NON-REMOVABLE SETS FOR QUASICONFORMAL
AND LOCALLY BILIPSCHITZ MAPPINGS IN R3.

CHRISTOPHER J. BISHOP

ABSTRACT. We give an example of a totally disconnected set E C R? which is not removable
for quasiconformal homeomorphisms, i.e., there is a homeomorphism f of R? to itself which
is quasiconformal off E, but not quasiconformal on all of R®. The set E may be taken
with Hausdorff dimension 2. The construction also gives a non-removable set for locally
biLipschitz homeomorphisms.

1. STATEMENT OF RESULTS

If a homeomorphism of R?¢ to itself is quasiconformal except on a compact set E, does
it have to be quasiconformal on all of R?? If so, E is called removable for quasiconformal
mappings. The purpose of this paper is to construct examples of non-removable sets in
R3 which are as small as possible, both topologically (they are totally disconnected) and
metrically (they have Hausdorff dimension 2).

A mapping is called quasiconformal on € C R? if there is an M < oo so that

lim sup SUP|g—y|=r |f(£U) - f(y)|
r—0  infi_y i [f(z) = f(y)]

(See [12] or Theorem 34.1 of [22].) Our method will actually give non-removable sets for an
even more restrictive class of mappings. We say that a mapping is locally biLipschitz on €2
if there is an M < oo so that for every x € Q there is an r = r(z) > 0 so that |z —y| < r

implies
£ (=) — f(y)|
|z =yl
Such mappings are also called bounded length distortion (e.g., [23], [24]) or local quasi-
isometries (e.g., [9], [15]). If a quasiconformal mapping is biLipschitz on dense open set
then it is globally biLipschitz, and hence a non-removable set for the bilipschtiz maps is
also non-removable for quasiconformal maps.

<M Vzxel.

M1t< < M.

Theorem 1.1. There is a totally disconnected set E C R® which is nonremovable for locally
biLipschitz (and hence for quasiconformal) maps. If o(t) = o(t?) then we may choose E and
[ so that H¥(E) = H?(f(E)) = 0.

Here ‘H? denotes the p-Hausdorff measure, i.e.,

HY(E) = (lsig(}[inf{z o(r;), E C UjB(xj,1;),1m; < 0}].
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Our result is sharp in the sense that if H?(E) = 0 for every ¢ such that ¢(t) = o(t?),
then F has o-finite H? measure ([3]) and hence is removable for homeomorphisms which
are quasiconformal off F (Theorem 35.1 of [22]). Since locally biLipschitz mappings have
gradient in L* on €2 we see that our examples are also non-removable for the Sobolev spaces
Wp1 for every p < oo, answering a question of P. Koskela.

The only previously known examples of nonremovable sets in R?® either have interior (triv-
ial) or are of the form F' = E x [0,1]? for any uncountable E C R ([5], [17]). In the latter
case, assume E C [0,1]. It supports a non-atomic probability measure p which is singular
to Lebesgue measure. If we define f to be the identity outside S = {(z,y) e Rx R? : 0 <
x <1,]y| <1} and
Flew) = (e + @~ (CA0)) )
inside S then we easily see that f is a homeomorphism of R* which is locally biLipschitz
on the complement of F', but maps a set of zero volume to positive volume, and hence is
not even quasiconformal on all of R*. See [4], [8], [16] and [25] for other constructions of
non-removable sets in R?.

One of the most striking aspects of the construction is that it allows one to approximate any
smooth diffeomorphism by quasiconformal or locally biLipschitz maps with uniform bounds
on the constants (independent of the map being approximated), as long as we “throw out”
a fairly small set.

Corollary 1.2. Suppose €2y and €2y are open sets in R" which are diffeomorphic. Then for
any € > 0, there is a homeomorphism f : Q1 — Qo which is quasiconformal except on a
totally disconnected set E and which approzimates h to within €. For any measure function
o(t) = o(t?) we may take H?(E) = H?(f(E)) = 0. If QO and Qy are diffeomorphic by a
volume preserving map we may take f to be locally biLipschitz except on E.

For conformal mappings in the plane, this type of result was proved by Gehring and Martio
(Theorem 4.1, [10]). They showed that there exists a Cantor set E in the unit disk D so
that D\ E is conformally equivalent to the plane minus a Cantor set. The two dimensional
version of our construction gives a geometric construction of such a set. In R? it shows that
there is a Cantor set F in the unit ball B so that B\ F is quasiconformally equivalent to R?
minus a Cantor set. (R?® is not itself quasiconformally equivalent to B*, e.g., Section 17.4 of
22].)

By a result of Dacorogna and Moser [6], if 2; and €y have smooth boundaries, are dif-
feomorphic up to the boundary and have the same volume, then there is a diffeomorphism
between them which preserves volumes. Thus the last statement in Corollary 1.2 is fairly
general.

Suppose E is our non-removable set of dimension 2 and f is quasiconformal on all of R3.
Then f(E) must also be non-removable hence have dimension > 2. On the other hand, our
construction of F will show that it is “tame”, i.e., it can be mapped to the standard Cantor
set by a homeomorphism of R?* (and hence it can be mapped to a set of dimension zero by
some homeomorphism). Let H(R?) be the collection of homeomorphisms of R? to itself and
QCH(R?) be the subset of quasiconformal homeomorphisms. For E C R?, define

dimy (E) = feiHn& ) dim(f(E)),

dimge(E) = fnglhfr(Rd)dlm(f(E))'
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Corollary 1.3. There is a compact E C R® such that dim(E) = dimge(E) = 2, but

There are at least two other types of Cantor set whose dimension can’t be lowered by qua-
siconformal maps. First, since quasiconformal maps are absolutely continuous with respect
to Lebesgue measure, a Cantor set of positive measure has this property. More generally,
if £ C R? and dim(FE) = d then dimgc(F) = d by results of [11]. Second, there are to-
tally disconnected sets F' (e.g., Antoine’s necklace, [2], [14]) whose complement is not simply
connected, and hence dimy(E) > 1. For any 0 < a < d is there a compact £ C R? with
dimge(E) = a = dim(£)? The only known examples are when « is an integer. Is dimy(E)
always an integer?

An open set, @ = R" \ E, is called quasiconvez if there is a C' < oo such that any two
points in  can be joined by a path in Q of length at most C|z — y|. If Q is quasiconvex
and E has zero measure, then E must be removable for locally biLipschitz maps (Lemma
7.1). Our construction can be modified to give a non-removable set E for quasiconformal
mappings whose complement is quasiconvex and hence is removable for locally biLipschitz
maps. Thus the two classes of sets are distinct.

In fact, we can considerable strengthen the quasiconvexity as follows. In the terminology
of [17], E is called a weak porus set if each x € E is contained in a sequence of cubes Q;
with diameters tending to zero and such that (Q; \ (1 — «;)Q;) N E = 0 for some positive
sequence {«;}. This property implies £ is a totally disconnected set in a strong way, and
easily implies the complement is quasiconvex.

Corollary 1.4. There is a weak porus set E C R® which is non-removable for quasiconfor-
mal mappings.

As in Theorem 1.1 we may take H¥(E) = 0. Although 0Q); misses E, it must be very
close to E in the following sense. A result of Kaufman and Wu [17] says that if E is weakly
porus with sequence {«;} and ¥ o; = 0o, then E is removable for quasiconformal mappings
(this generalizes a result of Heinonen and Koskela [12] with a; = a independent of j). Thus
in our example, 3" a; < oo (in fact, a; — 0 very fast).

