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CHAPTER I

Wedderburn—Artin Ring Theory

Abstract. This chapter studies finite-dimensional associative division algebras, as well as other
finite-dimensional associative algebras and closely related rings. The chapter is in two parts that
overlap slightly in Section 6. The first part gives the structure theory of the rings in question, and
the second part aims at understanding limitations imposed by the structure of a division ring.

Section 1 briefly summarizes the structure theory for finite-dimensional (nonassociative) Lie
algebras that was the primary historical motivation for structure theory in the associative case. All
the algebras in this chapter except those explicitly called Lie algebras are understood to be associative.

Section 2 introduces left semisimple rings, defined as riRggith identity such that the left
R moduleR is semisimple. Wedderburn's Theorem says that such a ring is the finite product of
full matrix rings over division rings. The number of factors, the size of each matrix ring, and the
isomorphism class of each division ring are uniquely determined. It follows that left semisimple
and right semisimple are the same. If the ring is a finite-dimensional algebra overfa fibkeh the
various division rings are finite-dimensional division algebras dverThe factors of semisimple
rings are simple, i.e., are nonzero and have no nontrivial two-sided ideals, but an example is given
to show that a simple ring need not be semisimple. Every finite-dimensional simple algebra is
semisimple.

Section 3 introduces chain conditions into the discussion as a useful generalization of finite
dimensionality. A ringR with identity is left Artinian if the left ideals of the ring satisfy the
descending chain condition. Artin’s Theorem for simple rings is that left Artinian is equivalent to
semisimplicity, hence to the condition that the given ring be a full matrix ring over a division ring.

Sections 4-6 concern what happens when the assumption of semisimplicity is dropped but some
finiteness condition is maintained. Section 4 introduces the Wedderburn—Artin radi¢lofeel
left Artinian ring R as the sum of all nilpotent left ideals. The radical is a two-sided nilpotent ideal.
Itis O if and only if the ring is semisimple. More generalRy/ radR is always semisimple iR is
left Artinian. Sections 5-6 state and prove Wedderburn’s Main Theorem—that a finite-dimensional
algebraR with identity over a fieldF of characteristic 0 has a semisimple subalgebsach thatR
is isomorphic as a vector space3@ radR. The semisimple algebi@is isomorphic toR/ radR.

Section 5 gives the hard part of the proof, which handles the special cas¥/ tlzatR is isomorphic

to a product of full matrix algebras ovér. The remainder of the proof, which appears in Section 6,
follows relatively quickly from the special case in Section 5 and an investigation of circumstances
under which the tensor product overof two semisimple algebras is semisimple. Such a tensor
product is not always semisimple, but it is semisimple in characteristic 0.

The results about tensor products in Section 6, but with other hypotheses in place of the condition
of characteristic 0, play a role in the remainder of the chapter, which is aimed at identifying certain
division rings. Sections 7-8 provide general tools. Section 7 begins with further results about tensor
products. Then the Skolem—Noether Theorem gives a relationship between any two homomorphisms
of a simple subalgebra into a simple algebra whose center coincides with the underlying field of
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1. Historical Motivation 77

scalars. Section 8 proves the Double Centralizer Theorem, which says for this situation that the
centralizer of the simple subalgebra in the whole algebra is simple and that the product of the
dimensions of the subalgebra and the centralizer is the dimension of the whole algebra.

Sections 9—-10 apply the results of Sections 6—8 to obtain two celebrated theorems—Wedderburn’s
Theorem about finite division rings and Frobenius’s Theorem classifying the finite-dimensional
associative division algebras over the reals.

1. Historical Motivation

Elementary ring theory came from several sources historically and was already in
place by 1880. Some of the sources are field theory (studied by Galois and others),
rings of algebraic integers (studied by Gauss, Dirichlet, Kummer, Kronecker,
Dedekind, and others), and matrices (studied by Cayley, Hamilton, and others).
More advanced general ring theory arose initially not on its own but as an effort
to imitate the theory of “Lie algebras,” which began about 1880.

A brief summary of some early theorems about Lie algebras will put matters
in perspective. The term “algebra” in connection with a fiEldefers at least to
an F vector space with a multiplication that ks bilinear. This chapter will deal
only with two kinds of such algebras, the Lie algebras and those algebras whose
multiplication is associative. If the modifier “Lie” is absent, the understanding is
that the algebra is associative.

Lie algebras arose originally from “Lie groups”—which we can regard for
current purposes as connected groups with finitely many smooth parameters—
by a process of taking derivatives along curves at the identity element of the
group. Precise knowledge of that process will be unnecessary in our treatment,
but we describe one example: The vector spdg€R) of all n-by-n matrices over
R becomes a Lie algebra with multiplication defined by the “bracket product”
[X,Y] = XY =Y X If Gis a closed subgroup of the matrix group @LR)
andg is the set of all members dfl,(R) of the form X = ¢’(0), wherec is a
smooth curve irG with c(0) equal to the identity, then it turns out that the vector
spaceg is closed under the bracket product and is a Lie algebra. Although one
might expect the Lie algebrato give information about the Lie grou@ only
infinitesimally at the identity, it turns out thgtdetermines the multiplication rule
for G in a whole open neighborhood of the identity. Thus the Lie group and Lie
algebra are much more closely related than one might at first expect.

We turn to the underlying definitions and early main theorems about Lie alge-
bras. LetF be afield. A vector spac& overF with anF bilinear multiplication
(X,Y) = [X, Y]is aLie algebraif the multiplication has the two properties

() [X,X] =0forall X € A,
(i) (Jacobi identity) [X,[Y, Z]] + [Y.[Z, X]] + [Z,[X,Y]] = O for all
X,Y,Z e A
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Multiplication is often referred to asracket. It is usually not associative. The
vector spaceM,(F) with [X, Y] = XY — Y X is a Lie algebra, as one easily
checks by expanding out the various brackets that are involved; it is denoted by
gl(n, F).

