THE POISSON FORMULA FOR GROUPS
WITH HYPERBOLIC PROPERTIES

VabpiM A. KAIMANOVICH

ABSTRACT. The Poisson boundary of a group G with a probability measure y on it is the
space of ergodic components of the time shift in the path space of the associated random
walk. Via a generalization of the classical Poisson formula it gives an integral representation

of bounded p-harmonic functions on G. In this paper we develop a new method of identifying
the Poisson boundary based on entropy estimates for conditional random walks. It leads to
simple purely geometric criteria of boundary maximality which bear hyperbolic nature and
allow us to identify the Poisson boundary with natural topological boundaries for several
classes of groups: word hyperbolic groups and discontinuous groups of isometries of Gromov
hyperbolic spaces, groups with infinitely many ends, cocompact lattices in Cartan—Hadamard

manifolds, discrete subgroups of semi-simple Lie groups, polycyclic groups, some wreath and
semi-direct products including Baumslag—Solitar groups.
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2 VADIM A. KAIMANOVICH
I. Introduction
1. Formulation of the problem

1.1. The classical Poisson integral representation formula for harmonic functions on the
open unit disk D of the complex plane has the form

(1.1) (p(z):/o %F(@)d@:/0 TI(z,0)F(6) df = (F, ),

where dv,(0) = I1(z, 0)df are the harmonic measures on 0D associated with points z € D,
and II(z,0) is the Poisson kernel. Tt recovers values of a continuous harmonic function
¢ € C(D) from its boundary values F' € C(0D). However, the right-hand side of (1.1)
makes sense for any bounded measurable function F' € L*°(0D), and the Poisson formula
also establishes an isometry between the Banach space H*°(D) of all bounded harmonic
functions on D and the space L (0D).

Since 4y = gv for any conformal automorphism g of D, where dv(f) = df is the
normalized Lebesgue measure on 9D, the Poisson formula can be rewritten as

(1.2) p(go) = (F,gv), ge€G,

where G = SL(2,R) is the group of all conformal automorphisms of D. Considering D
as the Poincaré model of the hyperbolic plane H? with the reference point 0 = 0 and the
absolute OH? = 9D, the Poisson formula becomes an isometry between the space H (H?)
of bounded harmonic functions on H? and the space L (0H?,v). The measure v is the
unique K-invariant measure on H?, where K = Stabo = SO(2).

1.2. The space H*°(H?) also admits a description in terms of a mean value property.
Namely, a function ¢ belongs to H> (H?) iff

(1.3) p(r) = /w(y) dry(y)  VaeH?,

where 7, is the uniform probability measure on the radius 1 circle in H? centered at z.
Denote by p the bi- K-invariant probability measure on G such that y = mg x d, * mg for
any g € G with dist(o,go) = 1, where my is the Haar measure on K. Then a function ¢
on H? satisfies (1.3) iff its lift to G defined as f(g) = ¢(go) has the property that

(1.4) f(9) = / flgh)du(h) VgeG,

Conversely, any function f on G satisfying (1.4) is right K-invariant, so that it is a lift of
a function ¢ on H? & SL(2,R)/SO(2) which satisfies (1.3). Thus, formula (1.2) takes the
form

(1.5) flg)=(F,gv), g€qG,
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of an isometry between the space H*®(G,u) of bounded p-harmonic functions, i.e., of
those that satisfy the mean value property (1.4), and the space L (9H2,v). Since all
integrals (1.5) are p-harmonic functions, the measure v satisfies the relation v = p * v
(such measures are called u-stationary).

Given an arbitrary locally compact group G' with a probability measure p one can now
ask whether there exists a G-space B with a probability measure v on it such that formula
(1.5) (which we still be calling the Poisson formula) establishes an isometric isomorphism
between the space H*°(G, u) of bounded p-harmonic functions and the space L (B,v).
Under natural conditions such a space, indeed, exists and is unique. We shall call it the
Poisson boundary of the pair (G, ), and denote by (I',v). Here and below the reader
is referred to the author’s survey [Ka96| for a more detailed exposition of the historical
background and for missing general references.

1.3. The notion of the Poisson boundary was first introduced by Furstenberg [Fu63],
[Fu71], although in the context of general Markov chains (not necessarily group invariant)
it can be traced back to earlier papers of Blackwell and Feller. The simplest way to define
the Poisson boundary consists in putting this problem into a more general setup of finding
integral representations for bounded invariant functions of Markov operators.

A function f is p-harmonic if it is an invariant function of the Markov operator P, f(g) =
[ f(gh)du(h). The associated Markov chain on G (the right random walk determined by
the measure ) has transition probabilities 7, = gpu, i.e., at each step the Markov particle
jumps from a point g € G to the point gh, where h is a p-distributed random increment.
Thus, given the position zy of the random walk at time 0, its position x, at time n is
obtained by multiplying xy by independent p-distributed increments h;:

(16) T :Cﬂohlhz"'hn .

Fix a reference probability measure # on G equivalent to the Haar measure, and let
Py be the measure in the path space G+ determined by the initial distribution 6, i.e.,
the image of the product measure 6 ® ;- p under the map (1.6). The measure Py
decomposes as an integral [P,df(g) of measures P, with starting points ¢ € G. By
Ey, E, denote the expectations (the integrals) with respect to the measures Py, P,.

A function on G is p-harmonic precisely if the sequence of its values along sample paths
of the random walk is a martingale with respect to the increasing filtration of coordinate
o-algebras in the path space. Then, by the Martingale Convergence Theorem, for any
f € H®(G, ) and Pg-a.e. sample path @ = {2, } there exists a limit F(z) = lim f(z,),
which is invariant with respect to the time shift 7" in the path space. Conversely, for any
T-invariant function F' € L (G”+,Py) the conditional expectations

(1.7) f(9) = Eg(Flz, = g) = B, F

yield a p-harmonic function f such that a.e. f(z,) — F(x), and we have an isometry
between the space H*® (G, ) and the subspace of T-invariant functions in L (GZ+, Py).
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In the present paper we define the Poisson boundary I' in a purely measure theoretical
way as the space of ergodic components of the time shift in the path space by using the fact
that the path space (GZ+, Py) is a Lebesgue space and the fundamental theorem of Rokhlin
on correspondence between sub-c-algebras, measurable partitions and quotient spaces for
Lebesgue spaces. Let bnd : GZ+ — T be the corresponding quotient map. We say that
the measures v, = bnd Py, g € G are the harmonic measures on I'. Then formula (1.7)
takes the form f(g) = (F,v,) of an isometry between the spaces H* (G, ) and L (T, vp),
where 13 = bnd Py, and F(bndz) = F(z).

The path space GZ+ is provided with a coordinate-wise action of G commuting with
the time shift 7', so that the Poisson boundary comes endowed with a group action, and
the boundary map bnd is equivariant. Let P = P, with e being the identity of G. Then
vy = gv, where v = bnd P, and finally we arrive precisely at the sought for Poisson formula
(1.5).

This construction is completely general and is applicable to any Markov operator on a
Lebesgue space [Ka92]. It significantly clarifies the definition of the Poisson boundary and
allows one to avoid a number of unnecessary complications (cf. [Az70], [Fu71]). Equivalent
definitions of the Poisson boundary for random walks on groups can be given in terms of
the Mackey range over the Bernoulli shift in the space of increments [Zi78], in terms of
ideals in the group algebra of G [Wi90], or in terms of topological dynamics [DE90].

1.4. Having defined an abstract Poisson boundary, the next problem is to identify it with
a certain concrete measure space associated with the group G and the measure pu.

For example, let D C R? be a domain in a Euclidean space with boundary 0D, and
Az, © € D — the family of harmonic (in the classical sense) measures on dD. Then
the map f(x) = (F, ;) determines an embedding of the space of bounded measurable
functions on 9D (with respect to the harmonic measure type) into the space of bounded
harmonic functions on D. When is this embedding an isomorphism, i.e., when can the
Poisson boundary of D be identified with the geometric boundary dD? This question is
well known in classical analysis, and it is already non-trivial in the case of the disk in R2,
where the answer (yes) can be obtained by using an explicit form of the Poisson kernel
[Ru80, Theorem 4.3.3]. For general Euclidean domains the problem was solved in [Bi91],
[MP91].

Returning to the random walks, assume for a moment that the group G is equivariantly
embedded into a topological space X, and P-a.e. sample path & = {z,} converges to a
limit o, = w(x) € X. Then obviously the map = is shift invariant, so that the space X
with the hitting measure A = w(P) on it is necessarily a quotient of the Poisson boundary
with respect to a certain G-invariant partition. Such quotients are called p-boundaries. Of
course, the topology on X is irrelevant, and any equivariant and shift invariant projection
7 : (GZ+,P) — (B, \) gives rise to a y-boundary.

The Poisson boundary is the mazimal p-boundary. Therefore, the problem of identifi-
cating the Poisson boundary of (G, i) consists of two parts:

(1) To find (in geometric, combinatorial, etc. terms) a p-boundary (B, \);
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(2) To show that this y-boundary is maximal.

In other words, first one has to exhibit a certain system of invariants of stochastically sig-
nificant behavior of sample paths at infinity, and then to show completeness of this system.
A particular case is proving triviality of the Poisson boundary, i.e., proving maximality of
the one-point u-boundary.

We emphasize that even if a py-boundary is realized on the boundary of a certain group
compactification, maximality of this y-boundary has nothing to do with solvability of the
Dirichlet problem for u-harmonic functions with respect to this compactification.

2. Historical background

2.1. The Poisson boundary is trivial for all measures on abelian and nilpotent groups; on
the other hand, if the group GG is non-amenable, then the Poisson boundary is non-trivial
for any non-degenerate measure p (i.e., such that the group generated by the support of
is the whole group G). For amenable groups one can always construct a measure p with
trivial Poisson boundary, but there may also be measures with a non-trivial boundary, see
[Ka96] and references therein.

One can apply various direct methods of describing non-trivial behaviour of sample
paths at infinity for finding a p-boundary.

The following very useful idea of Furstenberg [Fu71] gives a general approach to con-
structing p-boundaries. Let B be a separable compact G-space; by its compactness there
exists a p-stationary probability measure A on B. Then the Martingale Convergence Theo-
rem implies that for a.e. sample path & = {z,,} the sequence of translations x, A converges
weakly to a measure A(x). Thus, the map x — A(x) allows one to consider the space of
probability measures on B as a p-boundary. If the action of G on B has the property that
for any non-atomic measure A all weak limit points of the family of translations {gA}, g € G
are d-measures (such actions are called p-proximal [Fu73]), then almost all measures A(x)
are 0-measures, so that (B, A) is a u-boundary. The standard approach consists in deducing
mean proximality from proximality of G-action on the boundary with some additional con-
tractivity conditions, [Fu73], [Ma91, Proposition VI.2.13], [GR85], [CS89], [Wo089], [W093],
[KM96).

In particular, if a group compactification G = G U G has the property that g,& — vy
uniformly outside of every neighbourhood of y_ in G whenever g=' — v. € 0G, then the
G-action on 0G is mean proximal [Wo93] (see also [GMS87]).

We introduce another condition inspired by the notion of “bilateral structures” playing
an important role in this paper.

Theorem 11.4. If there exists a G-equivariant map S assigning to pairs of distinct points
(Y=, v4) from OG non-empty subsets (“strips”) S(y—,v+) C G such that for any distinct
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Y0,7Y1, V2 € OG there are neighbourhoods O, C G and Oy, Oy C 0G with S(v_,v4)NO, = @
for all points v— € O1,v4+ € Oq then the action of G on 0G is mean prorimal.

Under either of these conditions n-fold convolutions p,, of the measure p weakly converge
to the unique p-stationary measure A on 0G. It makes this construction in a sense similar
to the well known Patterson—Sullivan construction, the “geometry” of the group being
determined by the choice of p. However, an important difference is that in our case the
measures L, are connected with the recurrence relation g, 1 = pin it = ppen,, which provides
the resulting boundary measure with new properties.

The hyperbolic compactification of word hyperbolic groups and the end compactification
of groups with infinitely many ends satisfy both these conditions. Other examples where
one can prove convergence of sample paths in an appropriate compactification and unique-
ness of p-stationary measures on the compactification boundary are cocompact lattices in
rank one Cartan—Hadamard manifolds with respect to the visibility compactification [Ba89]

and mapping class groups with respect to the Thurston compactification of Teichmiiller
space [KM96].

For a semi-simple Lie group G one has to consider the associated Riemannian symmetric
space S 2 G/, where K is a maximal compact subgroup. The boundary 95 of the visibility
compactification of S consists of G-orbits 0S, parameterized by unit length vectors a from
the closure of a dominant Weyl chamber 2" in the Lie algebra of a Cartan subgroup
A. The orbits S, are isomorphic to the Furstenberg boundary B = G/P (here P is a
minimal parabolic subgroup) for vectors a inside the Weyl chamber, and to quotients of
B if a is degenerate [Ka89]. The Furstenberg boundary can be also defined as the space
of asymptotic classes of Weyl chambers [Mo73] in complete analogy with the definition of
the visibility boundary as the space of asymptotic classes of geodesic rays. For the group
SL(d,R) the Furstenberg boundary is the space of flags in R? (the boundary circle of the
hyperbolic plane if d = 2).

If a measure p on G has a finite first moment [ dist(o, go) du(g) < oo, then there exists
a Lyapunov vector a € A" such that r(z,0)/n — a for P-a.e. sample path {z,} of the

random walk (G, p), where r(z) € A" is the radial part of a point € S determined from
the Cartan decomposition. If a # 0 (this is always the case if the group generated by
supp p is non-amenable), then a.e. sequence x,,0 converges to the orbit 9.5, [Ka89].

Embedding the symmetric space S into the space of probability measures on B by the
map go — gm, where o0 = I € S, and m is the unique K-invariant probability measure
on B, and taking closure in the weak topology gives rise to the Satake—Furstenberg com-
pactification of S [Mo64]. Tts boundary consists of several G-transitive components, one of
which (corresponding to limit J-measures) is isomorphic to B. Guivarc’h and Raugi [GR85]
proved that if the measure p satisfies certain non-degeneracy conditions (in particular, if
the group generated by supp p is Zariski dense [GM89]), then a.e. sequence x,,0 converges
in the Satake-Furstenberg compactification to B. If the measure p in addition has a finite
first moment, then the p-boundaries obtained by these two procedures are isomorphic,
because the Lyapunov vector in this case is non-degenerate [GR85].
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Realizing non-compact spaces as p-boundaries in the case of Lie groups (or discrete
subgroups of Lie groups) usually amounts to proving convergence in appropriate ho-
mogeneous spaces of the group by using contracting properties of the action and re-
quires finiteness of the first moment of the measure p, ie., [dx(g)du(g) < oo, where
dk(g) = min{n : g € K™} is the word length on G determined by a compact symmetric
neighbourhood of the identity [Az70], [Ra77], [Gu80a]. For example, let G = Aff(R) =
{t = at + b,a € Ry ,b € R} be the real affine group. The finite first moment condition
then takes the form [[|loga(g)| + log™ |b(g)|] du(g) < oo. If @ = [loga(g)du(g) < 0,
then the elements z,, = (an,b,) of a.e. sample path act on R exponentially contracting,
and looking at the formula for the group product in G one can immediately see that there
exists a limit by, = lim,,_,oo b, € R. The same idea works for polycyclic groups or for
discrete affine groups (Theorems 20.6, 21.4).

For discrete groups which are not immediately connected with Lie groups the variety
of situations is wider and examples of non-trivial py-boundaries realized on non-compact
spaces and obtained from “elementary” probabilistic and combinatorial considerations in-
clude random walks on the infinite symmetric group, some locally finite solvable groups,
and some wreath products [KV83], [Ka85a].

2.2. Two general ideas are helpful for identification of the Poisson boundary of Lie groups.
The first one is used for proving maximality of a given u-boundary Z = = (T"). Suppose
that a subgroup H C G acts simply transitively on Z. If the fibers T, = 7~ 1(2) are
non-trivial, then acting by H one extends a non-constant bounded function ¢, on I', to
a non-constant H-invariant function ¢ on I', which gives rise to a non-constant bounded
H-invariant harmonic function. Thus, if one knows that the latter do not exist, then Z
in fact coincides with the Poisson boundary. For an absolutely continuous measure g on
a non-compact semi-simple Lie group G with finite center this idea allowed Furstenberg
to identify the Poisson boundary with the Furstenberg boundary B of the corresponding
symmetric space in his seminal paper [Fu63].

The other idea is used for finding out group elements g € G (p-periods) such that their
action on the Poisson boundary is trivial. If the sequence (z,;'gx,) has a limit point in
G for a.e. path {x,}, then g is a p-period [Az70], [Gu73]. Applying these ideas (and
with a heavy use of the structure theory of Lie groups) Azencott [Az70] and Raugi [Ra77]
described the Poisson boundary for any spread out probability measure with a finite first
moment on a connected Lie group G as a G-space determined by a family of cocycles
associated with the measure pu.

For an illustration let us look again at the real affine group G. If =, = (an,b,) and
g = (1,b), then z; tgz,, = (1,a;,'b). Thus, if a = [loga(g) du(g) > 0, then H = {(1,b)}
is a subgroup of the group of p-periods, so that any bounded p-harmonic function on
G is H-invariant, i.e., depends on the component a(g) only. The abelian group {(a,0)}
does not have bounded harmonic functions, and the Poisson boundary of the random walk
(G, i) is thereby trivial. In the contracting case o < 0, as we have already seen, R with
the corresponding limit measure A is a non-trivial g-boundary. Since the subgroup H acts
on R simply transitively, and there are no H-invariant bounded harmonic functions, the
p-boundary (R, ) is maximal.
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2.3. Yet another boundary associated with the random walk (G, i) is the Martin boundary
obtained by embedding the group G into the projective space of functions on G' by using the
Green kernel and taking the closure. The Martin boundary contains all minimal positive
harmonic functions, and any positive harmonic function can be uniquely decomposed as an
integral of minimal ones. Considered as a measure space with the representing measure of
the function 1, the Martin boundary is isomorphic to the Poisson boundary, see [Ka96] and
references therein. Thus, a description of the Martin boundary would imply a description of
the Poisson boundary. However, there is a fundamental difference between the Poisson and
the Martin boundaries: the former is a measure space, whereas the latter is a topological
space.

The most general approach to the description of the Martin boundary belongs to Ancona
[An87], [An90], and is a far reaching generalization of earlier results for free and Fuchsian
groups [DM61], [De75], [Se83], for trees [PW87], and for the Brownian motion on Cartan—
Hadamard manifolds with pinched sectional curvatures [AS85]. He showed that for a
large class of “local” Markov operators (diffusion ones in the continuous setup and finite
range ones in discrete situations) on Gromov hyperbolic spaces the Green kernel is almost
multiplicative along geodesics, which implies that the Martin compactification coincides
with the hyperbolic compactification. In particular, the Martin boundary for all finitely
supported measures on hyperbolic groups is the hyperbolic boundary.

The “locality” assumption is crucial for the Martin boundary methods. For example,
it is unclear whether Ancona’s technique works for hyperbolic groups when the measure
it has a “very fast” decay at infinity, instead of being finitely supported. Moreover, the
Martin boundary is “less functorial” and “less stable” than the Poisson boundary (see
[Ka92]). A recent example of Ballmann and Ledrappier [BL96] shows that there is a
probability measure with a finite first logarithmic moment on a free group such that the
Martin boundary of the corresponding random walk is homeomorphic to the circle and
not to the space of ends (although from the measure theoretical point of view the Poisson
boundary can be still identified with the space of ends).

3. Outline of principal results

3.1. In the present paper we are addressing the problem of identification of the Poisson
boundary for random walks on a discrete group G under fairly mild conditions on decay
of the measure p at infinity (a finite first moment is sufficient). The methods used for Lie
groups or the Martin theory methods are not applicable in this situation. The notion of
entropy in explicit [Av72], [Av76], [KV83], [De80], [De86] or implicit form (via differential
entropy [Fu71], asymptotic growth [Gu80b], Hausdorff dimension [Le83], [Le85], [BLI4])
turned out to be much more efficient for dealing with the Poisson boundary of random
walks on discrete groups.

We develop here a new method based on estimating the entropy of conditional random
walks, which incorporates and generalizes all these approaches. Instead of using structure
theory this method relies upon volume estimates for random walks and it is applicable
both to discrete and continuous groups. It leads to two simple purely geometric criteria of



THE POISSON FORMULA FOR GROUPS WITH HYPERBOLIC PROPERTIES 9

boundary maximality. These criteria bear hyperbolic nature and allow us to identify the
Poisson boundary with natural boundaries for several classes of groups with “hyperbolic
properties”: word hyperbolic groups (more generally, discrete groups of isometries of Gro-
mov hyperbolic spaces), groups with infinitely many ends, cocompact lattices in Cartan—
Hadamard manifolds, discrete subgroups of semi-simple Lie groups, polycyclic groups and
some other semi-direct and wreath products. This is the main result of the present paper.
Partial announcements were made in the author’s notes [Ka85b], [Ka94].

