Subtraction is the opposite of addition ... 2
No commutativity for subtraction .. 3
No associativity for subtraction .. 4
Division is the opposite of multiplication 5
Negative one ... 6
Why division by zero does not make sense 7
No commutativity for division ... 8
No associativity for division .. 9
Summary ... 10
Subtraction is the opposite of addition

Subtraction is the operation which is opposite to addition:

\[
\begin{array}{c}
3 \\
\hspace{1cm} +2 \\
\hline
5 \\
\hspace{1cm} -2
\end{array}
\]

This means that \((3 + 2) - 2 = 3\) and \((5 - 2) + 2 = 5\).

Recall that numbers \(a\) and \(-a\) are called opposite to each other.
For example, \(-2\) is opposite to \(2\), and \(2\) is opposite to \(-2\).

Subtraction of a number is addition of its opposite:
\[5 - 2 = 5 + (-2) = 3\quad \text{and} \quad 5 - (-2) = 5 + 2 = 7\,.
\]
Therefore, we can express any subtraction as addition of the opposite quantity:
\[a - b = a + (-b)\quad \text{for any} \quad a, b.
\]

No commutativity for subtraction

We know that addition is commutative: \(a + b = b + a\) for any \(a, b\).

Subtraction is not commutative: it is not true that \(a - b = b - a\) unless \(a = b\).

Indeed, take \(a = 1\) and \(b = 2\). Then \(a - b = 1 - 2 = -1\),
but \(b - a = 2 - 1 = 1\).

In general, \(a - b\) and \(b - a\) are opposite to each other: \(b - a = -(a - b)\).

So subtraction is not commutative.

But expressing subtraction \(a - b\) in terms of addition \(a + (-b)\),
we may apply the commutativity of addition to get:
\[a - b = a + (-b) = -b + a\quad \text{for any} \quad a, b.
\]
No associativity for subtraction

We know that addition is associative:

\[(a + b) + c = a + (b + c)\] for any \(a, b, c\).

Subtraction is not associative:

\[(a - b) - c \neq a - (b - c)\].

For example, if \(a = 3\), \(b = 1\) and \(c = 1\), then

\[(a - b) - c = (3 - 1) - 1 = 2 - 1 = 1,\]
but \(a - (b - 1) = 3 - (1 - 1) = 3 - 0 = 3\).

So subtraction is not associative.

But expressing subtraction \((a - b) - c\) in terms of addition \((a + (-b)) + (-c)\),
we may apply the associativity of addition to get:

\[(a - b) - c = (a + (-b)) + (-c) = a + ((-b) + (-c)) = a + (-b - c).\]

Recall that \(a - b - c\) has to be understood as \((a - b) - c\).

Division is the opposite of multiplication

Division is the operation which is opposite to multiplication:

\[\frac{3}{2} \times 2 = 6 \quad \text{and} \quad \frac{6}{2} \div 2 = 3.\]

This means that \((3 \cdot 2) \div 2 = 3\) and \((6 \div 2) \cdot 2 = 6\).

Recall that numbers \(a\) and \(1/a\) are called reciprocals.

For example, \(2\) and \(1/2\) are reciprocals.

Division by a non-zero number is multiplication by its reciprocal:

\[6 \div 2 = 6 \cdot \frac{1}{2} = 3 \quad \text{and} \quad 6 \div \frac{1}{2} = 6 \cdot 2 = 12.\]

(Keep in mind that the reciprocal of \(1/2\) is \(2\).)

In general: \(a \div b = a \cdot \frac{1}{b}\) for any \(a\) and non-zero \(b\).
Negative one

The reciprocal of -1 is -1, that is $\frac{1}{-1} = -1$. Indeed, $(-1)(-1) = 1$.

Sometimes negative one is slightly hidden: $-a = (-1)a$.

It is helpful to keep this in mind.

For example, $\frac{-a}{-b} = \frac{a}{b}$, because $\frac{-a}{-b} = \frac{(-1)a}{(-1)b} = \frac{a}{b}$.

Another example: $\frac{a}{-b} = \frac{a}{(-1)b} = \frac{1}{-1} \frac{a}{b} = (-1) \frac{a}{b} = -\frac{a}{b}$.

Why division by zero does not make sense

Let us try to divide some number, say 1, by 0.

We do not know what result will be. Let us call it x: $1 \div 0 = x$.

If $1 \div 0 = x$, then x is a number such that $x \cdot 0 = 1$.

Which is impossible since $x \cdot 0 = 0$ for any x.

Never divide by zero! It doesn’t make sense.
No commutativity for division

We know that multiplication is commutative: \(ab = ba \) for any \(a, b \).

Division is not commutative:

in general, it is not true that \(a \div b = b \div a \).

For example, if \(a = 2 \) and \(b = 1 \), then \(a \div b = 2 \div 1 = 2 \),
but \(b \div a = 1 \div 2 = \frac{1}{2} \).

The expressions \(a \div b \) and \(b \div a \) are reciprocal to each other.

Indeed, \(a \div b = a \cdot \frac{1}{b} \) and \(b \div a = b \cdot \frac{1}{a} \). Therefore

\[
(a \div b)(b \div a) = \left(a \cdot \frac{1}{b} \right) \cdot \left(b \cdot \frac{1}{a} \right) = a \left(\frac{1}{b} \cdot b \right) \frac{1}{a} = a \cdot 1 \cdot \frac{1}{a} = a \cdot \frac{1}{a} = 1
\]

In fractional notation, this may be written as \(\frac{b}{a} = \frac{1}{a/b} \).

No associativity for division

We know that multiplication is associative:

\((ab)c = a(bc) \) for any \(a, b, c \).

Division is not associative: \((a \div b) \div c \neq a \div (b \div c) \).

Or, in fractional notation, \(\frac{a/b}{c} \neq \frac{a}{b/c} \).

For example, if \(a = 8 \), \(b = 4 \) and \(c = 2 \), then

\[
(a \div b) \div c = (8 \div 4) \div 2 = 2 \div 2 = 1 ,
\]
but \(a \div (b \div c) = 8 \div (4 \div 2) = 8 \div 2 = 4 \).

So division is not associative.

But expressing division \(a \div b \div c \) in terms of multiplication \(a \cdot \frac{1}{b} \cdot \frac{1}{c} \),
we may apply the associativity of multiplication to get:

\[
(a \div b) \div c = \left(a \cdot \frac{1}{b} \right) \cdot \frac{1}{c} = a \cdot \left(\frac{1}{b} \cdot \frac{1}{c} \right) = a \cdot \frac{1}{b \cdot c} = a \div (b \cdot c).
\]
Summary

In this lecture, we have learned that

✓ subtraction is the **opposite** of addition
✓ subtraction can be **expressed** as addition of the opposite: \(a - b = a + (-b) \)
✓ subtraction is **neither** commutative **nor** associative
✓ division is the **opposite** of multiplication
✓ division can be **expressed** as multiplication by the reciprocal: \(a \div b = a \cdot \frac{1}{b} \)
✓ division by zero **does not make sense**
✓ division is **neither** commutative **nor** associative