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Part 1. Research summary

1. Every rationally connected variety over the function field of a
curve has a rational point

A nonempty, smooth, projective variety over an uncountable, algebraically closed
field is rationally connected if every pair of closed points is in the image of a regular
morphism from P1 to the variety. A smooth, projective variety over an arbitrary
field k is rationally connected if its base-change to one (and hence every) uncount-
able, algebraically closed field is rationally connected.

Theorem 1.1 (Graber, Harris, Starr [12]). Every rationally connected variety X
defined over the function field K of a curve B over a characteristic 0, algebraically
closed field k has a K-rational point. Equivalently, every projective, surjective mor-
phism π : X → B whose general fiber is rationally connected has an algebraic
section.

Theorem 1.2 (de Jong, Starr [4]). Replacing “rationally connected” by “separably
rationally connected”, the previous theorem holds in arbitrary characteristic.

Theorem 1.1 was posed as a question by J. Kollár, Y. Miyaoka and S. Mori in
their paper [21], and proved by them when dim(X) is 1 or 2. Also, Also, the special
case of a smooth Fano hypersurface was proved by Tsen [19, Thm IV.5.4].

Corollary 1.3. Let (R,m) be a complete DVR containing its residue field, assumed
algebraically closed. Let X be a regular, projective R-scheme. If the geometric
generic fiber X ⊗R K(R) is normal and separably rationally connected, then the
closed fiber X ⊗R k is reduced on a nonempty open subset.

This is the local version of Theorem 1.2 from which it follows by the Artin
approximation theorem.

As another corollary of Theorem 1.2, Kollár proved that every smooth, con-
nected, projective, separably rationally connected scheme over an algebraically
closed field has trivial algebraic fundamental group [10, Cor. 3.6]. This was previ-
ously proved by Campana [1] and Debarre [9, Cor. 4.18] in the special case that k
has characteristic zero.

Finally, Corollary 1.6 connects two fundamental conjectures regarding uniruled
and rationally connected varieties.

Conjecture 1.4 (Hard Dichotomy Conjecture, Conj 3.3.3 [23]). Let char(k) = 0
and let X be a smooth projective variety. If h0(X,ω⊗n

X ) equals 0 for all positive n,
then X is uniruled.

Date: September 8, 2010.

1



Conjecture 1.5 (Mumford’s Conjecture, Conj IV.3.8.1 [19]). Let char(k) = 0 and
let X be a smooth projective variety. If h0(X, (Ω1

X)⊗n) = 0 for all positive n, then
X is rationally connected.

Corollary 1.6. Conjecture 1.4 implies Conjecture 1.5.

2. Rational connectedness and sections of families over curves

Let f : X → B be a surjective morphism of projective schemes of fiber dimension
d such that B is irreducible and normal. For every smooth curve C ⊂ B, denote
by fC : XC → C the base-change of f by C → B.

Theorem 2.1 (Graber, Harris, Mazur, Starr [11]). If fC : XC → C has a section
for every smooth curve C ⊂ B, then X contains a closed subvariety Z whose
geometric generic fiber Z ×B Spec(K(B)) is rationally connected.

By Theorem 1.1, if X has a closed subvariety Z whose geometric generic fiber
is rationally connected, then every base-change XC → C has a section. Thus
Theorem 2.1 is a converse to part of Theorem 1.1.

Theorem 2.1 implied the first answer to a question posed by Serre to Grothendieck.

Question 2.2 (Serre’s Question [2]). Does a variety over the function field of a
curve have a rational point when it is O-acyclic, i.e., when hi(X,OX) = 0 for every
i > 0?

One can ask this question for any field. Serre was motivated by the case of a
finite field, for which a positive answer was proved by Katz [18]. Nevertheless the
answer to Question 2.2 is negative.

Corollary 2.3 (Graber, Harris, Mazur, Starr [11]). There exists a smooth pro-
jective curve C over C with function field K = K(C) and a smooth projective
surface X over K such that h0(X,Ω1

X) = h0(X,Ω2
X) = 0 and such that X has no

K-rational point. In fact X is a polarized Enriques surface over K.

