.	Exterior Algebra	288
	10.	Problems	292
VII.	AD	VANCED GROUP THEORY	303
	1.	Free Groups	303
	2.	Subgroups of Free Groups	314
	3.	Free Products	319
	4.	Group Representations	326

viii

		Contents	ix			
VII. ADVANCED GROUP THEORY (Continued)						
	5.	Burnside's Theorem	342			
	6.	Extensions of Groups	344			
	7.	Problems	357			
VIII.	CO	MMUTATIVE RINGS AND THEIR MODULES	367			
	1.	Examples of Rings and Modules	367			
	2.	Integral Domains and Fields of Fractions	378			
	3.	Prime and Maximal Ideals	381			
	4.	Unique Factorization	384			
	5.	Gauss's Lemma	390			
	6.	Finitely Generated Modules	396			
	7.	Orientation for Algebraic Number Theory and				
		Algebraic Geometry	408			
	8.	Noetherian Rings and the Hilbert Basis Theorem	414			
	9.	Integral Closure	417			
	10.	Localization and Local Rings	425			
	11.	Dedekind Domains	434			
	12.	Problems	439			
IX.	FIE	LDS AND GALOIS THEORY	448			
	1.	Algebraic Elements	449			
	2.	Construction of Field Extensions	453			
	3.	Finite Fields	457			
	4.	Algebraic Closure	460			
	5.	Geometric Constructions by Straightedge and Compass	464			
	6.	Separable Extensions	469			
	7.	Normal Extensions	476			
	8.	Fundamental Theorem of Galois Theory	479			
	9.	Application to Constructibility of Regular Polygons	483			
	10.	Application to Proving the Fundamental Theorem of Algebra	486			
	11.	Application to Unsolvability of Polynomial Equations with				
		Nonsolvable Galois Group	488			
	12.	Construction of Regular Polygons	493			
	13.	Solution of Certain Polynomial Equations with Solvable				
		Galois Group	501			
	14.	Proof That π Is Transcendental	510			
	15.	Norm and Trace	514			
	16.	Splitting of Prime Ideals in Extensions	521			
	17.	Two Tools for Computing Galois Groups	527			
	18.	Problems	534			

Contents

X.	MO	DULES OVER NONCOMMUTATIVE RINGS	544
	1.	Simple and Semisimple Modules	544
	2.	Composition Series	551
	3.	Chain Conditions	556
	4.	Hom and End for Modules	558
	5.	Tensor Product for Modules	565
	6.	Exact Sequences	574
	7.	Problems	579
APP	APPENDIX		
	A1.	Sets and Functions	583
	A2.	Equivalence Relations	589
	A3.	Real Numbers	591
	A4.	Complex Numbers	594
	A5.	Partial Orderings and Zorn's Lemma	595
	A6.	Cardinality	599
	Hints for Solutions of Problems		
	Selected References		
	Index of Notation		
	Index		

CONTENTS OF ADVANCEDALGEBRA

- I. Transition to Modern Number Theory
- II. Wedderburn-Artin Ring Theory
- III. Brauer Group
- IV. Homological Algebra
- V. Three Theorems in Algebraic Number Theory
- VI. Reinterpretation with Adeles and Ideles
- VII. Infinite Field Extensions
- VIII. Background for Algebraic Geometry
- IX. The Number Theory of Algebraic Curves
- X. Methods of Algebraic Geometry

х