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ABSTRACT. We define a two-sided analog of Erdés measure on the space of two-sided expan-
sions with respect to the powers of the golden ratio, or, equivalently, the Erdés measure on the
2-torus. We construct the transformation (goldenshift) preserving both Erdos and Lebesgue
measures on T2 which is the induced automorphism with respect to the ordinary shift (or the
corresponding Fibonacci toral automorphism) and proves to be Bernoulli with respect to both
measures in question. This provides a direct way to obtain formulas for the entropy dimension
of the Erdos measure on the interval, its entropy in the sense of Garsia-Alexander-Zagier and
some other results. Besides, we study central measures on the Fibonacci graph, the dynamics
of expansions and related questions.

0. INTRODUCTION

Among numerous connections between ergodic theory and metric theory of numbers, the
questions related to algebraic irrationalities, expansions associated with them and ergodic
properties of arising dynamical systems, are of a special interest. The simplest case, i.e.
the golden ratio, the Fibonacci automorphism etc., serves as a deep source of problems
and conjectures until now.

In 1939 P. Erdos [Er] proved in particular the singularity of the measure on the seg-
ment which is defined as the one corresponding to the distribution of the random variable
S ek A~F with A being the larger golden ratio and independent &, taking the values 0 and
1 (or +1) with probabilities 3 each. We think it is natural to call this measure the Erdds
measure. This work gave rise to extensive publications and numerous generalizations (see,
e.g., [AlZa] and references therein). Nevertheless, little attention was paid to dynamical
properties of this natural measure. The aim of this paper is to begin studying dynamical
properties of Erdos measure and its two-sided extension. We

(1) define two-sided generalization of Erdos measure (Section 1);

(2) introduce a special automorphism (”goldenshift”) which preserves Erdos measure
and which is a Bernoulli automorphism with a natural generator with respect to
Erdos and Lebesgue measures (Section 2);
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(3) find the entropy of this automorphism and prove that it coincides with the entropy
considered in [AlZa] (Section 3);
(4) discuss the connection with some properties of the Fibonacci graph, its central
measures and the adic transformation on it (see Appendix A);
(5) define some new kind of expansions corresponding to the goldenshift (see Appen-
dix B).
We will describe all this in more detail below.

Several years ago certain connections between symbolic dynamics of toral automor-
phisms and arithmetic expansions associated with their eigenvalues were established. The
first step in this direction was also related to the golden ratio (see [Verb5]) and led to a
natural description of Markov partition in terms of the arithmetics of the 2-torus and ho-
moclinic points of the Fibonacci automorphism. The main idea was to consider the natural
extension of the shift in the sense of ergodic theory and the adic transformation on the
space of one-sided arithmetic expansions and in identifying the set of two-sided expansions
with the 2-torus.

In the present paper we use the same idea for a detailed study of the Erdos measure.
Namely, we define the “two-sided” Erdos measure as a measure on the space of expansions
infinite to both sides (= a measure on the 2-torus) and study the properties of the ordinary
shift and the goldenshift as a transformation of the space of expansions introduced by
means of the notion of block. The goldenshift turns out to preserve both Lebesgue and
Erdos measures, both being Bernoulli in the natural sense with respect to the goldenshift;
this is one of the main results of the paper (Theorem 2.7). By the way, this immediately
yields a proof the Erdos theorem on the singularity of Erdos measure. Moreover, the
two-sided goldenshift is an induced automorphism for the Fibonacci automorphism of the
torus. Other important consequences of our approach follow from the fact that the entropy
of the goldenshift is directly related to the entropy of Erdos measure in the sense of Garsia-
Alexander-Zagier, i.e. to the entropy of the random walk with equal transition measures
on the Fibonacci graph (Theorem 3.1).

In [AlZa] it was attempted to compute the entropy of Erdds measure as the infinite
convolution of discrete measures, which was in fact introduced by A. Garsia [Ga] in more
general situation. Note that it proved to be the entropy of a random walk on the Fibonacci
graph. In a recent work [LePo] the authors compute the dimension of the Erdés measure on
the interval in the sense of L.-S. Young [Y] and relate a certain two-dimensional dynamics
to it.

Finally, making use of a version of Shannon’s theorem for random walks (see [KaVe])
yields the value of the dimension of the Erdos measure in the sense of Young (Theorem 3.4).

Thus, the dynamical viewpoint for arithmetic expansions and for measures related to
them, provides new information and an essential simplification of computations of invari-
ants invloved. One may expect that methods of this paper are applicable to more general
algebraic irrationalities and also to some nonstationary problems.

The contents of the present paper is as follows. In Section 1 we present auxiliary
notions (canonical expansions and others) and give main definitions (Erdés measure on the
interval and the 2-torus, normalization, the Markov measure corresponding to Lebesgue
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measure etc.). Besides, we deduce some preliminary facts on the one-sided and two-sided
Erdos measure. In Section 2 we study the combinatorics of blocks in terms of canonical
expansions, introduce the notion of the goldenshift (both one-sided and two-sided) and
prove its Bernoulli property with respect to Lebesgue and Erdos measures. Section 3
contains main results on the entropy and dimension of the Erdos measure and relationship
to the random walk on the Fibonacci graph.

In appendices we consider some related problems. Namely, in Appendix A the com-
binatorial and algebraic theory of the Fibonacci graph is presented. In particular, we
describe the ergodic central measures on this graph and the action of the adic transfor-
mation which is defined as the transfer to the immediate successor in the sense of the
natural lexicographic order (in our case it is just the next expansion of a given real in the
sense of the natural ordering of the expansions). We study the metric type of the adic
transformation with respect to the ergodic central measures. In Appendix B we consider
arithmetic block expansions of almost all points of the interval. The interest to them is
caused by the fact that the “digits” of the block expansions are independent with respect
both to Erdos and Lebesgue measures. Note that there are some pecularities influenced
by the difference between the one-sided and two-sided shifts. For instance, the one-sided
Erdos measure is only quasi-invariant under the one-sided shift, while the two-sided mea-
sure in shift-invariant. In Appendix C the densities of the Erdos measure with respect to
the shift and to the rotation by the golden ratio are computed by means of blocks. Finally,
in Appendix D another proof of Alexander-Zagier’s formula for the entropy is given. It is
worthwhile because of its connection with the geometry of the Fibonacci graph.

1. ERDOS MEASURE ON THE INTERVAL AND ON THE 2-TORUS.

1.1. Canonical expansions. Let A\ = ‘/5;'1, let X = {(e1e2...) € [[7{0,1} : gsei41 =

0, i > 1}, i.e. the Markov compactum with the matrix (1 1). Let L : X — [0,1] be the

10
mapping acting by the formula

(1.1) L(giga...) =Y exA™™.
k=1

It is well-known that L is one-to-one, except for a countable number of points. The inverse
mapping L~! is specified with the help of the greedy algorithm. Namely, let 72 = {A\z},
and

e = M), kB> 1.