3.2. Let u be a probability measure on a countable group G with finite entropy H(u) =
—> u(g)logu(g). If G is a finitely generated group, and the measure u has a finite first
moment in G, then its entropy is also finite. The limit A(G, p) = lim H (u,, ) /n of normalized
entropies of n-fold convolutions of 4 is called the entropy of the random walk (G, p1) [AvT2],
[KV83], [De86]. As it follows from the Kingman Subadditive Ergodic Theorem, the entropy
h(G, 1) coincides with the asymptotic entropy h(P) of the measure P in the path space
G”+ in the following sense: the one-dimensional distributions j, of the measure P have
the property that —log i, (z,)/n — h(G, ) for P-a.e. & = {x,} € GZ+ and in the space
LY(P).

The Poisson boundary of (G, p) is trivial iff (G, ) = 0 [De80], [KV83]. It turns out
that this criterion can be generalized to a criterion of maximality of a given u-boundary
(B, \), which is formulated in terms of conditional walks associated with points b € B.
The corresponding conditional measures P?, b € B are the measures in the path spaces of
Markov chains with transition probabilities p®(z,y) = p(x~ty)dy\/dz (D).

Theorem 10.6. A p-boundary (B, ) is mazimal iff the asymptotic entropies of almost
all conditional measures P®, b € B vanish.

3.3. Now we can formulate two simple geometric criteria of maximality of a py-boundary
for a measure g with finite entropy. Both require an approximation of the sample paths
of the random walk in terms of their limit behaviour. For simplicity we assume that G
is finitely generated, and denote by d(g1,92) = 0(g97 'g2) the left-invariant metric on G
corresponding to a word length . Let (B, A) = (I'¢, v¢) be a p-boundary presented as the
quotient of the Poisson boundary (I',r) by a certain measurable G-invariant partition &,
and bnd; : (GZ+,P) — (T,v) = (I'¢,v¢) = (B, A) be the corresponding projection from
the path space onto (B, \).
The first criterion is an immediate corollary of Theorem 10.6.

Theorem 13.2 (“ray”, or, “unilateral” approximation). If there is a family of measurable
maps m, : I' = G such that a.e. d(x,,m,(bnde x)) = o(n), then (B, \) is mazimal.

The second criterion applies simultaneously to a p-boundary (Bi,Ay) and to a fi-
boundary (B_,A_) (where ji(g) = u(g)~! is the reflected measure of y). Denote by B,
the balls of the word metric centered at e.

Theorem 14.4 (“strip”, or, “bilateral” approximation). If there is a G-equivariant mea-
surable map S assigning to pairs (b—,by) € B_ x By non-empty subsets S(b_,by) C G
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such that for a.e. (b_,by) € B_ X By
1
(3.1) —log|S(b_,b4) N Bs(z,)| = 0
n

in probability with respect to the measure P, then both boundaries (B—,A_) and (B4, A+)
are mazimal.

The proof of the second criterion makes use of the space (GZ,P) of bilateral paths
{zn},n € Z of the random walk (G, p) passing through the identity e at time 0. This space
is isomorphic to the space of bilateral sequences of independent p-distributed increments
{hn},n € Z under the map x,, = x,,_1h,, and is decomposable into a product of unilateral
path spaces of the random walks (G, 1) and (G, i) corresponding to negative and positive
times n, respectively. The bilateral Bernoulli shift in the space of increments induces
then an ergodic measure preserving transformation U of (GZ,P). Denote by bnd. the
projections from (G%, P) onto the boundaries (B, A+). Then bndy (U ) = z 'bnd. ,
so that by equivariance of the strip map S for any n € Z

Plz, € S(bnd_ z,bnd; z)] = P[e € S(bnd_z,bnd; z)] =p.

Since the strips S(b_, by) are a.e. non-empty, we may assume that p > 0, so that sample
paths of the conditional walk conditioned by b € By belong to S(b_, b, ) with probability
p, which implies that the asymptotic entropy of the corresponding conditional measure P+
must be zero.

Subexponentiality of the intersections [S (b_,by) N B(;(mn)] is the key condition here.
Thus, the “thinner” are the strips S(b_, by ) themselves, the larger is the class of measures
for which condition (3.1) is satisfied, i.e., sample paths {x,} may be allowed to go to
infinity “faster”. If the strips S(y—_,v4+) grow subexponentially then condition (3.1) is
satisfied for any probability measure p with a finite first moment, and if the strips grow
polynomially then (3.1) is satisfied for any measure p with a finite first logarithmic moment

> logd(g)p(g) (Theorem 14.5).

3.4. For checking the ray criterion one often needs rather elaborate estimates, whereas
existence of strips is usually almost evident, and estimates of their growth are not very hard.
Let us look at how we use the ray and the strip approximation criteria for identificating
the Poisson boundary of concrete groups.

For word hyperbolic groups (more generally, discontinuous groups of isometries of Gro-
mov hyperbolic spaces) the ray criterion for measures p with a finite first moment amounts
to proving that for any sequence z, in the group such that d(zg,z,)/n — [ > 0 and
d(Zpn, Tny1) = o(n) there exists a geodesic ray a with d(z,, a(In)) = o(n) (Theorem 16.5).
This is a purely geometric property of Gromov hyperbolic spaces (cf. below an analogous
property of Riemannian symmetric spaces, Theorem 19.3), which, nevertheless, is not to-
tally obvious. On the other hand, the strip S(£_, &4 ) corresponding to a pair of points from
the hyperbolic boundary is naturally defined as a union of all geodesics with endpoints
¢_,&+ and has a linear growth. It implies
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Theorem 16.10. The Poisson boundary for any measure p with a finite entropy and a
finite first logarithmic moment on a hyperbolic group identifies with the hyperbolic bound-
ary.

In the case of groups with infinitely many ends obtaining a ray approximation becomes
more difficult. However, once again, defining appropriate strips associated with pairs of
distinct ends w_,wy presents no difficulty: take for S(w_,wy) the union of all R-balls
separating w_ and wq, where R = R(w_, w4 ) is the minimal number for which such balls
exist. It enables us to identify the Poisson boundary with the space of ends under the
same conditions as for hyperbolic groups (Theorem 17.5). Note that this approach does
not use at all the structure theory of groups with infinitely many ends and appeals directly
to their definition.

Actually, we deduce both Theorems 16.10 and 17.5 from the following general criterion:

Theorem 14.6. Let G = G U OG be a separable group compactification such that for all
pairs of boundary points £_ # &4 the pencils P(€_,&4) of infinite geodesics with limit
points £, &4 are non-empty, satisfy conditions of Theorem 11.4, and there exists a finite
set A(E_,&4) such that any geodesic from P({_,&y) intersects A(§_,&4). If a measure p
on G has a finite entropy and a finite first logarithmic moment, then P-a.e. sample path
x = {z,} converges to a limit xooc = bndax € 0G, the limit measure A = bnd (P) is
the unique p-stationary probability measure on G, and the measure space (0G, \) is the
Poisson boundary of the measure .

Theorem 14.6 gives conditions under which a group compactification G is mazimal in
a measure theoretical sense, i.e., there is no way (up to measure 0) of splitting further the
boundary points of this compactification.

In the next two examples the ray approximation fails completely, but geodesics in the
corresponding enveloping spaces still easily provide us with linear growth strips.

For cocompact lattices in rank one Cartan—Hadamard manifolds for applying the strip
criterion one takes geodesics joining pairs of points from the visibility boundary (which a.e.
exist due to a result of Ballmann [Ba89]). Once again, the very existence of such geodesics
implies that the Poisson boundary coincides with the visibility boundary for all measures
p with finite entropy and first logarithmic moment (Theorem 18.2). Together with a
description of the Poisson boundary for discrete subgroups of semi-simple Lie groups (see
below, Theorems 19.4, 19.8), and taking into account the Rank Rigidity Theorem [Ba95],
it allows us to identify the Poisson boundary for all fundamental groups of compact non-
positively curved Riemannian manifolds.

The mapping class groups are treated in a separate joint paper with Masur [KM96]. In
this case the strips are defined by using Teichmiiller geodesic lines in Teichmiiller space
associated with any two distinct uniquely ergodic projective measured foliations, which
implies identification of the Poisson boundary with a natural geometric boundary (the
boundary of the Thurston compactification) for all measures with finite entropy and finite
first logarithmic moment.
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For discrete subgroups of semi-simple Lie groups the difference between using conver-
gence in the visibility and Satake-Furstenberg compactifications for identifying the Poisson
boundary is in a trade-off between the moment and irreducibility conditions. Depending on
situation, one can use either of these compactifications for describing the Poisson boundary
by applying the corresponding geometric criterion.

For an arbitrary discrete subgroup G provided the measure p has finite first moment
> " dist(o, go)iu(g), the sequence x,0 is a.e. reqular in the sense that there exist a geodesic
ray ¢ such that dist(z,0,&(nlla||)) = o(n), where a is the Lyapunov vector. This fact is
a geometric counterpart of the Oseledec Multiplicative Ergodic Theorem [Ka89], and in
view of the ray criterion it immediately implies

Theorem 19.4. Let i be a probability measure with a finite first moment on a discrete
subgroup G of a semi-simple Lie group. If the Lyapunov vector a is non-zero, then the
Poisson boundary identifies with the corresponding orbit 0S,)|q| in the sphere at infinity
0S of the associated symmetric space.

If 11 is a non-degenerate measure on a Zariski dense discrete subgroup, then irreducibility
of the harmonic measures of p and /i on the Furstenberg boundary B allows one to assign
to a.e. pair of points in B a uniquely determined flat in S; since flats have polynomial
growth, by using the strip criterion we obtain

Theorem 19.8. Let i be a probability measure with with finite first logarithmic moment
> logdist(o, go)u(g) and finite entropy on a discrete subgroup G of a semi-simple Lie
group. If the group generated by the support of u is Zariski dense, then the Poisson bound-
ary identifies with the Furstenberg boundary of the associated symmetric space.

A polycyclic group G up to a semi-simple splitting is a semi-direct product A X N of
two torsion free finitely generated groups: abelian A and nilpotent N. Let p be a measure
with a finite first moment on G. The barycenter of the projection of y to A determines
an automorphism 7}, of N’ (the Lie hull of N) which gives rise to a decomposition of N
into contracting N_, neutral Ny and expanding A, subgroups. The homogeneous space
A AN JANoN ;¢ (identified with the contracting subgroup N_) is a p-boundary, and the
expanding subgroup N, (i.e., the contracting subgroup for the reflected measure i) is a
fi-boundary (cf. the example above with the affine group). Any pair of points from NV_ and
N determines (as intersection of the corresponding cosets) a coset of AN} in A AN, which
gives rise to equivariant strips in G. Showing that these strips are “thin enough” (here we
have to use a special metric on G with infinite balls) boils down to an easy estimate of the
growth of the neutral component along sample paths of the random walk, and we have

Theorem 20.6. The Poisson boundary for any measure p with a finite first moment on
a polycyclic group identifies with the contracting subgroup N_.

For a general semi-direct product G = A A H any measurable H-equivariant map
m : B_ x By — H determines equivariant strips S(b_,b;) with the same growth as
A. In particular, if the measure g on G has a finite first moment and the growth of A is
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subexponential, then very existence of 7 implies maximality of the boundaries (B4, Ay)
(Theorem 21.2).
The Baumslag—Solitar group G = BS(1,p) = (a,blaba™! = bP) = Aff(Z[1]) is isomor-

P
phic to the semi-direct product Z K Z[%] determined by the action T%f = p*f. It has two
boundaries (“lower” and “upper”) R and @Q, obtained by completing Z[%] in the usual and

in the “p-adic” (p is not necessarily a prime) metrics [KV83], [FM97]. If x is a measure
with a finite first moment on G, denote by 1, the mean of its projection uy to Z. The
limit behaviour of the random walk (G, u) is then determined by the sign of 7i;. Namely, if
iy = 0, then the Poisson boundary is trivial [KV83]. If &, < 0 (resp., > 0), then the lower
boundary R (resp., the upper boundary @Q,) is a non-trivial y-boundary (cf. the example
with the real affine group). The map n(z,&) = v + {{{} — {z}} from R x Q, to Z[%] is
Z[%]—equivariant (here z — {x} is the function assigning to a real or p-adic number its
fractional part 0 < {z} < 1). Thereby, we have

Theorem 21.4. For a measure p with a finite first moment on a Baumslag—Solitar group
G = BS(1,p) the Poisson boundary identifies with the lower boundary R if i, < 0, and
with the upper boundary Q, if fiy; > 0.

In the same way we obtain maximality of natural p-boundaries for wreath products
G = A A fun (A, B), where fun (A, B) is the group of all finitely supported B-valued
configurations on A.

Theorem 21.6. If the group A has subexponential growth, the measure pn on G has a finite
first moment, and there exists a homomorphism 1 : A — Z such that the mean [, of the
measure (7, = (1) is non-zero, then for P-a.e. sample path {(z,,on)} the configurations
©n converge pointwise to a limit configuration lim ¢,, from the group Fun (A, B) of all
B-valued configurations on A, and the Poisson boundary of the pair (G, u) is isomorphic
to Fun (A, B) with the resulting limit measure A.

A particular case are the so-called groups of dynamical configurations, or lamplighter
groups Gy, = Z* {fun (Z*, Z,) first considered in [KV83]. As an application we also obtain

Theorem 21.10. If p s a probability measure with a finite first moment on a finitely
generated group G of subexponential growth, and there exists a homomorphism v : G — Z
such that the mean T, of the measure puz = () is non-zero, then the exchangeable o-
algebra of the random walk (G, i) is described by the final occupation times.

3.5. Moment conditions (finite first moment moment of finite first logarithmic moment,)
and, in the first place, finiteness of entropy are crucial for the methods used in the present
paper, and the question about maximality of natural p-boundaries for an arbitrary measure
i, say, on a word hyperbolic groups (just on a free group, to take the simplest case), or on
Zariski dense discrete subgroups of semi-simple Lie groups remains open.

On the other hand, our methods could be also applied in the continuous situations.
The entropy approach was used for finding out when the Poisson boundary is trivial for
random walks with absolutely continuous measure p on general locally compact groups (in
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particular, Lie groups) [Av76], [Gu80al, [De86], [Va86], [Ka92]. Here one should replace
the entropy H (p) with the differential entropy

Hasg () = = [ 10g S (9) duts)

where m is the left Haar measure on G. Likewise, our entropy criterion of maximality
of pu-boundaries in terms of entropy of conditional random walks can be also extended to
continuous groups, which leads to analogous “ray” and “strip” approximation geometric
criteria applicable to all spread out measures g with a finite first moment. It gives a
unified approach to discrete and continuous situations. For example, for the real affine
group Aff(R) taking for strips the sets A, = {(a,b) : b = v} (i.e., the hyperbolic geodesics
joining points from the boundary of the upper half-plane with the point at infinity) shows
at once that the Poisson boundary coincides with R in the contracting case a < 0 and
is trivial in the expanding case o > 0. This is the same idea that we have used for the
Baumslag—Solitar group BS(1,p), and it also works for the affine group of homogeneous
trees [CKW94].

Coming back to our point of departure, the classical Poisson formula for bounded har-
monic functions on the hyperbolic plane, we may conclude that our methods also shed a
new light on its nature. Namely, the fact that the isometry between the space C'(0D) and
the space of harmonic functions continuous up to the boundary extends to an isometry
between the space L°°(0D) and the space of all bounded harmonic functions can be ex-
plained just by existence of infinite geodesics joining pairs of distinct boundary points. We
shall return to this subject elsewhere.

3.6. The paper consists of Introduction (part I) and three other major parts. In part IT
“Entropy of random walks” (Sections 4-10) we introduce random walks on groups (Section
4), define the Poisson boundary (Section 5), and prove the Poisson formula (Section 6).
Further we discuss the notion of a p-boundary, and obtain a conditional decomposition
of the measure in the path space of the original random walk with respect to a given
p-boundary (Section 7). In Section 8 we prove coincidence of the Poisson and the tail
boundaries, which is the key ingredient of the entropy theory of random walks described
in Section 9. Finally, in Section 10 we obtain a measure theoretic criterion of maximality
of a p-boundary in terms of entropies of conditional random walks.

We begin part III “Geometric criteria of boundary maximality” (Sections 11-15) with
studying relationships between group compactifications and p-boundaries and obtaining
conditions for realizing the boundary of a given compactification as a p-boundary (Section
11). Then after discussing various notions of measuring “size” and “length” in groups
(Section 12) we prove geometric criteria of boundary maximality in terms of the ray ap-
proximation (Section 13) and the strip approximation (Section 14). The latter can be also
reformulated using the notion of asymptotically dissipative group actions (Section 15).

In the final part IV “Applications to concrete groups” (Sections 16-21) we describe the
Poisson boundary for word hyperbolic groups (Section 16), groups with infinitely many
ends (Section 17), fundamental groups of compact rank 1 Cartan-Hadamard manifolds
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(Section 18), discrete subgroups of semi-simple Lie groups (Section 19), polycyclic groups
(Section 20), and some wreath and semi-direct products including Baumslag—Solitar groups
BS(1,p) and groups of dynamical configurations (Section 21).

The work on this paper was supported on various stages by EPSRC, CNRS and MSRI.
I would also like to thank the UNAM Institute of Mathematics at Cuernavaca, Mexico,
where the paper was finished, for support and excellent working conditions.

II. Entropy of random walks
4. Random walks on groups

4.1. Let G be a countable group, and p — a probability measure on GG. We shall denote
by sgr (u) (resp., gr (1)) the semigroup (resp., the group) generated by the support supp u
of the measure p.

Definition. The (right) random walk on G determined by the measure p is the Markov
chain on G with the transition probabilities

(4.1) p(z,y) = p(z"'y)
invariant with respect to the left action of the group G on itself.
Thus, the position x,, of the random walk at time n is obtained from its position x( at
time 0 by multiplying by independent p-distributed right increments h;:
(42) Tn :ﬂfohth"'hn )

and the set of all points in G attainable by the random walk from the identity e is the
semigroup sgr (/).

4.2. The Markov operator P = P, of averaging with respect to the transition probabilities
of the random walk (G, u) is

Puf(x) = p(z,y)f(y) = ph)f(xh) .

Its adjoint operator acts on the space of measures on G' by the formula
(4.3) 0P(y) => 0(x)p(a,y) =Y _ O(x)u(z™"y) = u(y) .

If @ is the distribution of the position of the random walk at time n, then 6P = Ou is the
distribution of its position at next time n + 1.

Here and below we use the notation af3 to denote the convolution of a measure «
on G and a measure 3 on a G-space X (or, on the group G itself), i.e., the image
of the product measure a ® 3 under the map (g, x) — gx.
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4.3. Denote by GZ+ the space of sample paths © = {r,}, n > 0 endowed with the
coordinate-wise action of GG. Cylinder subsets of the path space are denoted

4.4 C :mEGZ+:$,~:g,~,O§i§n: C’i_,
go,g1,---,9n i

i=0
where C’; = {x € G+ : 1; = g} are the one-dimensional cylinders.

4.4. An initial distribution 6 on G determines the Markov measure Py in the path space.
It is the isomorphic image of the measure 0 ® ).~ ; p under the map (4.2), in other words,
for any cylinder set (4.4)

(4.5) Py(Cyogi,.ngn) = 0(90) (g5 " 91) - - - 11(97 2 19m) -

The one-dimensional distribution of the measure Py at time n (i.e., its image under the
projection ® +— x,) is OP™ = Ou,,, where p, is the n-fold convolution of the measure pu.

If 0 is the unit mass at a point g € GG, then the corresponding measure in the path space
is denoted P,. By P = P, we denote the measure in the path space corresponding to the
initial distribution concentrated at the group identity e (this is the most important for us
measure in the path space). Then for an arbitrary initial distribution 6

(4.6) Po=> 0(9)Py=)> 0(g)gP =0P.

Being isomorphic to a countable product of discrete measure spaces, the path space
g
(G”+,Py) is a Lebesgue space, which allows us to use in the sequel the standard ergodic

theory technique of measurable partitions and conditional measures due to Rokhlin (e.g.,
see [CFS82]).

5. The Poisson boundary

5.1. Let T : {x,} — {241} be the time shift in the path space GZ+. Then by (4.3) and
(4.5)

(5.1) TPy = Pyp = Py,

for an arbitrary initial distribution # on G, so that all measures Py with suppf = G
are quasi-invariant with respect to T'. Since the counting measure m on G is obviously
stationary with respect to the operator P (i.e., mP = m), the o-finite measure P,, is
T-invariant.
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5.2. Definition. The space of ergodic components I' of the time shift 7" in the path space
(G?+,P,,) is called the Poisson boundary of the random walk (G, ).

In a more detailed way, denote by ~ the orbit equivalence relation of the shift T" on the
path space GZ+:

(5.2) c~x = Inn>0:T'e=T"x .

This orbit equivalence relation is also sometimes called grand or asynchronous to dis-
tinguish it from another equivalence relation associated with orbits of 7T'; see below 8.1.
Denote by Ar the o-algebra of all measurable unions of ~-classes (mod 0) in the space
(G%+,P,,), i.e., the og-algebra of all T-invariant sets (mod 0). Since (GZ+,P,,) is a
Lebesgue space, there is a (unique up to an isomorphism) measurable space I' (the space
of ergodic components) and a map bnd : GZ+ — T such that the g-algebra A coincides
(mod 0) with the o-algebra of bnd -preimages of measurable subsets of I'. Denote by 7 the
corresponding measurable partition of the path space into bnd -preimages of points from
I, i.e., the measurable envelope of the equivalence relation ~. We shall call n the Poisson
partition.