Our construction of the weakly porus non-removable set E actually shows that it is a
subset, of a product set, i.e.,

Corollary 1.5. There is a Cantor set E C [0,1] so that E x E x E is non-removable for
quasiconformal mappings in R3.

Ahlfors and Beurling proved that a product set in the plane is removable if both factors
have zero length (Theorem 10, [1]). Is this is true for triple products in R*? As noted
earlier products of the form E x [0,1]?, E C R are removable iff F is countable. When are
products E x [0,1], E C R? removable? Every set of positive area in R? is non-removable
for quasiconformal mappings (e.g., [7] or [17]). Is every set of positive volume in R® non-
removable?

[ thank Juha Heinonen and Jang-Mei Wu for telling me about the problem of constructing
a totally disconnected non-removable set for quasiconformal mappings. I also thank Pekka
Koskela, Aimo Hinkkanen and Seppo Rickman for listening to an early version of the con-
struction and encouraging me to write it down. Similarly for the participants in the March
1996 Oberwolfach meeting on function theory, whose comments improved the exposition
and suggested some of the corollaries discussed above. T am grateful to Richard Stong for
explaining the annulus conjecture to me and its connection to the construction.
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The rest of the paper is organized as follows.

Section 2: We build a non-removable set for locally biLipschitz maps in R?.

Section 3: We build a “flexible square” which is the main building block of the three
dimensional construction.

Section 4: We give the construction for locally biLipschitz mappings in R3.

Section 5: We show how to build non-removable sets quasiconformal maps in the plane
so that both E and f(FE) are small.

Section 6: We modify the previous section to work in R3.

Section 7: We prove Corollaries 1.4 and 1.5.

Section 8: We construct non-removable sets for locally biLipschitz maps with the addi-
tional property that H?(E) = 0.

Section 9: We show how to get H?(f(E)) = 0.

2. A NON-REMOVABLE SET FOR LOCALLY BILIPSCHITZ MAPPINGS IN R?

It is clear that an arbitrary smooth mapping [0,1] — R? cannot be approximated by
a biLipschitz mapping with a uniform constant. However, it can be approximated by a
locally biLiipschitz map if the line segment is replaced by an appropriately “wild” arc. More
precisely,

Lemma 2.1. Suppose g is a smooth homeomorphism from a neighborhood U of [0, 1] to R2.
For any € > 0 there is an arc v (depending on g and €) with the following properties.
1. v has endpoints 0 and 1.
2. v C[0,1] X [—€e,¢] CU. (i.e., it approzimates [0,1] in the Hausdorff metric.)
3. There is a locally biLipschitz map f defined on a neighborhood of v, so that for all
z€7, |f(2) —g(z)| < e

Proof. Consider the arc illustrated in Figure 2.1. Although it is drawn a polygonal arc for
simplicity, one should think of it as smooth (just round the corners). Depending on the
height, width and number of oscillations the arc can be stretched as much as we wish, by
a length preserving map of the arc. The map can be extended to be locally biLipschitz in
a neighborhood of the arc. By taking an intermediate version of the arc, we obtain an arc
which can be either stretched or contracted. Using this building block and approximating

Ul N\

FIGURE 2.1. A stretchable arc

I

FIGURE 2.2. Approximating polygonal arc with biLipschitz images

by polygonal arcs it is easy to see that we can approximate any smooth function on an
appropriate 7. ]
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We will define our exceptional set E as a limit of sets { E™}, each of which is a finite union
of smooth curves E™ = U;E} (with diameters tending to 0 as n — o00). Throughout the
paper we will label sets in the construction in the form A} where the superscript n denotes
the generation of the construction and the subscript j is an index enumerating components
in that generation.

To begin the induction we start with E® = {2z : |z| = 1}. Let Q° be the complement of
E°, let Q) be its unbounded component and Q? the bounded component. Define

fo(z) =z, z€ Qg,

and extend f° to a smooth diffeomorphism (which we also call f°) of the plane in anyway
you want (say with very large derivative at the origin).

The induction hypothesis is as follows. Suppose we are given a compact set E™ which is
a finite union of J;, smooth closed curves, { E7}, which are disjoint with disjoint interiors.
Let Q" be the complement of E™. Its unbounded component is denoted €2 and the bounded
components are denoted 7, j = 1,..., J,. Suppose we are given a diffeomorphism f™ of the
plane which is locally biLipschitz on €. Let Y}* be the bounded complementary component
of f*(EY}). Assume the diameters of E7 and Y are less than 27"

We now construct f**" and E"*" from f" and E". Choose a number p, < 155 min;, dist(E7, E}),
and let S, be a covering of of a neighborhood of U—Qg‘ by squares from the grid p,Z X p,Z. Let
U™ = Us, . By making p, even smaller, if necessary, we may assume that diam(f"(5)) <
27" /10 for any of the squares S in our cover. See Figure 2.3 (upper left).
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FIGURE 2.3. Covering Q7 with squares
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Replace each interior edge of the union of squares by an arc from Lemma 2.1 and call
the union of the arcs F™. See Figure 2.3 (upper right). The arcs are chosen so that we
can approximate f™ by a locally biLipschitz map on a neighborhood of F"™. Let Q¢! be
the union of QF and this neighborhood. Without loss of generality, we may assume Qp*" is
bounded by a finite number of smooth closed curves {EJ’-L“} and that we have a 2-biLipschitz
homeomorphism f"*! defined on Q"' which agrees with f™ on QI \ U". See Figure 2.3
(bottom). Define f"*! to be a diffeomorphism of the plane by extending f™*! to the bounded
complementary components of E"*! = 9Q0*! in any way you want. Finally, note that

diam (" (E?*1)) < 2 diam(f"(5)) < 277,

which is the final part of the induction hypothesis.

This completes the inductive step of the construction, i.e. given the set " and mapping
{f"} we have constructed E"™! and {f™*'} which satisfy the induction hypothesis. We now
apply the following elementary lemma, to the sets F = U™.

Lemma 2.2. Suppose {F"} C R? is decreasing, nested sequence of compact sets with disjoint
components F" = U;F}', and lim,, o sup; diam(ﬁ}”) = 0. Then F = N, F, s totally discon-
nected. Suppose {g"} is a sequence of homeomorphisms of RY to itself such that g = g™+
on R\ F™ and lim,_qsup; diam((g"(F}")) = 0. Then {gn} converges uniformly to a home-
omorphism ¢ : R — RY.

We leave the proof of this to the reader. Using the lemma we see our maps converge to a
homeomorphism which is locally biLipschitz off a totally disconnected set E. Finally, to see
that g is not locally biLipschitz on all of R?, there are several things we could do. The easiest
is to define the homeomorphisms { "} at each stage so that the limiting homeomorphism is
not Holder of any positive order. Thus it is not even quasiconformal on R2.

3. A FLEXIBLE SQUARE

To do the construction in three dimensions, we follow the previous construction. However,
when we get to the step where we replaced each edge of the covering squares by a flexible
arc, we will have to replace faces of a cube by flexible surfaces. Building such surfaces is the
only difficult point in extending the construction to higher dimensions.