We call the constructed sequence (e1(x)e2(x)...) the canonical expansion of z. This
expansion is easily shown to be the unique one lying in X, except for a countable number
of . For those, from two possible expansions we choose the one whose tail is 0°°. Note
that usually the canonical expansions are called (-expansions (for 5 = \). They were
introduced in [Re] and thoroughly studied in [Pa].
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1.2. The Markov measure on X. The transformation 7 : (0,1) — (0,1) is transferred
by L to the Markov compactum X and acts as the one-sided shift (we will denote it by
the same letter):

T(€162€3 .. ) = E92E3 ...

The transformation 7 : (0,1) — (0, 1) is well-studied (see, e.g., [Pal), and the measure
m' with the density
(@) {)\2/\/5, 0<z <At
€Tr) =
P MVE, Al<az<i

is known to be invariant under 7. The corresponding Markov measure L~!m’ on X is the

one with the stationary initial distribution ( ,\/}{\//35> and the transition probability matrix

(’\Il /\;2 ) The L-preimage of the Lebesgue measure on X differs from this stationary

Markov measure only by its initial distribution (i:; ) Note that the adic transformation

on X (for definition see [Ver2] or Appendix A) with the alternating ordering on the paths
preserves the latter measure, as it turns into the rotation by the angle A~! under the
mapping L (for more details see [VerSi]).

1.3. Erdos measure and Erdos theorem. Let us define the Erdos measure. By
definition, the continuous Erdos measure p on the unit interval is the infinite convolution

01 % 93 ..., where supp ¥, = {0, A"}, and 9, (0) = 9, (A""71) = £ (see [Ex]).

We are going to specify this measure more explicitly. Let Ly denote the extension of L
to the full compactum [[}°{0,1} and let w(z1z2...) := A" Lo(z122 ... ) be the projection
of T17°{0,1} onto [0,1] (clearly, if (z1z2...) € [[{°{0,1}, then 0 < m(z122...) < 1). Let
p denote the product measure with the equal multipliers (1/2,1/2) on the compactum
[17°{0,1}. Then it is easy to see that p = w(p).

We are also interested in the specification of the Erdos measure on the Markov com-
pactum X. Of course, it is just L~!'x, however it is worthwhile to introduce a direct
mapping. Namely, we recall that the normalization of an arbitrary 0-1 sequence (z125...)
is, by definiton, the sequence (gpe1e2...) € X such that z = S P apA™F = Y exA7F,
where the digits €g,e1,... are obtained by the greedy algorithm for x with regard to the
fact that = € [0, A] (i.e. we treat gy as the integral part in the canonical expansion). If
eo = 0, we will write simply (e1€2...), and it will be the case we will be interested in
below. Let n: [[7°{0,1} — X denote the mapping of normalization. Then p = n(p) on
the Markov compactum X.

Remark. The mapping n can be specified directly on []{°{0,1}, i.e. without addressing
the interval. The simplest algorithm is as follows. Given a 0-1 sequence z1x> ..., we start
from the zero coordinate xy := 0 and look for the first occurence of the triple 011, after
which we replace it by 100. The next step is the same, i.e. we return to the zero coordinate
and start from there until we meet again 011, etc. It is easy to see that the process leads
to stabilization of a normalized sequence. Note that this algorithm is rather rough, as it is
known that there exists a finite automaton carring out the process of normalization faster
(see, e.g., [Fr]).
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Consider the Erdos measure on the unit interval in more detail. We first prove that
4 is quasi-invariant with respect to the transformation 7, and present the corresponding
invariant measure v equivalent to p. To do this, we begin with the self-similar relation for
L.
Lemma 1.1. The Erdds measure pi on the interval [0, 1] satisfies the following self-similar
relation:

LU(AE), E C 0,272
pE =3 L(uAE) + p(AE —x7Y), ECA2A7h
LUAE = A7Y), Ec ]

for any Borel set E.

Proof. Let F; = 1,Fy = 2,... be the sequence of Fibonacci numbers. Let f, (k) denote
the number of representations of a nonnegative integer k as a sum of not more than n first
Fibonacci numbers. We first show that for n > 3,

fn—l(k)7 OSkSFn_l
(12) fn(k): fn—l(k)+fn—1(k_Fn)7 FnSkSFn+1_2
fn—l(k_Fn)v Fn+1_1§k§Fn+2_2-

To prove this, we represent f, (k) as f,(k) = f} (k) + f//(k) for each k < F,, 1o — 1, where
[} (k) is the number of representations with e, = 0 and fl(k) is the one with g, = 1.
Obviously, if k¥ < F,, — 1, then k = Y [ ¢;F; = Y7 ¢&;F;, whence f,(k) = f(k). If
Foy1 —1 <k < Foyo — 2, then f,(k) = f//(k). In the case F, < k < Foy1 — 2,
obviously, f/ (k) > 0, f//(k) > 0. It remains to note only that f/ (k) = fn,—1(k), and
fi (k) = frn-1(k — Fy).

Now from (1.2), and from the definition of the Erdos measure it follows that if, say,
E C [0,A72), then

fn( ) _ 1 . fn—l(k) _ 1
nB =l D T sgdm 2 e =0l
k: €E k: EAE

F, +2 F +1
The other cases are studied in the same way. [l

Remark. The Erdos measure p (as a Borel measure) is completely determined by the above
self-similar relation. Indeed, by induction one can determine its values for any interval (a, b)
with a,b € Z+ AZN [0, 1].

Corollary 1.2. p(0,A7%) = p(A72, A7) =p(A"11) =1
Let now the Borel measure v be defined by the formula
ZUE+ W(E+ A"+ w(E+ A7), EC[0,A72)
vE = 2uE + 3u(E+ 272, C [A72, A7)
TUE 4+ tu(E — A7), Ec A1

The direct computation shows that v(0,A=2) = 2, v(A72, A7) = v(A711) =
is a well defined probabilistic measure.

18, hence v
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Proposition 1.3. The Erdos measure p 1s quasi-invariant with respect to the transfor-
mation Tx = {Azx}, and v is T-invariant and equivalent to p.

Proof. The T-invariance of v is checked directly. Let, say, E C (0,A72). Then 77 'F =
AMIEU(ALE 4+ A71). Hence

v(r'E) = v(A\T'E) + v(ATTE + A7

2 1 1 1
= “u(ATE) + gu()\_lE + A7) + 6M(A—lE +A7hH + §M(A—1E +A7h

3
Lo
+§M(>\ E)
1 1 1 1
= §,uE+ gu(E+ A7) + g,u(EW— A7)+ éuE (by Lemma 1.1)
2 1 1
= B+ (B + A7?) + GHE + AT
=vE.

The cases E C (A™2,A71) and E C (A1, 1) are studied in the same way.
Thus, v is 7-invariant and clearly u < v. Hence, as it is well-known, there exists a
T-invariant measure equivalent to p. Therefore, p is quasi-invariant under 7, and since

p(r™'E) == (pE + p(E+A"> mod 1))

(NN

(by Lemma 1.1), p is also quasi-invariant under the rotations of the circle by the angles
A~ and A72, which implies, in view of the above definition of v, that yu ~ v. The proof is
complete.

Remark. Tt is not hard to show that similarly to the measure m’ described above, v =
lim,, 7" .

Corollary 1.4. (Erdos theorem, see [Er|) The Erdds measure p is singular with respect
to Lebesgue measure m.