The elementary structural definitions with Lie algebras run parallel to those
with rings. ALie subalgebraSof Ais a vector subspace closed under brackets,
anideal | of Ais a vector subspace such thAt [yY]isin | for X € | andY € A,
ahomomorphism¢ : A; — A, of Lie algebras is a linear mapping respecting
brackets in the sense thafX, Y] = [¢(X), ¢(Y)] for all X,Y € Aj, and an
isomorphism is an invertible homomorphism. Every ideal is a Lie subalgebra.
In contrast to the case of rings, there is no distinction between “left ideals” and
“right ideals” because the bracket product is skew symmetric. Under the passage
from Lie groups to Lie algebras, abelian Lie groups yield Lie algebras with all
brackets 0, and thus one says that a Lie algelabaédianif all its brackets are 0.

Examples of Lie subalgebras gf(n, F) are the subalgebra(n, F) of all
matrices of trace 0, the subalgebran, F) of all skew-symmetric matrices, and
the subalgebra of all upper-triangular matrices.

The elementary properties of subalgebras, homomorphisms, and so on for Lie
algebras mimic what is true for rings: The kernel of a homomorphism is an
ideal. Any ideal is the kernel of a quotient homomorphism! 1§ an ideal in
A, then the ideals oA/l correspond to the ideals & containingl, just as
in the First Isomorphism Theorem for rings. lIfand J are ideals inA, then
I+ J)/1 =3/(1 nJ),justas in the Second Isomorphism Theorem for rings.

The connection of Lie algebras to Lie groups makes one want to introduce
definitions that lead toward classifying all Lie algebras that are finite-dimensional.
We therefore assume for the remainder of this section that all Lie algebras under
discussion are finite-dimensional oMér Some of the steps require conditions
on F, and we shall assume th&thas characteristic O.

Group theory already had a notion of “solvable group” from Galois, and this
leads to the notion of solvable Lie algebra.Anlet [A, A] denote the linear span
of all [X, Y] with X,Y € A; [A, Al is called thecommutator ideal of A, and
A/[A, Al is abelian. In fact, A, A] is the smallest ideal in A such thatA/I
is abelian. Starting from, let us form successive commutator ideals. Thus put
Ag=A A= [AOa A0]1 ooy A= [An—l’ An—1]1 so that

A=A2 A2 2A 2.

The terms of this sequence are all the same from some point on, by finite dimen-
sionality, and we say thak is solvableif the terms are ultimately 0. One easily
checks that the surh + J of two solvable ideals i, i.e., the set of sums, is

a solvable ideal. By finite dimensionality, there exists a unique largest solvable
ideal. This is called theadical of A and is denoted by rafl. The Lie algebra
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Ais said to besemisimpleif rad A = 0. It is easy to use the First Isomorphism
Theorem to check thad/ rad A is always semisimple.

Inthe direction of classifying Lie algebras, one might therefore want to see how
all solvable Lie algebras can be constructed by successive extensions, identify
all semisimple Lie algebras, and determine how a general Lie algebra can be
constructed from a semisimple Lie algebra and a solvable Lie algebra by an
extension.

The first step in this direction historically concerned identifying semisimple
Lie algebras. We say that the Lie algebkas simple if dim A > 1 and if A
contains no nonzero proper ideals.

Working with the fieldC but in a way that applies to other fields of
characteristic 0, W. Killing proved in 1888 tha& is semisimple if and only
if Aisthe (internal) direct sum of simple ideals. In this case the direct summands
are unique, and the only ideals Aare the partial direct sums.

This result is strikingly different from what happens for abelian Lie algebras,
for which the theory reduces to the theory of vector spaces. A 2-dimensional
vector space is the internal direct sum of two 1-dimensional subspaces in many
ways. But Killing’s theorem says that the decomposition of semisimple Lie
algebras into simple ideals is unique, not just unique up to some isomorphism.

E. Cartan in his 1894 thesis classified the simple Lie algebras, up to isomor-
phism, for the case that the field@ The Lie algebrasi(n, C) forn > 2 and
so(n, C) for n = 3 andn > 5 were in his list, and there were others. Killing had
come close to this classification in his 1888 work, but he had made a number of
errors in both his statements and his proofs.

E. E. Levi in 1905 addressed the extension problem for obtaining all finite-
dimensional Lie algebras ovér from semisimple ones and solvable ones. His
theorem is that for any Lie algebvs there exists a subalgeb&isomorphic to
A/radA such thatA = S radA as vector spaces. In essence, this result says
that the extension defining is given by a semidirect product.

The final theorem in this vein at this time in history was a 1914 result of Cartan
classifying the simple Lie algebras when the fi€las R. This classification is a
good bit more complicated than the classification wkeis C.

With this background in mind, we can put into context the corresponding
developments for associative algebras. Although others had done some earlier
work, J. H. M. Wedderburn made the first big advance for associative algebras in
1905. Wedderburn’s theory in a certain sense is more complicated than the theory
for Lie algebras because left ideals in the associative case are not necessarily two-
sided ideals. Let us sketch this theory.

For the remainder of this section until the last paragra@phill denote a finite-
dimensional associative algebra over a fiEldf characteristic 0, possibly the 0
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algebra. We shall always assume thdtas an identity. Although we shall make
some definitions here, we shall repeat them later in the chapter at the appropriate
times. For many results later in the chapter, the fieMill not be assumed to be
of characteristic O.