Lemma 3.1. Suppose g is a diffeomorphism of a neighborhood of [0,1]? into R®. Suppose
that € > 0 s given. Then there is a surface S1 and smooth mapping G defined on a neigh-

borhood of Sy so that

1. S) is a topological disk which approzimates [0,1]* to within € in the Hausdorff metric.

2. If g is locally M-biLipschitz on a neighborhood of 0[0,1]? then G is locally (M + ¢€)-
biLipschitz on Sy and is uniformly locally biLipschitz outside an e-neighborhood of 05 .

3. If g is M -quasiconformal on a neighborhood of 00, 1]? then G is (M +¢)-quasiconformal
on Si.

Proof. The basic idea is that the flexible surface can be obtained by “folding” a large square
to make it oscillate, first in one direction and then in the other. We first show how to build
a surface on which linear maps can be approximated.

Let v be the flexible arc constructed earlier and let Sy be the surface obtained by crossing
it with an interval. See Figure 3.1. Then Sy is can be stretched (by a locally biLipschitz
map) in the direction parallel to v and may be skewed in the the perpendicular direction.
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FIGURE 3.1. Surface flexible in one direction

Although the figure seems to have sharp corners, one should think of this as a smooth surface
on small scales (or as polygonal with very small angle between adjacent faces).

Next, tile Sy with small squares and replace each by a copy of Sy, but now with the copy
of v oriented in the perpendicular direction. The scale is chosen to be so small that Sy looks
flat in the small squares and so that adjacent tiles meet at very small angle. Thus adjacent
tiles can be joined with only a small distortion. Since Sy can be stretched or shrunk in one
direction and the small tiles can be stretched or shrunk in the other, the resulting surface 57,
can be simultaneously stretched or shrunk in both directions by a locally biLipschitz map,
i.e., we can approximate maps of the form (z,y) — (ax,by). Drawing the surface itself is
a bit complicated, but Figure 3.2 gives an idea of what it looks like. The picture is a little
misleading because the oscillations in different directions should be at very different scales.

SIPT 17 57
i A AR A
FIGURE 3.2. A flexible surface

We may also assume that if the “height” of the large oscillations is § then there is a d x ¢
flat square in each corner of S; and a ¢ wide strip along each edge in which there are only
oscillations in one direction. These strips will be used below to interpolate maps defined on
adjacent squares.

The horizontal or vertical stretching is easy to see. The fact that we can skew our surface
(i.e., approximate maps of the form (x,y) — (z,y + cz)) by a locally biLipschitz map is a
little harder but is illustrated in Figure 3.3. The picture shows the surface in Figure 3.1
viewed from above. The white rectangles correspond to the horizontal pieces and the shaded
rectangles to the almost vertical pieces. First we stretch the square by making the almost
vertical sides horizontal. Then we apply a bounded distortion skew to each shaded rectangle.
Finally, we shrink in the horizontal direction by making the shaded pieces almost vertical
again.

Given any linear map of a square into the plane, we now have a surface which approximates
the square and a locally biLipschitz map which approximates the linear map. Moreover, the
degree of approximation is controlled in terms of the size of the oscillations of the surface.
In particular, the images of the boundary arcs are, up to small distortion, simply the arcs
stretched (or shrunk) to the appropriate diameter, i.e., up to a small distortion, the shape of
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NP

FIGURE 3.3. Approximating a skew map on the flexible surface

the image arc is determined by the distance between its endpoints. This is the main point
which is used to glue together our approximations on adjacent flexible squares.

We now replace our smooth map ¢ by a piecewise linear approximation. Consider Figure
3.4. Tt shows three regions; Uj, a neighborhood of 9[0, 1]?, (the light gray region), a square
Q = [n,1 —n]* (the dark gray area), and U,, an open set which connects the two. Inside Uy,
we leave g alone. We triangulate U, and define an approximation to g which agrees with ¢
at the vertices on the of triangulation and on the faces which meet U;, but which is linear
on the faces which hit ). Since g is smooth, we can do this and get a locally biLipschitz
approximation with constant close to that for g if we take the neighborhoods small enough.

U,

/

FIGURE 3.4. Replace g by a piecewise linear approximation

Divide @ into small squares and divide each into two triangles by cutting it by a diagonal.
If the squares are small enough, then we can replace g by an approximation that agrees with
g at all the vertices and which is linear on each of the triangles.

Now replace each subsquare in () with a copy of the same flexible surface, chosen so that
on each square we can approximate g by a locally biLipschitz map on the surface and so that
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our approximation agrees with g at the vertices of the triangulation (First approximates the
linear map on one of the two triangles whose union is the square; then apply a biLipschitz
map with small distortion to “bend” the image along the diagonal to get the fourth corner
to agree.)

The maps defined on adjacent squares might not match up along the common boundaries
but we can fix this as follows. Along each edge of our flexible squares, we have a strip
whose width is greater than the vertical size of the oscillations and in which there are only
oscillations in one direction. See Figure 3.5. On the surface minus these boundary strips
we simply take the restriction of the map defined above. Inside the strip, the surface is
a union of rectangles and in the image, the opposite sides are perturbed by a small angle
and translation (this is due to our earlier remarks that the images of the boundary arcs
are determined up to small distortion by the positions of the endpoints. The two boundary
arcs we are trying to glue have the same endpoints and hence are small distortions of each
other.) We can divide each rectangle into two triangles and linearly interpolate the maps
on the boundary arcs. See Figure 3.6. Similarly for the flat squares in the corners where
four flexible squares come together. The interpolated mapping is locally biLipschitz with a
uniform bound.

FIGURE 3.5. Strip adjoining adjacent squares

FIGURE 3.6. Interpolating map on strip.

Finally, we have to attach flexible squares to the boundary. When we attach a flexible
square to U, in Figure 3.4 the boundary arc lies in one of the triangular faces where our
approximation is linear. Thus the images of the arc on the face of U, and along the edge
of the flexible square are only small distortions of each other. Thus, just as above, we may
glue the mappings along a strip. See Figure 3.7.

The proof of (3) is almost exactly as above. The only real difference is that now we may
also dilate the surface by Euclidean similarities (which change the biLipschitz constant, but
not the quasiconformal constant). Subdivide the square into much smaller squares so that
the Jacobian of ¢ is almost constant on each square, and replace these squares by flexible
surfaces. Then on each piece of the surface, we can approximate g by the composition of
a Euclidean dilation with the same Jacobian and a locally biLipschitz map on the surface.
The definitions on adjacent squares can be matched as before, so this gives the desired
approximation. O
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-

FIGURE 3.7. Gluing map on flexible square to the boundary values.

In addition to building flexible surfaces which approximate a flat square, we will also
want to build flexible surfaces which approximate more complicated surfaces in R®. For
our purposes it will be enough to consider surfaces which are unions of dyadic squares,
each of which is parallel to one of the three coordinate planes. It is easy to join flexible
surfaces which approximate adjoining squares in the same plane, because the boundaries of
the flexible surfaces match exactly. See Figure 3.8.

- L/ |

FIGURE 3.8. Parallel flexible squares can be joined.

A little more care is needed if the squares are not in the same plane. We choose three
flexible arcs 7y, 2 and 73 of vastly different scales, one corresponding to each of the coordinate
directions and we use them to build three of flexible squares, (one for each of the zy, yz
and zx planes) with the property that edges of these surfaces which are parallel to the given
coordinate axis have the corresponding flexible arc as boundary. Thus whenever we want to
join flexible surfaces corresponding to adjacent, but perpendicular, squares the corresponding
edges will look the same and can be joined as in Figure 3.9 by beveling each of the surface
at 45 degrees in order to join them.