Proof. We have just shown that 7v = v, and above it was noted that 7m’ = m/, hence, by
the ergodic theorem, v L. m’. Since pu ~ v, m ~ m’, we are done.

Remark 1. Note that the initial proof of Erdos followed traditions of those times and was
based on the study of the Fourier transform of u.

Remark 2. There was a gap in the proof of this statement in the previous joint paper by the
authors [VerSi|. Namely, when deducing the Erdos theorem from the ergodic theorem for
7, we used by mistake the measure p instead of v. Another proof is given in Corollary 2.8
(see below).

v

Remark 3. The problem of computing the densities g_u
dix C.

d(Tp)

T will be solved in Appen-

and
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Proposition 1.5. The Erdos measure is quasi-invariant under the rotation R by the angle

A7L, and

(1+p (R 'z)),

d(Rp)
dp °

where p =

1.4. Two-sided Erdos measure. Consider now the two-sided Markov compactum X =
{(ex)= ek € {0,1}, erers1 =0, k € Z}. Any x € Ry can be expanded as

oo

(1.3) xr = Z ex A"

k=—o00

with (e5)°, € X and g; = 0,i < io(x), i.e. with a sequence finite to the left. We complete
this expansion in the following way. Let = — ({z}, {\~'z}) € T> = R?/Z%. Thus, (1.3) is
in fact a one-to-one mod 0 correspondence between the subset of all sequences in X finite
to the left, and a certain ¢rrational winding of the 2-torus. Completing these sets in their
natural topologles (respectwely product and Euchdean) we obtain a one-to-one mod 0
correspondence between X and T2. So, the mapping L : X :— T2 acting by the formula

T 1 —k —k—1
L(...soelsz...)—nlggo<z ERATT, Z ELA ) mod 1

k=—n k=—n

is well defined, a.e. one-to-one and L7 = T(I)E, where 7 is the two-sided shift on X (i.e.
(Tx)r = Tk4+1) and 7 is the Fibonacci automorphism, i.e. the toral automorphism with

. 11
the matrix <1 0

reason. Independently two-sided expansions were defined in [Ver3] in the framework of the
study of adic transformations and a natural coding of hyperbolic systems (the author did
not know about the work [Ber]).

). The mapping 7 was considered for the first time in [Ber] for another

Note that under this isomorphism the finite sequences in X (i.e. the ones with ; =
0, |i| > ip for some iy € Z) together with the cofinite sequences (the ones finite to the left
whose tail is of the form (01)°°) turn into the set of homoclinic points of the Fibonacci
automorphism 7g (see [Ver3]).

Following the one-sided framework, we are going to define the transformation of two-
sided normalization (as far as we know, this has not been done so far) Let Lo : [17°,.{0,1}

— T2 be the extension of L, and let it := L™ 1Ly : [[,{0,1} — X be, by definition, the
two-sided normalization.

Remark. The two-sided normalization can be also specified explicitly. Namely, let for
simplicity, (ex) € X be such that e = ex+1 = 0 for some k € Z. We split the sequence
(€)% into (0egyoekys...) and (Oeg_1€k—2...), both belonging to X. The two-sided
normalization acts independently on these pieces, and for the first of them it is the ordinary
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n, while for (0gg_165—2...) we use the “mirror symmetric” one-sided normalization, i.e.
the one acting by the rule “110”— “001”. Formally it is obtained in the same way as n
but for some other expansion of the points of [0, 1] considered in [VerSi:

r=A""4 ) e (1A
j=1

Definition. The two-sided Erdos measure v on the Markov compactum X is, by defini-
tion, the image of the measure p, which is the product of infinite factors (1/2,1/2) on the
full compactum [, _{0,1} under the mapping n.

Let, as above, 7 denote the two-sided shift on X , and let ¢ denote the two-sided shift

on [[> {0,1}, ie. (62)k = Tpy1.

Propostion 1.6. The two-sided Erdos measure v is invariant under the two-sided shift,
i.e. TU =U (cf. the one-sided case, where it does not take place).

Proof. From the above specification of the mapping n it follows that
(1.4) no = 7n,

hence 5(7"1E) = ﬁ(ﬁ_l?_lE) = ﬁ(&‘lﬁ_lE) = (5@(5_1]5) = ﬁ(ﬁ_lE) = v(F) for any
Borel set £ C X.

Proposition 1.7. For any cylinder C = (g1 = i1,...,6. = i) C )Z, its measure v is
strictly positive.

Proof. Tt follows from the direct specification of the two-sided normalization described
above that for the cylinder C' = (g9 = 0,61 = i1,...,64 = Ip,6p01 = 0,600 = 0) C

[17°,.{0,1}, we have n=1(C) D C’, whence, by definition of the Erdos measure, v(C) >
273,

Corollary 1.8. The shift T is ergodic with respect to the Erdos measure.

Let, by definition, the two-dimensional Erdés measure on the 2-torus be defined as L(7).
Note that the f—preimage of the two-dimensional Lebesgue measure on X is just the two-
sided stationary Markov measure m with the initial distribution and the transition matrix
described in item 1.2.

Theorem 1.9. The two-sided Erdos measure on T? is singular with respect to Lebesque
measure and is positive on all open subsets of T?.

Proof. An application of the ergodic theorem to the transformation 7 and the measures m
and v and of Proposition 1.7.

Remark. 1t is interesting to prove that this measure is a Gibbs measure for a certain
natural potential.
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Proposition 1.10. The two-sided shift T on the Markov compactum X with the two-sided
Erdos measure is a Bernoulli automorphism.

Proof. We note that this dynamical system is a factor of the Bernoulli shift o : [[>_{0,1}
— [1Z,.{0,1} with the product measure (1/2,1/2) (see relation (1.4)) and apply the
celebrated theorem due to D. Ornstein [Or] on the Bernoullicity of all Bernoulli factors.

Remark. We would like to emphasize that the measure v is not Markov on the compactum
X.

In Section 2 we will show that the dynamical system in question is the natural extension
of (X, v, 7), which explains the choice of the notation for the two-sided Erdos measure (see
Theorem 2.11 below).

Remark. 1t is appropriate, following the well-known framework of the baker’s transforma-
tion which serves as a model for the full two-sided shift on [T, {0, 1}, to represent the
two-sided shift on X as the Fibonacci-baker’s transformation.

Namely, we split a sequence (¢;) € X into the two one-sided sequences, i.e. into
(e1€2...) € X and (gge_1...) € X with regard to the fact that epe_; = 0. This last

condition leads to the space Y = ([0,1] x [0,1]) \ ([A71,1] x [A71,1]).
1

X1

0 N 1

Fig. 1. The natural domain for the Fibonacci-baker’s transformation

Thus, the shift 7 on the two-sided Markov compactum X is isomorphic to the transfor-
mation F' on the space Y with

({)\x},)\_ly), r €[0,A7}

Floy) = { (e A7ty +a71), we (A1)

We call F' the Fibonacci-baker’s transformation on the set Y (see Fig. 1).

2. SYMBOLIC DYNAMICS OF EXPANSIONS

In this section we will study in detail the combinatorics of all possible representations
of a real = of the form (1.1) with e, € {0, 1} for all k.