As in Chapter X oBasic Algebraa unital leftA moduleM is said to be simple
if itis nonzero and it has no proper nonzekaubmodules, semisimple if it is the
sum (or equivalently the direct sum) of simpesubmodules. The algebrais
semisimpleif the left A moduleA is a semisimple module, i.e., Kis the direct
sum of simple left idealsA is simpleif it is nonzero and has no nontrivial two-
sided ideals. In contrast to the setting of Lie algebras, we make no exception for
the 1-dimensional case; this distinction is necessary and is continually responsible
for subtle differences between the two theories.

Wedderburn’s firsttheorem has two partsto it, the first one modeled on Killing’s
theorem for Lie algebras and the second one modeled on Cartan’s thesis:

(i) The algebraA is semisimple if and only if it is the (internal) direct sum
of simple two-sided ideals. In this case the direct summands are unique,
and the only two-sided ideals @f are the partial direct sums.

(ii) The algebraAis simple if and only ifA = M, (D) for some integen > 1
and some division algebria over F. In particular, ifF is algebraically
closed, therA = M, (F) for somen.

E. Artin generalized the Wedderburn theory to a suitable kind of “semisimple
ring.” For part of the theory, he introduced a notion of “radical” for the associative
case—theadical of a finite-dimensional associative algel#deing the sum of
the “nilpotent” left ideals ofA. Here a left ideal is callednilpotent if 1X =0
for somek. The radical radh is a two-sided ideal, an8/rad A is a semisimple
ring.

Wedderburn’s Main Theorem, proved later in time and definitely assuming
characteristic 0, is an analog for associative algebras of Levi’s result about Lie
algebras. The result for associative algebras is fhdecomposes as a vector-
space direct sumA = Se@radA, whereSis a semisimple subalgebra isomorphic
to A/ radA.

The remaining structural question for finite-dimensional associative algebras
is to say something about simple algebras when the field is not algebraically
closed. Such a result may be regarded as an analog of the 1914 work by Cartan.
In the associative case one then wants to know whé isemorphism classes of
finite-dimensional associative division algebEaare for a given field=. We now
drop the assumption that the fididhas characteristic 0. In asking this question,
one does not want to repeat the theory of field extensions. Consequently one
looks only for classes of division algebras whose center i F is algebraically
closed, the only sucb is F itself, as we shall observe in more detail in Section 2.
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If Fis afinite field, one is led to another theorem of Wedderburn’s, sayindgthat
has to be commutative and hence tBat F; this theorem appears in Section 9.

If FisR, oneis ledto atheorem of Frobenius saying that there are just two such
D’s up toR isomorphism, nameliR itself and the quaterniord; this theorem
appears in Section 10. For a general fi€ldit turns out that the set of classes

of finite-dimensional division algebras with centérforms an abelian group.
The group is called the “Brauer group” &f. Its multiplication is defined by the
condition that the class d); timesD; is the class of a division algebiag such
thatD; ® e D, = My(D3) for somen; the inverse of the class @ is the class

of the opposite algebr®°®, and the identity is the class &. The study of the
Brauer group is postponed to Chapter lll. This group has an interpretation in terms
of cohomology of groups, and it has applications to algebraic number theory.

2. Semisimple Rings and Wedderburn’s Theorem

We now begin our detailed investigation of associative algebras over a field. In
this section we shall address the first theorem of Wedderburn’s that is mentioned
in the previous section. It has two parts, one dealing with semisimple algebras
and one dealing with finite-dimensional simple algebras. The first part does not
need the finite dimensionality as a hypothesis, and we begin with that one.

Let R be a ring with identity. The rindQR is left semisimpleif the left R
module R is a semisimple module, i.e., R is the direct sum of minimal left
ideals! In this caseR = @, _g!i for some setS and suitable minimal left
idealsl;. SinceR has an identity, we can decompose the identity according to
the direct sum as & 1;, + --- + 1, for some finite subsefiy, ..., in} of S,
where 1, is the component of 1 ith,. Multiplying by r € R on the left, we
see thatR € Py_, li,. ConsequentlyR has to be dinite sum of minimal left
ideals. A ringR with identity isright semisimple if the right R moduleR is a
semisimple module. We shall see later in this section that left semisimple and
right semisimple are equivalent.

EXAMPLES OF SEMISIMPLE RINGS

(1) If D is a division ring, then we saw in Example 4 in Section X.Basic
Algebrathat the ringR = Mp(D) is left semisimple in the sense of the above
definition. Actually, that example showed more. It showed Rats a leftR
module is given byM,(D) = D" @ - -- @ D", where eactD" is a simple leftR
module and th¢™ summand" corresponds to the matrices whose only nonzero
entries are in th¢™ column. The leftR moduleM,, (D) has a composition series
whose terms are the partial sums of theummandD". If M is any simple
left Mp(D) module and ifx # 0 is in M, thenM = M,(D)x. If we set
I ={r € My(D) | rx = 0}, thenl is a left ideal inM,(D) andM = Mu(D)/I

1By convention, a “minimal left ideal” always means a “minimal nonzero left ideal.”
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as a leftM,(D) module. In other wordsM is an irreducible quotient module
of the left Mp(D) module M, (D). By the Jordan—HItler Theorem (Corollary
10.7 ofBasic Algebra, M occurs as a composition factor. Hende= D" as

a left M(D) module. Hence every simple Idft,(D) module is isomorphic to
D". We shall use this style of argument repeatedly but will ordinarily include
less detalil.

(2) If Ry,..., Ry are left semisimple rings, then the direct prodikt=
]_[i”:1 R, is left semisimplé. In fact, each minimal left ideal d®,, when included
into R, is a minimal left ideal ofR. HenceR is the sum of minimal left ideals
and is left semisimple. By the same kind of argument as for Example 1, every
simple leftR module is isomorphic to one of these minimal left ideals.