4. A NON-REMOVABLE SET FOR LOCALLY BILIPSCHITZ MAPS IN R?

The procedure in Section 2 can now easily be adapted to construct a totally disconnected
set £ and a homeomorphism f of R? to itself which is locally biLipschitz off E, but not even
quasiconformal on all of R?.

Let E° be the unit sphere in R?, let Q° denote its unbounded complementary component
and let f° be the identity map on Q°. Extend f° to a diffeomorphism (which we also
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N\

>N\

FIGURE 3.9. Perpendicular flexible squares can be joined.

call f%) of R® in any way you want (later we will want the extension to have a lot of
distortion). In general, we assume we have a set E™ which is a union of J,, components
{E}"”}, each a smooth topological 2-sphere of diameter < 27" bounding a topological 3-ball
Q%, 5 =1,...,Ju. Denote the unbounded complementary component of E™ by (2f. Also
assume we are given a homeomorphism f™ of R® which is locally biLipschitz on QF and so
that diam(f"(E7)) < 27"

We now describe the induction step. Let 8™ be a collection of p, x p, cubes chosen from
the usual lattice which covers a neighborhood U™ of TQ;’ The size p, should be chosen so
that p, < 55 min; dist(E}, E}), and so that diam(f™(Q)) < 27"/10.

Replace each interior edge of the union of cubes by a oscillating curve (such as in Lemma
2.1) and approximate f™ on a neighborhood of this arc by a locally biLipschitz mapping
with a uniform constant. See Figure 4.1.

FIGURE 4.1. Replace edges of cubes by flexible arcs

For any face of a cube in U”, take the four corners and consider the corresponding closed
polygonal curve obtained from the union of the four arcs described above. Span this curve
by a polyhedral surface S; which approximates the original cube face and which is a union
of faces of the dyadic squares (e.g. take a smooth spanning surface and replace it by faces
of dyadic cubes which hit it). Extend the map f"™! from the neighborhood of the boundary
curve to a neighborhood of the spanning surface. The extension should be a diffeomorphism
which approximates f”. Now replace each square in the spanning surface by a copy of the
flexible square constructed in Section 3. This gives a surface S5. Then our approximation
to f™ on the spanning surface S; has a uniformly locally biLipschitz approximation on a
neighborhood of S,.
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Let Q¢ be the union of O™\ U™ and the open neighborhoods constructed above on which
f"*1 is defined. Then f™ extends from QF \ U™ to a locally biLipschitz map f"*' on Qf*'.
Let E™ = 0Q0". Without loss of generality we may take E™*! to be a finite union of smooth
surfaces. Finally, extend f**! to a diffeomorphism of of R? in any way you want.

In the limit we obtain a homeomorphism ¢ of R? to itself which is locally biLipschitz except
on some totally disconnected set E. There is enough freedom in choosing the extensions
at each stage that we can easily make sure that f is not Holder, so we are done. We
have now constructed a totally disconnected, non-removable set for locally biLipschitz (and
hence for quasiconformal) mappings. The remainder of the paper deals with modifying the
construction in order to make E and f(F) small in the sense of Hausdorff measure.

5. SMALL NON-REMOVABLE SETS FOR QUASICONFORMAL MAPS IN R?

We now begin the process of modifying the construction so that E and f(E) are small, i.e.,
fix a function () = o(t?), and show H?(E) = H?(f(E)) = 0. This is considerable easier
for quasiconformal than for locally biLipschitz mappings, so we begin with a discussion of
the quasiconformal case. The construction in R? only requires one extra idea, so we will first
give the details in R2.

As before, we will define our exceptional set E as a limit of sets {E™}, each of which is
a finite union of smooth curves E" = U;E7 (with diameters tending to 0 as n — 00). Our
homeomorphism f will be a limit of mappings {f"} which are quasiconformal on each of
the finitely many components of Q" = R* \ E”. This is different from what we did before,
where we only defined f™ to be “good” on the single unbounded component and extended
it any we wanted to the bounded components. The maps { f,} will not be homeomorphisms
because the definitions on different components of 2" will disagree on 92" = E". The main
idea of the inductive step is to reduce the amount of disagreement at each step.

To begin the induction we start with E® = {2z : |z| = 1}. Let Q° be the complement of
E°, let ©) be its unbounded component and 9 the bounded component. Define

f(?(z) =z =z€ Qg,

1
fl(z) = 3% %€ .

The induction hypothesis is as follows. Suppose we are given a compact set E” which is a
finite union of .J,, smooth closed curves, {E]”}, which are disjoint with disjoint interiors. Let
(2" be the complement of E™. Its unbounded component is denoted €2j and the bounded
components are denoted €27, j =1,...,.J,. Suppose we are given diffeomorphisms f on €27,
j=0,...,Jn, which are quasiconformal with constant M on each component, and fJ'(Q2})
lies in Y}, the bounded complementary component of f§(E7). See Figure 5.1

What follows is a description of how to construct f**!' and E"*! from f™ and E™.

Step 1: Fix a very small number 7, > 0 and for j = 1,..., J, let V" be a smooth annular
neighborhood of E7' which is contained in

{# 1 dist(2, E}) < n,/10} C U = {7z : dist(z, E}') < nna},
and let U = V' N Q. Let U" = U;U. See Figure 5.2. For j =1,...,.J,, let

QF =Q\U", WP =Y"\ Q).

See Figure 5.3. Then W" = U; W} consists of .J,, annuli, so there is smooth diffeomorphism
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FIGURE 5.1. Definitions at the beginning of the induction.

FIGURE 5.2. Definition of Up.

FIGURE 5.3. Definitions of Ujr and W}

from U" to W", which maps U} diffeomorphically to W} and which agrees with fi on E"
and with f7 on E}. Thus we can construct a smooth diffeomorphism ¢" : R* — R® which

agrees with f™ on R? \ U". Now choose p, < 1,/100 and consider the grid of p, x p, squares

from the lattige ol X ppZ.. Let S, be a collection of such squares which cover U™ and are
contained in U". Let F' = Uges0S. See Figure 5.4.

-

‘\l

FIGURE 5.4. Definition of S,,.

13
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Step 2: We want to extend f™ from Q" to an open connected set Qf"' which contains
Qp, UjQ? and a neighborhood of F' by approximating ¢" on a neighborhood of F'. We can
do this because any mapping on a line segment can be approximated by a mapping with
bounded quasiconformal distortion on a neighborhood of the interval. In our case, it is very
simple to draw a picture of the approximations. (We use straight lines instead of flexible
arcs so that the resulting domain will be quasiconvex. See Section 7.)

In a neighborhood of a corner x of F' we simply define f**! to be a Euclidean similarity
with the property that f"*!(z) = ¢"(x).

On the line segments connecting corners we approximate ¢” by a quasiconformal map.
Figure 5.5 shows how line segments may be stretched, shrunk or bent by means of a quasi-
conformal map with uniformly bounded dilation. Thus by approximating ¢" by a polygonal
arc and using these maps to approximate each segment, we obtain the desired map.