The corollary follows from Theorem 2.1 by considering the universal Enriques
surface X over a certain parameter space B of polarized Enriques surfaces. By
simple properties of the Chow groups of X , there is no subvariety Z ⊂ X as in
Theorem 2.1. Therefore there is a smooth curve C ⊂ B such that fC : XC → C has
no section. The generic fiber of XC gives a negative answer to Question 2.2.

Hélène Esnault pointed out non-existence of K-rational points in Corollary 2.3
may possibly follow from an obstruction in the Galois cohomology of K. All known
examples of obstructions satisfy restriction and corestriction. This means the order
of the obstruction class divides the degree of L/K for every residue field L of a
closed point of X. Equivalently, the order divides the degree of every K-rational
0-cycle on X. However, by explicit construction, there exist Enriques surfaces as
in Corollary 2.3 having a K-rational 0-cycle of degree 1. Therefore non-existence
of K-rational points is not explained by an obstruction satisfying restriction and
corestriction.

Theorem 2.4 (Starr [27]). There exists a smooth projective curve C over C with
function field K = K(C) and a smooth Enriques surface X over K with no K-
rational point but with a K-rational 0-cycle of degree 1.
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3. Rational points of a variety over the function field of a surface

Let k be an algebraically closed field of characteristic 0, let B be an algebraic
surface over k with function field K, and let X be a projective K-scheme such
that X ⊗K K is irreducible and smooth. There is an obstruction to existence of
K-rational points on X in the Brauer group of K. We call this obstruction a Brauer
obstruction, though it is often also called the elementary obstruction.

Theorem 3.1 (de Jong, Starr [7]). If the Brauer obstruction vanishes, if X ⊗K K
is rationally connected, if for each e one (hence every) projective birational model
of the parameter space RatCurvese(X ⊗K K)p,q for rational curves in X ⊗K K

containing a pair of closed points p, q is rationally connected, if X⊗K K has a very
twisting family of pointed lines, and if specific additional hypotheses hold, then X
has a K-rational point.

Unfortunately, the specific additional hypotheses are quite strong. We hope they
can be removed, but have not yet proved this. Nonetheless, all the hypotheses do
hold when X ⊗K K is a Grassmannian or certain other homogeneous spaces. Con-
sequently, Theorem 3.1 implies another proof of de Jong’s Period-Index Theorem.

Theorem 3.2 (de Jong [3]). For every division algebra D with center K, dimK(D)
equals the square of the order of [D] in the Brauer group of K.

4. Rational curves on low degree hypersurfaces

The parameter space RatCurvese(X) for degree e rational curves on a projective
variety X figures prominently in every preceding theorem. This research project
probes more deeply the structure of RatCurvese(X) for the simplest rationally
connected varieties: general hypersurfaces of degree d ≤ n in Pn.

Theorem 4.1 (Harris, Roth, Starr [14]). If d < n+1
2 , RatCurvese(X) is an irre-

ducible, reduced, local complete intersection scheme of dimension (n+1−d)e+(n−
4). Moreover, it is a dense open subset of a geometrically meaningful compactifica-
tion which is also a local complete intersection space.

Theorem 4.2 (Harris, Starr [15], [26], de Jong, Starr [8]). If d2 ≤ n + 1, every
smooth, projective model of RatCurvese(X) is rationally connected, therefore has
negative Kodaira dimension. For e ≥ 2, the same holds for the space RatCurvese(X)p,q

parametrizing rational curves containing a fixed, but general, pair p, q of points. If
d2 ≤ n, there exists a very twisting family of pointed lines in X.

Theorem 4.3 (Starr [25]). If d2 > n + 1, for every e = b(n + 1 − d)/(d2 − n −
1)c, . . . , n− d, every smooth, projective model of RatCurvese(X) is of general type,
i.e., the Kodaira dimension equals the usual complex dimension.

Theorem 4.4 (Starr [25]). If d2 < n+1, for every e = 1, . . . , n−d, RatCurvese(X)
has a geometrically meaningful compactification which is a normal, Q-Fano variety.