5.3. Definition. The measure vy = bnd (Py) is called the harmonic measure determined
by an initial probability distribution # on G.

The measure type [v,,] on I' which is the image of the type of the measure P,, is called
the harmonic measure type. In other words, [v,,] is the type of all measures bnd Py, where
0 is a finite measure on G equivalent to m (the measure bnd P,,, itself is trivially infinite).
Any harmonic measure is absolutely continuous with respect to the harmonic measure type
(but not necessarily belongs to it, see below Example 5.9).

5.4. By definition of I' as the space of ergodic components of the shift T', for an arbitrary
initial distribution 6 we have bnd (Py) = bnd (TPy), so that by (5.1)

(53) Vg = bnd (Pg) = bnd (TPQ) = bnd (ng) = lgp = Vg -

5.5. The coordinate-wise action of G on the path space commutes with the shift T,
hence it projects to a canonical G-action on I' (because the orbit equivalence relation ~
is G-invariant). By G-invariance of the measure m, the harmonic measure type is quasi-
invariant with respect to the action of G (i.e., any G-translation of any null set of [v,,] is
also a null set of [v,]).

Denote by v = v, = bnd (P) the harmonic measure of the group identity. Then by
(4.6) for an arbitrary initial distribution 6

(5.4) ve = bnd (Py) = bnd (¢ P) = O bnd (P) = 0 .

In view of (5.3), it implies
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Proposition. The harmonic measure v = v, is p-stationary, i.e.,

(5.5) v=p=>Y pulg)gv.

Remark. Formula (5.5) implies that gv < v for all g € sgr(u). Therefore, if sgr () = G,
then the measure v is quasi-invariant and belongs to the harmonic measure type [v,].

5.6. The Bernoulli shift in the space of increments of the random walk determines the
measure preserving ergodic transformation

(5.6) (Ux)p = 2] ' Tni1
of the path space (GZ+, P). Since the paths & and x;(Ux) are ~-equivalent, we have

Lemma. For P-a.e. sample path x = {x,} € G*+

bndx = z;bndUx .

5.7. Below we shall be interested in describing the Poisson boundary for the initial dis-
tribution J., i.e., in describing the measure space (I',v). Fixing the harmonic measure v
on I' makes the Poisson boundary a canonically defined measure space endowed with an
action of the semigroup sgr (1) (see 5.5, 5.6).

Although in general the measure v does not have to belong to the harmonic measure type
[Vm], the Poisson boundary (T, vg) for an arbitrary initial distribution 6 can be recovered
from the space (I',v) in virtue of formula (5.4). The only minor difficulty here is that
the measure space (I',v) is acted upon by the semigroup sgr (x) only. In order to obtain
the Poisson boundary (I',vy) one then has to take the quotient of the product space
(GxT,0®v) with respect to the equivalence relation obtained by identifying pairs (g1, g27y)
and (g1g2,7) for all g1 € G, g2 € sgr(p) and v-a.e. v € I'. One can easily see that if the
harmonic measure v is concentrated on a single point, then the Poisson boundary (T, vy)
is just the quotient space (G, 60)/gr (p). In particular, if gr () = G, then triviality of the
harmonic measure v is equivalent to triviality of the harmonic measure type [vy,].

5.8. Triviality of the Poisson boundary (T, v) is equivalent to the property

Vg €sgr(p),

i.e., to strong convergence of the sequence of Cesaro averages of the convolutions u,, to a
left-invariant mean on gr () [KV83], [Ka92]. Thus, if gr (x) is non-amenable, then (T, v)
is necessarily non-trivial.

For any amenable group G there exists a measure p with supp 4 = G such that its
Poisson boundary is trivial, but there may also be measures with a non-trivial boundary).
However, if G is virtually nilpotent (in particular, abelian), then (T',v) is always trivial,
see [Ka96] and references therein.
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5.9. Example. Let G be a free group with generators a, b. Consider the measure p(a) =
p(b) = 1/2. This is the simplest example of a random walk with a non-trivial Poisson
boundary. Indeed, one can easily see that two paths from the path space (GZ+,P) are ~
equivalent iff they coincide. Thus, the Poisson partition n coincides with the point partition
of the path space, and the Poisson boundary (I",v) is the set of all infinite words in the
alphabet a, b with the Bernoulli measure with the weights (1/2,1/2) on it. More generally,
if supp p4 generates a free subsemigroup of GG, then the Poisson boundary is the set of
infinite words in the alphabet supp p with the Bernoulli measure y ® p ® ---. Obviously,
in this situation the harmonic measure v is not quasi-invariant with respect to the action

of GG.

6. Bounded harmonic functions and the Poisson formula

6.1. A function f is called p-harmonic if Pf = f, where P = P, is the Markov operator
of the random walk (G, p) introduced in 4.2. Denote by H>°(G, i) the Banach space of
bounded p-harmonic functions on G with the sup-norm.

Theorem. The formulas

F(bndx) = lim f(z,), flg)=(F,gv), ge€G

n— 00

state an isometric isomorphism between the spaces H* (G, ) and L (T, [vp,]).

Proof. Denote by AP the o-algebra in the path space GZ+ generated by the positions of the
random walk at times 0,1,...,n. Then a function f on G is p-harmonic if and only if the
sequence of functions ¢, () = f(x,) on the path space is a martingale with respect to the
increasing sequence of o-algebras Ay, because the martingale condition E(p,+1]Af) = ¢n
is precisely the harmonicity condition. Thus, by the Martingale Convergence Theorem
for P,,-a.e. sample path & = {z,} there exists a limit lim f(z,), which is obviously
measurable with respect to the o-algebra Ar. Since the Poisson boundary I is the quotient
of the path space determined by the o-algebra Ap, it means that there is a function
F € L*°(T",v) such that lim f(z,) = F(bnd x).
Conversely, let F' € L (T, [v,,]). Since the measure v is p-stationary,

Pf(g) =Y u(h)f(gh) = w(h)(F,ghv) = (F,guw) = (F,gv) = f(g) ,

i.e., the function f is p-harmonic. It remains to check that lim f(z,) = F(bnd x), where
it is sufficient to consider just an indicator function F' =14, A C I'. By the definition of
the harmonic measure,

flg) =(F,gv) = (F,vy) = Pg(bnd_lA) .
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Moreover, since the set bnd ~' A is T-invariant, by the Markov property
(6.1) f(g) =P,(bnd ~'A) = Py(bnd "' Az, = g)

for any n > 0 and any probability measure 6 on G with suppf = G. Again by the Markov
property, the event bnd “14is conditionally independent of the o-algebra Ag—l under the
condition [x,, = g], so that (6.1) can be rewritten as

f(z,) = Po(bnd ~'A|AD) .
Hence a.e.
f(#n) = 1pna —14(x) = 1a(bnd z) = F(2) ,

because the limit of the increasing sequence of o-algebras Af is the full o-algebra of the
path space. O

Since any G-invariant harmonic function on G is obviously constant, we obtain

Corollary. The action of the group G on the Poisson boundary I' is ergodic with respect
to the harmonic measure type [Vp,].

6.2.

Below we always consider the Poisson boundary T of the couple (G, i) as a measure
space with the harmonic measure v = v, determined by the group identily e as a
starting point. Unless otherwise specified, no conditions are imposed neither on the
group gr (i) nor on the semigroup sgr (u) generated by the support of the measure

I

In this situation Theorem 6.1 yields an isometric isomorphism between the space of
bounded p-harmonic functions on sgr (p) and the space L*°(T", v) [Fu71]. Since gv < v for
any g € sgr(u) (see Proposition 5.5), the Poisson formula can be then rewritten using the
Poisson kernel TI(g,~) = dgv/dv(y) as

f(g) = (F,gv) = /F(’Y)H(gm) dv(y) .
In other words,

(6.2) f= /F(’Y)‘Pv dv(y) = /% dvi(y) ,

where ¢, = II(-,7) are g-harmonic functions on sgr (1) given by Radon-Nikodym derivati-
ves of the translations of the measure v, and vy = Fv is the representing measure of f.
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6.3. Denote by H; (G, ) the convex set of all non-negative harmonic functions on sgr (u)
normalized by the condition f(e) = 1. Any function f € H; (G,u) determines a new
Markov chain (the Doob transform) on sgr (p) whose transition probabilities

10 f ()
$7y) = :U’(l. ly)m )
are “cohomologous” to the transition probabilities (4.1) of the original random walk. For
any cylinder subset (4.4) of the path space the Markov measure P/ in the space of sample
paths of the Doob transform (with the initial distribution d.) is connected with the measure
P by the formula

(63) Pf(Ce,gl,...,gn) = P(Ce,gl,...,gn)f(gn) ’

i.e., the map (6.3) is a convex embedding of H (G, 1) into the space of Markov measures
on G7+.

P’ (

6.4. If A is a measurable subset of the Poisson boundary with v(A) > 0, then by the
Markov property for any cylinder set C, 4, . 4

P(Oe;91;~~~;9n N bnd_lA) = P(Oe,g1,...,gn)Pgn (bnd_lA) = P(Oe,gl,---,gn)gnV(A) )

whence
P(Ceyglavgn)gnV(A)

P(C.,, bnd ~'A) = =P(Cepy,...
( »g 7"-7gn| n ) P(bnd_lA) ( s9g1, 7gn)

gnv(A)
v(A)

i.e., the conditional measure P4(-) = P(-jbnd ~*A) is the Doob transform of the measure
P determined by the normalized harmonic function ¢ 4(x) = zv(A)/v(A). Now,

A= ﬁ /A Py dv(v) , ¢ (z) = dzv/dv(y) ,

cf. (6.2), whence by the convexity of the Doob transform
1
oot [
v(A) Ja
where P7 are Doob transforms determined by the functions ¢, which yields

Theorem. The measures
dg,v

Pv(Ce,gh...,gn) = P(Ce,gh...,gnh’) = P(Oe,gl,---,gn) dv (7)

corresponding to the Markov operators Py on sgr (p) with transition probabilities

dyv

py(z,y) = u(m_ly)@(v)

are the canonical system of conditional measures of the measure P with respect to the
Poisson boundary.
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Corollary 1. The Radon-Nikodym derivatives ¢ (z) = daxv/dv(y), = € sgr(p),y € T
separate points of the space (I',v).

Proof. Since the conditional measures in the path space corresponding to different points
v € I' are pairwise singular, different points v € I' determine different functions ¢,. ([l

Corollary 2. The harmonic functions ¢ (z) = dzv/dv(y) are a.e. minimal, i.e., can not
be decomposed into a non-trivial linear combination of positive harmonic functions.

Proof. The measures P7 = P(-|y) are conditional measures on ergodic components of the
time shift, so that they are ergodic themselves. By convexity of the Doob transform (6.3)
it implies minimality of ¢,. ([l

7. Quotients of the Poisson boundary (u-boundaries)

7.1. Definition. The quotient (I'¢,v¢) of the Poisson boundary (I', ) with respect to a
certain G-invariant measurable partition £ is called a p-boundary.

Another way of defining a p-boundary is to say that it is a G-space with a p-stationary
measure A such that x, A weakly converges to a d-measure for P-a.e. path {z,} of the
random walk (G, ) [Fu73].

The Poisson boundary itself is the maximal p-boundary, and the singleton is the minimal
p-boundary. We shall denote by bnd, the canonical projection

bnd, : (G%+,P) — (T,v) — (D¢, ve) ,

and by 7 the corresponding partition of the path space (recall that the partition of the path
space corresponding to the Poisson boundary is denoted 7). The measure v¢ and almost all
conditional measures on the fibers of the projection I' — I'¢ are purely non-atomic (unless
Ie ={} or 't =T, respectively) [Ka95].

7.2. Any G-space which is a ~-measurable image of the path space (GZ+,P) is a u-
boundary (recall that ~ is the orbit equivalence relation (5.2) of the time shift 7"). In other
words, if 7 is a T-invariant equivariant measurable map from the path space (G%+, P) to a
G-space B, then (B, 7(P)) is a u-boundary. For example, such a map arises in the situation
when G is embedded into a topological G-space X, and P-a.e. sample path ¢ = {z,}
converges to a limit o, = 7(ax) € X. In this situation we shall say that the limit measure
7(P) is the harmonic measure of the random walk (G, 1) with respect to the embedding
G — X.

Another example of a p-boundary arises from taking a quotient of the group G by a
normal subgroup H C G. Denote by u’ the image of the measure p on the quotient group
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G' = G/H. Then the Poisson boundary (I, 7") of the random walk (G’, u’) is the space of
ergodic components of the Poisson boundary (', v) of the random walk (G, p1) with respect
to the action of H [Ka95].

7.3. For any group G with a probability measure p on it let G be the free group with
the set of free generators A = supp p (we assume that inverse elements from supp p are
independent generators of CNJ, so that the subsemigroup generated by A is free) and with
the measure g = p on it. The Poisson boundary of (CNJ, ) is the set (A%, u>) of infinite
words in the alphabet A with the Bernoulli measure (see Example 5.9), so that the Poisson
boundary of (G, i) is the quotient of (A%, 4>°) with respect to the action of the kernel
H of the projection G — G. This action consists in applying to infinite words from
A®® all possible relations between generators from A present in the group GG. However,
contrary to a suggestion formulated in the pioneering paper [DM61], obtaining an effective
description of the Poisson boundary of (G, i) in this way turns out to be quite a hard task.
Already in the case of an arbitrary (not necessarily concentrated on the set of generators)
measure £ on a free semigroup it is unknown whether the set of infinite words (which is
obviously a p-boundary with the natural measure obtained by taking infinite products of -
distributed increments) is indeed the whole Poisson boundary. Moreover, there are groups
(see examples from [KV83], [Ka85a]) for which a description of the Poisson boundary in
terms of any kind of infinite words seems quite unlikely at all.

7.4. Generally speaking, the problem of describing the Poisson boundary of (G, i) consists
of the following two parts:

(1) To find (in geometric or combinatorial terms) a p-boundary (B, ) which is a
priori just the quotient (¢, v¢) of the Poisson boundary with respect to a certain
G-invariant partition &;

(2) To show that this u-boundary is maximal, i.e., that £ is in fact the point partition
of the Poisson boundary.

These two parts are quite different. First one has to exhibit a certain system of invariants
(“patterns”) of the behaviour of the random walk at infinity, and then to show completeness
of this system, i.e., that these patterns completely describe the behaviour at infinity. A
particular case of the problem of describing the Poisson boundary is proving its triviality.

7.5. Definition. A compactification of the group G is called p-maximal if sample paths of
the random walk (G, ) converge a.e. in this compactification (so that it is a g-boundary),
and this p-boundary is in fact isomorphic to the Poisson boundary of (G, u).

This property means that the compactification is indeed mazimal in a measure theoreti-
cal sense, i.e., there is no way (up to measure 0) of splitting further the boundary points of
this compactification. We shall give in part III general geometric criteria for maximality of
p-boundaries and p-maximality of group compactifications using a quantitative approach
based on the entropy theory of random walks.
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7.6. Let now (I'¢,v¢) be a p-boundary. Then for ve-a.e. ve € I'¢

(ve) = / %(7) dv(v|ve) ,

dgV§

dVg

where v(-|y¢) are the conditional measures of the measure v on the fibers of the projection
I' = I'¢, v — v¢. Then Theorem 6.4 and convexity of the Doob transform (6.3) imply

Theorem. The conditional measures of the measure P with respect to a p-boundary
(Te,ve) are

dgnv.
P’yg (Oeagla"'agn) = P(Ceagla"'agn|,y§) = P(Cevglyygn)dT:(fyg) ? ’Y{ € Fg

and correspond to the Markov operators P, on sgr (u) with transition probabilities

dy Vg

P (z,y) = u(w‘ly)m(%) :

Corollary. The Radon-Nikodym derivatives dxve /dve(ve), x € sgr(p),ve € I'e separate
points of the space (L'¢,ve).

8. The tail boundary

8.1. Another measure-theoretic boundary associated with a Markov operator is the tail
boundary. Its definition is analogous to the definition of the Poisson boundary, with the
grand orbit equivalence relation ~ (5.2) being replaced with the small (or, synchronous)
orbit equivalence relation ~:

rr~z = In>0:T"x=T"x".

An important difference (crucial for what follows) is that unlike the o-algebra Ap from
the definition of the Poisson boundary, the tail o-algebra A of all measurable unions
of ~-classes can be presented in a canonical way as the limit of a decreasing sequence of
o-algebras A2° determined by the positions of sample paths at times > n. One can say
that the tail boundary completely describes the stochastically significant behaviour of the
Markov chain at infinity.

In the language of the corresponding measurable partitions of the path space, the tail
partition o (which is the measurable envelope of the equivalence relation &) is the mea-
surable intersection A af° of the decreasing sequence of measurable partitions ag° cor-
responding to o-algebras AS° (i.e., two paths & and &’ belong to the same class of the
partition af° iff z; =« for all i > n).
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8.2. The tail boundary is the Poisson boundary for the space-time operator PN’f(-,n) =
Pf(-,n+1) on X XZ, so that it gives integral representation of bounded harmonic sequences
fn = Pfny1 on X (which are counterparts of so-called parabolic harmonic functions in the
classical setup). The tail boundary is endowed with a natural action of the time shift T’
induced by the time shift in the path space, and the Poisson boundary is the space of
ergodic components of the tail boundary with respect to T'. Triviality of the tail boundary
means that the Markov operator P is mizring in the same way as triviality of the Poisson
boundary is equivalent to ergodicity of P.

8.3. The Poisson and the tail boundaries are sometimes confused, and, indeed, they do
coincide for “most common” Markov operators [Ka92]. General criteria of triviality of
these boundaries and of their coincidence for an arbitrary Markov operator are provided
by 0-2 laws. In particular,

Theorem [Ka92]. The tail and the Poisson boundaries coincide Py— mod 0 for a given
initial distribution 0 on G iff for any integers k,d > 0 and any probability measure A\ <
Ope N Opigsa

Jim [N = Nl =0

Otherwise there exists d > 0 with the property that for every e > 0 there are k > 0 and a
probability measure X < Ougi A Opgyq such that

Hm || Ap, — Antdl| >2—€.
n— 00

8.4. If for certain k,d > 0 the measures pup and pg4q are non-singular, then for any
probability measure A on G

i Ayt — Aptall = 1 | Mg e — M) | < i = pial] < 2.
so that the second part of Theorem 8.3 applied to the initial distribution # = §. implies

Theorem [De80], [KV83]. The Poisson and the tail boundaries coincide P — mod 0.

8.5. Coincidence of the Poisson and the tail boundary with respect to a single point
initial distribution for random walks on groups is a key ingredient of the entropy theory
of random walks (see Section 9). As Theorem 8.3 shows, the reason for their discrepancy
for a non-trivial initial distribution € is existence of such d > 0 that for any n > 0 the
convolutions pu, and p,+q are pairwise singular. The minimal D with the property that
lttn, — tna ]| — 0 is called the period of the measure p. If D < oo, then one can easily see
that the tail boundary for an arbitrary initial distribution 6 is a Z p-cover over the Poisson
boundary. In the case D = oo a similar description was obtained in a recent paper [Ja95].
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9. Entropy and triviality of the Poisson boundary

9.1. From now on we shall assume that the measure p has finite entropy

H(p) = —u(g)logp(g) .

geG

Lemma. The sequence H(uy,) of entropies of n-fold convolutions of the measure p is
subadditive.

Proof. The measure i, ., is the image of the product measure u, ® p,, under the map
(91,92) — 9192, whence by the well known properties of the entropy (e.g., see [Ro67])

H(pin) + H (pm) = H(pin ® pian) = H (pin4m)- O

9.2. Definition [Av72]. The limit (which exists by Lemma 9.1)

WG, ) = lim 2 (1)

n— 00 n

is called the entropy of the random walk (G, p).

9.3. Definition. A probability measure A on GZ+ has asymptotic entropy h(A) if it has
the following Shannon—Breiman—McMillan type equidistribution property:

1
- log A(C’Zn) — h(A)

for A-a.e. & = {z,} € GZ+ and in the space L1(A).
Note that if ),, is the one-dimensional distribution of the measure A at time n, then

(9.1) _ /1ogA(c;;n) AA () = — 3 Tog An (@) An(in) = H(An)

so that L!-convergence in the above definition implies that H()\,)/n — h(A).
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9.4. Theorem [De80], [KV83]. The asymptotic entropy h(P) of the measure P exists,
and h(P) = h(G, p).

Proof. Consider the functions f,(x) = —log p,(x,) on the path space. By formula (9.1)
and Lemma 9.1 they are integrable. Since

/jln—i-m(xn—i—m) = pn~|—m (67 xn—i—m) 2 pn(ea l'n)pm ('Tna $n~|—m) = Mn(xn)um(a:;lxn—i—m) 9

we have the subadditivity property
Jrnam (@) < fo(@) + fm(U"2) |

where U is the measure preserving transformation of (GZ+, P) introduced in 5.6, so that
the claim at once follows from Kingman’s Subadditive Ergodic Theorem. U

9.5. Recall that the entropy H(&) = H(X, m,&) of a countable measurable partition & of
a Lebesgue space (X, m) is defined as the entropy of the quotient probability distribution
m¢ on the quotient space X¢. It can be written down as

H(€) = H(me) = — / log m(¢,) dm(z) ,

where £, C X denotes the element of the partition & containing the point z. If { is another
measurable partition of the same space (X, m), then the (mean) conditional entropy of &
with respect to ( is defined as

HE0 = [ HX.m(le),) dmg(ag) == [ logm(&, o) din(a)

where x — z is the canonical projection (X, m) — (X¢, m¢), and m(-|z¢) are the condi-
tional measures of m on the fibers of this canonical projection. In other words, H(£|¢) is
the average of entropies of ¢ with respect to conditional measures of the partition (.