(I — [ o]

[ e [ — (T TTTITITTT]

(T[] — &%

| | > |
| | | \—/\/—|—
FIGURE 5.5. Stretching or shrinking a line segment to approximate a polygonal arc

The only remaining observation we have to make is that the approximation can be chosen
to agree with the map f" outside U". Suppose z is a “boundary corner” of F. Then w is
connected by one or more grid segments to points in 2”. On a segment connecting x and y
we define f"*! to map the arc so that f**! extends both f* and f"*! to a neighborhood of
the line segment. See Figure 5.6.

|
| -

FIGURE 5.6. Make the connections between f?*' and f»

We now have a smooth diffeomorphism f"*! defined on an open set Q2! which contains
FUQf Ujs; 7. Without loss of generality we may assume that o0l is a finite union of
smooth closed curves. Let E"! = 9Q¢™", and let Q)™ j > 1 be an enumeration of the
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FIGURE 5.7. E™ and E™t!

finitely many bounded complementary components. See Figure 5.7. To avoid confusion, let
"+ denote the continuous extension of f™*! from QI to its closure.
To define f}”l on Qg‘“ we simply choose it to be a Euclidean (orientation preserving)

similarity which maps Q}*" into Y;"*!, the region bounded by f¢*"(E}*"). See Figure 5.8.

L AU

QM
() J NI
Q?fl/‘ fg” /

AN AN
hYd 7

FIGURE 5.8. Defining f**! on the bounded components

This completes the inductive step of the construction, i.e. given the set E™ and mapping
{f}'} we have constructed E™*' and {fp*'} which satisfy the induction hypothesis. In

particular, if we let ™ = U" and let {g™} be the maps constructed at the end of Step 1, they
satisfy Lemma 2.2. Using the lemma we see our maps converge to a homeomorphism which
is clearly quasiconformal off a Cantor set E. Finally, to see that ¢ is not quasiconformal on
all of R?, there are several things we could do. The easiest is to define the homeomorphisms
{g™} in Step 1 so that the limiting homeomorphism f is not Hélder of any positive order.
To see that E can be taken to have H?(E) = 0, fix a function ¢(t) = o(t). Since E™ is a
finite union of smooth curves, it has finite length and can be covered by C,r ! disks {D;}
of size r (for all small enough r). Choose r,, so small that ¢(r,) < C, 'r,. In Step 1 of the

construction choose 7, << r, so small that Un C U;D;. From the construction it is clear
that we can take £ C U2D;, so
2
H?(E) < lim 2 ¢(r,) < lim = =0,
J

n—00 T n—oon
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as desired.

We can define the neighborhoods of F' to be so small at each stage that area(W,,) remains
bounded away from 0 for all n. This means that f(E) can have positive area.

If we want to make f(E) small, then instead of defining f" to be a similarity on Q7, define
it to be a conformal mapping from Q7 (which is topologically a disk) to Y}”“ (which is also
a disk). Then at the next step the annular regions W;‘“ can be taken to lie in an arbitrarily
thin neighborhood of f§™'(E"*!). By taking a small enough neighborhood we can obtain
H?(f(E)) = 0, just as above. This last step (where we have used the Riemann mapping
theorem) is the only one which causes a problem in R3.

6. THE QUASICONFORMAL CONSTRUCTION IN R3
As before let. E° be the unit sphere, Q° = QJ U Q? its complement and
folz) =2 z€Q,

1
f{)(z) = 52, z € Q(l).

In general, suppose we have a compact set E™ consisting of .J,, components {E]"}, each
of which is a smooth surface diffeomorphic to the 2-sphere and bounding a topological 3-
ball 7. Let €f be the unbounded complementary component of E™. Assume we have
a quasiconformal map f;, j = 0,...,J, defined on each component. These maps extend
smoothly across the boundaries and f]”(Q?) is a subset of Y}, the bounded complementary
component of fi'(EY).

Step 1: Define an open set U;" C Q} which is a topological annulus (i.e., homeomorphic
to 5% x (0, 1)) with one boundary component E? and so that U} lies in a 7, /10 neighborhood
of E}'. Let U" = U;UL. For j =1,...,J,, let

G =P\ W=V @),
Then W} is an annulus (see Remark 6.1 concerning the annulus conjecture) and hence is
diffeomorphic to U}'. Therefore there is a diffeomorphism ¢" of R? to itself which agrees

with ;' on Q? As before choose 9, < 1, and consider a collection of cubes from a ¢,-grid
which covers U™ and lies in a 7, /2 neighborhood of E,,. Let F' denote the union of the faces
of these cubes.

Step 2: We want to define an approximation f"*! to ¢" on a neighborhood of F, but
may be impossible. Instead we will define the approximation at the corners and along the
edges of the cubes and then replace the faces by copies of our “flexible squares”. We then
define the approximation on a neighborhood of these surfaces using Lemma 3.1.

On a neighborhood of each corner we define our approximating map f"*! to be a similarity
which agrees with ¢" at the corner point.

On each line segment connecting two such corner points we define a uniformly quasicon-
formal approximation f"*! on some neighborhood. This is exactly the same as the two
dimensional case, since we can stretch or contract a line segment by replacing the squares
by cubes in Figure 2.1.

For each face of each cube, extend the approximation defined above in a neighborhood of
the four edges to an approximating diffeomorphism defined on a neighborhood of the face
(do this in any smooth way without worrying about the quasiconformal constant).
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Next, the face of each cube is replaced by a scaled copy of a “flexible square”. The surfaces
are chosen so that they lie in the neighborhoods of the faces described in the previous
paragraph. By construction we have a uniformly quasiconformal approximation to ¢" on
some neighborhood of these surfaces.

Let 25" be the open set where f"*! has been defined and let E"™ = U; E7*" be its
boundary components. Without loss of generality we may assume these are smooth. Let
Q5" be the bounded complementary component of Ej*'. In each Q}*', we define a new
mapping by a Euclidean similarity, so that the image of the component is contained in Yj”H,
the bounded component of the complement of f™(9Q;*").

This completes the induction step. The process of passing to the limit is exactly as in
the two dimensional case. Similarly, the proof that H¥(E) = 0 is unchanged, except that
E now lies in a thin neighborhood of a surface instead of a curve, so we get an estimate for
©(t) = o(t?) instead of o(t).

If we want to make H?(f(E)) = 0, the argument used in the two dimensional case does not
work here. In that case we defined f™ on the bounded components to be a conformal mapping
using the Riemann mapping theorem, but in R?, this is not available to us. However, we can
achieve the same result by using the following observation.

Lemma 6.1. Suppose 2 is an open connected set with a smooth boundary and suppose
Q = [0,1]? is the unit cube. Then there is a quasiconformal map h of Q onto a subdomain

Q C Q such that E =Q\ Q has o-finite 2-dimensional measure.