Theorem 4.5 (de Jong, Starr [6]). There is an explicit, general formula for the
canonical divisor class onM0,0(X, e) whenever it is irreducible, reduced and normal
of the expected dimension.
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5. Hilbert and Quot functors of Deligne-Mumford stacks

Deligne-Mumford stacks occur naturally in the theory of moduli spaces and
parameter spaces. This project aimed to construct analogues for Deligne-Mumford
stacks of some of the parameter spaces useful in the study of schemes. Hilbert
schemes and Quot schemes are very basic examples of parameter spaces, building
blocks for other important spaces such as Picard schemes and moduli spaces of
vector bundles and coherent sheaves.

Theorem 5.1 (Olsson-Starr [24]). Let X/S be a separated, locally finitely presented
Deligne-Mumford stack over an algebraic space S, and let F be a locally finitely
presented, quasi-coherent sheaf on X .

(1) The Quot functor Quot(F/X/S) is represented by an algebraic space sepa-
rated and locally finitely presented over S.

(2) If S is an affine scheme and if X is a tame, global quotient stack whose
coarse moduli space is a quasi-projective S-scheme, then the connected com-
ponents of Quot(F/X/S) are quasi-projective S-schemes.

Part 2. Research proposal

6. Brief overview

The two main projects I am working on are:

(1) Existence of rational points of an variety defined over a non-algebraically-
closed field.

(2) Properties of varieties related to rationality.

The first project aims to give some answers to the following problem.

Problem 6.1 (Kollár, Prob 6.1.2 [19]). Let F be a field and XF a variety over F .
Find conditions on F and XF which imply that XF has a point in F .

The second project concerns several suggested properties of a variety generalizing
rationality in characteristic 0. Three weak generalizations are:

(1) X is ruled if X is birational to Y × P1, i.e. K(X) ∼= K(Y )(t).
(2) X is uniruled if there is a generically finite, dominant morphism f : Y ×

P1 → X, i.e. K(Y )(t) is a finite extension of K(X).
(3) X has negative Kodaira dimension if h0(X,ω⊗n

X ) equals 0 for all n > 0.

Every ruled variety is uniruled, and every uniruled variety has negative Kodaira
dimension. There are uniruled varieties which are not ruled. But it is unknown
whether every variety of negative Kodaira dimension is uniruled. Conjecture 1.4
states that this is true. There are several consequences of Conjecture 1.4, and one
of the goals of the second project is to prove or disprove one of these consequences.

Three strong generalizations of rationality are:

(1) X is unirational if there is a generically finite, dominant morphism f :
Pn → X, i.e. k(t1, . . . , tn) is a finite extension of K(X).

(2) X is rationally connected if there exists a morphism f : P1 → X whose
image is contained in the smooth locus of X and such that f∗TX is an
ample vector bundle.

(3) X satisfies Mumford’s condition if h0(X, (Ω1
X)⊗n) equals 0 for all n > 0.
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Every unirational variety is rationally connected. And every rationally connected
variety satisfies Mumford’s condition. It has been conjectured that there are ratio-
nally connected varieties which are not unirational. And Conjecture 1.5 states that
every variety satisfying Mumford’s condition is rationally connected. The main
goal of the second project is to investigate these conjectures.

7. Rational points of varieties over the function field of a surface

Let k be an algebraically closed field of characteristic 0 and let K be a finitely
generated extension of k of transcendence degree r. Theorem 1.1 is an answer to
Problem 6.1 when r = 1. Theorem 3.1 is an answer to Problem 6.1 when r = 2.
But the additional hypotheses of that theorem are unreasonably strong, and limit
the usefulness of the theorem. A guiding result is the theorem of Tsen [28] and
Lang [22] that a hypersurface X in Pn

K has a K-rational point if the degree d
satisfies d2 ≤ n. Theorem 4.2 implies the main hypotheses of Theorem 3.1 for such
a hypersurface. Unfortunately, the “additional hypotheses” of Theorem 3.1 are
not satisfied. The goal is to replace these unreasonable hypotheses by reasonable
hypotheses, hypotheses satisfed by the hypersurfaces in the Tsen-Lang theorem.