Lemma 2.1. Let D be a division ring, leR = My(D), and letD" be the
simple left R module of column vectors. Each memberfacts onD" by
scalar multiplication on theght side, yielding a member of ErgD"). In turn,
Endr(D") is aring, and this identification therefore is an inclusion of the members
of D into the rightD module Eng(D"). The inclusion is in fact an isomorphism
of rings: D° = Endg(D"), whereD? is the opposite ring ob.

PrOOF Lety : D — Endr(D") be the function given by(d)(v) = vd.
Thengdd)(v) = v(dd) = (vd)d’ = ¢(d)(vd) = ¢(d)(p(d)(v)). Since the
order of multiplication inD is reversed by, ¢ is a ring homomorphism ob°
into Endk(D"). It is one-one becaude® is a division ring and has no nontrivial
two-sided ideals. To see that it is onto "), let f be in Enck(D"). Put

1 d
0 dz . . .
fl.]=1]. 1. SincefisanR module homomorphism,
0 dn
ap a 0.0 1 a 0--0 1
az a 0.0 0 a0--0 0
f =f =1 - f
an an0--0 0 a 0--0 0
ap 0.0 d a;d ag
a 00 dp axd a»
an 00 dn and an
Thereforep(d) = f, andg is onto. (]

2Some comment is appropriate about the notafoe= [["_; R and the terminology “direct
product.” Indeed]]"_; R; is a product in the sense of category theory within the category of rings
or the category of rings with identity. Sometimes one vi€wadternatively as built fronm two-sided
ideals, each corresponding to one of thebordinates; in this case, one may say fRa the “direct
sum” of these ideals. This direct sum is to be regarded as a direct sum of abelian groups, or perhaps
vector spaces dR modules, but it is not a coproduct within the category of rings with identity.
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Theorem 2.2(Wedderburn). IfR is any left semisimple ring, then
R E Mnl(Dl) X - X Mnr(Dr)

for suitable division ring®1, . .., D, and positive integens, ..., n.. The num-
berr is uniquely determined bR, and the ordered paif®1, D1), ..., (n;, Dr)
are determined up to a permutation{df ..., r} and an isomorphism of each
D;. There are exactly mutually nonisomorphic simple leR modules, namely
(D)™, ..., (D)™.

PrOOE. Write R as the direct sum of minimal left ideals, and then regroup
the summands according to th&8liisomorphism type aR = GBJLl n;V;, where
n;V; is the direct sum ofi; submodulesk isomorphic toV; and whereV; 2V,
fori # j. Theisomorphismis one of unital lflRmodules. PubD? = Endgr(V;).
This is a division ring by Schur's Lemma (Proposition 10.4lBakic Algebra.
Using Proposition 10.14 dasic Algebrawe obtain an isomorphism of rings

r r
R® = Ends R= Homg (D niVi, D nyVy ). (+)
i=1 j:l

Define p; : @;:1 nV; — nV; to be theith projection andg : nV, —
Pi_1 MV to be thei™ inclusion. Let us see that the right side @f is iso-
morphic as aring t§ [; Endr(n; Vi) via the mappingf — (p1fqr, ..., pr fo).
What is to be shown is that; fg; = O fori # j. Herep; fg is a member
of Homg(ni Vi, n;Vj). The abelian group Hog(n; Vi, n;V;) is the direct sum
of abelian groups isomorphic to Hatv;, V) by Proposition 10.12, and each
Homg(V;, V)) is 0 by Schur’'s Lemma (Proposition 10.4a).

Referring to(x), we therefore obtain ring isomorphisms

r

r
R® = [T Homgr(m Vi, ni Vi) = [] Ends(niVi)

i=1 i=1
r

= [] My, (Endr(Vh)) by Corollary 10.13
i=1
r

= [T Mp, (DP) by definition of D
i=1

Reversing the order of multiplication iR° and using the transpose map to
reverse the order of multiplication in eadi, (D?), we conclude thaR =
[Ti_1 My, (Di). This proves existence of the decomposition in the theorem.

We still have to identify the simple leR modules and prove an appropriate
uniqueness statement. As we recalled in Example 1, we have a decomposition
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Mn (D)) = D" @ --- @ D/ of left My, (Dj) modules, and each ter®" is a
simple leftM,, (D;) module. The decomposition just proved allows us to regard
each termD;" as a simple lefR module, 1< i < r. Each of these modules
is acted upon by a different coordinate Bf and hence we have produced at
leastr nonisomorphic simple lefR modules. Any simple lefR module must
be a quotient oR by a maximal left ideal, as we observed in Example 2, hence
a composition factor as a consequence of the Jordaldeld Theorem. Thus
it must be one of thev’s in the previous part of the proof. There are only
r nonisomorphic such;’s, and we conclude that the number of simple Igft
modules, up to isomorphism, is exactly

For uniqueness suppose tHat= Mn'l(D/l) x .-+ x Mp, (Dg) as rings. Let
VJ-’ = (Dj’)”f be the unique simple IeMnj(Dj’) module up to isomorphism, and
regarde’ as a simple leftR module. Then we hav® = @le anVj’ as left
R modules. By the Jordan-ettier Theorem we must have= s and, after a
suitable renumbering), = nj andV; = V{ for 1 <i < r. Thus we have ring
isomorphisms

(D)° = Endyv,, o) (V) by Lemma 2.1
= Endk(V)
= Ends(V)) sinceV, = V/
= D?.
Reversing the order of multiplication givé&® = D;, and the proof is complete.
O
Corollary 2.3. For a ringR, left semisimple coincides with right semisimple.