Proof. To prove this one simply takes a Whitney decomposition {Q);} for €. Let Q be the
union of the interiors of these cubes, plus small openings between certain adjacent cubes.
This can be done so that  is connected and simply connected. See Figure 6.1. It is not
hard to see that Q is quasiconformally equivalent to (). For example, Figure 6.2 shows how
to map one cube quasiconformally to the union of two; and in such a way that the map is
conformal where additional cubes might be attached. Since Q\Q is contained in a countable
number of flat squares, the final claim is obvious. O

FIGURE 6.1. A union of Whitney cubes with “openings”

Using this one can get H?(f(FE)) = 0 (for some ¢(t) = o(t?)) as follows. Instead of using a
Euclidean similarity to map each component Q;-”’l into the appropriate component, use the
previous lemma applied to 2 = Yj”“ and cube @) containing Q}”l. Fix a sufficiently small r

and choose a covering of Q\ Q with (n¢(r))~" cubes of size r. If the flexible surfaces making
up the faces of Q?“ are close enough to the faces of @, then h(Q \ Q?“) will be contained
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FIGURE 6.2. Mapping a cube to a union of cubes

in a small neighborhood of Q\ Q) and will also be covered by these cubes. Thus we can cover
all of f(E) by only ~(¢(r)r?)~" cubes of size r which is enough to give H*(f(FE)) = 0.

Remark 6.1: We now address the topological problem alluded to in the construction.
It concerns the statement that each W[ is a topological annulus. We would like to know
that given a closed n-ball B C R* and a homeomorphism A : R* — R" with h(B) C int(B)
then B\ h(B) is homeomorphic to S™! x (0,1). This may seem obvious, but it is known
as the annulus conjecture and was only proven for n = 3 by Moise in 1952 [19] (for n = 4
it was proven by Quinn in 1982 [20] and for n > 4 by Kirby in 1969 [18]). Fortunately, in
our case the 3-balls in question are very explicit polyhedron and the existence of the desired
homeomorphism is fairly clear. Moreover, our case fits into either the quasiconformal or
biLipschitz categories and these cases are handled by work of Sullivan and of Tukia and
Viiséla [21].

7. QUASICONVEXITY AND PRODUCT SETS

The non-removable sets for quasiconformal mappings constructed in the two previous
sections are removable for locally biLipschitz mappings. To see why, we first claim that the
complement Q = R? \ F is quasiconvez [13], i.e., that any two points z,y in Q = R*> \ E can
be connected by a path in Q with length < C|z — y|. We may assume = and y are both in
(2 for some n and simply take the line segment between x and y, except that whenever the
segment crosses E" between (25 and one of the components 27, we modify it to be a polygon
arc whose sides lie along the edges of cubes covering U;". See Figure 7.1. These edges are in

Qrtt C Q by construction and the modification at most doubles the length of the arc. This

FIGURE 7.1. Proving E has quasiconvex complement
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proves the quasiconvexity. Now apply the following result.

Lemma 7.1. Suppose E C R has zero d-dimensional measure and Q = R?\ E is quasicon-
ver. Then any homeomorphism f : RY — R¢ which is locally biLipschitz on € is biLipschitz
on all of R%.

Proof. Given z,y € Q, let v C Q be an arc of length < C|z — y| connecting them. By
integrating |V f| along v we see that f is Lipschitz on  and hence on all of R?. This means
that f is absolutely continuous on lines and by the Radamacher-Stepanov theorem (e.g.,
Theorem 29.1 of [22]), it is differentiable almost everywhere. Since f is locally biLipschitz
on a set of full measure, we deduce that f is quasiconformal on R? (the analytic definition
of quasiconformality, Theorem 34.6 of [22]). Thus f(F) has zero d-dimensional measure,
f~1 is globally quasiconformal and also locally biLipschitz almost everywhere. Hence F~!
is absolutely continuous on almost all lines. This implies that given two points z,w, we can
connect them by a curve of length < 2|z — w| along which f~! is absolutely continuous and
has bounded derivative (just consider a family of connecting arcs which sweeps out positive
measure). Integrating along the curve shows f! is also Lipschitz, as desired. O

To build a removable set which is weakly porus, we want to show that ordinary “flat”
cubes can be used in the previous construction, i.e, the “flexible surfaces” are not really
needed for the quasiconformal construction. We do this by proving that a flexible surface is
actually a quasiconformal image of a flat square.

Lemma 7.2. Suppose f is a diffeomorphism of V = [0,1]? x [—¢, €] into R*. Then there is
a § >0 and a homeomorphism g : U = [0,1]> x [6,8] — R3 such that if A = ([0,6] U [1 —
§,1])2 x 4, and 2A = ([0,26] U [1 — 26,1])% x §, then

1.g=f on A.

2. g is uniformly quasiconformal on U \ 2A.

3. ¢([0,1]?) approzimates f([0,1]?) to within § in the Hausdor{f metric.

Proof: Let S be a flexible surface contained in V' and let F' be a quasiconformal approxi-
mation to f on a neighborhood V of S. We claim that there is a quasiconformal map A of
U into V U 2A which is the identity on A and maps some subsquare of [0, 1] to the surface
S. Given this, define ¢ = F' o h. It easy to verify the desired properties, so we only have to
construct the map h.

This is easy to do in a couple of steps. First, we can quasiconformally map the square to
an “expanding tower” as in Figure 7.2. The top of the tower is a large square which can
be locally biLipschitz mapped to a flexible square. The sides of the expanding tower can be
folded as in Figure 7.3. to agree with the oscillation on the top. The result is a surface which
is close to a “straight tower”, as in Figure 7.4. Finally, the sides of the straight tower can be
folded as in Figure 7.5 to “collapse” into a neighborhood of [0, 1], with the top mapping to
[e,1 — €]%. See Figure 7.6. (The straight side should be mapped into the region bounded by
the dotted line by a locally biLipschitz map before folding; then after the folding the vertical
projection will be a trapezoid and the four sides will join together correctly). Composing
these steps gives a uniformly quasiconformal map of a (very thin) neighborhood of [0, 1]* to
a neighborhood of the the desired surface, This proves the lemma. [

The construction of non-removable sets now proceeds as before. The only difference is that
instead of constructing quasiconformal approximations to arbitrary diffeomorphism, we now
construct quasiconformal maps whose images approximate the images of the diffeomorphism
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4 *_ g3

FIGURE 7.2. Step 1: Quasiconformally map square to an expanding tower.

N

FIGURE 7.3. Collapsing a side of expanding tower to a neighborhood of a side of a
straight tower.

St

\ J

FIGURE 7.4. Step 2: Fold the expanding tower to a straight tower with a flexible surface
on top.

(but the parameterizations do not necessary approximate each other). However, this is

sufficient.
Using the remarks above, we see that the set we construct can be made disjoint from

the faces of all dyadic cubes in R3. Thus the projection on each coordinate axis is totally
disconnected which proves Corollary 1.5.
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FIGURE 7.5. Collapsing a straight side into the base of the tower.

~ A=

FIGURE 7.6. Step 3: Fold sides of straight tower to collapse it to a neighborhood of base.

8. SMALL NON-REMOVABLE SETS FOR BILIPSCHITZ MAPS IN R? AND R3

We now return to building non-removable sets for locally biLipschitz maps. In this section
we show how to construct such sets with small Hausdorff measure. In the next section, we
show how to insure that the image has small measure.

Since the proofs in R? and R?® are almost identical, but easier to visualize in R?, we
will consider that case first. We will show that given a function ¢(t) = o(t), there is a
totally disconnected £ C R? with H?(E) = 0 which is not removable for locally biLipschitz
mappings.

Just as in Section 5, we start with E® = {2 : |z] = 1}. Let Q° be the complement of E°,
let Q) be its unbounded component and QY the bounded component. Define

f(?(z) =z =z€ Qg,

1
fl(z) = 3% %€ .