We shall need the following properties of the conditional entropy (see [Ro67]):

(i) If n is a refinement of ¢ (notation: ¢ < n), then H(£|C) > H(&|n) with the equality
iff m-a.e. m(&z|ze) = m(&z|zy). In particular, comparing ¢ with the point partition
and with the trivial partition of the space X, we get the inequality 0 < H(£|() <
H(£); the equality in the left-hand side holds iff £ < ¢, and in the right-hand side
iff £ and ¢ are independent.

(ii) If ¢, 4 ¢ (i-e., Cuy1 < (p for any n, and (¢ is the maximal measurable partition such
that ¢ < ¢, for all n), then H(¢[(,) T H(£|Q).

9.6. Denote by o} the partition of the path space (X, m) determined by the positions of
the random walk at times 1,2, ..., k, i.e., two sample paths x, 2’ belong to the same class
of o iff z; = 2! for alli = 1,2, ..., k. The quotient of the path space (GZ+, P) determined
by the partition o¥ is the space of initial segments (up to time k) of sample paths, and it
is isomorphic to the space of first k increments of the random walk. Let o = a}. Since the
increments are independent and p-distributed, H (%) = kH(p) = kH (o).
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Lemma. The conditional entropy of a partition of, k > 1 with respect to the Poisson
partition 1 1s
H(ak|n) = kH(aln) = k[H(p) — MG, n)] .

Proof. We shall use the fact that n is the decreasing limit of the coordinate partitions a°
(see 8.1 and Theorem 8.4). By the Markov property for a given sample path ¢ = {z,,} €
G”+

P(Ce,ml,...,wk ﬂ C;’?n)

P((allg)rcma%") = P(Ce,w1,---,mk|cgn) =

P(C2)
_ ple)p(ey @) . p(ag o) ik (T " 20)
//fn(a?n)
_ plha) - ) ok (P - - - o)
,U/n(hll N hn) ’

where h; are the independent p-distributed increments (4.2) of the random walk, whence
H(O‘Iﬂa%o) = kH(M) + H(Mn—k) - H(/j'n)
(we are assuming that k& < n). Now, by property 9.5 (ii)
H (o) = lim H (o 05?) = kH () — Him[H (pn) — H (pn—)] -

By Definition 9.2, once the limit in the right-hand side exists, it must be equal to kh(G, p). O

9.7. Theorem [De80], [KV83]. If the entropy H(u) of the measure p is finite, then the
Poisson boundary of the random walk (G, p) is trivial P — mod 0 iff h(G, ) = 0.

Proof. If h(G, ) = 0, then by Lemma 9.6 and property 9.5 (i) the Poisson partition n
is independent of all coordinate partitions o, which by the Kolmogorov 0-1 Law is only
possible if 7 is trivial. Conversely, if 7 is trivial, then H(a%|n) = H(a}) = kH (1), whence
h(G, ) = 0. O

Theorem 9.4 now implies

Corollary. The Poisson boundary is trivial iff there exist € > 0 and a sequence of sets
A, such that p,(A,) > € and log|A,| = o(n).

10. Entropy of conditional walks and maximality of p-boundaries

10.1. Let now ¢ be a G-invariant partition of the Poisson boundary, and (I'¢,v¢) — the
corresponding p-boundary.
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Lemma. For any k > 1

drive

H (e ne) = K (alne) = k[ () ~ [ 1og “22% (bude 2) dP (a)

Ve

Proof. Given a path ¢ = {z,,} € GZ+, the element (a%), of the partition of containing
x is the cylinder C¢ 4, . 4, , and the image Ty, of & in I'¢ is bnd, &, whence by Theorem
7.6 the corresponding conditional probability is

dxv
P((¥)glzn) = P(Coy, .opode @) = P(Corg ) o (bnd; z) ,

dVg

and
dx 143

H(blne) = kH (i) — / log “ 5% (bnd ) 0P (z) .

Now, telescoping
d dhy...h
dVg

(10.1) ) b
dh,ﬂjg _1 d(Ul_lm)lyg i—1
= .|:|1 dy£ ($z_1bnd§ 33) = i|:|1 d—1/£ (bnd£ U 33) y

bnd
e (bnd; x)

and using Lemma 5.6 we get the claim. U

10.2. In particular, Lemma 10.1 implies finiteness of the integral

10.2 E(l¢,ve) = | log d1ve bnd; ) dP(x) .
& Ve 7 ¢
Ve

Recall that if A\ < A" are two probability measures on a same space X, then the Kullback—
Leibler deviation of X from X' is defined as

IAN) = /log Ccll))\:( YdN (z) .

Then using the change of variables © — (g, '), g = 1,2’ = Uz we get from (10.2)

FE)”& Zu /log

V
—Zu /log v = (g7e) dve (ve)
:ZMQ (9™ velve) = Zu I(velgve) -
g

dve £ (gbnd, z') dP(a')
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Thus, by Theorem 10.1

(10.3) H(alne) = H(p) — B(Te,ve) = H(p) — > ulg)I (velgve) -

10.3. Comparing (10.3) with Lemma 9.6, we get

(10.4) WG, p) = Zu I(vlgv).

Thus, the entropy h(G,u) (initially defined in terms of convolutions of the measure pu)
coincides with the average Kullback-Leibler deviation from the harmonic measure v on
the Poisson boundary to its translations (which is defined entirely in “boundary terms”)
[KV83]), which is the key to our criterion of maximality of y-boundaries (Theorem 10.6).

10.4. Theorem. Let & < &' be two G-invariant measurable partitions of the Poisson
boundary (I',v). Then H(«|ne) > H(a|ner), and the equality holds iff &€ = ¢'.

Proof. Obviously, if £ < ¢, then 7 < 7757 so that the inequality follows from property 9.5
(i) of the conditional entropy. If H(a|ne) = H(«a|ne), then by Lemma 10.1 H(a¥|ne) =

H(a¥|ner) for any k > 1. By property 9.5 (i) it implies that for v-a.e. point v € T the
conditional measures P7¢ and P7¢' coincide, which by the Corollary of Theorem 7.4 is only
possible when & = ¢'. O

Applying this Theorem to the case when ¢’ is the point partition of the Poisson boundary
and using formulas (10.3) and (10.4) we get

Corollary. A p-boundary (I'¢,ve) coincides with the Poisson boundary iff E(L¢,ve) =
h(G, ).

Remark. In view of formula (10.3) Theorem 10.4 is equivalent to saying that if £ < &', then
E[T¢,ve) < E(T¢,ver) with the equality iff £ = ¢’. This property can be also obtained
from monotonicity properties of the Kullback—Leibler deviation and it was already known
to Furstenberg [Fu71]. In some special situations one was able to use directly this property
for proving maximality of p-boundaries [Fu71], [Gu80b]. However, only identification of
E(T',v) with h(G, 1) makes it really operational for proving maximality of py-boundaries.



THE POISSON FORMULA FOR GROUPS WITH HYPERBOLIC PROPERTIES 31

10.5. Theorem. Let & be a measurable G-invariant partition of the Poisson boundary
(G,v). Then for ve-a.e. point ve € I'¢ the asymptotic entropy (in the sense of Definition
9.3) of the conditional measure P7¢ exists and is equal

h(P7%) = h(G, p) — E(Te,ve) = H(alne) — H(aln) .

Proof. We have to check that for v¢-a.e. point v¢ € I'¢
1
——log p7e (C:?n) - h’(Ga /1’) - E(FEa Vﬁ)
n

for P7¢-a.e. sample path * = {z,,} and in the space L'(P?¢). Since the measures P¢ are
conditional measures of the measure P, it amounts to proving that

1
_5 1Ongnd§m(an) - h(G7 N’) o E(FEa Vﬁ)

P-a.e. and in the space L'(P). By Theorem 7.6

pbrdea(cn ) — p(em ) HnVE hng. gy

Tn Tn dl/g

whence using (10.1) and applying the Birkhoff Ergodic Theorem to the transformation U,
we obtain that

1
_ﬁ 1Ongnd§m(Cg ) — h(P) - E(F&VE) = h(G7 N’) - E(F&VE) .

7 n—oo

O

10.6. Now, combining Corollary of Theorem 10.4 with Theorem 10.5 we get the following
generalization of Theorem 9.7

Theorem. A p-boundary (B,\) = (I'¢,ve) is the Poisson boundary iff the asymptotic
entropy h(P7) of almost all conditional measures of the measure P with respect to T'¢
vanishes.

Corollary. A p-boundary (B, X) = (I'¢,ve) is the Poisson boundary iff for ve-a.e. point
Ye € T'¢ there exist € > 0 and a sequence of sets A, = Ay, (ve) C G such that

() 10 | An| = o(n) :

(ii) pnf(An) > € for all sufficiently large n, where p,(g) = P (Cy) are the one-
dimensional distributions of the measures P7¢.
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III. Geometric criteria of boundary maximality
11. Group compactifications and p-boundaries

11.1. Let G = G U OG be a compactification of a countable group G which is compatible
with the group structure on G in the sense that the action of G on itself by left translations
extends to an action on G' by homeomorphisms. We introduce the following conditions on

G:

(CP) If a sequence g,, € G converges to a point from G in the compactification G, then
the sequence g, converges to the same limit for any =z € G.

(CS) The boundary OG consists of at least 3 points, and there is a G-equivariant map S
assigning to pairs of distinct points (b1, by) from dG non-empty subsets ( “strips”)
S(b_,by) C G such that for any 3 pairwise distinct points b; € G, i = 0,1, 2 there
exist neighbourhoods by € Oy C G and b; € O; C G, i = 1,2 with the property
that

S(bl,bz)ﬂO():@ Vb, € O;, 1 =1,2.

Condition (CP) is called projectivity in [Wo093], whereas condition (CS) means that
points from OG are separated by the strips S(bi,bs). As we shall see below (Theorem
14.6), it is often convenient to take for S(by,b2) the union of all bi-infinite geodesics in G
(provided with a Cayley graph structure) which have by, bs as their endpoints.

11.2. Lemma. Let G = G NOG be a compactification satisfying conditions (CP), (CS),
and (gn) C G — a sequence such that g, — b € O0G. Then for any non-atomic probability
measure X on OG the translations g,\ converge to the point measure 0y in the weak®

topology.

Proof. If g,b — b for all b € 0G, there is nothing to prove. Otherwise, passing to a
subsequence we may assume that there exists by € OG such that g,b; — by # b. We claim
that then g,b — b for all b # b;. Indeed, if not, then passing again to a subsequence we
may assume that there is by # by such that g,bs — by # b. Take a point z € S(b1,b2),
then by condition (CS) the only possible limit points of the sequence g,z are by or b,
which contradicts condition (CP). Since the measure A is non-atomic, the claim implies
that gn)\ — 53

Thus, any sequence (g,) with g, — b has a subsequence (g, ) with g,, A — 0z, so that
JnA — 55. 0
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Corollary. If a compactification G = GNOG satisfies conditions (CP), (CS), A is a non-
atomic probability measure on 0G, and g,A — 0 weakly for a sequence g,, — oo, then the
limit 0 is a point measure oy, b € 0G, and g, — b.

11.3. Definition. A subgroup G' C G is called elementary with respect to a compactifi-
cation G = G N OG if G' fixes a finite subset of 0G.

11.4. Theorem. Let G = GNOG be a separable compactification of a countable group G
satisfying conditions (CP), (CS), and u — a probability measure on G such that the subgroup
gr (p) generated by its support is non-elementary with respect to this compactification. Then
P-a.e. sample path x = {x,} converges to a limit v, = bndx € 0G. The harmonic
measure A = bnd (P) is purely non-atomic, the measure space (0G,N) is a p-boundary,
and X is the unique p-stationary probability measure on 0G.

Proof. By compactness of 0G there exists a p-stationary probability measure A on 0G
(take for A any weak limit point of the sequence of Cesaro averages (uf + 26+ . .. u,0)/n,
where 6 is a probability measure on dG). The measure A is purely non-atomic. Indeed,
let m be the maximal weight of its atoms, and A,, C OG be the finite set of atoms of
weight m. Since A is p-stationary, A(b) = >_, 1(g)A(g~1b) for any b € A,,, whence A, is
sgr (p1) ~l-invariant, which by finiteness of A,, implies that A, is also gr (u)-invariant, the
latter being impossible because the group gr (1) is non-elementary.

The measure \ is p-stationary, so that for any function F' € C(9G) the Poisson integral
f(g) = (F,g)) is a bounded p-harmonic function, and the sequence of functions ¢, (x) =
f(z,) = (F,z,A) on the path space is a.e. convergent (see Theorem 6.1). The boundary
JG is separable, hence taking F' from a dense countable subset of C(0G) we obtain that
almost every sequence of measures z, A converges weakly to a probability measure A\(x) (cf.
[Fu71], [Ma91]). Since gr (u) is non-elementary, a.e. sample path z = {x,,} is unbounded as
a subset of G. By Corollary of Lemma 11.2, it implies that a.e. z,, — zo, = bnd (x) € 0G
and A(x) =0, .

Let v = bnd (P) be the distribution of the limit points =, so that (0G,v) is a p-
boundary (see 7.2). By p-stationarity of the measure A

)\:un)\:Zun(g)g)\:/andP(m) Vn>0,
g

whence, passing to the limit on n, we get that

A= /)\(az) P () = /5%0 dP(z) = bnd (P) = v .
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Corollary 1. If gr(u) is non-elementary, then the Poisson boundary T'(G,p) is non-
trivial.

In particular, if G’ C G is non-elementary, then I'(G’, i) is non-trivial for any p with
supp ¢ = G’, so that by 5.8. any non-elementary subgroup G’ C G is non-amenable (it
also follows directly from the absence of G’-invariant probability measures on 0G).

12. Gauges in groups

12.1. Definition. An increasing sequence G = (Gy)r>1 of sets exhausting a countable
group G is called a gauge on G. By

l9] = |lg|lg = min{k : g € Gy}

we denote the corresponding gauge function.

We shall say that a gauge G is

symmetric if all gauge sets Gy are symmetric, i.e., |g| = [¢g7!| Vg € G;
subadditive if |g1g2| < |g1 + |g2| Y 91, 92 € G;

finite if all gauge sets are finite;

temperate if it is finite and the gauge sets grow at most exponentially:
supy, % log card Gy, < oc.

A family of gauges G is uniformly temperate if sup,, % log card G < oo. Clearly, the
family of translations gG = (9Gx), g € G of any temperate gauge is uniformly temperate.

The gauges considered below are not assumed to be finite nor subadditive unless
otherwise specified.

An important class of gauges consists of word gauges [Gu80a], i.e., such gauges (Gx)
that Gy is a set generating G as a semigroup, and Gj, = (G1)* is the set of words of length
< k in the alphabet G;. Any word gauge is subadditive. It is symmetric iff the set G is
symmetric, and finite iff G; is finite. In the latter case the gauge is temperate. Any two
finite word gauges G, G’ on a finitely generated group G are equivalent (quasi-isometric) in
the sense that there is a constant C' > 0 such that

1
cloler <lglg = Clglg VgeG.
Thus, for a probability measure p on a finitely generated group G finiteness of its first mo-

ment > |g|pu(g), or of its first logarithmic moment 3 log|g|u(g) are invariant properties
of the measure u, being independent of the choice of a finite word gauge |- | on G.
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12.2. Lemma. If G is a temperale gauge on a countable group G, then any probability
measure p with finite first moment with respect to G also has finite entropy H(p).

Proof (cf. [De86]). Let m = (m) be the projection of the measure p onto Z determined
by the map g — |g|, and aj be the normalized restrictions of the measure p onto the sets
Dk = Qk \ Qk_l, so that n = Zﬂ'kak. Then

H(p) = H(x) + 3 mH (o)
k

By standard properties of the entropy

Z e H (o) < Z 7, log card Dy, < Z 7, log card Gy,
k k k

< C’onstkak = C’onstz lg|lp(g) < oo
k 9

On the other hand, monotonicity of the function ¢ — —tlog ¢ on the interval [0, e~!] implies
that

H(m) = Z(— log 7 )7, < Zmax{k, —log my }r, < Zlmrk + Zke_k < 00.
k k k

k

12.3. For subadditive gauges the Kingman Subadditive Ergodic Theorem immediately
implies (cf. [Gu80a], [De80]):

Lemma. If G is a subadditive gauge on a countable group G, then for any probability
measure j on G with finite first moment with respect to G the limit (rate of escape)

UG, 1, G) = lim [nlg

n— 00 n

exists for P-a.e. sample path {x,} and in the space L'(P).



36 VADIM A. KAIMANOVICH

13. Ray approximation
13.1. Theorem. Let p be a probability measure with finite entropy H(pu) on a countable
group G, and (B, ) = (T'¢,ve) — a p-boundary. Denote by ® = bnd ¢ the projection from

the path space (GZ+,P) to (B,)\). If for A-a.e. point b € B there exists a sequence of
uniformly temperate gauges G™ = G™(b) such that

1
for P-a.e. sample path € = {x,}, then (B, \) is the Poisson boundary of the pair (G, p).

Proof. Condition (13.1) is equivalent to saying that |z,|gn)/n — 0 for A-a.e. b € B and
Pb-a.e. sample path of the random walk conditioned by b (see Theorem 7.6). Thus, for
A-a.e. b€ B and any € > 0 there exists a sequence of sets A,, = A, (b,e) C G such that

log card A,, = o(n) , Pz, € A, > ¢.

Therefore (B, A) is the Poisson boundary by Theorem 10.6. O

13.2. Let now 7, : B — G be a sequence of measurable maps from a p-boundary B to
the group G. Geometrically, one can think about the sequences m,(b), b € B as “rays” in
G corresponding to points from B. Taking in Theorem 13.1 G™(b) = 7, (b)G, where G is a
fixed temperate gauge on GG, we obtain

Theorem. Let pi be a probability measure with finite entropy H(u) on a countable group

G, and (B,)\) = ®(G%Z+,P) — a p-boundary. If there exist a temperate gauge G and a
sequence of measurable maps 7, : B — G such that

1 -1
— (T (P n 0
" ‘ (7r ( a:)) x ‘g_>
for P-a.e. sample path © = {x,}, then (B, \) is the Poisson boundary of the pair (G, y).

Taking 7, (b) = e for the one-point u-boundary we get the following well known result
(e.g., see [KV83]).

Corollary. If u is a probability measure with finite entropy H(u) on a countable group
G, and L(G,p1,G) = 0 for a certain temperate gauge G, then the Poisson boundary of the
pair (G, p) is trivial.
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14. Strip approximation

14.1. We have defined the path space (GZ+,P) (see 4.4) as the image of the space of
independent p-distributed increments {h,}, n > 1 under the map

e, n=>0
(14.1) Ty = {
Tp_1hp, n>1.

Extending the relation x,, = z,,—1hy, to all indices n € Z (and always assuming that xp = e)
we obtain the measure space (GZ,P) of bilateral paths ® = {x,, n € Z} corresponding
to bilateral sequences of independent p-distributed increments {h,}, n € Z. For negative
indices n formula (14.1) can be rewritten as

—1
T—n = $—n+1h_n+1 ) n>0,

so that
Gp=0_p=hy hZi---hZ;,1, n>0

is a sample path of the random walk on G governed by the reflected measure fi(g) =
u(g~t). The unilateral paths = {x,}, n > 0 and & = {&,} = {z_,}, n > 0 are
independent, i.e., the map T ~ (x, &) is an isomorphism of the measure spaces (G%,P)
and (G”+,P) x (G”+,P), where P is the measure in the space of unilateral sample paths
of the random walk (G, ).

14.2. Denote by U the measure preserving transformation of the space of bilateral paths
(G”,P) induced by the bilateral Bernoulli shift in the space of increments. It is the natural
extension of the transformation U of the unilateral path space (GZ+, P) defined in 5.6 and
acts by the same formula (5.6) extended to all indices n € Z: for any k € Z

(14.2) O = 57 00 YneET,

i.e., the path U"Z is obtained from the path Z by translating it both in time (by k) and in
space (by multiplying by x; ' on the left in order to satisfy the condition (ka)o =e). In
terms of the unilateral paths © and & applying Uk consists (for £ > 0) in canceling first k
factors xx = hyhg - - - hy from the products =, = hihy---hg---hy, n > 0 (i.e., in applying

to = the transformation U*) and adding on the left k factors z;' = h'++-hy 'h] " to the
products #, = x_, = hy 'h_1 - h_n+1

A

~

7h—17h0,h17"' k=1, by, hgyr, - -
~~ - H/_/

14.3. Denote by I' the Poisson boundary of the measure fi, and by # the corresponding
harmonic measure, i.e., the image of the measure P under the quotient map from G”+ to
r.
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Theorem. The action of the group G on the product I' x I of the Poisson boundaries of
the measures i and p is ergodic with respect to the product of harmonic measures UV Q v.