2.1. Blocks. Let us give an important technical definition.

Definition. A finite 0-1 sequence without pairs of adjacent unities starting from 1 and
ending by an even number of zeroes, will be called the block, if it does not contain any
piece “1(00)'1” with [ > 1.
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Let us make some remarks. Note first that a block has an odd length; the simplest
example of a block is “100”. Next, there are exactly 27"~ blocks of length 2n + 1.
This assertion follows from the fact that a block B can be represented in the form
1(00)*1(01)*2(00)*s ... (01)*~+(00)* for t odd or 1(01)**(00)*2...(01)*~(00)* for t even.
Thus, any block B is naturally parametrized by means of a finite sequence of positive in-
tegers aq,...,a, and we will write B = B(aq,...,a).

Let Xg:=[A71,1), i.e. the interval corresponding to the cylinder (e = 1) C X.

Definition. Let z lie in the interval X, and let the canonical expansion of x have infinitely
many pieces “1(00)'1” with [ > 1. We call such a point = regular.

Remark. Almost every point x in Xy with respect to the Lebesgue measure is regular.

Now we split the canonical expansion of a regular x into blocks as follows. Since x € Xy,
its canonical expansion starts from 1. It is just the beginning of the first block B; = By (z).
The first block ends, when an even number of zeroes followed by 1 appears for the first
time. This unity begins the second block By = By(x) of the canonical expansion of z,
etc. We defined thus a one-to-one mapping ¥ acting from the set of all regular points of
(A~1,1) into the space of block sequences.

Definition. The sequence (By(x), Ba(z),...) = ¥(z) will be called the block expansion
of a regular .

Let B denote the set of all blocks; by the above, any block except “100” can be uniquely
specified with the help of a rational number r and one extra bit of information showing,
which of two types of the continued fraction expansion of r is chosen (with a; = 1 or with
at > 2). So, B is naturally isomorphic to ((Q N (0,1)) x Zs) U {1}. Let next X := [[{° B.
Thus, ¥ is a one-to-one correspondence mod 0 between the interval (A7!,1) and the
noncompact space X of block sequences. We call a cylinder {By = B},..., By =B;} C X
the multiblock.

Remark. 1t is necessary to distinguish multiblocks and cylinders in X. For instance, the
cylinders “100” and “10000” in X intersect, while treated as blocks, they correspond to
the intervals (A= + A7 A7 + A73) and (A71 + A7%, A= 4+ XA~®) respectively. To avoid
confusion, we introduce the following definition.

Definition. We will say that a multiblock is closed, if it coincides with a multiblock as
a cylinder in X in the above sense with extra “1” at the end. For example, the shortest
closed block is “1001”.

Now we can consider the mapping U1 acting from the set of all blocks into (A71,1)
from the viewpoint of the images of the multiblock cylinders. Namely, for any multiblock
B1Bj...B; we construct the closed multiblock B} ...Bj;1 and project it (as the cylinder
in X) onto X¢ by the mapping (1.1). It will be just Y=*({By = B},..., By = B}}).

In the same way we define the two-sided space of block sequences X = [17°,, B implying
that B; begins with the first coordinate of X (i.e. with e; = 1). The corresponding subset,
of X (analogous to (e;7 = 1) C X for the one-sided case) is X, = Urei(@—ok =1, 2_op41 =
"':.’170:0, .lel)
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2.2. The cardinality of a 0-1 sequence and its properties. We are going to define
an equivalence relation on the set of all finite 0-1 sequnces.

Definition. Two 0-1 sequences (finite or not) (z1z5...) and (zjz}...) are called equiv-
alent if Y, xpA™F = 3, 24 A7F (or, equivalently, if their normalizations coincide — see
Section 1). Let for a finite 0-1 sequence x, £(x) denote the set of all 0-1 sequences equiv-
alent to z. This set is always finite, and let f(z) := #E(x). We call f the cardinality of a
finite sequence (or the cardinality of an equivalence class).

Note that this function (of positive integers) was considered in [Cal, [AlZa] and recently
in [Si] and [Pu].

Below assertions answer the question about the cardinality of a block and explain the
purpose of the introduction of blocks as natural structural units in this theory.

Lemma 2.1. Let p/q = [a1,...,as] be a finite continued fraction. Then f(B(ay,...,at))
=p+q.
Proof. Note first that f(100) = 2 = p 4+ ¢q. The desired relations for the blocks 10000
and 10100 are direct inspection. Next, let s, = s (a1,...,ar) = f(B(a1,...,ax)). We
need to show that similarly to the numerators and denominators of the convergents, s =
as3_1 + 29, whence the required assertion will follow.

Let, say, B = 1(00)%* ...(00)%-2(01)%~-*(00)*. We will present all 0-1 sequences equiv-
alent to B but not ending by (00)* and see that their number is a;s¢;_1. Namely,

BW = 1(00)2* ... (00)%-2(01)%-1~10011(00)*~*,
BB = 1(00)" ... (00)*->(01)*=*~"0(01)>1(00)* 2,
B = 1(00)% ... (00)%~2(01)*~~10(01)* 1.

Besides, the number of 0-1 sequences equivalent to B and ending by (00)%¢, is just s¢_o, as
they in fact should end by (01)*-1(00)%. All BY) contain 1(00)? ... (00)%-2(01)%-1~100,

hence Uy = QpMp—1 + Hi_9, AS [0,1, ey Qp—1 — 1, 1] = [0,1, ceey at_l]. l
Remark. For any rational r € (0,1) there are exactly two blocks B = B(ay,...,a;) and
B' = B'(d},...,a}) with r = [a1,...,a:] = [a],...,a}], and the unique block “100” corre-

sponds to r = 1.
Lemma 2.2. f(By...Bg) = Hlf f(B;), i.e. the cardinality is blockwise multiplicative.

Proof. We need to show in fact that £(B;...By) = £(B1)...E(Bx). Let us restrict our-
selves by the case k = 2 (the general one is studied in the same way). We will see that there
is no sequence in £(B1 Bs) containing a triple 011 or 100 which cross the “border” between
the first |By| digits and the last |Bs|. In other words, we need to show that any sequence
equivalent to By By can be constructed as the concatenation of a sequence equivalent to
B; and a sequence equivalent to Bs.
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Let “|” below denote the border in question. First, any sequence from &£(Bg) must
begin either with 10 or with 01, hence, the situation (1|00) or (0|11) is impossible. Next,
a sequence in £(B1) ends by either 00 or 11 (see the proof of the previous lemma), neither
leading to (10/0) or (01|1). O

This simple result shows that the space of all equivalent infinite 0-1 sequences for a given
regular x splits into the direct infinite product of spaces, the k’th space consisting of all
finite sequences equivalent to the block By (x). So, we see that the notion of block, initially
arised in terms of the canonical expansion, can be naturally extended to all representations.

Remark. Note that this block partition appeared for the first time in [Pu] in somewhat
different terms and for algebraic and combinatorial purposes. Namely, let the partial
ordering on a space &£(z) for some finite sequence = be defined as follows. We set z < z’ if
there exists k > 2 such that xy 1 = 0,2, = 1,241 = 1,23,_; = 1,2, = 0,2}, = 0, and
x; =7, j > 2. Next, one extends this ordering by transitivity. It was shown in [Pu] that
any equivalence class has the structure of a distributive lattice in the sense of this order.