The induction hypothesis is as follows. Suppose we are given a compact set E™ which
is a finite union of J = J, smooth closed curves, {E}}. Let Q" be the complement of
E™. Tts unbounded component is denoted €2 and the bounded components are denoted €27,
j=1,...,Jy. Suppose we are given homeomorphisms /" on Q7, j =0,...,J,, which are
locally biLipschitz with constant M on each component, and so that fJ'(Q2}) lies in Y, the
bounded complementary component of fJ'(E}).

What follows is a description of how to construct f"*' and E"*! from f" and E™.
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Step 1: This is almost exactly as in Section 5, but with one small change. As before, fix a

very small number 7, > 0 and for j = 1,...,J, let U} be an open topological annulus which
has E7 as its “outer” boundary component and which contains {z € Q7 : dist(z, E}) < n,}.
Let U" = U;Uf. Forj =1,...,J,, let
= \T, WP =Y\ ).
Then W™ = U;W}" consists of .J,, annuli, so there is smooth diffeomorphism from U™ to W™.
Thus we can construct a smooth diffeomorphism ¢” : R?> — R? which agrees with f™ on
R? \ U™,

In order for us to define ff“ to be biLipschitz later, it will be necessary to assume that ¢"

is area increasing on U™. To do this, replace U™ by an even smaller neighborhood [73” c Uy
of E7, with

Ui C {7 dist(z, ) < Tl << Na}-
Now map U} to W' by first taking the map A : U} — U} which expands in the direction
normal to E and then following with the map g : U} — W} The first map expands volume

by a factor of 0, /7, >> 1, so by selecting 7, small enough (given the map g) we can assume
the composition is also area expanding. See Figure 8.1. So replacing 1, and 7, and U} by

| ﬁni — En / ~ —
N h j g §
Ui n
| —_— —_— WJ
nn UP an // \\\\ /,//‘\\\

FIGURE 8.1. We may assume g expands areas

U ' 1f necessary, we may assume we have a smooth mapping ¢" : U' — W} which expands
area.

Now choose §,, < 1,/10 and consider the grid of ¢,, x 0, squares with vertices in 6,7 x 6,,Z.
Let S, be a collection of such squares which cover U™ and are contained in {z : dist(z, E}) <
77n/2} Let F' = UQGS&S’.

Step 2: As in Sections 2 and 4 we replace the edges of the squares by flexible arcs to
get a set F', and we define f™* on a neighborhood of this arcs to be a locally biLipschitz
approximation to ¢" and to agree with f™ outside U™.

We now have a smooth diffeomorphism f"*! defined on an open set Q™! which contains
FuU UjEOQ?. Without loss of generality we may assume that Q)" is bounded by a finite
number of smooth closed curves. Let E"t! = 9Q¢*!, and let Q?H, j > 1 be an enumeration
of the finitely many bounded complementary components. L

In Section 5, we defined f7*' on Q)" simply as a Euclidean similarity which maps Q7'
into Yj"“. However, this map might have to shrink the component a great deal to fit it
inside Yj”“, and we lose control of the biLipschitz constant. However, because we have
arranged for ¢” to be area expanding, we will be able to find a locally biLipschitz mapping
of a subdomain Q) C Q2" into Y**'. First observe that since Q™" approximates a square
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Q@ in F as closely as we like, its area is as close as we like to the area of the squares in
F. Similarly, an+1 is an approximation to ¢(Q), so we may assume its area is bigger than
10area(Q)*).

Furthermore, since g is smooth, if we take the squares in the construction small enough
then an+1 will approximate a parallelogram. Choose a true parallelogram P C an+1 and
choose a collection of disjoint squares of size p x p in P with connected union and which
cover at least half the area of Y'*! (and hence more than the area of Q}*"). The number p
should be chosen so p << diam(Q}*"). See Figure 8.2.

n+1
Y

FIGURE 8.2. Squares in an+1

Since an+1 is connected it is possible to choose the squares so that their union is connected.
Thus we can think of the collection of squares as a graph where the squares are vertices and
squares that share an edge are considered adjacent in the graph. We want to label the
squares Si,Ss,... so that Sy and Sk, are adjacent, i.e., we want to find a Hamiltonian
graph. Since the graph is connected, we can certainly find a spanning tree, but it may be
impossible to find a Hamiltonian cycle. See the top picture in Figure 8.3. However, if we

[ P IS S N AN N S I I

FIGURE 8.3. Finding a Hamiltonian cycle in the “doubled” graph of squares

replace each of our original squares by four squares of half the size then it is always possible
to find a Hamiltonian path. More generally,

Lemma 8.1. Let S = {Q;} be a connected collection of unit squares from the usual lattice
inRY. Let 8" = {Q}.} be the collection obtained by replacing each cube in S by the 2% subcubes
of side length % Then the graph G with vertices 8" and edges defined by adjacency of cube
faces has a Hamiltonian cycle.
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This is very easy by induction on the number of cubes, and we leave the proof to the
reader.

Define a subdomain ) C Q?“ as illustrated in the upper left of Figure 8.4. This subdomain
is topologically a disk, but looks like a decomposition of Q;”’l into a chain of p x p squares.
Because Q?H has much smaller area than Yj”“, the number of these squares is less than

the number of squares chosen in an+1 above. If the arcs in 0Q are made up of flexible

Q

boundary | I

interior

FIGURE 8.4. A flexible subdomain € of Q;”rl and biLipschitz images of its boundary and interior.

arcs which can be shrunk by locally biLipschitz maps, then there is a locally biLipschitz
map h; on a neighborhood of 9Q which is the identity on 39?“ and which maps 09 into
9—1(an+1 \ P). Thus hog is a locally biLipschitz mapping of d$) into 8Yj”+1 \ P. By adjoining
a neighborhood of 9 to QP! for each j we obtain a new region Q5! and an extension of
F*1 to the new region. The boundary of this expanded region is denoted E" = UE}”I,
each component of which we may assume to be a smooth closed curve.

On the other hand, is easy to see that Q) itself can be locally biLipschitz mapped to the
long narrow region in the bottom of Figure 8.4. This in turn can be locally biLipschitz
mapped into the any region which is a “chain ” of similar number of similarly sized squares.
In particular, it can be mapped to the squares in P. With a slight adjustment we can
easily make the image a Jordan domain, e.g., see Figure 8.5. Thus on each bounded com-
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FIGURE 8.5. The biLipschitz image of  inside Yj"+1.
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plementary component of E" we have a uniformly biLipschitz mapping into the bounded

complementary component of f ' (Ef*!). This completes the proof of the inductive step.
Passing to a limit exactly as before we obtain a homeomorphism f of R? which is uniformly

locally biLipschitz of a totally disconnected set E. Since the construction shows that we can

take
E C {z:dist(z, E,) < n.},

where E, is finite union of smooth curves and 7, is as small as we wish (independent of E,,)
it is easy to construct E so H?(E) = 0.

We now make a few comments on how to modify the construction of the so that it works
in R®. Just as above we may assume we have a mapping g : Q"' — Y**! which is volume
expanding and almost linear. Moreover, Q?“ is a close approximation to a cube and an+1 is
a close approximation to a parallelepiped. We want to construct a subdomain QcC Q;-L“ SO
that Q?“ \Q is a union of surfaces which can be mapped to a given neighborhood of 89?“

by locally biLipschitz mapping, and so that there is a locally biLiipschitz mapping from Q to
an+1 which misses a given neighborhood of an”“. As before we find a real parallelepiped
P C Y"*" and a collection of cubes in P which cover half the volume of ¥]**'. As in the
previous section, it may not be true that there is a Hamiltonian path in the resulting graph
of cubes, but if we replace each cube by the 8 subcubes of half the size the resulting graph
always has a Hamiltonian cycle.