ReEMARK. Therefore we can henceforth refer to left semisimple rings unam-
biguously asemisimple

PrROOF The theorem gives the form of any left semisimple ring, and each ring
of this form is certainly right semisimple. O

Wedderburn’s original formulation of Theorem 2.2 was for algebras over a
field F, and he assumed finite dimensionality. The theorem in this case gives

R= Mp,(D1) x -+ x My, (Dy),

and the proof shows thdd? = Endr(V;), whereV; is a minimal left ideal of

R of thei" isomorphism type. The fiel& lies inside Eng(V;), each member
of F yielding a scalar mapping, and hence edxhis a division algebra over
F. EachD; is necessarily finite-dimensional ovEr sinceR was assumed to be
finite-dimensional.
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We shall make occasional use in this chapter of the fact thatig a finite-
dimensional division algebra over an algebraically closed fielthenD = F.
To see this equality, suppose thxais a member oD but not of F, i.e., is not an
F multiple of the identity. Themx andF together generate a subfigfdx) of D
that is a nontrivial algebraic extension Bf contradiction. Consequently every
finite-dimensional semisimple algebRaover an algebraically closed fiek is
of the form

R= My, (F) x - x My (F),

for suitable integerss, ..., n,.

As we saw, the finite dimensionality plays no role in decomposing semisim-
ple rings as the finite product of rings that we shall call “simple.” The place
where finite dimensionality enters the discussion is in identifying simple rings
as semisimple, hence in establishing a converse theorem that every finite direct
product of simple rings, each equal to an ideal of the given ring, is necessarily
semisimple. We say that a nonzero riRgwith identity is simple if its only
two-sided ideals are 0 arikl

EXAMPLES OF SIMPLE RINGS

(1) If D is a division ring, therM,(D) is a simple ring. In fact, let] be a
two-sided ideal inM, (D), fix an ordered pai¢i, j) of indices, and let

| = {x € D | some membeK of J hasXj; = x}.

Multiplying X in this definition on each side by scalar matrices with entries in
D, we see that is a two-sided ideal iD. If | = O for all i, j), thenJ = 0.
So assume for somg, j) thatl = 0. Thenl = D for that(i, j), and we may
suppose that somx in J hasX;; = 1. If E denotes the matrix that is 1 in
the (k, )" place and is O elsewhere, th&n X Ej; = Ej; has to be inJ. Hence
Ew = ExiEij Ej has to be inJ, andJ = Mu(D).

(2) Let R be theWeyl algebra overC in one variable, namely

R= { nZ:_O PMX)(%)n ‘ eachP, is in C[x], and the sum is finit}a

To give a more abstract construction®fwe can viewR as(C[x, %] subject to
the reIation% X=X % + 1; this is not to be a quotient of a polynomial algebra
in two variables but a quotient of a tensor algebra in two variables. We omit the
details. We shall now prove that the riftis simple but not semisimple.
To see thaR is a simple ring, we easily check the two identities
() L (x™ L) =mxm1 &4 xm & by the product rule,
an

(i) Lx=nL% 4+ x & byinduction when applied to a polynomiélx).
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Let | be a nonzero two-sided ideal R, and fix an elemenX # 0in|. Letx™
be the highest power of appearing inX, and Ietdd—xnn be the highest power %
appearing in terms of involving x™. Letl andr denote “left multiplication by”
and “right multiplication by,” and applfi (&) —r (&))" to X. Since (i) shows

that | |
(&) —r(FE)x¥(G) = kEHF)

the result of computingl (&) — r(&))"X is a polynomial in & of degree
exactlyn with no x’s. Application of (r (x) — 1 (x))" to the result, using (ii),
yields a nonzero constant. We conclude that 1 ik &and therefore that = R.
HenceR is simple.

To show thatR is not semisimple, first note th&{x] is a natural unital lefR
module. We shall show th& has infinite length as a leR module, in the sense
of the length of finite filtrations. In fact,

R2R(L) 2R(&) 2 2R (+)

is a finite filtration of leftR submodules oR. If R(%)k = R(%)kﬂ, then

(%)k = r(%)k+l for somer € R. Applying these two equal expressions for
a member ofR to the membexX of the left R module C[x], we arrive at a
contradiction and conclude that every inclusior(:# is strict. ThereforeR has

infinite length and is not semisimple.

The extra hypothesis that Wedderburn imposed so that simple rings would
turn out to be semisimple is finite dimensionality. Wedderburn’s result in this
direction is Theorem 2.4 below. This hypothesis is quite natural to the extent
that the subject was originally motivated by the theory of Lie algebras. E. Artin
found a substitute for the assumption of finite dimensionality that takes the result
beyond the realm of algebras, and we take up Artin’s idea in the next section.

Theorem 2.4 (Wedderburn). LetR be a finite-dimensional algebra with
identity over a fieldF. If R is a simple ring, therR is semisimple and hence
is isomorphic toM,(D) for some integen > 1 and some finite-dimensional
division algebraD over F. The integen is uniquely determined bR, andD is
unigue up to isomorphism.

PrROOFE By finite dimensionality,R has a minimal left ideaV/. Forr in R,
form the setVr. This is a left ideal, and we claim that it is minimal or is 0. In
fact, the functionv — or is R linear fromV ontoVr. SinceV is simple as a
left R module,Vr is simple or 0. The sunh = >, i vz VT is @ two-sided
ideal inR, and it is not 0 becausél # 0. SinceRis simple,| = R. Then the
left RmoduleR is exhibited as the sum of simple lé&&modules and is therefore
semisimple. The isomorphism witfi, (D) and the uniqueness now follow from
Theorem 2.2. O
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3. Rings with Chain Condition and Artin’'s Theorem

Parts of Chapters VIII and IX oBasic Algebramade considerable use of a
hypothesis that certain commutative rings are “Noetherian,” and we now extend
this notion to noncommutative rings. A ririgwith identity isleft Noetherian if

the left R moduleR satisfies the ascending chain condition for its left ideals. Itis
left Artinian if the left R moduleR satisfies the descending chain condition for
its left ideals. The notions afght Noetherian andright Artinian are defined
similarly.