Proof. Denote by 7 the measure preserving projection © — (2, ) — (bnd £, bnd ) from
the bilateral path space (GZ,P) to the product space (I' x I', # ® v). Then as it follows
from formula (14.2), for any k € Z

(14.3) *(0z) = 27 '7(F)

(cf. Lemma 5.6). Now, if A C I'xI'is a G-invariant subset of f‘_x I'with0 < v@v(d) <1,
then by (14.3) the preimage m=1(A) is U-invariant with 0 < P(7~'4) = v @ v(4) < 1,
which is impossible by ergodicity of the bilateral Bernoulli shift U. U

14.4. Theorem. Let p be a probability measure with finite entropy H(p) on a countable
group G, and let (B_,\_) and (B4, A;) be fi- and p-boundaries, respectively. If there
exist a gauge G = (Gr) on the group G with gauge function | -| = |- |g and a measurable
G-equivariant map S assigning to pairs of points (b—,by) € B_ x By non-empty “strips”
S(b—,by) C G such that for all g € G and \_ @ Ay-a.e. (b_,by) € B_ x By

1
(14.4) —logcard [S(b-,b+)g N Gps, ] — 0

in probability with respect to the measure P in the space of sample paths € = {n}n>0,
then the boundary (B, Ay) is mazimal.

Proof. Denote by ®_ : & +— & — bndg & and ¢4 : T — = — bnd¢ @ the projections of
the bilateral path space (GZ, P) onto the boundaries (B_, A_) = (lv“g, vg) and (B, Ay) =
(T¢, ve), respectively (cf. the proof of Theorem 14.3). Replacing if necessary the map S
with its appropriate right translation (b_,b4) — S(b_, b4 )g, we may assume without loss
of generality that

Ao @A {(b_,by):e€ S(b_,by)} =Ple€ S(®_z,,T)| =p>0.

Since the map (b_,b4) — S(b_,b;) C G is G-equivariant, and using formula (14.3) in

combination with the fact that the measure P is U-invariant, we then have for any n € Z

(14.5)
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Since the image of the measure P under the map T +— (®_Z, ®, ) is \_ ® A, formula
(14.5) can be rewritten as

(14.6) [ [ s bl dr-oyins ) =p.

where pfﬁ is the one-dimensional distribution of the conditional measure P+ at time n.
Let

K, = mln{k >1: /jln(gk) > 1 _p/2} s

so that

or, after conditioning by &, =,

(14.7) / P (G, ] Ay (by) > 1 p/2.
Since for all (b_,b;) € B_ x B

P [S(0-,b4) NGxe, ] 2 P [S(o-, b)) + i [0,] =1,
(14.6) and (14.7) imply

[ [ 180 0 T ar (boyirs ) 2 2,
whence
(14.8) A ® )\+{(b_,b+) b [S(b_,by) N Gk, ] > p/4} > p/d .
On the other hand, condition (14.4) implies that
%log card [S(b—,bs) NGk, | — 0 A_ ®@ Ay-ace. (b_,by) € BL x By,

whence there exist a subset Z C B_ x By and a sequence ¢,, with log ¢, /n — 0 such that
(14.9) A_@M (Z2)>1-p/8,

and

(14.10) card [S(b—,b4) N Gr(m)] < ¢n V(b_,by) € Z.
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Combining (14.8), (14.9) and (14.10) shows that there exists a sequence of sets X,, C
B_ x B4 such that

)\— ® )\~|—(Xn) Z p/8 )
p?f [S(b_,b+)ﬂg[{n] Zp/4 V(b_,b+) € X, ’
card [S(b_,b4) NGk, | <¢,  V(b_,by) € X, .

Thus, taking Y;, to be the projection of X,, to B4, we have that A, (Y,,) > p/8, and for

a.e. by €Y, there exists a set A = A(by,n) with bt (A) > p/4 and card A < ¢,,, so that
the boundary (B4, A;) is maximal by Theorem 10.6. O

14.5. Subexponentiality of the intersections [S(b_,b4) N Gy, || is the key condition of
Theorem 14.4. Thus, the “thinner” are the strips S(b_, b, ) themselves, the larger is the
class of measures satisfying condition (14.4) of Theorem 14.4 (i.e., sample paths {z,} may
be allowed to go to infinity “faster”). We shall illustrate this trade-off by giving two more
operational corollaries of Theorem 14.4.

Theorem. Suppose that G is a subadditive temperate gauge on a countable group G with
gauge function |- | = |- |g (particular case: G is finitely generated, and G is a finite
word gauge), and p is a probability measure on G. Let (B_,A_) and (B4, A;) be fi- and
pu-boundaries, respectively, and there exists a measurable G-equivariant map B_ X B, >

b_,by)— S(b_,by) C G. If either
(b—, b4 +
(a) The measure y has a finite first moment Y |g|p(g), and for \_- @ Ay-a.e. (b—,by)

1
Elog card [S(b—,b;) N Gx] — 0

(the strips S(b_,by) grow subexponentially with respect to G);
or

(b) The measure p has a finite first logarithmic moment " log |g|u(g) and finite entropy
H(p), and for A\_ @ Ay-a.e. (b_,by)

sup log card [S(b_,b1) NGx] < 0

¢ logk

(the strips S(b_,by) grow polynomially);
then the boundaries (B_,A_) and (B4, A;) are mazimal.

Proof. (a) By Lemma 12.2, the measure p has finite entropy, and by Lemma 12.3 there
exists the rate of escape (G, u,G). Now, for any g € G

card [S(b_,b4)g N G, = card [S(b—,b4) NGz, 197 "]
< card [S(b—,b1) NGz, 1419-11] »
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whence condition (14.4) is satisfied.

(b) The proof is analogous to the proof of part (a), except for now we have to show that
log |z,|/n — 0. Indeed,

|Tn| = |h1ho -+ - hy| < |ha|+ [h2] + - + |hn ,

where h,, are the independent p-distributed increments of the random walk. Since the
measure p has a finite first logarithmic moment, a.e. log|h,|/n — 0, which implies that
a.e. log|z,|/n — 0. Now, for A\_ ® Aji-a.e. (b_,bs) and P-a.e. path {z,}

1 1
- log card [S(b_,b4)g NGz, ] < - log card [S(b_,b4) N Gz, 41g-1]

_ log(|jara| + [g7*]) logcard [S(b—,b4) N Gla,+1g- ]
n log(|zn|+ 1971

—0.

O

14.6. Let us introduce the following condition on a group compactification G = G' U 0G.

(CG) There exists a left-invariant metric d on G such that the corresponding gauge |- |4
on G is temperate and for any two distinct points b_ # by € 0G
(i) The pencil P(b_,b;) of all d-geodesics v in G such that b_ (resp., by) is a
limit point of the negative (resp., positive) ray of « is non-empty;
(ii) There exists a finite set A = A(b_, by ) such that any geodesic from the pencil
P(b_,by) intersects A(b_,by).

Combining Theorems 11.4 and 14.5 then gives

Theorem. Let G = GNOG be a separable compactification of a countable group G satis-
fying conditions (CP), (CS), (CG), and p — a probability measure on G such that

(i) The subgroup gr (p) generated by its support is non-elementary with respect to this
compactification;

(ii) The measure p has a finite entropy H(u);

(iii) The measure p has a finite first logarithmic moment with respect to the gauge
determined by the metric d from condition (CG).

Then the compactification G is p-mazimal in the sense of Definition 7.5.

Proof. Theorem 11.4 yields uniqueness of the measure A = Ay and convergence, which
implies that (0G, ;) is a p-boundary. We shall deduce maximality of this boundary
from Theorem 14.5. Indeed, the reflected measure fi satisfies conditions of Theorem 11.4
simultaneously with the measure pu. Let A_ be the unique fi-stationary measure on 0G.
Since the measures A_ and A, are purely non-atomic, the diagonal in G x 0G has zero
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measure A_ ® A4, so that by condition (CG) for A\_ ® Aji-a.e. (b_,bs) € OG x OG there
exists a minimal M = M (b_, b;) such that all geodesics from the pencil P(b_, b, ) intersect
a M-ball in G. Obviously, the map (b_,by) — M(b_,b,) is G-invariant, so that it must
a.e. take a constant value M, by Theorem 14.3. Now define the strip S(b_,by) C G as the
union of all balls B of diameter My such that any geodesic from the pencil P(b_, b, ) passes
through B. This map is clearly G-equivariant, and for any geodesic « from S(b_, b, ) the
strip S(b_, by ) is contained in the My-neighbourhood of c. Thus, the strips S(b_, b ) have
linear growth, so that conditions of Theorem 14.5 are satisfied. UJ

15. Asymptotically dissipative actions

15.1. Definition. Let G be a finitely generated group, and (2, m) be a measure space
endowed with a measure type preserving action of the group GG. Fix a finite generating set,
and denote by | - | the corresponding word gauge on G. Given a function ¢ : Z, — R,
we shall say that a set £ C €2 is p-wandering if for a.e. w e E

card{g € G:gw € E,|g| <n} < p(n).

The action is called ¢-dissipative if there is a p-wandering set E such that Q =(JgF.

For the function ¢ = 1 these definitions coincide with the usual definitions of wandering
sets and dissipative actions.

15.2. Definition. We shall say that a measure type preserving action of a finitely gen-
erated group G is polynomially (resp., subexponentially) dissipative if it is p-dissipative
for the function ¢(n) = Cn® for some C,a > 0 [resp., for all functions ¢(n) = Ce™ with
e > 0 and sufficiently large C' = C(g)]. This definition clearly does not depend on the
choice of the finite word gauge |- | on G.

15.3. Any G-equivariant measurable map w — S(w) C G determines a subset
E={weQ:ecSw)},

and, conversely,

geES(w) «—= ecg!'Sw)=9(g'w) = ¢!

weFE < wegk,
so that any measurable subset F C () determines a G-equivariant map
w—Sw)={geG:wegE}CqG,

and there is a natural one-to-one correspondence between subsets £ C {2 and G-equivariant
maps w — S(w) C G.
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15.4. Thus, Theorem 14.5 can be reformulated in the following way:

Theorem. Let y1 be a probability measure on a finitely generated group G, and let (B_, \_)
and (By,\y) be a fi- and a p-boundary, respectively. If either

or

(b) The measure p has a finite first logarithmic moment and finite entropy, and the
G-action on (B_ X By, A\_ ® Ay) is polynomially dissipative;

then the boundaries (B_,A_) and (B4, A;) are mazimal.

IV. Applications to concrete groups
16. Hyperbolic groups

16.1. Let (X,d) be a proper geodesic metric space with a chosen reference point o € X.
For a point z € X put |z|, = d(0, ), and denote by

(@ly)o = = [|zlo + [ylo — d(z,y)]

[N

the Gromov product on X. The space (X,d) is called Gromov hyperbolic if there exists
0 > 0 such that the d-ultrametric inequality

(zly)o > min{ (z|2)o. (4]2)o} — 6

is satisfied for all o, z,y, z € X [Gr87]. The hyperbolic boundary 0X of a hyperbolic space
X is defined as the space of equivalence classes of asymptotic geodesic rays in X (i.e.,
those which lie at a finite distance one from another), and the definition of the Gromov
product (-|-) can be extended to the case when one or both arguments belong to 0X.
The hyperbolic boundary 0X is the boundary of the hyperbolic compactification of X: a
sequence (z,) C X converges in this compactification iff (z,|z,,) — oco. For any two
points z € X,{ € 0X there exists a geodesic ray (not necessarily unique!) issued from
x and converging to the point £ (i.e., joining x and ¢), and for any two distinct points
&1 # & € 0X there exists a bilateral geodesic (once again, not necessarily unique) joining

&1 and &o.

16.2. A finitely generated group G is called (word) hyperbolic if its Cayley graph cor-
responding to a finite symmetric generating set K C G is hyperbolic (this property is
independent of the choice of K). We choose the identity e as a reference point for a hyper-
bolic group GG, and omit the subscript e in the notations | -|. and (+|-).. The boundary 0G
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of a hyperbolic group G is endowed with a natural action of the group G. Standard exam-
ples of hyperbolic groups are fundamental groups of compact negatively curved manifolds
and free products of finite or cyclic groups.

16.3. The following conditions are equivalent for a subgroup G’ C G of a hyperbolic group
(see [Gr87], [GH90]):

(1) G' is elementary with respect to the hyperbolic compactification of G in the sense
of Definition 11.3, i.e., G’ fixes a finite subset of 0G;

(2) The limit set G’ C G of G’ (i.e., the boundary of the closure of G’ in the hyperbolic
compactification) if finite;

(3) G’ is amenable;

(4) G’ is either a finite extension of the group Z (then card G’ = 2) or a finite group
(then card 0G" = 0).

We shall now describe the Poisson boundary of a hyperbolic group G (always assuming
that G is non-elementary). For the sake of comparison we shall use here both the ray and
the strip approximations (Theorems 13.2 and 14.5, respectively).

16.4 Definition. A sequence of points (x,) in a Gromov hyperbolic space X is called
reqular if there exists a geodesic ray o and a number [ > 0 (the rate of escape) such that
d(zn,a(nl)) = o(n), ie., if the sequence (z,,) asymptotically follows the ray a. If [ > 0,
then we call (z,) a non-trivial regular sequence.

This notion is an analogue of the well known notion of Lyapunov reqularity for sequences
of matrices (see [Ka89] and 19.3 below). The idea of the proof of the following result
belongs to T. Delzant. In the case when X is a Cartan-Hadamard manifold with pinched
sectional curvature another proof (using the Alexandrov Triangle Comparison Theorem)
was given in [Ka85b].

16.5. Theorem. A sequence (x,) in a Gromov hyperbolic space X is reqular iff
(i) d(@n, Tpi1) = o(n);
(ii) |zp|/m — 1> 0.

Proof. Clearly, we just have to prove that (i) and (ii) imply regularity under the as-
sumption that { > 0. Then (x,_1|z,) = nl + o(n), and applying the quasi-metric
p(xz,y) = exp(—(zly)) (see [GHI0]) yields convergence of z, to a point zo € 0X in
the hyperbolic compactification of the space X. Now we fix geodesics oy, (resp., a) join-
ing the origin o with the points z,, (resp., ), and denote the points at distance ¢ from
the origin on these geodesics by [z,]: = @, (t) (resp., [Toolt = @so(1)).

Choose a positive number € < /2, and let

N =N(e) =min{n > 0: (zp_1|zn) > ( —€)n} .
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In particular, |z,| > (I — ¢)n for n > N, so that the truncations z;, = [z,]i—c), are well
defined. The points z;,_,,z} belong to the sides of the geodesic triangle with vertices
0,Ty_1,Tn, SO that

n—1°

d(z;,_y @) <|laf_q| = |z5]| +46=1—-e+40  Vn>N

because |z5_4|, |25 | < (zn—1]|zn), and geodesic triangles in X are 4J-thin [GH90, pp. 38,
41]. Therefore, for any two indices n,m > N

d(y, w5,) < |0 —m|(l + 49)
d(zg, w5,) 2 ||25] = lama]| = In —m|(l —€) > In —m|1/2,

which means that the sequence (zf,),>n is a quasigeodesic, and by [GH90, p. 101] there
exists a geodesic ray [ starting at the point z%; such that d(z%,3) < H for any n > N
and a constant H = H(0,l). Since (x,|z) = n(l — &) — oo, the sequence (zf) also
converges to the point x.,, so that the geodesic rays § and a., are asymptotic. Thus,

d(xf, o) < H + 85 and
d(Tn, 0too) < H + 85 + d(n,25) = H+ 86 + (|zn| — n(l — ¢))

for all sufficiently large n (see [GH90, p. 117]). Since € can be made arbitrarily small, the
claim is proven. O

16.6. Let now u be a probability measure on a word hyperbolic group with a finite first
moment. We shall fix a word gauge |- | on G and denote by ¢ the corresponding rate of
escape (Lemma 12.3). Without loss of generality we may assume that the group gr (¢) is
non-elementary, hence non-amenable (see 16.3), as otherwise the Poisson boundary (T, v)
is trivial (see 5.8). Then £ > 0 by the Corollary of Theorem 13.2. Further, since the
measure g (i.e, the lengths of the increments |h,| = |z 2n| = d(2,_1,2,)) has finite
first moment, d(x,—1,2,) = o(n). Thus, conditions of Theorem 16.5 are satisfied, and we
obtain

Theorem. Let i be a probability measure measure with a finite first moment on a hyper-
bolic group G such that the group gr () is non-elementary. Then a.e. sample path of the
random walk (G, i) is a non-trivial reqular sequence in G.

16.7. For all points £ € 0G choose a geodesic ray a¢ from e to { in such way that the map
& — o is measurable (for example, take for o the lexicographically minimal geodesic ray
among all rays joining e and §), and let m,(§) = ag([nf]), where £ is the rate of escape of
the random walk (G, ) and [t] is the integer part of a number ¢. Then by Theorem 16.6
for P-a.e. sample path {z,}

d(zy, T (7)) = o(n) ,
so that by Theorem 13.2 we obtain
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Theorem. Let i be a probability measure measure with a finite first moment on a hy-
perbolic group G such that the group gr (p) is non-elementary. Then a.e. sample path of
the random walk (G, p) converges in the hyperbolic compactification, and the hyperbolic
boundary OG with the resulting limit measure is isomorphic to the Poisson boundary of

(G, ).

16.8. Using the strip approximation instead of the ray approximation allows us to obtain
a stronger result in a simpler way.

Proposition. The hyperbolic compactification of a non-elementary hyperbolic group sat-
isfies conditions (CP), (CS), (CG) from 11.1 and 14.6.

Proof. Condition (CP) follows immediately from the definition of the hyperbolic compacti-
fication. For any two distinct points £ # £, € 9G let S(£_, &) be the union of points from
all geodesics in G joining £ and &,. Then condition (CS) is implied by quasi-convexity
of geodesic hulls of subsets in the hyperbolic boundary [Gr87, 7.5.A] and condition (CG)
follows from the fact that any two geodesics in a hyperbolic space with the same endpoints
are within uniformly bounded distance one from another. ([l

Applying Theorems 11.4 and 14.6 we then get

16.9. Theorem. Let i1 be a probability measure on a hyperbolic group G such that the
subgroup gr (i) generated by its support is non-elementary. Then almost all sample paths
{zn} converge to a (random) point T, € 0G, so that OG with the resulting limit measure
A is a p-boundary. The measure A is the unique p-stationary probability measure on 0G.

16.10. Theorem. Under conditions of Theorem 16.9, if the measure p has finite entropy
H(p) and finite first logarithmic moment Y u(g) log|g| (particular case: u has a finite first
moment), then (0G, \) is isomorphic to the Poisson boundary of (G, ).

Remarks. 1. In the case when G is a free group a proof of Theorem 16.9 was first indicated
by Margulis and announced in [KV83]. Later the same proof was recovered by Cartwright
and Soardi [CS89]. For hyperbolic groups a proof of Theorem 16.9 in the case when
gr(p) = G is given in [Wo093]. Unlike ours, all these proofs use contractivity of the G-
action on 0G (see 2.1).

2. If the measure p is finitely supported and sgr(p) = G, then the Martin boundary
of the random walk coincides with the hyperbolic boundary [An90] (earlier results for the
free group were obtained by Dynkin and Malyutov [DM61] and by Derriennic [De75]), so
that in this case Theorems 16.9, 16.10 follow from the general Martin theory (cf. 2.3).

3. Theorems 16.9, 16.10 are easily seen to hold for any discrete discontinuous group of
isometries of a Gromov hyperbolic space X (in this case instead of a word gauge on G one
should take the gauge induced by the ambient metric on X).
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17. Groups with infinitely many ends

17.1. For a compact subset K of a locally compact topological space X denote by £x =
Ex(X) the set (with the discrete topology) of connected components of the complement
X \ K. For K; C K> there is a natural homomorphism £k, — Ek,. The projective limit
E(X) of the spaces Ek as the compacts K exhaust the set X is called the space of ends
of X. The corresponding compactification X = X U&(X) obtained as the projective limit
of the compactifications X U Ex(X) is called the end compactification of X. For an end
w € £(X) and a compact set K C X denote by C(w, K) the connected component of X \ K
containing w. The sets C(w, K) form a basis of the end topology in X at the point w.

17.2. The space of ends £(G) of a finitely generated group G is defined as the space of ends
of its Cayley graph with respect to a certain finite generating set A. Neither the space £(G)
nor the end compactification G U £(G) depend on the choice of A. Clearly, any geodesic
ray in G converges to an end. Conversely, by standard compactness considerations for any
two distinct ends from £(G) there exists a geodesic (not necessarily unique!) joining these
ends.

The simplest example of a group with infinitely many ends is the free group Fj; of
rank d > 2. This group is also hyperbolic. However, in general, a hyperbolic group may
have trivial space of ends (e.g., the fundamental group of a compact negatively curved
manifold), and a group with infinitely many ends need not be hyperbolic (e.g., the free
product of two copies of the group Z?). Nonetheless, groups with infinitely many ends still
share important for us geometric properties with hyperbolic groups.

17.3. Lemma. The end compactification of a finitely generated group with infinitely many
ends satisfies conditions (CP), (CS), (CG) from 11.1 and 14.6.