2.3. Goldenshift. Let S: X — X be the one-sided shift in the space of block sequences,
i.e. S(B1B2Bs3...) = (B2Bs...). By the above, it is well defined also on the set of regular
points of (A™1,1). We call this transformation the goldenshift. Let us describe the action
of S on the interval (A=, 1) mod 0. The goldenshift S treated as a mapping acting from
the interval (A™!,1) mod 0 into itself, is piecewise linear. Moreover, if (A™',1) =, A, is
the partition of (A1, 1) mod 0 into the intervals corresponding to that of B into the states
of the first block, then S is linear inside A, =: [a,., ,.), and S(a,.) = A7, S(6,) = 1.

Remark. We have
Sz =7"®g  z is regular,

where n(z) is just the length of the first block of the block expansion of x. Thus, S is a
generalized power of T in the sense of Dye (see, e.g., [Bel]). In other words, the goldenshift
is a random power of the ordinary shift, as the number of shifted coordinates depends on
the length of the first block. Note that the goldenshift is not an induced endomorphism
for 7 but for the two-sided case it is (see Proposition 2.3 and Theorem 2.13 below).

Let % 7 and XO be defined as above, and let S % — X be the two-sided goldenshift,
L.e. the shift by 1 in the space X In order to specify S on the Markov compactum X we
introduce a 7-invariant set X™8 C X which is defined as the one consisting of all sequences
containing pieces “102/1” with [ > 1 infinitely many times both to the left and to the right
with respect to the first coordinate. Clearly, ~()Z reg) = 1, as by Proposition 1.7, the
measure v of any cylinder in X is positive, hence, it suffices to apply the ergodic theorem
to the dynamical system (X,7,7). Let X;®® = X80 X,. Then S : X[ — X on the
Markov compactum X is the shift by the length of Bj.

Proposition 2.3. The two-sided shift T on the set X' js a special automorphism under
the goldenshift S on the set X,°8. The number of steps over a sequence (gx) € X is
equal to the length of the block beginning with €1 = 1.



ERDOS MEASURE AND THE GOLDENSHIFT 13

Proof. It suffices to present the steps of the corresponding tower. Let, by definition,
X1 =7X%, and X508 =7X508 |, X508 | =7X,:%\ (1 = 1), j > 1. This completes the

proof, as Xyeg = Uy X]r.eg, the union being disjoint.

Ll

Xo
Fig. 2. The steps of the special automorphism 7

Below the corresponding result will be established for the metric case with the two-sided
Erdos measure.

2.4. Bernoullicity of the goldenshift. In this subsection we will show that the gold-
enshift (one-sided or two-sided) is a Bernoulli shift in the space X (respectively X) with
respect both to Lebesgue and Erdos measures and compute their one-dimensional distri-
butions.

We denote by m the normalized Lebesgue measure on the interval (A1, 1); let my stand
for the measure ¥m in the space X, and, similarly, let px denote ¥(ux,) (this measure
is well defined, as p-a.e. point x € (A71,1) is also regular). We recall that to any block
cylinder {B; = B(r)} C X we associated the interval A, defined as the image of the
cylinder “B(r)1” in X by the mapping (1.1).

We will show that the measures my and pyx are Bernoulli in the space X and also
compute their one-dimensional distributions.

Theorem 2.4. The measure mzy in the space X is a product measure with equal multipliers,
i.e. a Bernoulli measure.

Proof. By the above specification of S on the interval, for any Borel set E C (A~1, 1),
(2.1) m(ST'E | A,) = mE,

whence the required assertion immediately follows by virtue of the obvious S-invariance of
m, and by setting £ = A, in relation (2.1) for any 7/, which yields the mx-independence
of the first and the second blocks.

So, it remains to compute the one-dimensional distribution of mx.

Corollary 2.5. The total measure mx of all block cylinders {By = B} of length 2n + 1

equals % (%)n Any such cylinder has the measure my equal to A~2"1.
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Proposition 2.6. The measure px 1s also product on X with equal multipliers.

Proof. 1t suffices to establish a relation similar to (2.1) for the measure px and for any
finite block sequence F = Bj ... By. Note first that by virtue of Lemma 2.2, £(B; ... By) =
E(By) ...E(By) for any blocks By,..., Bg.! Next,

nY(By...Bgl) = E(By)...E(Bp)n (e = 1).

We are going to show that
f(B1)  f(Bi)

S oim . R

(2.2) px{By...By} = px{B1}...px{Br} =

To do this, we use previous remarks and the definition of the Erdos measure on X by means
of the normalization (see Section 1). We have ux{Bi...By} = p(B1...Bil)/u(e1 = 1),
and

uw(Bi...Byl) = p(n™(By...Bgl)) = p(£(B1)...E(Bp)n~ (g1 = 1))

f(B1)  f(Bx)
= Sml my MEr=1)

(by Lemma 2.2), whence the required assertion follows.
Thus, we have proved one of the main results of the present paper.

Theorem 2.7. The goldenshift S is a Bernoulli automorphism with respect to Lebesgue
and Erdos measures.

Now we are ready to give the second proof of Erdés theorem (see Section 1).

Corollary 2.8. (anew proof of Erdos theorem) The Erdis measure is singular with respect
to Lebesque measure.

Proof. In fact, we have proved that the measures involved are mutually singular on the
interval (A~!,1), which yields the assertion of the corollary, as any series of independent
discrete measures is known to be either singular or absolutely continuous with respect to
Lebesgue measure.

The one-dimensional distribution of py is a bit more sophisticated than for my. It is
described as follows (see formula (2.2)):

Corollary 2.9. The measure px of all block cylinders {By, = B} of length 2n + 1 equals
1. (E)n , and for a block B = B(ay,...,as) with a; + -+ a; = n,

3" \1
f(B) _ptyq
px{B1 = B} = 9lB] — 92n+1’

where, as usual, p/q = la1,...,a].

Henceforward E = E; E> is the concatenation of two sets of sequences, i.e. any sequence in E begins
with a word from E; and ends by a word from FEs.
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2.5. Concluding remarks on the Erdos measure. We conclude the study of ergodic
properties of Erdos measures (one-sided and two-sided) and the transformations of shift
and goldenshift.

2.5.1. One-sided case. Recall that the Erdos measure p is quasi-invariant under the
one-sided shift 7, and the equivalent measure v is 7-invariant. It is worthwhile to know
the behavior of v with respect to the goldenshift S.

Let vx be defined in the same way as px. We formulate the following claim (for more
details see Appendix C).

Proposition 2.10. The measure vy on the space X of block sequences is quasi-invariant
under the goldenshift S. More precisely, any two cylinders { Bj = B} and { B; = Bj} with
t # j are vy-independent, and

B
sp+eq f(B) B = 100
Bl =
R W
ptq W, B - ]_0]_

2.5.2. Two-sided case. Recall that we have already defined the two-sided Erdos measure
as the image of the product measure (1/2,1/2) on [[”,_{0,1} under the normalization n
(see Section 1). Besides, we construct the following two measures: the natural extension of
the normalized measure p on X by means of the two-sided goldenshift S and the natural
extension of v by means of the two-sided shift 7 (we remind that, by definition, a measure
in the natural extension of a shift coincides with an initial one-sided measure on each
cylinder, see [Ro]).