We saw many examples of Noetherian rings in the commutative c&zsin
Algebra The ring of integer& is Noetherian, and so is the ring of polynomials
R[X] in an indeterminate over a nonzero Noetherian fidt follows from the
latter example that the ring[ Xy, ..., Xy] in finitely many indeterminates over
a field is a Noetherian ring. Other examples arose in connection with extensions
of Dedekind domains.

Any finite direct product of fields is Noetherian and Artinian because it has a
composition series and because its ideals therefore satisfy both chain conditions.
If pisany prime, the rin@./ p°Z is Noetherian and Artinian for the same reason,
and it is not a direct product of fields.

In the noncommutative setting, any semisimple ring is necessarily left Noe-
therian and left Artinian because it has a composition series for its left ideals and
the left ideals therefore satisfy both chain conditions.

Proposition 2.5. Let R be a ring with identity, and le¥! be a finitely generated
unital left R module. If R is left Noetherian, therM satisfies the ascending
chain condition for itsR submodules; iR is left Artinian, thenM satisfies the
descending chain condition for i submodules.

PROOF. We prove the first conclusion by induction on the number of generators,
and the proof of the second conclusion is completely similar. The result is trivial
if M has 0 generators. M = Rx, thenM is a quotient of the lefR module
R and satisfies the ascending chain condition foRisubmodules, according to
Proposition 10.10 oBasic Algebra For the inductive step with 2 generators,
write M = Rx 4+ -+ R, andN = Rx + -+ 4+ Rx_1. ThenN satisfies
the ascending chain condition for i&submodules by the inductive hypothesis,
andM/N is isomorphic toRx,/(N N RX,), which satisfies the ascending chain
condition for itsR submodules by the inductive hypothesis. Therefdreatisfies
the ascending chain condition for Rssubmodules by application of the converse
direction of Proposition 10.10. d

Artin’s theorem (Theorem 2.6 below) will make use of the hypothesis “left
Artinian” in identifying those simple rings that are semisimple. The hypothesis
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left Artinian may therefore be regarded as a useful generalization of finite dimen-
sionality. Before we come to that theorem, we give a construction that produces
large numbers of nontrivial examples of such rings.

ExXAMPLE (triangular rings). LeR and S be nonzero rings with identity, and
let M be an(R, S) bimodule? Define a setA and operations of addition and
multiplication symbolically by

R M rom
=6 3)=16 %)

, r-m)/(r my\ _ (rr’ rm+ms
with (0 s)(o s’)_<0 ss )

Then A is a ring with identity, the bimodule property entering the proof of
associativity of multiplication inA. We can identifyR, M, and S with the

additive subgroups of given by( A g), (8 K ) and<g g) Problems 8-11 at

the end of the chapter ask one to check the following facts:
(i) The left ideals inA are of the forml, & I,, wherel, is a left ideal inS
andl; is a left R submodule olR & M containingM I .

(i) The right ideals inA are of the formJ; & Jo, whereJ; is a right ideal in
R andJ; is a rightS submodule oM & S containingJ; M.

(iif) The ring A is left Noetherian if and only iR and S are left Noetherian
and M satisfies the ascending chain condition for its R&ubmodules.
The ringAis right Noetherian if and only iR andSare right Noetherian
andM satisfies the ascending chain condition for its ri§lsubmodules.

(iv) The previous item remains valid if “Noetherian” is replaced by “Artinian”
and “ascending” is replaced by “descending.”

V) If A= (E g) is a ring such as(Q Q) in which Sis a (commutative)

reR,meM,seS}

07
Noetherian integral domain with field of fractiofsand if S # R, then

A is left Noetherian and not right Noetherian, aAds neither left nor
right Artinian.

(Vi) If A= ( X g) isaringsuch aé e @(g)) inwhich RandSare fields with
S C R and diny R infinite, thenA is left Noetherian and left Artinian,

and A is neither right Noetherian nor right Artinian.

From these examples we see, among other things, that “left” and “right” are
somewhat independent for both the Noetherian and the Artinian conditions. We

3This means thaM is an abelian group with the structure of a unital IBfimodule and the
structure of a unital righ® module in such a way thatm)s =r(ms) forallr € R,m € M, and
seS
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already know from the commutative case that Noetherian does notimply Artinian,
Z being a counterexample. We shall see in Theorem 2.15 later that left Artinian
implies left Noetherian and that right Artinian implies right Noetherian.

Theorem 2.6(E. Artin). If Ris a simple ring, then the following conditions
are equivalent:

(a) Ris left Artinian,

(b) Ris semisimple,

(c¢) Rhas a minimal left ideal,

(d) R= My(D) for some integen > 1 and some division rinp.

In particular, a left Artinian simple ring is right Artinian.

REMARK. Theorem 2.4 is a special case of the assertion that (a) implies
(d). In fact, if R is a finite-dimensional algebra over a fidid then the finite
dimensionality forcesR to be left Artinian.

PrROOF It is evident from Wedderburn’s Theorem (Theorem 2.2) that (b) and
(d) are equivalent. For the rest we prove that (a) implies (c), that (c) implies (b),
and that (b) implies (a).

Suppose that (a) holds. Applying the minimum condition for left idealR,in
we obtain a minimal left ideal. Thus (c) holds.

Suppose that (c) holds. L& be a minimal left ideal. Then the sum=
Y rer VI is a two-sided ideal iR, and it is nonzero because the termrfor 1
is nonzero. Sinc® is simple,| = R. Then the leftR moduleR is spanned by
the simple leftR modulesVr, andR is semisimple. Thus (b) holds.