Proof. Condition (CP) is trivial. For verifying condition (CS) let S(w1,w2) be the union of
all geodesics in G with endpoints wy # we € £(G). Take wy # wi,wy € E(G), then there is
a finite set K C G such that C(wo, K) # C(w1, K), C(w2, K), so that the intersection with
C(wp, K) of any geodesic joining points in C'(wy, K) and C'(wz, K) must be contained in the
(finite) union of all geodesic segments with endpoints from K. Finally, (CG) immediately
follows from the definition of the space of ends. O

Now Theorems 11.4 and 14.6 imply

17.4. Theorem. Let G be a finitely generated group with infinitely many ends, and
i — a probability measure such that the subgroup gr(u) generated by its support is non-
elementary. Then almost all sample paths {x,} of the random walk (G, ) converge to a
(random) end T, € E(G), so that the space of ends E(G) with the resulting limit measure
A is a p-boundary. The measure X\ is the unique p-stationary probability measure on E(G).
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17.5. Theorem. Under conditions of Theorem 17.4, if the measure p in addition has
finite entropy and finite first logarithmic moment (in particular, if p has finite first mo-
ment), then the space (S(G), )\) is isomorphic to the Poisson boundary of the pair (G, ).

Remark. Our proof of Theorems 17.4, 17.5 is synthetic and does not evoke at all Stallings’
structure theory of groups with infinitely many ends. If gr(u) = G Theorem 17.4 was
proved by Woess [W093] using contractivity properties of the action of G on the space of
ends. A particular case of Theorem 17.5 when the measure p is finitely supported and
sgr (1) = G was proved by Woess [Wo89] by applying the Martin theory methods.

18. Fundamental groups of rank 1 manifolds

18.1. Let M be a compact Riemannian manifolds with non-positive sectional curvature,
and M — its universal covering space. Two geodesic rays in M are called asymptotically
equivalent if each one lies within a finite distance from the other one (cf. 16.1). The

visibility compactification of M is obtained by attaching to M the space of asymptotic
classes of geodesic rays in M (the sphere at infinity): a sequence x,, € M is convergent in
this compactification iff for a certain (= any) reference point o € M the directing vectors of
the geodesics (o, x,,) converge [Ba95]. The embedding g — go € M allows one to consider
the visibility compactification of M as a compactification of the fundamental group 71 (M).

If M is irreducible (i.e., is not a product of two Cartan-Hadamard manifolds), then by
the Rank Rigidity Theorem [Ba95] M is either a symmetric space of non-compact type
with rank at least 2, or M has a reqular geodesic o, i.e., such that there is no non-trivial

parallel Jacobi field along o perpendicular to ¢. In the latter case M is said to have rank
1. Note that the sectional curvature of a rank 1 manifold M is not necessarily bounded

away from 0, and its universal covering space M is not necessarily hyperbolic in the sense
of Gromov.

18.2. Theorem. Let p be a probability measure on the fundamental group G = m (M)
of a compact rank 1 Riemannian manifold M such that sgr (p) = G, and p has a finite
first logarithmic moment and finite entropy. Then a.e. sample pathfvof the random walk
(G, ) converges in the visibility compactification, and the sphere OM with the resulting
limit measure X\ is isomorphic to the Poisson boundary of the pair (G, ).

Proof. Convergence of sample paths was established by Ballmann for an arbitrary proba-
bility measure on G' with sgr () = G [Ba89, Theorem 2.2]. Moreover, he also proved that

gnA — 04 weakly in M UOM for any sequence (g,) C G such that g, — =, i.e., that the

Dirichlet problem for pg-harmonic functions with boundary data on OM is solvable [Bag9,
Theorem 1.8].

It remains to prove maximality of the py-boundary (3M ,A). Denote by A, = X and A_
the hitting measures on OM determined by the measures p and fi, respectively. Since M
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has rank one, the set R C OM x OM of pairs of endpoints of regular bi-infinite geodesics
in M is open non-empty, and for any pair of points ({_,£;) € R there is a unique geodesic
o(&_,&4) joining these points [Ba95]. Then solvability of the Dirichlet problem and quasi-
invariance of the measures A_, Ay with respect to the action of G (see 5.5) implies that
A_ X A4 (R) > 0, whence A_ x A4 (R) =1 by Theorem 14.3.

Since the quotient manifold M is compact, there exists a number d > 0 such that for
any point x € X the d-ball centered at z intersects the orbit Go. Then the strips in G
defined as

S(§—a§+) = {g €G: diSt(gO,O’(g_,é-_F)) < d}

are non-empty, and the map ({-,&4) — S(€—,&4) is G-equivariant (here dist is the Rie-
mannian metric on M ). The gauge |g| = dist(o,go) on G is temperate and subadditive,
and, since M is compact, it is equivalent to any finite word gauge on (G, so that the mea-
sure p has finite first logarithmic moment with respect to | -|. Clearly, all strips S(£—,&4)
(being neighbourhoods of geodesics) have linear growth with respect to the gauge |- |, and
conditions of Theorem 14.5 (b) are satisfied. O

Remark. For measures p with a finite first moment Theorem 18.2 was first proved by
Ballmann and Ledrappier [BL94]. Our “strip approximation” criterion (Theorems 14.4,
14.5) was inspired by the use of bilateral geodesics in [BL94], and the first part of our
proof of Theorem 18.2 (existence of bilateral geodesics) is the same as in [BL94]. However,
Theorem 14.5 allows us to obtain the result in greater generality and to avoid at the same
time tedious dimension estimates (Section 3 in [BL94]).

19. Discrete subgroups of semi-simple Lie groups

19.1. Let G be a connected semi-simple real Lie group with finite center, IC — its maximal
compact subgroup, and S = G/K — the corresponding Riemannian symmetric space with
the origin o 2 K. Fix a dominant Weyl chamber 2 in the Lie algebra 2 of a Cartan

subgroup A, and denote by 2 (resp., by ﬁf) the intersection of A" (resp., of its closure
ﬂJr) with the unit sphere of the Euclidean distance || - || determined by the Killing form
(-,-). Any point z € S can be presented as x = k(exp a)o, where k € K, and a = r(z) € At
is the uniquely determined radial part of z. Then the Riemannian distance dist(o, z) from
o to x equals ||r(z)]|.

19.2. Denote by 0S the boundary (the sphere at infinity) of the wvisibility compactification
of S (cf. 18.1). We identify points from 0.5 with geodesic rays issued from o. The G-orbits
in 0S are parameterized by vectors a € ﬁf: the orbit 05, consists of the limits of all
geodesic rays of the form £(t) = gexp(ta)o. Stabilizers of points £ € 95 are parabolic sub-
groups of G, which are minimal iff £ € 05,,a € Qlf Thus, the orbits 05, corresponding
to non-degenerate vectors a € Qlf are isomorphic to the Furstenberg boundary B = G/P,
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where P = MAN is the minimal parabolic subgroup determined by the Iwasawa decom-
position G = KAN (i.e., M is the centralizer of A in K), and the orbits 05, corresponding
to vectors a from the walls of the Weyl chamber 2" are isomorphic to quotients of the
Furstenberg boundary (i.e., to quotients of G by non-minimal parabolic subgroups) [Ka89)].

Moreover, there exists a canonical map ﬁf xB — 08 such that {a} xB — 05, is one-to-one
for a € AT (cf. below 19.5).

19.3. We call a sequence of points x,, € S regular if there exists a geodesic ray £ and
a number [ > 0 such that dist(zn,&(nl)) = o(n) (cf. Definition 16.4). If [ > 0, then =,
converges in the visibility compactification to the same point as the ray &.

Theorem [Ka89]. A sequence of points x,, in a non-compact Riemannian symmetric space
S is reqular if and only if dist(xy,, T,41) = o(n) and there exists a limit a = limr(x,)/n €
=+

A .

Remark. The definition of regular sequences is inspired by the notion of Lyapunov regu-
larity (for the symmetric space SL(n, R)/SO(n) these notions coincide, see 19.10), and
Theorem 19.3 is a geometric counterpart of the Oseledec multiplicative ergodic theorem
[Ka89]. Therefore we call the vector a the Lyapunov vector of the sequence z,.

19.4. Theorem. Let p be a probability measure on a discrete subgroup G C G of a
semi-simple Lie group G with a finite first moment > dist(o, go)u(g) < oco. Then
(i) P-a.e. sample path {x,} of the random walk (G, ) is reqular, and the Lyapunov
vector a = a(p) = limr(z,0)/n € A" does not depend on {z,};
(ii) If a # 0, then for P-a.e. sample path {x,} the sequence x,0 converges in the
visibility compactification to a limit point from the orbit 0S,;
(iii) If a = 0, then the Poisson boundary of the pair (G, p) is trivial, and if a # 0 it is
isomorphic to 0S, with the limit measure determined by (ii).

Proof. Existence of the Lyapunov vector follows from Lemma 12.3 applied to matrix norms
of finite dimensional representations of G, see [Ka89]. Moreover, finiteness of the first
moment of the measure p implies that P-a.e. dist(z,0,z,110) = o(n) (cf. the proof of
Theorem 16.6), so that (i) and (ii) follow from Theorem 19.3.

Since the growth of S is exponential, the gauge g — dist(o, go) on G induced by the
Riemannian metric dist is temperate (see Definition 12.1), and combining Lemma 12.2 and
Theorems 13.2, 19.3 we get (iii). O

Remark. If the group gr (u) generated by the support of y is non-amenable, then by 5.8
the Poisson boundary of (G, i) is non-trivial, and thereby a # 0.

19.5. If the measure p does not have a finite first moment and the rank of G is greater
than 1, convergence in the visibility compactification does not necessarily hold any more.
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However, in this situation one can use another compactification of the associated symmetric
space by imposing some irreducibility conditions on the group gr(u).

The map go — gm, where m is the unique -invariant probability measure on B, deter-
mines an embedding of S into the space of Borel probability measures on B, which gives
rise to the Satake—Furstenberg compactification of S obtained as the closure of the family
of measures {gm} in the weak topology. The boundary of this compactification consists
(unless S has rank 1) of several G-transitive components, one of which is B (corresponding
to limit J-measures). If a sequence z,, € S converges in the visibility compactification to
a point b from a non-degenerate orbit 9S, = B, a € 27, then x,, also converges to b € B
in the Satake-Furstenberg compactification [Mo64].

Another definition of the Furstenberg boundary B (analogous to that of the visibility
boundary 9S) can be given in terms of maximal totally geodesic flat subspaces of S (flats)
[Mo73]. For a given flat f any basepoint x € f determines a decomposition of f into Weyl
chambers of f based at x. Then B coincides with the space of asymptotic classes of Weyl
chambers in S (two chambers are asymptotic if they are within a bounded distance one
from the other).

19.6. A flat with a distinguished class of asymptotic Weyl chambers is called an oriented
flat. For an oriented flat f denote by —f the same flat with the orientation opposite to
that of f, and let 7 (f) € B (resp., 7_(f) = m+(—f)) be the corresponding asymptotic
classes of Weyl chambers (the “endpoints” of f).

Denote by f, the standard flat fo = exp(2)o with the orientation determined by AT.
Let by = m4(fy), and by, = 74 (wf,), w € W, where W is the Weyl group which acts simply
transitively on orientations of fy. Denote by wq the element of W (opposite to the identity)
which is determined by the relation wof, = —f,. Then the Bruhat decomposition of the
group G and transitivity of the action of G on the space of oriented flats imply

Theorem. The G-orbits O, = G(bo, by), w € W determine a stratification of the product
Bx B, and O, is the only orbit of mazimal dimension. For any oriented flat f the pair of
its endpoints (71'_ (f), 7T+(7)) belongs to Oy, , and, conversely, for any pair (b—,by) € Oy,
there exists a unique oriented flat f(b_,by) with endpoints (b_,b).

Remark. In the rank 1 case flats are bilateral geodesics in S, and Weyl chambers are
geodesic rays in S. The Weyl group consists of only 2 elements, and the orbits in B x B
are the diagonal and its complement.

19.7. Theorem [GR85|. Let G be a discrete subgroup of a semi-simple Lie group G, and
it — a probability measure on G such that

(i) The semigroup sgr (1) generated by the support of p contains a sequence g, such
that {a,r(gn0)) — 00 for any positive root «;

(ii) No conjugate of the group gr (p) is contained in a finite union of left translations
of degenerate double cosets from the Bruhat decomposition of G.
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Then

(j) ForP-a.e. sample path {z,} of the random walk (G, ) the sequence x,0 converges
in the Satake—Furstenberg compactification of the symmetric space S;
(ji) The corresponding limit measure X is concentrated on the Furstenberg boundary B,
and it is the unique p-stationary measure on B.
(jij) For any point b_ € B the set {by € B: (b_,by) € Oy, } has full measure A, where
Ouw, s the mazimal dimension stratum of the Bruhat stratification in B x B defined
in 19.6.

Remark. As it was noticed in [GMB89], in the case when G is an algebraic group conditions
(i) and (ii) follow from Zariski density of the semigroup sgr (x) in G. However, these
conditions can be also satisfied without sgr (1) being Zariski dense [GR89].

19.8. Conditions (i) and (ii) of Theorem 19.7 are clearly satisfied simultaneously for the
measure g and for the reflected measure fi, and by Theorem 19.7 (jjj) the product A_ x Ay
of the limit measures of the random walks (G, i) and (G, u) is concentrated on the orbit
Oy, - Since the flats in S have polynomial growth, the strips in G defined as

S(b_,by) = {g € G : dist(go, f(b_,by)) < R},

where f(b_,by) is the flat in S with endpoints b_,b,, also have polynomial growth (and
they are a.e. non-empty for a sufficiently large R). Theorem 14.5 (b) then implies

Theorem. Under conditions of Theorem 19.7, if the measure p has finite first logarithmic
moment Y logdist(go, 0) u(g) and finite entropy H (), then the Poisson boundary of (G, 1)
s non-trivial and it is isomorphic to the Furstenberg boundary B with the limit measure
determined by Theorem 19.7 (jj).

19.9. Remarks. 1. Theorem 19.4 was first announced in [Ka85b]. For discrete subgroups
of SL(d,R) another proof (under somewhat more restrictive conditions) was independently
obtained in [Le85].

2. Conditions of Theorem 19.8 on the decay at infinity of the measure p are more
general than those of Theorem 19.4. As a trade-off, Theorem 19.8 requires irreducibility
assumptions (i) and (ii) from Theorem 19.7, whereas Theorem 19.4 does not impose any
conditions at all on the support of the measure p. Note that if the measure p has a finite
first moment, then under the conditions of Theorem 19.7 the vector a(u) from Theorem
19.4 belongs to AT [GR85], so that the orbit 9.5, is isomorphic to B, and the descriptions
of the Poisson boundary given in Theorems 19.4 and 19.8 coincide. Actually, Theorem
19.7 can be also used for identifying the Poisson boundary for measures with a finite first
moment without the irreducibility assumptions (i) and (ii). In this case instead of flats
one has to take the symmetric subspaces of S corresponding to pairs of boundary points
which are not in general position with respect to the Bruhat decomposition and use the
fact that the rate of escape along these subspaces is sublinear (cf. Theorem 20.8 below).
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3. Our description of the Poisson boundary for Zariski dense subgroups (Theorem 19.8)
coincides with the description of the Poisson boundary for absolutely continuous measures
on semi-simple Lie groups obtained by Furstenberg [Fu63]. He proved that the Poisson
boundary for an arbitrary initial distrbution is a finite cover of B determined by periodicity
properties of the measure p, and this cover is trivial for the initial distribution concentrated
at the group identity (cf. 8.5).

4. The limit measure A on the Furstenberg boundary B does not have to be absolutely
continuous with respect to the Haar measure on B. Namely, for any finitely generated
Zariski dense discrete subgroup G C G the author has constructed a symmetric finitely
supported measure p on G with gr(u) = G such that A is singular (to be described
elsewhere).

19.10. Example. Let G = SL(d,R) with a maximal compact subgroup K = SO(d). The
map gK — +/gg* identifies the symmetric space S = G/K with the set of positive definite
d x d matrices with determinant 1, and the origin o = K corresponds to the identity matrix.
Under this identification the action of G on S has the form (g, x) — /gx2g*. Take for a
Cartan subgroup A C G the group of diagonal matrices with positive entries, so that its
Lie algebra 2 is the space {a = (a1, @z, ...,aq) € R? : 3" a; = 0}, and choose a dominant
Weyl chamber in 2 as AT = {a € A : a1 > as > ...aq}. The radial part 7(z) € A" of a
matrix x € S is the ordered vector of logarithms of its eigenvalues.

Geodesic rays in S starting from o have the form £(t) = &%, where & € S is a matrix at
distance 1 from the origin o (i.e., such that ||7(£1)|| = 1), so that the visibility boundary
0S (= the space of geodesic rays issued from o) can be identified with the set S of
all such matrices, and a sequence z,, € S converges in the visibility compactification to
& € S1 208 iff logz,,/||r(x,)|| — log&i.

Matrices & € S; are parameterized by their eigenvalues and eigenspaces. However,
it is more convenient to deal instead with the associated flags in R?. Namely, let A\; >
.-+ > X\ be the distinct coordinates of the vector 7(£1) = a. Denote the eigenspace and
the multiplicity of an eigenvalue )\; by E; C R? and d; = dim E;, respectively. Then &
is uniquely determined by the vector a and the flag V; C Vo C --- C V}, = R?, where
V, = @?Zk_H_l E;. The spaces V; can be described by using the Lyapunov erponents
x(v) = limlog|[|¢tv]|/t, v € R? of the ray £(t) = &4 as V; = {v : x(v) < Ap_iz1} (here and
below we assume x(0) = —00).

Thus, for a given vector a € ﬁ;r the corresponding G-orbit S, C 0S5 is the variety of
flags in R? of the type (dy, dg_1+dp, . ..,ds+ds+- - -+dy), where d; are the multiplicities of
components of a. The Furstenberg boundary B = G/P of S is isomorphic to non-degenerate
orbits 0S,, a € QQL and coincides with the variety of full flags in R?, the minimal parabolic
subgroup P being the group of upper triangular matrices.

For G = SL(d,R) the first moment condition from Theorem 19.4 takes the form

(19.1) > log|lgllu(g) < oo,
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and part (i) of the Theorem is equivalent to saying that there exists a vector a € A" such
that for P-a.e. sample path {z,} the sequence of matrices x is Lyapunov regular with
the Lyapunov spectrum a (see [Ka89]). Namely, for any v € R? \ {0} there exists a limit
x(v) = limlog ||z%v||/n € {A1 > -++ > A}, and the subspaces V; = {v € R? : x(v) <
Ai—i+1} have dimensions dim V; = dg_; 11+ - - + dg, where \; are the distinct components
of a with multiplicities d;. If a # 0, then the limit of the sequence \/z,} in the visibility
compactification belongs to the orbit S, /, and is determined by the Lyapunov flag {V;}
of the sequence z;,. Therefore, Theorem 19.4 identifies the Poisson boundary for a measure
p on a discrete subgroup of SL(d, R) satisfying the moment condition (19.1) with the space
of corresponding Lyapunov flags (the type of these flags is determined by the degeneracy
of the Lyapunov spectrum).

The standard flat fp in S is the set of diagonal matrices with positive entries, and
the positive orientation on it determines the standard flag by consisting of the subspaces
E; ® --- ® E4, where E; are the coordinate subspaces of R?. The Weyl group W is
isomorphic to the symmetric group of the set {1,2,...,d}, and it acts on fy by permuting
the diagonal entries. The element wy € W is the permutation wy : (1,2,...,d — 1,d) —
(d,d—1,...,2,1); the flag b,,, = woby opposite to by is obtained by reversing the order of
coordinates and consists of subspaces Fq @ --- @ F;. For any vector a € A the matrices
exp(ta) € S converge in the Satake—Furstenberg compactification to by (resp., to by,)
when ¢ — oo (resp., t — —o0). More generally, a pair of flags (b_,by) belongs to the
G-orbit of maximal dimension O,,, in B x B iff there exists a matrix g € G such that the
sequence g"o = (g”g*”) 12 (resp., the sequence g~ "o = (g‘”g*_")1/2) converges in the
Satake—Furstenberg compactification to by (resp., b_), i.e., iff the spectrum of g is simple,
absolute values of its eigenvalues are all pairwise distinct, and the Lyapunov flags of the
sequences ¢*" and ¢g*~" are by and b_, respectively. In fact, the stratification of B into
the subvarieties {b4y € B : (b—,by) € O, } obtained for a fixed b_ € B is the well known
Schubert stratification of the flag variety.

Theorem 19.8 allows then to identify the Poisson boundary with the flag variety for
any measure g on a discrete subgroup of SL(d,R) provided that sgr (u) is Zariski dense in
SL(d,R), the measure p satisfies the moment condition Y loglog||g||u(g) < oo and has a
finite entropy H ().