Theorem 2.11. The automorphism ()N(,?, V) is the natural extension of the endomor-
phism (X, T,v) with the generator described above.

Proof. Let within this proof v, denote the natural extension of v in the above sense. To
prove that v, = v, we observe that both measures are T-invariant, thus, it suffices to show
that they are not mutually singular and apply the ergodic theorem. We will prove that

(2.3) 7(C) > —v0(C)
10
for any cylinder C C X.

We first note that without loss of generality we may prove (2.3) for the cylinders C
beginning with €; = 1, as both measures are shift-invariant, and any cylinder is a disjoint
union of cylinders beginning with 1. Next, we reduce in the same way the problem of
proving inequality (2.3) to a closed multiblock C' = By ...Bil C X with By beginning
with ¢; = 1.

By definition, 7(C) = p(n~!C). It is obvious by virtue of Remark after the definition
of normalization (see Section 1) that

5(C) > (0|€(By) ... £(By)100),
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hence,

1 f(B1)  f(Bk)

8 2IBil 2|Bk|

On the other hand, by definition, v (C) = vx,(By...Bgl) < - ];(‘glll) f;ﬁf:l) (see
Proposition 2.10). Finally,

v(C) >

d 1
> > =

. O
v (C) = 48 7 10

Corollary 2.12. 7 X, = %.

Proof. We have by the definition of the set )?0, Proposition 2.10, Theorem 2.11 and the
fact that v(e; = 1) = &,
S 5 o=+

vXo =Y v(1(00)%1) = = : =-.
o ;”(( 1) 18;1 T+k 221 9

Finally, we prove a metric version of Proposition 2.3.

Theorem 2.13. The two-sided shift T with the measure v is a special automorphism over
the goldenshift S with the measure i on the space Xo. The step function is defined as the
length of the block beginning with the first coordinate.

Proof. Tt suffices to show that the lifting measure for i coincides with v. This in turn is
implied again by the ergodic theorem applied to 7 which preserves both measures. Since
they are clearly equivalent, we are done.

3. THE ENTROPY OF THE GOLDENSHIFT AND APPLICATIONS

In this section we will establish a relationship between the entropy of the Erdos measure
in the sense of A. Garsia and the entropy of the goldenshift with respect to p, i.e. between
two different entropies. As an application, we will reprove the formula for Garsia’s entropy
proved in [AlZa]. Besides, we use the random walk theory to compute the dimension of
the Erdos measure on the interval.

3.1. Fibonacci graph, random walk on it and Garsia’s entropy. The combina-
torics of equivalent 0-1 sequences may be expressed graphically, namely, by means of the Fi-
bonacci graph introduced in [AlZa]. Let, as in Section 1, the mapping 7 : [[7°{0,1} — [0,1]
be defined as

(3.1) m(e1eg...) = Zsk)\_k_l.
k=1

Since the ¢,, assume the values 0 and 1 without any restrictions, a typical z will have a
continuum number of representations, and they all may be illustrated with the help of the
Fibonacci graph depicted in Fig. 3. This figure appeared for the first time in the work due
to J. C. Alexander and D. Zagier [AlZa]. Let us give the precise definition.
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Definition. The Fibonacci graph & is a binary graph with the edges labeled with 0 each
left and 1 each right. Any vertex at the n’th level corresponds to a certain x, for which
some representation (3.1) is finite with the length n (obviously, in this case x = { N} for
some N € Z). The paths are 0-1 sequences treated as representations of the form (3.1).2

0 1
Fig. 3. The Fibonacci graph ®

Remark. The vertices of the n’th level of the graph ® can be treated as the nonnegative
integers from 0 to Fj, o — 2. Namely, if a path (e1e5...¢,) goes to a vertex k, then, by
definition, k = Y7 &;F,—; (obviously, this sum does not depend on the choice of a path).

Let Y (®) denote the set of paths in the graph ®. Obviously, Y (®) is naturally iso-
morphic to [[7°{0,1}, and sometimes we will not make a distinction between them. Let
(e1€2...) be a path, and let the projection from Y (®) onto [0, 1] be also denoted by 7 (see
formula (3.1)).

Let, as above, f,(k) denote the number of representations of a nonnegative integer k
as a sum of not more than n first Fibonacci numbers. It is easy to see that f,(k) is
also the frequency of the vertex k on the n’th level of the graph ®.3 Let D, = {k :
k= _iekFnk, cx € {0,1}} (or, equivalently, the n’th level of the Fibonacci graph),
and DI, = {w :w = Y p_,exA"" 1 e € {0,1}}. These sets are clearly isomorphic
(w <> k), and #D,, = #D,, = F,,42 — 1. The use of D,, instead of D], is caused only by
technical reasons. We remind that the sequence of distributions (27" f,(w))52, tends to
the distribution of Erdos measure (see Section 1).

Once and for all we fix X as the base of logarithms and denote the entropy of this discrete
distribution on D! by H(™). Thus,

Fn+2_2

n fn(k) | fulk)
H™ = — Z on log o
k=0

2The term “Fibonacci graph” is overloaded, as the authors know several different graph also called
“Fibonacci”. Nevertheless, we hope that there will be no confusion with any of them.
3Thus, relation (1.2) completely determines the whole graph &.
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Then, by definition,

H(n)
H, := lim

n—oo n

(this limit is known to exist and is independent of the choice of base of logarithms, see

[Gal).

Remark 1. The quantity H, can be considered as the entropy of the random walk on the
Fibonacci graph with the probabilities (1/2,1/2). Also, this entropy can be treated as the
entropy of the Erdos measure as the one on the graph ®. In the next item it will be shown
that in fact H, is proportional to the entropy of the goldenshift.

Remark 2. The Erdos measure is the projection of the Markov measure (3, 3) on the graph
® under the mapping . We consider the random walk on the Fibonacci graph with the
equal transition measures.

The notion of the entropy in the sense of Garsia can be considered in the framework
of the entropy of a random walk on the group G = (a,b | abb = baa) (see [KaVe] for
the definition of a random walk on Cayley graphs of discrete groups and more general
graphs). The only disctinction is that we consider the Fibonacci graph which, as it is easy
to see, is the Cayley graph for the corresponding semigroup. Thus, by definition, H,, is
the entropy of the random walk on ® with the transition measures equal to % identically.
So, the entropy in the sense of Garsia coincides with the entropy of the random walk.
This fact will be used in the proof of the formula for the dimension of Erdos measure (see

Theorem 3.4 below).

3.2. Main theorem. We prove an assertion being one of the central points of the
present paper. Note that in [AlZa] Garsia’s entropy was computed by means of generating
functions. We will see that H, is closely connected with the entropy of the goldenshift,
which gives a new simplified proof of their relation and relates it to the dynamics of the
Erdos measure.

Theorem 3.1. The following relation holds:

h(S) = 9H,.