Suppose that (b) holds. Sindeis semisimple, the lefR module R has a
composition series. Then the left idealsRrsatisfy both chain conditions, and it
follows thatR is left Artinian. Thus (a) holds. (]

4. Wedderburn—Artin Radical

In this section we introduce one notion of “radical” for certain rings with identity,
and we show how it is related to semisimplicity. This notion, the “Wedderburn—
Artin radical,” is defined under the hypothesis that the ring is left Artinian. It is
not the only notion of radical studied by ring theorists, however. There is a useful
generalization, known as the “Jacobson radical,” that is defined for arbitrary rings
with identity. We shall not define and use the Jacobson radical in this text.

Fix a ring R with identity. A nilpotent elementin R is an elemena with
a" = 0 for some integen > 1. A nil left ideal is a left ideal in which every
element is nilpotent; nil right ideals and nil two-sided ideals are defined similarly.
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A nilpotent left ideal is a left ideall such that ™ = 0 for some integen > 1,
i.e., for whicha; - - - a, = 0 for all n-fold products of elements frorr nilpotent
right ideals and nilpotent two-sided ideals are defined similarly.

Lemma 2.7.If 11 andl, are nilpotent left ideals in a rinB with identity, then
I3 + I, is nilpotent.

PrROOF. Letl] = 0andl$ = 0. Expand |y + 1)k asy" I, li, - - - i, with each
ij equalto 1 or 2. Takk =r +s. Inany term of the sum, there arer indices 1
or > sindices 2. In the first case let there bmdices 2 at the right end. Since
I,11 C |1, we can absorb all other indices 2, and the term of the sum is contained
in 1] 13 = 0. Similarly in the second case if there &réndices 1 at the right end,
then the term is contained i1} = 0. O

Lemma 2.8. If | is a nilpotent left ideal in a rindR with identity, thenl is
contained in a nilpotent two-sided ideal

PROOF. PutJ =),z Ir. Thisis a two-sided ideal. For any inteder 0,
I = (ThrIN) € Y, Il dre © X, 1 If 1% = 0, then

¥=o0. 0
Lemma 2.9.1f Ris aring with identity, then the sum of all nilpotent left ideals
in a nil two-sided ideal.

PrROOF. LetK be the sum of all nilpotent left ideals R, and leta be a member
of K. Writea = a; + - - - + a, with g € I; for a nilpotent left ideal;. Lemma
2.7showsthat = Y | I; isanilpotent leftideal. Sincgisin|, ais a nilpotent
element.

The se is certainly a leftideal, and we need to see thRfis in K in order to
see thaK is a two-sided ideal. Lemma 2.8 shows that J for some nilpotent
two-sided ideald. ThenJ C K because] is one of the nilpotent left ideals
whose sum iK. Sinceais in | and therefore in) and sincel is a two-sided
ideal,aRis contained inJ. Thereforea Ris contained irK, andK is a two-sided
ideal. O

Theorem 2.10. If R is a left Artinian ring, then any nil left ideal iR is
nilpotent.

REMARK. Readers familiar with a little structure theory for finite-dimensional
Lie algebras will recognize this theorem as an analog for associative algebras of
Engel’'s Theorem.

PrOOE Let | be a nil left ideal ofR, and form the filtration

| D1221%D ...
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SinceR is left Artinian, this filtration is constant from some point on, and we
havelk = k1 = |k+2 — ... for somek > 1. PutJ = 1. We shall show that
J = 0, and then we shall have proved tthas a nilpotent ideal.

Suppose thaf # 0. SinceJ? = | % = |K = J, we haveJ? = J. Thus the
left ideal J has the property thatJ # 0. SinceR is left Artinian, the set of left
idealsK € J with JK # 0 has a minimal elemerky. Choosea € Ky with
Ja# 0. SinceJa € JKg C KgandJ(Ja) = J%a = Ja # 0, the minimality
of Kp implies thatJa = Kp. Thus there existg € J with xa = a. Applying
powers ofx, we obtainx"a = a for every integem > 1. Butx is a nilpotent
element, being i, and thus we have a contradiction. O

Corollary 2.11. If Ris a left Artinian ring, then there exists a unique largest
nilpotent two-sided idedl in R. This ideal is the sum of all nilpotent left ideals
and also is the sum of all nilpotent right ideals.

REMARKS. The two-sided idedl of the corollary is called thevedderburn—
Artinradical of Rand will be denoted by raR. This exists under the hypothesis
thatR is left Artinian.

PrROOF. By Lemma 2.9 and Theorem 2.10 the sum of all nilpotent left ideals in
Ris atwo-sided nilpotentide&l Lemma 2.8 shows that any nilpotent right ideal
is contained in a nilpotent two-sided ide&l SinceJ is in particular a nilpotent
left ideal, the definition of forcesJ C |. Hence the sum of all nilpotent right
ideals is contained ih. But I itself is a nilpotent right ideal and hence equals
the sum of all the nilpotent right ideals. O

Lemma 2.12(Brauer's Lemma). IR is any ring with identity and iV is a
minimal left ideal inR, then eitheV? = 0 orV = Refor some elemerg of V
with € = e.