20. Polycyclic groups

20.1. A discrete group G is called polycyclic if it admits a finite normal series {e} = Gy C
G1 C Gy C --- C Gy, = G with cyclic quotients G;41/G;. In a sense, polycyclic groups
are “finite dimensional” discrete solvable groups. Indeed, they can be characterized as
solvable groups with finitely generated subgroups, or, even more, as solvable groups with
finitely generated abelian subgroups; solvable groups of integer matrices are polycyclic,
and, conversely, every polycyclic group has a faithful representation in GL(n,Z) [Sg83].
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20.2. Any semi-direct product A XN of a finitely generated abelian group A and a finitely
generated nilpotent group N is polycyclic. In fact, all polycyclic groups can be “essentially”
obtained in this way. Before formulating the corresponding result recall that for any finitely
generated torsion free nilpotent group IV there is a uniquely determined simply connected
real nilpotent Lie group N (the Lie hull of N') containing N as a cocompact lattice, and any
automorphism of N uniquely extends to an automorphism of A/ [Sg83]. An automorphsim
of NV is called semi-simple if its tangent automorphism of the Lie algebra O is diagonalisable
in the complexification M.

We shall say that a discrete group G is an S-group if it can be presented as a semi-
direct product G = A K N of a finitely generated free abelian group A and a finitely
generated torsion free nilpotent group N determined by a semi-simple action of A on N.
If a polycyclic group G is contained in an S-group G’, then it is called splittable, and the
embedding G — G’ is called a semi-simple splitting of G.

Proposition [Sg83, Theorem 7.2]. FEwvery polycyclic group contains a normal splittable
polycyclic subgroup of finite index.

20.3. We shall identify a simply connected real nilpotent Lie group N with its Lie algebra
M by using the Baker—-Campbell-Hausdorff multiplication formula v Xy = x+y+ %[.T, yl+
.... Denote by

‘ﬁlsz‘ﬁQZ[‘ﬂ,‘ﬁ]D‘ﬂgz[‘ﬁ,‘ﬂQ]D---D‘ﬁHl:{O}

the lower central series of the Lie algebra N, where r is the nilpotency class of N, and by
degx = max{l : x € 9} the corresponding graduation on M. By deg P we shall denote the
degree of a polynomial P on M with respect to the graduation deg. It is well known that
the group multiplication given by the Baker—Campbell-Hausdorff formula is polynomial,
and, moreover, it is linear in principal terms with respect to the graduation deg in the
following sense: if {e;} is a linear basis in 9 adapted to the filtration {9} (i.e., it contains
precisely dim 9 vectors from M for any [ = 1,2,...,r), then (z X y); = z; + y; + Pi(z,y),
where P; is a polynomial with deg P; < dege; and with partial degrees with respect to x
and y strictly less than dege; [Go76].

20.4. As it follows from the Baker—Campbell-Hausdorff formula, any automorphism of
the Lie algebra 9 is also an automorphism of the Lie group N' = (M, x), and, conversely,
any automorphism of the Lie group N coincides (as a map of 91 onto itself) with the
corresponding tangent automorphism of the Lie algebra 1.

Let T be a semi-simple action of a free abelian group A = Z? ¢ A = R? on N, and
A C Hom (A, C*) be the set of weights of the corresponding representation of A in the
complexification 9. Denote the corresponding weight subspaces by

Ny ={zeN®: T =\Na)z Yaec A} cN",

so that M© = PN, The functions log |\, A € A are uniquely extendable to ho-
momorphisms from A to the additive group R, and for a vector a € A denote by
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A_(a),Ao(a), A, (a) the sets of contracting, neutral and expanding weights (with respect
to a) determined by the sign of log|A|(a). Let

W)= P M, Ma=Pn, Na@=Pn,

AEA A€, AEA

be the corresponding (contracting, neutral and expanding) subspaces of N°. Below we
shall usually omit the (fixed) vector a € A from our notations.

Proposition. Let T be a semi-simple action of a free abelian group A on a nilpotent Lie
algebra Nt. Then

(i) The subspaces m(E, ‘ﬁ(g, ‘ﬁg are complexifications of subspaces N_, Ny, Ny CN, and
MN=N_D Ny DN,

(ii) The subspaces M_, Ny, Ny and NZ = N_BNy, N, = Ny &Ny can be characterized
in the following way: if (ax) C A is a certain (= any) sequence in A such that a/k — a,
then

z€N_\{0} < lim;log||T™z| <0,
z €N\ {0} < lim;log||T™z| <0,
z €Ny \ {0} < lim ¢ log||T™z|| =0, lim ¢ log [|[T~*z|| =0,
z €N\ {0} < lim7log || T *z|| <0,
z €N\ {0} < lim7log || T *z|| <0,
where || - || is a certain (= any) norm in N.

(iii) The subspaces M_, M=, Ny, Ny, N are T-invariant Lie subalgebras of N.

(iiil) Let N, N*,No, Ny, N be the simply connected subgroups of N corresponding
to the subalgebras M_, M=, Ny, Ny, N, respectively, and identified with the correspond-
ing subalgebras by the Baker—Campbell-Hausdorff formula. Then all these groups are T -
invariant, and any element n € N can be uniquely decomposed as

(20.1) n=mn_XngXng, n_ € N_,ng € No,ny €N, .

The map n — (n_,ng,ny), N — N_ x Ny x Ny is polynomial and linear in principal
terms.

Proof. Since the weight subsets A_, Ag, A are invariant with respect to the complex con-
jugation, (i) and (ii) are obvious. Further, the description (ii) implies (iii). Finally, since
T preserves the lower central series filtration {97}, property (i) applied to any 9 implies
that

N = ((ﬁl N (ﬁ_) S (‘ﬂl N mo) &) ((ﬁl ﬂ(ﬁ_|_) .

Thus, the polynomial map (n_,ng,ny) — n_ X ng X ny is linear in principal terms, which
implies that it is invertible, and its inverse map is also polynomial and linear in principal
terms. ]
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20.5. Let S = A AN be the semi-direct product determined by the action T'. Denote
the corresponding coordinate projections by «a : (a,n) — a € A and II : (a,n) — n. For
a given vector a € A let I1_(a,n) = m_(n), where 7_ is the projection from A to N_
determined by the decomposition (20.1).

Since S = NA = N_NyN;A = N_N;A, the homogeneous space S/NiA can be
identified with N_ = 91_, and the action of a group element (a,n) = na € S on 9_ has
the form

(20.2) (a,n).z =na.x=m_(nxT) .

In particular, (a,n).0 = 7_(n), where 0 is the zero vector in N, and a.x = n_(T%z) = Tz,
because the algebra 91_ is T-invariant (Proposition 20.4).

20.6. By [Ka91, Lemma 2.3], if  is a probability measure with a finite first moment on
a finitely generated group G, and G' C G — a normal subgroup of finite index (so that
it is also finitely generated), then there exists a probability measure ' on G’ with finite
first moment in G’ such that the Poisson boundaries I'(G, 1) and T'(G’, i) are isomorphic.
Thus, by Proposition 20.2 the problem of describing the Poisson boundary of a probability
measure with a finite first moment on a polycyclic group G is reduced to considering only
the case when G is splittable.

Let now p be a probability measure with a finite first moment on a splittable polycyclic
group G. Being splittable, G is contained in an S-group, so that we may assume without
loss of generality that the group G itself is an S-group G = A X N. Denote by N' D> N the
Lie hull of the group N, and by 9 the Lie algebra of the group N'. We keep the notations
from 20.4, 20.5.

Theorem. Let i be a probability measure with a finite first moment on an S-group G =
AAN. Denote by pa the projection of the measure 1 onto A, and byiyg = > pala)a € A
the barycenter of the measure pa. Let N = N_(Jig)NI(fiy), n = n_n’ be the decom-
position (20.1) of the group N determined by the vector fiy, and II_ : (a,n) — n_ be
the corresponding map from G to the G-space SN} (fig)A = N_(fiy). Then for P-a.e.
sample path {xy} of the random walk (G, p) there exists the limit

lim IT_(zg) € M_(11y) ,

k—o0

and N_(fi4) with the corresponding limit measure coincides with the Poisson boundary of
the pair (G, u).

We shall need a couple of auxiliary statements before giving a proof.

20.7. Denote by P the vector space of complex polynomials on M_. For any P € P, g € S
let P.g(x) = P(g.z). One can easily verify (see also [Ra77, Lemme 3.5]) that

1) If a € A, then P.a € P, and deg P.a = deg P (because the action T in 91 preserves
the filtration {9 });
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2) If n € N, then P.n € P with deg P.n = deg P, and deg(P — P.n) < deg P (because
the multiplication x in 91 and the decomposition n = n_ X ng X ny are linear in
principal terms).

Thus, for any integer [ the group S acts by linear transformations on the finite dimen-
sional space P; of polynomials of nilpotent degree < [. For our purposes it is sufficient
to consider only the space P,, where r is the nilpotency class of 91. As it follows from
Proposition 20.4 and its proof, any basis {e;} in n’ consisting of weight vectors of the
action T is adapted to the lower central series filtration of M_ (cf. 20.3). Denote by A; € A
the weight of the vector e;, and by ¢; € P, the corresponding coordinate function (so that
deg ¢; = dege;). Monomials ¢! = Hcpi’ corresponding to multi-indices [ = (I;), I; > 0
with deg ¢! = Y I;deg¢; < r constitute then a basis in P,, and this basis contains all
coordinate functions ;. We shall order these monomials according to their degree, so that
the zero degree monomial 1 = ¢ comes the first, and then any monomial of a lower degree
always comes before all monomials of a higher degree.

Denote by M(g), g € S the matrix of the transformation P — P.g in this basis. Then
M(g192) = M (g2)M (g1), so that g — M (g) is an antirepresentation of the group S in the
vector space P,. The matrices M(a),a € A are diagonal with entries A'(a) = [] A (a)
as it follows from formula (20.2). In particular, the entry at the top of the diagonal
corresponding to the zero multi-index (0,...,0) is always 1. The matrices M (n), n € N
are upper triangular with 1’s on the diagonal because of the property (2) above, and formula
(20.2) implies that the first row of the matrix M (n) consists of the entries [k (7_(n)).
Thus, we have

Lemma. For an arbitrary element g = (a,n) = na € S the matriz M(g) = M (a)M (n) of
the action P — P.g in the space P, has the form

= (4 1))

where m(g) = m(w_(n)) is the (dim P, —1)-dimensional vector with components @' (m_(n))
(where 1 < > l;dege; < ), and the (dimP, — 1) x (dim P, — 1) matriz M'(g) is upper
triangular with diagonal entries A'(a), 1 <Y I;dege; < 7.

Remark. Analogously, this statement (with obvious notational modifications) is also true
for the action of the group S = A XN on the homogeneous space S/N; A = 9" .

20.8. Below for estimating norms of the matrices M (g) we shall also need the following
elementary result.

Lemma [Ra77, Lemme 9.4]. Let (Zy) be a sequence of non-degenerate upper triangular
matrices of the same order d. If lim sup log ||Zk+1Zk_1||/k <0, and for diagonal elements
Zit 1 <i < d there exist limits 2* = limlog |Z}!|/k, then limlog || Zx||/k = max 2.
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20.9. Proof of Theorem 20.6.

I. Convergence. Since the measure p has a finite first moment in G, its projection
pa = a(p) onto A also has a finite first moment, and > log ||M(g)||1(g) < oo, where M (g)
are the matrices from Lemma 20.7. Denote by

1 m
MkZM(ak,nk)=<0 M’f) ,
k

the matrices corresponding to the increments (ax,ny) of the random walk. Then the
product matrices Z, = MM, _,...M;] satisfy conditions of Lemma 20.8 with diagonal
limits > {;log A;(a) < 0, so that limlog || Zg||/k < 0.

Since zy = (a1, n1) ... (ag, ng), the matrix

M (zy) = <(1) ]\W/}l,((i’;))> — M, --- M,

has the entries M'(xg) = Zx and m(xg) = my + moZy + - -+ + mpZi_1. As log™ |mg|| <
log || My|| = o(k) by finiteness of the first moment of p, and limlog||Z||/k < 0, the
sequence of vectors m(xy) converges a.e., which implies a.e. convergence of the sequence
II_(z), because the vector m(g) = m(Il_(g)) contains all coordinates of II_(g).

II. Maximality. We shall use Theorem 14.4. For the reflected measure fi its projection
onto A is the reflected measure of the projection 4. Thus, fig = —fi4. By definition,
N_(a) = N, (—a),Np(a) = NMy(—a) Va € A, so that by the first part of the proof applied
to the measure ji the homogeneous space Ny (fiy) = S/Ng* (Jig)A is a fi-boundary.

Now we have to construct G-equivariant strips S(n_,ny) C G, n_ € M_,n, € N,.
Decomposition (20.1) implies that for any n_ € M_,ny € Ny

(20.3) n NN N* =ny(nI'n NFNN*) =ng(n . NiON*) =nin’ Ny =Ny,

where n’_ =n7'.n_ € M_ (recall that by “dot” we denote the action (20.2) on N_), and
n = nyn’_. So, the intersection of any two N and N* cosets in NV is a Ny-coset (one can
easily see that in fact any Ny-coset can be uniquely presented in this way).

The group N is cocompact in A/, so that there exists a compact set K C A such that
for any translation nK, n € N the set of N-points nK N N in nK is non-empty. Then

(20.4) Stn_,ng) = [(n_NiNnyN*)KNNJACG

is a G-equivariant map assigning to pairs of points from 91_ x 91, non-empty subsets of
G. Clearly, S is measurable, and, as it follows from (20.3), all strips have the form

S(n_,ny) = (MNgKNN)A=S5(n)

for a certain n = n(n_,n.) € N.
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Now fix linear norms in A D A and in 9t and let
Gr = {(a,n) € G : [lal, [Imo(n)|| < €} .

We shall verify that the strips (20.4) and the gauge G = (G) satisfy conditions of Theorem
14.4.

First note that any strip S(n) has at most exponential growth with respect to the gauge
(Gk) (although the gauge sets Gy are themselves infinite). Indeed, let

g=(a,n) =na=n_ngnia € ntNogKANG ,

i.e., |la|l,[lnoll < €* and n_ngn, € nNK. The latter formula means that there exists
n' € K such that 7~ 'n_ngnyn’~' € Ny. On the other hand, since the group multi-
plication in N/ = 9 is polynomial and linear in principal terms, for any ng € Ny and
ni,ne € N there exist uniquely determined n_ € N_ and ny € N, such that the prod-
uct nin_ngnyns belongs to Ny, and the map ¢ : (ng,n1,n2) — n_ngny is polynomial.
The set K is compact, and n is fixed, so that there is a constant C' = C(n, K) such that
lp(no, n=t,n'~Y)|| < C||ng||” for any n’ € K. Thus, ||n|| < CeF". Since the groups A and
N have polynomial growth and the embeddings A C A, N C N are discrete, we conclude
that for any n € N

1
(20.5) lim sup z log card [S(n) N Gk] < oo

k—o0

By using the same argument as in the first part of this proof and considering the G-
action on the space of polynomials on M* (see Remark after Lemma 20.7), one shows that
a.e. log||Ip(zg)|| = o(k). The A-component «(xy) of zj performs the random walk on
A determined by the measure p4 with a finite first moment, so that a.e. ||a(yr)||/k —
[all < oo, whence a.e. |zg|g = o(k). In combination with (20.5) it means that the
conditions of the Theorem 14.4 are satisfied.

Corollary 1. If p is a symmetric measure with a finite first moment on a polycyclic group
G, then the Poisson boundary I'(G, p) is trivial.

Corollary 2. If the Poisson boundary is non-trivial for a certain symmetric probability
measure p with a finite first moment on a finitely generated solvable group G, then G
contains an infinitely generated subgroup.

20.10. Remarks. 1. The proof of convergence in Theorem 20.6 is similar to the proof of
an analogous statement in the setup of real Lie groups [Ra77], and the description of the
Poisson boundary for polycyclic groups obtained in Theorem 20.6 is essentially the same
as for solvable Lie groups [Az70], [Ra77] (although the methods are quite different).
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2. Another way of obtaining a description of the Poisson boundary of a polycyclic group
G consists in embedding G into the matrix group GL(d, Z) and using the description of the
Poisson boundary for this group, see Section 19. In this approach the Poisson boundary is
identified with (a subset of) a certain flag space in R?. One could also use the global law of
large numbers for solvable Lie groups, which allows one to approximate (in the enveloping
solvable Lie group CN¥) a.e. sample path = {z,,} by the sequence of powers g" of a certain
group element g = g(x) € G [Ka91].

3. The automorphisms 7% : 91 — 9N, a € A preserve the cocompact group N, hence
|det T*| = 1, and the subalgebras 91_(a) and 9, (a) are trivial or non-trivial simultane-
ously in perfect keeping with the fact that the Poisson boundaries I'(G, p) and I'(G, 1) are
trivial or non-trivial simultaneously (which follows from Theorem 9.7).

4. The proof of maximality in Theorem 20.6 in a sense is a combination of proofs in two
important particular cases when the neutral subgroup Nj is either trivial or coincides with
the whole group N. In the first case the strips in G have the form S(n) = (nK N N)A,
and the proof of maximality becomes trivial (modulo Theorem 14.4) — cf. below Theorem
21.2. In the second case, if 14 = 0 (in particular, if the measure p is symmetric) Theorem
20.6 reduces to showing that the Poisson boundary of the measure y is trivial. This can
be done by a direct estimate of the rate of escape of the random walk (G, ). If (ag, ng)
are the increments of the random walk, then its position at time & is

= (a1 +...ag,ny X T%ny x .. . TO T %1y

If |- | is a word length on N, then log™ ||nk|| = o(k) (provided the measure p has a finite
first moment). Since a; + --- + ap = o(k), it implies that log™ |71+ %-1pn, | = o(k),
so that log™ ||7(yx)|| = o(k). Thus, the entropy of the random walk is zero, because the
nilpotent group G has polynomial growth.

21. Semi-direct and wreath products

21.1. Let G = A X H be the semi-direct product determined by an action T' of a group A
by automorphisms of another group H, i.e., the group operation in G is (a1, h1)(az, ha) =
(ar1a2, hy - T hy). We assume that the groups A and H are embedded into G' by the maps
a— (a,eg) and h — (ea, h). The following is obvious:

Lemma. Let G = A X H be a semi-direct product, X — a G-space, and m: X — H — an
H -equivariant map. Then the map

S:x— {aw(a_la:)}aeA ={(a,T%r(a"'z)) :a € A} CG

15 G-equivariant.
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21.2. Lemma 21.1 in combination with Theorem 14.5 then immediately implies

Theorem. Let G be a finitely generated group decomposable as a semi-direct product A <
H, and let p be a probability measure on G. Suppose that (B_,A_) and (By,Ay) are

fi- and p-boundaries, respectively, and there exists a measurable H -equivariant map 7 :
B_ x By — H. If either

(a) The measure p has a finite first moment, and the growth of A is subexponential;
or

(b) The measure p has a finite first logarithmic moment and a finite entropy, and the
growth of A is polynomial;

then the boundaries (B_,A_) and (B4, A;) are mazimal.

21.3. For an integer p > 1 let BS(1,p) be the Baumslag—Solitar group determined by two
generators a,b and the relation aba™! = b?. The group BS(1,p) coincides with the affine
group of the ring Z[I—l)] = {k/p' : k € Z,l € Z,} and can be presented as the group of

matrices "
(Z,f):(% {)7 fzﬁ7

where a = (1,0) and b = (0, 1), so that BS(1, p) is isomorphic to the semi-direct product
7 K Z[%] determined by the action 7% f = p#f. The group BS(1,p) is solvable of degree 2

and has exponential growth.

For a number f € Z[%] \ {0} let ||f|| = 1 +1log™ | f| +log™ | f|p, where |f| is the ordinary
absolute value of f and |f|, = min{p® : p*f € Z} (so that if p is a prime then |f], is
the p-adic absolute value of f), and put ||0]] = 0. One can easily show that the gauge
(x, f) = |z| + || f]] is equivalent to a word gauge in BS(1,p) in the sense of 12.1. Denote
by Q, the completion of the ring Z[%] with respect to the the distance |f1 — fa|,. If pis
a prime, then Q, is the field of p-adic numbers. In a natural way the Cantor set @, and
the real line R (which is the completion of Z [%] in the usual metric) can be considered as

two boundaries of the group BS(1,p) (“upper” and “lower”), see [KV83], [FM97].

21.4. Theorem. Let p be a probability measure on the group G = BS(1,p) with a finite
first moment and such that the group gr(u) is non-abelian. Denote by fi,; the mean of
the projection of the measure p onto Z determined by the homomorphism BS(1,p) —
Z, (z,f) —~ .
(i) If @y < 0, then for P-a.e. path (z,, ) of the random walk (G, p) there exists the

limit

lim ¢, = foo € R,

n— oo
and the Poisson boundary of the pair (G, p) is isomorphic to R with the resulting limit
measure \;
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(ii) If @y = 0, then the Poisson boundary of the pair (G, p) is trivial;
(iii) If iy, > 0, then for P-a.e. path (z,,pn) of the random walk (G, ) there exists the
limit
lim Qon:fooEQpa

n—0o0

and the Poisson boundary of the pair (G, p) is isomorphic to Q, with the resulting limit
measure \.

Proof. Let

{(.I'n,QOn)} = (hlvfl)(h27f2) o (hnvfn)
- (hl +h2 + ---hn7f1 +pm1f2 + "'+pmn71fn)

be a path of the random walk (G, u) with increments (h;, f;).

If 7; = 0, then the random walk {z,} on Z is recurrent, so that the Poisson boundary
of (G, u) coincides with the Poisson boundary of the induced random walk on the abelian
group Z[%] C G [FuTl], [Ka91], the latter being trivial (see 5.8). Another proof of boundary
triviality in this case can be obtained by showing that the rate of escape of the random
walk (G, p) is zero (see Corollary of Theorem 13.2; ¢f. Remark 4 in 20.10).

