1. State the base of the exponent 8 in the expression.

\((-6)^8\)

The base of the exponent 8 is ________.

2. State the base of the exponent 4 in the expression.

\(-8^4\)

The base of the exponent 4 is ________.

3. State the base of the exponent 7 in the expression.

\(cx^7\)

The base of the exponent 7 is ________.

4. Select the answer that best completes the given statement.

A(n) (1) __________ is a shorthand notation for repeated multiplication of the same number.

(1) ○ absolute value
○ square root
○ base
○ exponent

5. Select the correct choices that complete the sentence below.

In \((-5)^2\), the 2 is the (1) __________ and the \(-5\) is the (2) __________

(1) ○ exponent
○ base
(2) ○ exponent.
○ base.

6. Evaluate.

\(-9^2\)

\[-9^2 = \] __________

7. Evaluate.

\((-2)^2\)

\((-2)^2 = \) __________
8. Find the value of the expression.

\[
\left(-\frac{1}{10}\right)^3
\]

\[
\left(-\frac{1}{10}\right)^3 = \underline{}
\]

(Simplify your answer.)

9. Write the expression with positive exponents.

\[4a^{-1}u^{-3}\]

\[4a^{-1}u^{-3} = \underline{}\] (Simplify your answer.)

10. Write the expression with positive exponents.

\[a^3b^{-1}c^{-9}\]

\[a^3b^{-1}c^{-9} = \underline{}\] (Simplify your answer.)

11. Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.

\[\frac{p^{-5}}{q^{-7}}\]

\[\frac{p^{-5}}{q^{-7}} = \underline{}\] (Simplify your answer.)

12. Evaluate the following. Assume that all bases are not equal to 0.

\[(-2x+8)^0\]

\[(-2x+8)^0 = \underline{}\]

13. Evaluate the expression. Assume that all bases are not equal to 0.

\[-5x^0\]

\[-5x^0 = \underline{}\]

(Simplify your answer.)

14. Evaluate the expression. Assume that all bases are not equal to 0.

\[3x^0 + 5\]

\[3x^0 + 5 = \underline{}\]

(Simplify your answer.)
15. Simplify. Use positive exponents for any variables.

\[9^{-2} = \quad \] (Type an integer or a simplified fraction.)

16. Simplify. Use positive exponents for any variables.

\[(-3)^{-3} = \quad \] (Type an integer or a fraction.)

17. Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.

\[9x^{-2} = \quad \] (Simplify your answer.)

18. Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.

\[4^{0} - 3x^{0} = \quad \]

19. Simplify. Use positive exponents for any variables.

\[3^{-1} + 2^{-2} = \quad \] (Type an integer or a simplified fraction.)

20. Simplify. Use positive exponents for any variables.

\[5^{-2} \cdot y = \quad \] (Simplify your answer. Use integers or fractions for any numbers in the expression.)