As before, we construct 2 by dividing Q?J’l into small “cubes” of approximately the
same size as those chosen in P above. Now replace the flat sides of the cubes by copies of
“flexible surfaces” constructed in Section 3. The flexible surfaces are chosen so that there is
biLipschitz mapping of a neighborhood of the union of faces into g='(Y"*! \ P), which is a
neighborhood of 39?“. Add this neighborhood to Q2! and let {Qk} be the complement in

So far Q is a disjoint union of many topological balls. To make it a single ball, enumerate
the components Qk so that Qk and QkH share a face and join adjacent cubes. This makes
gives us a single connected component Q?H which is topologically a ball and which can
be biLipschitz mapped to a chain of cubes as in the previous section. This in turn can be
biLipschitz mapped into P C Yj”“, just as in the previous section.

We now have a biLipschitz map fi'™ defined on the open set QI with boundary E"+! =
UjE]”“, so that each E]”Jrl is diffeomorphic to the 2-sphere and bounds a topological 3-
ball Q7*'. Moreover there is a uniformly biLipschitz map of Q7" into Y"*!, the bounded
complementary component of f§'*'(E}*"). This completes the induction step.

The proof that in the limit we get homeomorphism f which is uniformly locally biLipschitz
off a Cantor set E, is just as before. Similarly for the proof that given ¢(t) = o(t?) we may
construct E so that H?(E) = 0.

9. MAKING f(E) SMALL

In this section we will show how to modify the construction in order to insure H?(f(E)) =
0. We start by reviewing two additional facts we will use.

The first is a result of Dacorogna and Moser [6] that if f : Q; — Q5 is a diffeomorphism of
smooth domains of equal volume, then there is another diffeomorphism fy : € — €25 which
agrees with f on 0€, but which is volume preserving. (In fact, we can specify the Jacobian
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any smooth way we want as long the total volumes work out correctly). The second fact is
a generalization of the argument used in Section 6.

Lemma 9.1. Suppose 4y and $y are two smooth domains in R¢ with finite volume. Then
there are subdomains Q; C Q, i = 1,2 so that 0\, i = 1,2 has finite (d —1) dimensional
measure and such that there is a locally biLipschitz map [ : Q= O (and the biLipschitz
constant depends only on the ratio of the volumes of 1,).

Proof. First note that each smooth domain can be biLipschitz mapped to a domain which
is union of cubes of side length p which has comparable volume to the original domain.
See the top of Figure 9.1. By replacing the cubes by cubes of half the size one can insure

FIGURE 9.1. A smooth domain can be biLipschitz mapped to a union of cubes

a Hamiltonian path in the resulting graph. Now define the subdomain by creating small
openings (say of size p/10) between adjacent squares along the Hamiltonian paths. See the
bottom of Figure 9.1. The resulting domains are clearly locally biLipschitz equivalent to
tube of width p and the correct volume, and hence are locally biLipschitz equivalent with
each other. O

We can now make the desired modifications of the construction. The new part of the in-
duction hypothesis is that we have a locally biLipschitz map f on €1f and locally biLipschitz
maps f;* on subdomains Q;"” CQf,j=1,...,Jn. fF} = Y_]”\f/]” (where 173” = f(Q?)), then
we also assume that F' has finite d — 1 dimensional measure and Q7 \ Q? is a finite union
of flat surfaces (in fact is a union of faces of dyadic cubes).

We cover both 8@? and F" = U; F}" by balls so that the p-sum of the radii is small (say
less than %) Next choose a topological annulus W;* C Y;* which covers F}', whose outer
boundary is 0Y;" and which is contained in the good covering of F}* described above. Then
D} = Q? \ (f;."”)*l(W]”) is a Jordan subdomain of Q;"” and Q? \ D? has volume comparable
to Wj'. By chanAging f; slightly we can assume the volumes are equal.

Recall that 00} is a finite union of flat surfaces, so we divide it up into small squares and

replace each by a flexible square. The resulting domain is called Q" We choose the flexible
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FIGURE 9.2. Recalling the definitions

An. .
Qj

FIGURE 9.3. Definition of D} and W}
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surfaces so the map f¢' can be extended to a uniformly biLipschitz map on 2§ U E7' U 8@?

which maps a neighborhood of 0@? N €2 into W}

Also, by choosing the flexible squares to be close enough to the surfaces they replace, we
may assume that 27 compactly contains D7. Moreover, we may assume there is uniformly

locally biLipschitz mapping A% from Q? into a neighborhood C* of D} which is the identity

on Dj. We may also assume C_]” C Q7. See Figure 9.4.

-
J <
!‘— >
-
Sa- ~
>
-
o ~
N ==l
[ O <
0Q) T\ <
el X
R
-
4

-"

<
~.
o

"0aD—"

FIGURE 9.4. Definition of hy
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Now define a topological annulus B} so that (see Figure 9.5)

(1) E} is its outer boundary,

(2) it covers 0Q7 N QF,

(3) it is disjoint from C}' and

(4) the mapping fg' which we extended to 9Q7 has a uniformly locally biLipschitz extension
to BY.

wh
B L fo(B)

Uj
hy (Qf) f1(h' (@)

FIGURE 9.5. Definition of BY and Wj"

We may take the volume of B} to be as small as we like, in particular, smaller than half
the volume of Q;‘ \ C}. Thus the volume of the annulus

Ui = Q7 \ (Bf URT ()
is comparable to the volume of the annulus
Wi =W\ (f§(B}) U £ o hi (€2)).

Then U} and W are annuli of comparable volume (independent of n) and we have a
locally biLipschitz map f§ from the outer boundary component (i.e., £7) of U to the outer

boundary of Wj” and we have locally biLipschitz maps f'oh} of the bounded complementary

component of each U} to the corresponding bounded complementary component of WJ”.
We now use the result of Dacorogna and Moser [6] described at the beginning of this
section to find diffeomorphisms g; : Ui — W* which extend f¢ and f} on the two boundary
components and which multiply volumes by a constant factor (the ratio of the volumes).
Now proceed as before, covering U" by cubes, replacing the faces by flexible surfaces,
approximating g; on these surfaces and getting in the end components Q?H and an+1 which
have comparable volumes. For each component Q?“ we use Lemma 9.1 to define a subdo-

main Qj which can be mapped into a subdomain of an+1_

This completes the induction. Since we began the inductive step by insuring that our
construction took place within a good covering, it is easy to see that the limiting set F and
homeomorphism f satisfy H?(E) = H?(f(E)) = 0.

As a final remark we observe that Corollary 1.2 is almost immediate. If f: ; — {2, is a
diffeomorphism, then we can write €); as a union of cubes so that f is close to linear on each
cube. We replace the faces of these cubes by flexible surfaces and apply the construction and
we obtain the desired homeomorphism. Because the diffeomorphism may change volumes,



A NON-REMOVABLE SET 29

we can only get a quasiconformal approximation. If €2; and €2, are diffeomorphic by a volume
preserving map then the construction of the last two sections applies and we can get a locally
bi-Lipschitz approximation.
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