Proof. Consider the two-sided case studied in the previous sections and apply Abramov’s
formula for the entropy of the special automorphism (see [Ab]) to the dynamical systems

()N(,ﬁ, 7) and ()N(O,ﬁ, S). By Theorem 2.13,

From this relation we will deduce the required one. L
1. Obviously, hz(S) = h,(S) (recall that the dynamical system (X, i, S) is the natural
extension of (X, u,S)), and similarly, hy(7) = hy (7).
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2. Next, by Corollary 2.12, Xy = é.
3. The rest of the proof is devoted to establishing the validity of the relation

hy (1) = H,.

Let n denote the partition of X into the cylinders (e; = 0) and (¢; = 1). Since 7 is
a generating partition for 7, we have h,(7) = h,(7,n7) by Kolmogorov’s theorem. By
definition,

1
hy(ryn) = lim —H, (™),

n—oo n,

where n(™ is the partition of X into F, 1 admissible cylinders of the form (e; = iy,...,
€n = in). We need to prove that

H,,(n(")) ~ H™)

By virtue of the equivalence of the measures o and v it suffices to show this for H,,(n(™)
instead of H,(n™). Let 0, (k) = 2=" f,(k). Then, by relation (1.2), for n > 3,

%gn_l(k), OSkSFn_l
gn(k): %(gn—l(k)+9n—1(k_Fn))a FnSkSFn+1_2
%en—l(k_Fn)v Fn+1_1§k§Fn+2_2-

We are going to obtain almost the same recurrence relation for the distribution 7(™.
To do this, we return to the interval [0,1] and denote by n(™ the partiton into Fri
intervals being the image of the corresponding partition of X with the help of the canonical
expansion. So, let n(*+1) =: (An(k))gigz_l with the ordered intervals A, (k). Finally, let

pr (k) := uA, (k). Then by Lemma 1.1, for n > 3,

%,un—l(k)v O0<k<F, -1
/j'n(k) = %(/ffn—l(k)“‘/ffn—l(k_Fn))v F,<k<F, -1
%,un—l(k_Fn)v Fn+1 SkSFn+2_3-

Besides, i, (Fri2—2) = O(27"), pn(Fpy2 —1) = O(27™). Thus, by induction on n, there
exists C' > 0 such that

1 6.k
= n(®)

C
which completes the proof of the theorem, as the entropies of the distributions p, (k) and
0, (k) are clearly equivalent by the above estimate. [

<C, 0<k<Fhy—2,

=

3.3. Alexander-Zagier’s theorem. We first compute the entropy of the goldenshift
with respect to the Erdos and Lebesgue measures.
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Proposition 3.2. The metric entropies of the goldenshift S with respect to the two mea-
sures in question are computed as follows:

hi(8) = = Y mx(B)logy my(B) = 4\ + 3 = 9.4721356.. ..,

Be®B

h,(S) = B)1 B—_% P4 400 PTT 5961417

u( )——Zux( ) log px ( )——Z Z 92n+1 ngw— .
BeB n=1 B:|B|=2n+1

Proof is a direct computation using the Bernoullicity of S with respect to both measures
and Corollaries 2.5 and 2.9.

Remark. Let A :=log, 2, and

kn= > (p+q)logy(p+q)
t>1

(a1,...,a:)EN®

ar+-+ar=n

p/q=la1,...,at]
Then

1 =k
2 = A— — 2.

(3.2) hu(S) =9 ( 1§ 2= 4n)

Note that the quantity k, appeared for the first time in [AlZa] in somewhat different
notation. Namely, let k and ¢ be positive integers, and let e(k, i) denote the length of the
simple Euclidean algorithm for k and 4 (formally: e(i,i) = 0, e(i + k,i) = e(i + k, k) =
e(i, k) + 1). Then, obviously,

ki = > klogy k.
k>i>0
ged(k,i)=1, e(k,i)=n
In the cited work J. C. Alexander and D. Zagier used this definition of k,, for deducing
a formula for H, in terms of k,. We will prove their assertion in two different ways.
The first is an immediate consequence of Theorem 3.1 and the second is rather long but
reveals a more essential relationship between certain structures on the Fibonacci graph
(see Appendix D).

Proposition 3.3. (Alexander-Zagier, 1991). The following relation holds:
Ry
(3.3) H,=A > R =10.995713...

18 — 4n

Proof. An application of Theorem 3.1 and of relation (3.2).
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3.4. The dimension of the Erdos measure. As an application of the treatment of the

Erdos measure as the one being the projection of the measure of the uniform random walk

on the Fibonacci graph, we will compute the dimension of x4 in the sense of L.-S. Young.
We first give a number of necessary definitions (see [Y]).

Definition. Let v be a Borel probabilistic measure on a compact space Y. The quantities

dimpg v =inf{dimg A: ACY, vA =1},
C(v) = limsup inf{C(A): ACY,vA>1-6},
0—0

Cv) = ligniglf inf{C(A): ACY,vA>1-4}
—

(where C(A) and C(A) are respectively the upper and lower capacities of A) are called the
Hausdorff dimension of a measure v, the upper and lower capacities of v respectively.

Let next N (e, d) denote the minimal number of balls of radius ¢ > 0 which are necessary
to cover a set of the v-measure > 1 — 4.

Definition. The quantities

. . . .logN(e,0)
C;(v) =limsup liminf ——————=
Crlv) = Bame B log(1/6)

— . . log N (e, )
CL(v) =1 1 08V 9)
p(v) = lmsup limsup = 0o 7

are called the lower and upper Ledrappier capacities of v.

Definition. Let H,(¢) = inf{H,(§) : diam& < e}, where H,(£) is the entropy of a finite
partition £&. The quantities

=iy H,(e)

Rlv) = lmsup 108y
... Hy(e)

B =i g 170y

are called respectively the upper and lower informational dimensions of v (= Rényi di-
mensions).

Theorem. (L.-S. Young [Y], 1982) If v is a Borel probabilistic measure on an interval I,
and if
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Definition. If the condition of Young’s theorem is satisfied, then this « is called the
dimension of a measure v and is denoted by dim(v). This notion was also proposed in [Y].

Theorem 3.4. For the Erdos measure j,

dim(p) = H,.

Remark. When the present paper was in preparation, the authors were told that the claim
of Theorem 3.4 can be obtained as a corollary of several results including the new one due
to F. Ledrappier and A. Porzio whom we are grateful for this explanation. More precisely,
it was shown in [AlYo] that H, = R(u) = R(u), and in [LePo] it was proved that the limit
in Young’s theorem does exist for the Erdos measure. This proves Theorem 3.4.

Our proof is straightforward and, which is more important, is a direct corollary of a
Shannon-like theorem, so far it leads to new connections between geometric and dynamical
properties of the Erdos measure.