Suppose now that 7i; # 0. Then P-a.e. x,/n — Ji; and log™ |fu|,log™ |fulp = o(n)
(by the law of large numbers applied to the i.i.d. random variables || f,||), which proves
convergence in the cases (i) and (iii). Since stabilizers of points from R and Q, with respect
to the affine action of G are abelian, the resulting limit measures must be non-trivial.

Now we have to prove maximality of the arising u-boundaries. In view of Theorem 21.2
we shall do it simultaneously for the cases (i) and (iii), because if one of the measures y, [i
has negative drift, then the other one has positive drift.

For any two points x € R, £ € Q, let w(x,&) = v+ {{{} — {z}} € Z[%], where x — {z}
is the function assigning to a real or p-adic number its fractional part 0 < {z} < 1. Then,
clearly, m(z + t,€ + t) = t + m(x,&) for any ¢ € Z[1], so that the conditions of Theorem
21.2 are satisfied. O

Remarks. 1. This result is in perfect keeping with the fact that BS(1,p) is a lattice in the
product of affine groups of R and of @Q,. Depending on the sign of 1, the random walk
then acts contractively either on the real or on the p-adic line. Note that for the real affine
group [Az70] (resp., for the p-adic affine group [CKW94]) one gets a non-trivial Poisson
boundary isomorphic to R (resp., to Q) only if the random walk in contracting in the real
(resp., p-adic) metric.

2. Tt would be interesting to investigate the Poisson boundary for higher-dimensional
solvable groups over Z[%], for example, for the group of triangular matrices. For these
groups the Poisson boundary should be mixed — consisting of both real and p-adic com-
ponents. This problem is also closely related with finding out a description of the Poisson
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boundary for random walks on Lie groups over Q, in which case the adele groups should
come into play.

21.5. Denote by fun (A4, B) the direct sum of isomorphic copies of a group B indexed
by the elements from another group A. The group fun (A, B) can be considered as the
group of finitely supported A-valued configurations on A with the operation of pointwise
multiplication, and it is endowed with a natural action of the group A by translations:
Tf(a') = f(a~ta’). Below we shall also use the group Fun (A, B) of all (not necessarily
finitely supported) B-valued configurations on A. The semi-direct product A £ fun (A, B)
corresponding to the action T of the group A on fun (A, B) by translations is called the
(restricted) wreath product of the active group A and the passive group B. Note that
the groups BS(1,p) considered above are homomorphic images of the wreath product
Z K fun (Z,7) under the maps (z, f) — (x, > p*f(k)).

A wreath product is finitely generated if both its active and passive groups are. Given
sets of generators Ag C A, By C B, the corresponding set of generators of GG is the union
of the sets {(a, ) : a € Ap} and {(ea,ep) : b € By}, where ¢ is the identity of fun (A, B)
(i.e., p(a) = ep for all a € A), and ¢}, € fun (A, B) is defined as e(e4) = b and e(a) = ep
otherwise.

21.6. Theorem. Let G = A A fun (A, B) be a finitely generated wreath product, and p —
a probability measure on G. Suppose that

(i) The active group A has subexponential growth;

(ii) The measure p has a finite first moment;

(iii) There exists a homomorphism 1 : A — Z such that the mean T, of the measure
pz = ¥(p) is non-zero.

Then for P-a.e. sample path {(xn, gon)} the configurations ¢, converge pointwise to a
limit configuration lim ¢,, € Fun (A, B), and the Poisson boundary of the pair (G, p) is
isomorphic to Fun (A, B) with the resulting limit measure \.

Proof. 1. Convergence. Fix certain word gauges |- |4 and |- |p on the groups A and B,
and denote by |- | the corresponding word gauge on G (as explained at the end of 21.5).
For a configuration f € fun (A, B) let ||f|| = max{|a|a : f(a) # ep}. Then obviously
IIf]l < |(a, f)| for any a € A. Positions of the random walk (G, ) at times n,n + 1 are
connected with the formula

(21'1) (‘Tn~|-17 <Pn+1) = (mm @n)(hn~|—17 fn—i—l) = ($nhn+1, @nTmnfn—i—l) ;

where (hy,, f) are the independent p-distributed increments of the random walk. By condi-
tion (ii) P-a.e. || fna1|| = o(n), whence by (iii) we obtain convergence of the configurations
Pn.-

I1. Mazimality. Suppose, for the sake of concreteness, that @, > 0. As it follows
from the first part of the proof, the limit measure A, on Fun (A, B) corresponding to
the random walk (G, p1) has the property that the restriction of Ay-a.e. configuration to
the set A_ = {a € A : ¢(a) < 0} is finite. In the same way, for the limit measure A_
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of the reflected random walk (G, fi) the restriction of A_-a.e. configuration to the set
Ay ={a € A:¢(a) > 0} is also finite. Thus, for A_ ® Ai-a.e. pair of configurations
®_,®, € Fun (A, B) the configuration f = n(®_, ®) defined as

_ d_(a), a€ Ay
f(a)_{ ®,(a), acA_

belongs to fun (A, B), and obviously the map  is fun (A, B)-equivariant, so that the claim
follows from Theorem 21.2 (a). O

21.7. Example. Let A = Z* and B = Z, = {0,1}. The corresponding wreath products
Gy = ZF A fun (Zy, Zy) were first considered in [KV83] as a source of several examples
and counterexamples illustrating the relationship between growth, amenability and the
Poisson boundary for random walks on groups. Let jo be a probability measure on ZF,
and p(r,e) = po(x) be its lift to G, where £, € fun (Z*,Z,) is the configuration taking
the value 1 at the identity of Z* and the value 0 otherwise. Then in view of formula
(21.1) the random walk {(x,, )} on G governed by the measure p has the following
interpretation: its projection {x,} is the random walk on Z* governed by the measure py,
whereas the configuration component ¢,, 41 is obtained from ¢,, just by changing its value
at the point z,,. One can think that there is a lamp at each point of Z*, and a lamplighter
performs the random walk governed by the measure g on Zy, flipping the light at all points
through which he passes (because of this description the groups Gy, are sometimes referred
to as groups of dynamical configurations [KV83] or lamplighter groups [LPP96]).

The Poisson boundary of the random walk (Gy, p) is non-trivial iff the random walk
(Z*, o) is transient. Indeed, if (Z¥, yg) is recurrent, then the Poisson boundary of (G, )
coincides with the (trivial) Poisson boundary of the induced random walk on the abelian
group fun (Z*,Z,) (cf. the proof of Theorem 21.4 (ii)). On the other hand, if (Z*, ug) is
transient, then a.e. z,, — 00, so that the configurations ¢,, pointwise stabilize and provide
a non-trivial behaviour at infinity. Theorem 21.6 implies that if the measure g has a finite
first moment, and its mean is non-zero, then the Poisson boundary of (G, i) is the space
of limit configurations from Fun (Z*, Z,). Whether this is always true when the quotient
random walk (Z*, jio) is transient, in particular, if yo has a finite first moment with zero
mean, is an open question.

21.8. Let {z,}52, be a arbitrary homogeneous Markov chain on a countable state space
X with transition probabilities p(z,y), =,y € X. Denote by X%+ the space of (unilat-
eral) paths {r,}5%, in X, and by Py the probability measure on X%+ determined by
an initial distribution 6. The group S(oco) of finite permutations of the parameter set
Z, = {0,1,2,...} acts on the path space X?+. Denote by o the measurable partition
of the path space (X%+, Py) which is the envelope of the trajectory equivalence relation
of this action. The corresponding o-algebra S in the path space, i.e., the (completed)
o-algebra of S(oco)-invariant sets, is called the exchangeable (or: symmetric) o-algebra of
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the chain {z,}. We shall call the quotient space (X%+ Py)/c the exchangeable boundary
of the chain {z,}.

We introduce the extended chain {(x, Z;; 0z, )} on the state space X x fun (X, Z),
where fun (X,Z) is the additive group of finitely supported Z valued configurations on
X. In other words, we add to the states x,, of the original chain the occupation functions
On = 22;01 0z, saying how many times each of the points of the state space X was visited
by the path {x, } up to the time n. The transition probabilities of the extended chain are

ﬁ((:l?, f)7 (ya f+ 690)) = p(l'ay) .

Clearly, the path space (X%+, Py) of the original chain is isomorphic to the path space of
the extended chain with the initial distribution 6 ® d4, where ¢ is the zero configuration.

21.9. Lemma. For an arbitrary initial distribution 0 on X the tail and the Poisson
boundaries of the extended chain, and the exchangeable boundary of the original chain
{z} all coincide Pyp— mod 0.

Proof (cf. [Ka91]). Recall that the tail equivalence relation of the extended chain is gen-
erated by the synchronous equivalence relation of the shift in its path space (see 8.1):

Since the occupation functions ¢,, for the extended chain has the form ¢,, = Z;; Op,, We
immediately get that the equivalence relation &~ coincides with the trajectory equivalence
relation of the group S(oo) acting on the path space by coordinate permutations, so that
the tail boundary of the extended chain coincides with the exchangeable boundary of the
original one. Moreover, since the sum of values of ¢, is always n for Py-a.e. sample
path {(x,,pn)}, the synchronous and asynchronous equivalence relations of the shift in
the path space of the extended chain are the same Pgy— mod 0, so that the tail and the
Poisson boundaries of the extended chain are also the same. 0

21.10. The exchangeable boundary is trivial P, — mod 0 for any recurrent state x € X
of the chain {z,}. Indeed, recurrence of the state x means recurrence of the set {z} x
fun (X,Z) for the extended chain. Thus, the Poisson boundary of the extended chain
coincides with the (trivial) Poisson boundary of the induced random walk on the abelian
group fun (X, Z) (cf. the proof of Theorem 21.4 (ii)). If the chain {z, } satisfies a natural
connectivity type condition, then its exchangeable boundary is trivial Py — mod 0 for any
initial distribution 6 [BF64].

On the contrary, transience of the chain {z,,} means that any point of the state space is
visited by almost all sample paths a finite number of times only. Thereby, the occupation
functions ¢,, a.e. converge pointwise to a (finite) final occupation function ¢, (depending
on the path {z,}). The value ¢ () is the number of times when a point x was visited by
the trajectory {x,}. Clearly, the final occupation function ¢, is measurable with respect
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to the exchangeable o-algebra of the chain {z,}. When is the exchangeable o-algebra of
a transient chain generated by the final occupation functions? In other words, when does
the Poisson boundary of the extended chain coincide with the space of final occupation
times? Since final occupation functions are invariant with respect to the bigger group S
of all permutations of the index set Z,, coincidence of the exchangeable boundary with
the space of final occupation times implies that any S-invariant subset of the path space
is automatically also S-invariant (mod 0).

In the case when the chain {z,} is a random walk on a group G = X governed by
a measure g on G, this question by Lemma 21.9 can be reformulated as the problem of
identifying the Poisson boundary of the random walk on the wreath product A £fun (G, Z)
governed by the measure fi(z,e) = pu(x), where £; € fun (G, Z) is the configuration taking
the value 1 at the identity of G and the value 0 otherwise (cf. 21.7), and by virtue of
Theorem 21.6 we obtain

Theorem. Let p be a probability measure with a finite first moment on a finitely generated
group G of subexponential growth. If there exists a homomorphism v : G — Z such that
the mean fi; of the measure puy = 1 (p) is non-zero, then the exchangeable boundary of the
random walk (G, i) is isomorphic to the space of final occupation functions.

Remark. The only other result on the description of the exchangeable boundary of a tran-
sient Markov chain known to the author is its identification with the space of final occupa-
tion functions for transient random walks on Z¢ with a finitely supported measure y (and
also for some other random walks on groups of polynomial growth) by entirely different
methods in [JP96].

REFERENCES

[An87] A. Ancona, Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. of
Math. 125 (1987), 495-536.

, Théorie du potentiel sur les graphes et les variétés, Springer Lecture Notes in Math.
1427 (1990), 4-112.

[AS85] M. T. Anderson, R. Schoen, Positive harmonic functions on complete manifolds of negative
curvature, Ann. of Math. 121 (1985), 429-461.

[AvT72] A. Avez, Entropie des groupes de type fini, C. R. Acad. Sci. Paris, Sér. A 275 (1972), 1363-1366.

[An90]

[AvT76] , Harmonic functions on groups, Differential Geometry and Relativity, Reidel, Dord-
recht-Holland, 1976, pp. 27-32.

[AZz70] R. Azencott, Espaces de Poisson des groupes localements compacts, Springer Lecture Notes in
Math., vol. 148, Springer, Berlin, 1970.

[Bag89] W. Ballmann, On the Dirichlet problem at infinity for manifolds of nonpositive curvature,
Forum Math. 1 (1989), 201-213.

[Ba9gh] , Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, Birkhauser, Basel,

1995.

[BF64] D. Blackwell, D. Freedman, The tail o-field of a Markov chain and a theorem of Orey, Ann.
Math. Stat. 35 (1964), 1291-1295.

[Bi91] C. J. Bishop, A characterization of Poissonian domains, Ark. Mat. 29 (1991), 1-24.

[BL94] W. Ballmann, F. Ledrappier, The Poisson boundary for rank one manifolds and their cocompact
lattices, Forum Math. 6 (1994), 301-313.



68

[BL9G6]
[CFS82]
[CKW94]
[CS89]
[De75]
[De80]
[De86)]
[DE9O]
[DM61]
[FM97]
[Fu63]
[Fu71]
[Fu73]
[GHY0]
[GM87]
[GM89)

[GoT6]
[Gr87]

[GRS5]

[GR89]

[Gu73]
[Gu80a)
[Gu80b]
[Ja95]
[TP96]

[Ka85a)

VADIM A. KAIMANOVICH

, Discretization of positive harmonic functions on Riemannian manifolds and Martin
boundary, Actes de la Table Ronde de Géometrie Différentielle (Luminy, 1992), Sémin. Congr.,
vol. 1, Soc. Math. France, Paris, 1996, pp. 77-92.

I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Springer, New York, 1982.

D. I. Cartwright, V. A. Kaimanovich, W. Woess, Random walks on the affine group of a homo-
geneous tree, Ann. Inst. Fourier (Grenoble) 44 (1994), 1243-1288.

D. I. Cartwright, P. M. Soardi, Convergence to ends for random walks on the automorphism
group of a tree, Proc. Amer. Math. Soc. 107 (1989), 817-823.

Y. Derriennic, Marche aléatoire sur le groupe libre et frontiére de Martin, Z. Wahrscheinlichkeit-
sth. Verw. Geb. 32 (1975), 261-276.

, Quelques applications du théoréme ergodique sous-additif, Astérisque 74 (1980), 183—

201.

, Entropie, théorémes limites et marches aléatoires, Springer Lecture Notes in Math.
1210 (1986), 241-284.

D. P. Dokken, R. Ellis, The Poisson flow associated with a measure, Pacific J. Math 141 (1990),
79-103.

E. B. Dynkin, M. B. Malyutov, Random walks on groups with a finite number of generators,
Soviet Math. Dokl. 2 (1961), 399-402.

B. Farb, L. Mosher, A rigidity theorem for the solvable Baumslag—Solitar groups, Invent. Math.
(1997).

H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335—
386.

, Random walks and discrete subgroups of Lie groups, Advances in Probability and
Related Topics, vol. 1, Dekker, New York, 1971, pp. 3-63.

, Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure
Math., vol. 26, AMS, Providence R. I., 1973, pp. 193—229.

E. Ghys, P. de la Harpe (eds.), Sur les Groupes Hyperboliques d’aprés Mikhael Gromov, Birkh&user,
Basel, 1990.

F. M. Gehring, G. J. Martin, Discrete quasiconformal groups. I, Proc. London Math. Soc. 55
(1987), 331-358.

I. Ya. Goldsheid, G. A. Margulis, Lyapunov exponents of a product of random matrices, Russian
Math. Surveys 44:5 (1989), 11-71.

R. W. Goodman, Nilpotent Lie Groups, Lecture Notes in Math., vol. 562, Springer, Berlin, 1976.
M. Gromov, Hyperbolic groups, Essays in Group theory (S. M. Gersten, ed.), MSRI Publ., vol. 8,
Springer, New York, 1987, pp. 75—263.

Y. Guivarc’h, A. Raugi, Frontiére de Furstenberg, propriétés de contraction et théorémes de
convergence, Z. Wahrscheinlichkeitsth. Verw. Geb. 69 (1985), 187-242.

, Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de
Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), 165—
196.

Y. Guivarc’h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math.
France 101 (1973), 333-379.

, Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Astérisque
74 (1980), 47-98.

, Quelques propriétés asymptotiques des produits de matrices aléatoires, Springer Lecture
Notes in Math. 774 (1980), 177-250.

W. Jaworski, On the asymptotic and invariant o-algebras of random walks on locally compact
groups, Probab. Theory Relat. Fields 101 (1995), 147-171.

N. James, Y. Peres, Cutpoints and exchangeable events for random walks, Theory Probab. Appl.
41 (1996).

V. A. Kaimanovich, Examples of non-commutative groups with non-trivial exit boundary, J.
Soviet Math. 28 (1985), 579-591.




THE POISSON FORMULA FOR GROUPS WITH HYPERBOLIC PROPERTIES 69

[Ka85b] , An entropy criterion for mazximality of the boundary of random walks on discrete
groups, Soviet Math. Dokl. 81 (1985), 193-197.

[Ka89] , Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semi-
simple Lie groups, J. Soviet Math. 47 (1989), 2387-2398.

[Ka91] , Poisson boundaries of random walks on discrete solvable groups, Proceedings of Con-
ference on Probability Measures on Groups X (Oberwolfach, 1990) (H. Heyer, ed.), Plenum,
New York, 1991, pp. 205—238.

[Ka92] , Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, Proceedings of
the Conference on Harmonic Analysis and Discrete Potential Theory (Frascati, 1991) (M. A.
Picardello, ed.), Plenum, New York, 1992, pp. 145-180.

[Ka94] , The Poisson boundary of hyperbolic groups, C. R. Ac. Sci. Paris, Sér. I 318 (1994),
59-64.

[Ka95] , The Poisson boundary of covering Markov operators, Israel J. Math 89 (1995), 77-134.

[Ka96] , Boundaries of invariant Markov operators: the identification problem, Ergodic Theory

of Z% Actions (Proceedings of the Warwick Symposium 1993-4, M. Pollicott, K. Schmidt, eds.),
London Math. Soc. Lecture Note Series, vol. 228, Cambridge Univ. Press, 1996, pp. 127-176.

[KM96] V. A. Kaimanovich, H. Masur, The Poisson boundary of the mapping class group, Invent. Math.
125 (1996), 221-264.

[KV83] V. A. Kaimanovich, A. M. Vershik, Random walks on discrete groups: boundary and entropy,
Ann. Prob. 11 (1983), 457-490.

[Le83] F. Ledrappier, Une relation entre entropie, dimension et exposant pour certaines marches
aléatoires, C. R. Acad. Sci. Paris, Sér. I 296 (1983), 369-372.

[Le85] , Poisson boundaries of discrete groups of matrices, Israel J. Math. 50 (1985), 319-336.

[LPP96] R. Lyons, R. Pemantle, Y. Peres, Random walks on the lamplighter group, Ann. Probab. 24
(1996), 1993—-2006.

[Ma91] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin, 1991.

[Mo64] C. C. Moore, Compactifications of symmetric spaces. I, Amer. J. Math. 86 (1964), 201-218.

[Mo73] G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Ann. of Math. Studies, vol. 78,
Princeton Univ. Press, Princeton New Jersey, 1973.

[MP91] T. S. Mountford, S. C. Port, Representations of bounded harmonic functions, Ark. Mat. 29
(1991), 107-126.

[PW87] M. A. Picardello, W. Woess, Martin boundaries of random walks: ends of trees and groups,
Trans. Amer. Math. Soc. 302 (1987), 185-205.

[RaT77] A. Raugi, Fonctions harmoniques sur les groupes localement compacts a base dénombrable, Bull.
Soc. Math. France. Mémoire 54 (1977), 5-118.
[Ro67] V. A. Rokhlin, Lectures on the entropy theory of measure preserving transformations, Russian

Math. Surveys 22:5 (1967), 1-52.

[Ru80] W. Rudin, Function Theory in the Unit Ball of C™, Springer, Berlin, 1980.

[Se83] C. Series, Martin boundaries of random walks on Fuchsian groups, Israel J. Math. 44 (1983),
221-242.

[Sg83] D. Segal, Polycyclic groups, Cambridge Univ. Press, Cambridge, 1983.

[Va86] N. Th. Varopoulos, Information theory and harmonic functions, Bull. Sci. Math. 110 (1986),
347-389.

[Wi90] G. Willis, Probability measures on groups and some related ideals in group algebras, J. Funct.
Anal. 92 (1990), 202-263.

[Wo089] W. Woess, Boundaries of random walks on graphs and groups with infinitely many ends, Israel
J. Math. 68 (1989), 271-301.

[Wo93] | Fized sets and free subgroups of groups acting on metric spaces, Math. Z. 214 (1993),
425-440.

[2i78] R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of
random walks, J. Funct. Anal. 27 (1978), 350-372.