8. Rational simple-connectedness

Rational connectedness in algebraic geometry is strongly analogous to path-
connectedness in topology; replace continuous maps from the unit interval by alge-
braic morphisms from P1 to go from one to the other. Following this logic, simple-
connectedness in topology should have an algebraic geometry analogue which Barry
Mazur introduced and calls rational simple-connectedness. Since simple-connectedness
is path-connectedness of the space of based paths, the algebraic geometry analogue
is rational connectedness of the spaces RatCurvese(X, d)p,q parametrizing rational
curves in X, of fixed degree e, containing a pair p, q of general points. This is
one of the main hypotheses of Theorem 3.1. It is also the property proved for
hypersurfaces in Theorem 4.2.

Unfortunately, this property is difficult to prove in general. The first hint at a
general criterion for rational simple-connectedness is Theorem 4.4. By a theorem
of Qi Zhang [30] and Hacon-McKernan [13], a variety with ample anticanonical
bundle and Kawamata log terminal singularities is rationally connected. Assume
RatCurvese(X)p,q is irreducible, reduced and normal of the expected dimension.
Using Theorem 4.5 when both c1(TX) and c1(TX)2 − 2c2(Tx) are positive, one
birational model of RatCurvese(X)p,q has ample anticanonical bundle; namely the
contraction of the boundary inM0,0(X, e). Thus, to prove it is rationally connected,
it suffices to prove it has Kawamata log terminal singularities. In principle, this can
be proved locally using deformation theory. One goal is to analyze the singularities
of this contraction, hopefully leading to a proof that it has Kawamata log terminal
singularities.

Also, when c1(TX)2 − 2c2(TX) is nef, in a suitable sense, de Jong and I have
a bend-and-break argument to prove RatCurvese(X)p,q is uniruled, without us-
ing the computation of the canonical bundle. An alternative approach is to push
the bend-and-break argument further, hopefully leading to a direct proof that
RatCurvese(X)p,q is rationally connected.
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9. Mumford’s Conjecture and the Hard Dichotomy Conjecture

The goal of this project is to investigate Conjectures 1.4 and 1.5. Both of these
conjectures imply another, more accessible conjecture, Conjecture 9.2 below. First
the Hard Dichotomy Conjecture needs to be rephrased. Let k be an algebraically
closed field with char(k) = 0, let X be a smooth, projective k-scheme and let
f : X → Q be the maximally rationally connected fibration of X, i.e., the unique
dominant rational transformation with rationally connected fibers and with Q non-
uniruled. For every n > 0 and every section s ∈ H0(X, (Ω1

X)⊗n), let s̃ : TX →
(Ω1

X)⊗(n−1) be the map of locally free sheaves defined by contracting s with the
given tangent vector. Define F ⊂ TX to be the coherent subsheaf which is the
intersection over all n > 0 and all s of Ker(s̃).

Conjecture 9.1 (Variant of Conjecture 1.4). There exists a Zariski dense open set
U ⊂ X contained in the domain of f such that F|U equals the kernel of df : TX →
f∗TQ.

IfX satisfies Mumford’s condition, then F = TX so that the maximally rationally
connected fibration of X is just the constant map, i.e. X is rationally connected.
Therefore Conjecture 9.1 implies Mumford’s Conjecture. Moreover the proof of
Corollary 1.6 also proves that Conjecture 9.1 is equivalent to Conjecture 1.4.

One corollary of Conjecture 9.1 would be the following result:
Conjecture 9.2. There exists a dense open subset U ⊂ X such that F|U is alge-
braically integrable. In particular F|U satisfies the Frobenius integrability condition.

This conjecture is more accessible than Conjecture 9.1. For instance, the Frobe-
nius integrability condition is a local rather than global condition. And Grothendieck
has a conjecture predicting when an algebraic foliation is algebraically integrable.
The goal of this project is to prove Conjecture 9.2, or at least reduce it to Grothendieck’s
conjecture, by directly determining whether F satisfies the Frobenius integrability
condition, and whether the hypotheses of Grothendieck’s conjecture hold. This
would provide indirect evidence for Conjectures 1.4 and 1.5.