REMARK. An elemenewith the property thag® = eis said to bédempotent

PrOOFR Being a minimal left idealV is a simple leftR module. Schur's
Lemma (Proposition 10.4b dasic Algebra shows that EndV is a division
ring. IfaisinV, then the map — va of V into itself lies in Engk V and hence
is the 0 map or is one-one onto. If it is the 0 map foraak V, thenV? = 0.
Otherwise suppose thats an element for which — va is one-one onto. Then
there exist® e V with ea= a. Multiplying on the left bye givese’a = eaand
therefore(e? — e)a = 0. Since the map — va is assumed to be one-one onto,
we must have? — e = 0 ande? = e. O

Theorem 2.13.1f Ris a left Artinian ring and if the Wedderburn—Artin radical
of Ris 0, thenR is a semisimple ring.
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REMARKS. Conversely semisimple rings are left Artinian and have radical 0.
In fact, we already know that semisimple rings have a composition series for
their left ideals and hence are left Artinian. To see that the radical is 0, apply
Theorem 2.2 and write the ring &= Mp, (D1) x - - - x My, (Dy). The two-sided
ideals ofR are the various subproducts, with 0 in the missing coordinates. Such a
subproduct cannot be nilpotent as an ideal unless itis 0, since the identity element
in any factor is not a nilpotent element i

PROOF. Let us see that any minimal left idelabf R is a direct summand as a
left R submodule. Since rad = 0, | is not nilpotent. Thu$? # 0, and Lemma
2.12 shows that contains an idempotest This element satisfiels= Re Put
I”"=1{r € R|re=0}. Thenl’is aleftideal inR. Sincel’Nn| C | andeis
not in1’, the minimality ofl forcesl’ N1 = 0. Writingr =re + (r —re) with
recl andr —reel’,weseethaR=1 +1’. ThereforeR=1 @ 1’.

Now putl; = I. If I’ is not O, choose a minimal left ide&d < |’ by the
minimum condition for left ideals ifR. Arguing as in the previous paragraph, we
havel, = Re for some elemenrg, with e% = e,. The argument in the previous
paragraph shows th&® = 1> @ |, wherel;, = {r € R | re, = 0}. Definel” =
{r e Rlre; =rex =0} = 1"N1,. Sincel; is contained in’, we can intersect
R=1@l,withl’andobtain’ =& 1”. ThenR=1L@1'=11®L®1".
Continuing in thisway, we obtaiR = |1 ® 1D [3® 1", etc. As this construction
continues, we have’ 2> 1”7 2 I 2 --.. SinceR s left Artinian, this sequence
must terminate, evidently in 0. TheRis exhibited as the sum of simple Ik
modules and is semisimple. O

Corollary 2.14. If Ris a left Artinian ring, therR/ radR is a semisimple ring.

PrROOF. Letl =radR, and letp : R — R/I be the quotient homomorphism.

Arguing by contradiction, lefl be a nonzero nilpotent left ideal iR/1, and let

J = ¢~1(J) € R. SincelJ is nilpotent,J¥ < | for some integek > 1. But

I, being the radical, is nilpotent, say with = 0, and hencel“*' < I' = 0.
Thereforeld is a nilpotent left ideal irR strictly containingl , in contradiction to
the maximality ofl . We conclude that no suchexists. ThenragR/ radR) = 0.
SinceR/ radRis left Artinian as a quotient of a left Artinian ring, Theorem 2.13
shows thatR/ radR is a semisimple ring. O

We shall use this corollary to prove that left Artinian rings are left Noetherian.
We state the theorem, state and prove a lemma, and then prove the theorem.

Theorem 2.15Hopkins). IfRis aleft Artinian ring, therR is left Noetherian.

Lemma 2.16. If Ris a semisimple ring, then every unital l&&moduleM
is semisimple. Consequently any unital IBffmodule satisfying the descending
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chain condition has a composition series and therefore satisfies the ascending
chain condition.

PROOF. For eachm € M, let Ry be a copy of the lefR module R, and
defineM = @, Rn as a leftR module. Since eacRy, is semisimpleM is
semisimple. Define a functign: M — M as follows: iffm, + - - +rm, IS given
with rm, in Ry, for eachj, leto(rm, + -+ +rm) = Z}(:lrm,- m;. Theng is an
R module map with the property that1,) = m, and consequentky carriesM
ontoM. As the image of a semisimpl module under afR module mapM is
semisimple.

Now suppose tha¥l is a unital leftR module satisfying the descending chain
condition. We have just seen th&t is semisimple, and thus we can write
M = @, s Mi as a direct sum over a s8iof simple leftR modulesM;. Let us
see thaSis a finite set. [fSwere not a finite set, then we could choose an infinite
sequencey, iy, ... of distinct members 08, and we would obtain

M2 DM 2 @ M2,
i1 i#£i,i2
in contradiction to the fact that the submodules oM satisfy the descending
chain condition. O

PrOOF OFTHEOREM 2.15. Letl = radR. Sincel is nilpotent,|" = 0 for
somen. Eachlk for k > 0 is a leftR submodule oRR. SinceR is left Artinian,
its left R submodules satisfy the descending chain condition, and the same thing
is true of theR submodules of eacht. Consequently th& submodules of each
I k/1 k1 satisfy the descending chain condition.

In the action ofR on | /1 %+1 on the left,| acts as 0. HencE¢/1*+! becomes
aleft R/l module, and th&k/I submodules of this lefR/I module must satisfy
the descending chain condition. Corollary 2.14 shows Bydt = R/radR is
a semisimple ring. Since the/l submodules of k/1%+1 satisfy the descend-
ing chain condition, Lemma 2.16 shows that th&d submodules satisfy the
ascending chain condition. Therefore tResubmodules of each leR module
I k/1 k1 satisfy the ascending chain condition.

We shall show inductively fok > 0 that theR submodules oR/1 %+ satisfy
the ascending chain condition. Sinct= 0, this conclusion will establish that
R is left Noetherian, as required. The cdse= 0 was shown in the previous
paragraph. Assume inductively that tfie submodules ofR/I¥ satisfy the
ascending chain condition. Singy/1% = (R/1%+Y) /(1%/1%1) and since the
R submodules oR/1% and of1 ¥ /1 ¥+1 satisfy the ascending chain condition, the
same is true foR/1 ¥, This completes the proof. O