10. Unirationality and rational connectedness

This project concerns a long-standing conjecture that there exist non-unirational
complex Fano manifolds. General hypersurfaces in Pn of degree d ≤ n are complex
Fano manifolds. Kollár suggested a strategy in [20]: prove the Fano manifold has
few rational surfaces. Equivalently, the strategy is to prove RatCurvese(X) contains
few rational curves. The first step is to prove RatCurvese(X) is not uniruled.
Conjecture 10.1 (Starr). Let n ≥ 6 and let 1 ≤ d ≤ n − 3 be an integer such
that d < n+1

2 and such that d2 ≥ n + 2. Let X ⊂ Pn be a general hypersurface
of degree d and let e > 0 be an integer. Then every smooth, projective model of
RatCurvese(X) is non-uniruled. In fact it is of general type.

The same ingredients as in Section 3 suggest RatCurvese(X) is of general type: it
has a projective birational model whose canonical bundle is big. Thus the conjecture
reduces to proving the model has canonical singularities. As in Section 3, this
problem is local in nature, and can be approached using deformation theory.
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11. Cubic fourfolds and rational curves

Let k be an algebraically closed field with char(k) = 0. Let X ⊂ P5 be a smooth
cubic hypersurface. A longstanding problem in algebraic geometry is to determine
if X is rational when X is very general. Some cubic fourfolds are known to be
rational, in particular Hassett has found new examples of rational cubic fourfolds
in [17], making use of his analysis in [16] of Hodge structures of cubic fourfolds.
One key tool in analyzing the Hodge structure of a cubic fourfold is the fact that
RatCurves1(X) is a hyperKähler manifold which is a deformation of Hilb2(S) for
some K3 surface S. Considering the usefulness of this fact, it seems reasonable to
ask if RatCurvese(X) might be a hyperKähler for some e > 0. The goal of this
project is to answer this question.

Of course RatCurvese(X) is not proper and may be singular. The precise ques-
tion considered is:

Question 11.1. Let X ⊂ P5 be a cubic hypersurface which is very general. For
e ≥ 5 and odd, is M0,0(X, e) birational to a hyperKähler manifold? Is M0,0(X, e)
isomorphic to a Hilbert scheme Hilbf (S) for some K3 surface S?

The expectation is that the sequence of all the schemes RatCurvese(X) will
give an invariant of X, roughly the monoid of effective cycles in CH0(S) in the
special case that RatCurves1(X) ∼= Hilb2(S). The hope is to then extend this
invariant to all rationally connected fourfolds, find some factor of this invariant
which is birationally invariant, and use this birational invariant to prove that X is
irrational.

So far this project has led to the following theorem.

Theorem 11.2 (de Jong, Starr [5]). Let X ⊂ P5 be a cubic hypersurface which
is very general. For every e > 0, the Deligne-Mumford stack M0,0(X, e) is an
integral, local complete intersection scheme and admits a regular 2-form ω.

(1) If e ≥ 5 is odd, ω is nondegenerate on a nonempty open subset.
(2) If e ≥ 6 is even, ω is degenerate and the associated sheaf homomorphism

TX → ΩX has a rank 1 kernel K.

The strategy for answering the first part of this question is to determine the
divisor in M0,0(X, e) where ω is degenerate and then to determine whether this
divisor can be contracted. The divisor class of ω follows from Theorem 4.5. I do
not yet know if this divisor can be contracted.

Another part of this project is to prove Conjecture 9.2 forM0,0(X, e) when e ≥ 6
is even. By Theorem 11.2, the sheaf F is either zero or it is K. Conjecture 9.2
states that for every even e either F is zero, or K is algebraically integrable and the
leaves are rational curves. Using a result of Viehweg [29], to prove this statement,
it suffices to prove that K is algebraically integrable. So far I have proved this for
the case e = 6.
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