Proof. Fix a path € = (e162...) € Y(®), and let x = 7(¢) and Y,, = Y, (€) be the
interval whose every point z’ has a path & € Y(®) such that ¢; = ¢}, 1 < i < n.
Clearly, Yy, (z) = [> 7 es A1, 3T exA™F 71+ A7"], We remind that g = 9y xda%... (see
Section 1). Let u(™ := 9y % ---x1,. Then by Shannon’s theorem for the random walks
(see Theorem 2.1 in [KaVe] and also [De]) and by H, being the entropy of the random
walk on the semigroup (a, b | ab? = ba?),*

fim 1082 ) H,

n—00 n

for p-a.e. x € [0,1]. Given h > 0, we choose n = n(h) such that Y, 41(¢) C (z,z + h) C
Y,.(¢) for any = € 7~1(€). Hence it follows that for pu-a.e. z,
IOgA MYn (E)

= lim A g

iy 108A 4@,z + h)
h—0 logy h n— o0 n
as h=<\"". 0O
Corollary 3.5.

dimp p = C(p) = C(u) = Cr(p) = Cr(p) = R(p) = R(u) = H,, = 0.995713....

Remark 1. Another proof of Theorem 3.4 can be obtained by means of using the Bernoulli
structure of the measure pu. More precisely, for a regular z € (A%, 1) having a normal
block expansion with respect to the measure px, as it is easy to compute, the limit in the
definition of the dimension equals gh,(S). This yields also another proof of Theorem 3.1.
The details are left to the interested reader.

Remark 2. In fact, we have computed the p-typical Lipschitz exponent of the distribution
function E of the Erdos measure. Note that in [Si] it was proved that the best possible
Lipschitz exponent of E for all = is A — % =0.9404....

4We recall that the semigroup described above can be embedded into the group (a,b | ab® = ba?).
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APPENDIX A. THE ERGODIC CENTRAL MEASURES AND
THE ADIC TRANSFORMATION ON THE FIBONACCI GRAPH

In this appendix we will study in detail some properties of the space of paths Y (®) of
the Fibonacci graph introduced in Section 3. We first give a necessary definition which is
close to the defintion of canonical expansions but regards to the fact that 0 and 1 have the
same rights in the graph ®.

Definition. The generalized canonical expansion of a point in (0, 1) is defined as follows.
We construct the sequence (g1€2 ... ) such that relation (3.1) holds, and either (e162...) €
X,ore; =---=¢gp =1 for some m € N, and the tail is in X. The algorithm is a clear
modification of the greedy algorithm.

Remark. In fact, the generalized canonical expansions lead to the normal form in the
semigroup corresponding to the group G (see Section 3).
The tail partition n(®) of Y (®) is defined as follows.

Definition. Paths (g,) and (e],), by definition, belong to one and the same element of
n(®) iff

(i) m(er1eq...) =m(eley .. ), and

(ii) there exists N € N such that e, =¢,, n > N.

The partial lexicographic ordering on Y (®) is defined for paths belonging to one and
the same element of the tail partition n(®).

Definition. Let two paths € = (e165...) and & = (g}&}...) belong to one and the same
element of 7(®). If ex_1 = 0,6, =1, 441 =l and e;,_, =1, ¢, =0, e, = 0 for some
k > 2, and ¢; = ¢ for k —j > 2, then, by definition, £ < €. Next, by transitivity,
<%, <& impliese < &".

Remark. This definition is consistent, because any element of 1(®) is isomorphic to a finite
number of finite paths, and they all can be transferred one into another with the help of
replacements 011 <> 100. Note also that this linear ordering on each element of n(®)
is stronger than the partial ordering introduced in [Pu] (see the end of item 2.2). Say,
(100011%) < (011100x) in the above sense but in the sense of the partial order they are
noncomparable.

Definition. The adic transformation T juxtaposes (if possible) to a path € € Y (®) the
path € such that & is the immediate successor of € in the sense of the lexicographic order.

It is clear that the adic transformation T is well defined not everywhere. More precisely,
it is well defined on the paths € containing at least one triple e, = 0, €41 = 1, egq2 = 1.
Let us descibe its action in more detail. Let (e1€2...) € Y(®) be as described. After
finding the first triple ey =0, egyr1 =1, epy2 = 1 we
1) replace it by e, = 1, eg11 = 0, x40 = 0,
2) leave the tail (ex43€k+4,.-.) without changes,
3) find the minimal possible (€] ...€}._;) equivalent to (e; ...ex_1) in the sense of Section 2.
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To carry out 3), we may use the algorithm of “anti-normalization”, i.e. the process
analogous to the ordinary normalization but with changing “100” by “011” (cf. Section 1).

So, the generalized canonical expansions are just the mazimal paths, i.e. the ones,
where T is not well defined, thus, the set of maximal paths is naturally isomorphic to the
interval [0, 1]. Geometrically a generalized canonical expansion corresponds to the rightest
possible path descending to a given vertex. Similarly, the minimal paths (i.e. the ones,
on which T~! is not well defined) are just so-called lazy expansions (for the definition see,
e.g., [ErJoKo)).

For more general definitions of adic transformation and investigation of its properties
see [Verl], [Ver2], [LivVer| and [VerSi].

Let us formulate two well-known definitions related to graded graphs (see [StVo] and
[VerKe| for more details).

Definition. A Markov measure v on the graph ® is called central if any of the below
equivalent conditions is satisfied:

(1) For any vertex in this graph all the paths descending to this vertex have equal
conditional measures.

(2) v is T-invariant.

(3) v is constant on any element of the tail partition n(®).

Definition. A central measure on @ is called ergodic, if any of the two equivalent condi-
tions is satisfied:

(1) The adic transformation T is ergodic with respect to it.

(2) The tail partiton is v-trivial, i.e. contains only sets whose measure v is either 0 or
1.

The aim of this section is to describe
1) all ergodic central measures on ®.

2) the action of the adic transformation T' on ®.

In below theorem we will describe occuring types of ergodic central measures and the
corresponding components of the action of 7. As it was noted above, T replaces the
representations of one and the same z. We will see that the regularity or irregularity of
the generalized canonical expansion of a given z, lead to three types of possible ergodic
components of the action of T', namely, to a “full” odometer, an irrational rotation of the
circle or a special automorphism over a rotation.

Theorem A.1. 1. The ergodic central measures on ® are naturally parametrized by the
points of the interval [0,1]. We denote by p, the measure corresponding to x.

2. The measure pg is continuous if and only if x # {NA} for any N € Z (or, equivalently,
if  has the infinite canonical expansion).

3. The action of the adic transformation T 1is not transitive, and its trajectories are
described as follows. Let x be as in the previous item, and let ¢, denote the space of paths
in ® such that p, = supp pz. The set v, is invariant under T and we have the following
alternative.

a. If the generalized canonical expansion of x contains infinitely many pieces “1(00) 17
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with 1 > 1 (let us call such a piece even), then T |, is strictly ergodic and metrically
isomorphic to the shift by 1 on the group of certain a-adic integers (and, thus, T'|,,
has a purely discrete rational spectrum).

b. If the generalized canonical expansion of x does not contain even pieces at all,
then T'|,, is also strictly ergodic and metrically isomorphic to a certain irrational
rotation of the circle.

c. Finally, if the generalized canonical expansion of x contains a finite number of
even pieces, then T\, is metrically isomorphic to some special automorphism over
a rotation of the circle.

Proof. (1) Let ¢, be the set of all paths projecting into = € [0,1] (a m-fiber over z).
Obviously, the set ¢, is invariant under 7" for any x. Thus, T is not transitive, and its
action splits into components, each acting in certain ¢, (below we will see that for all z,
except some countable set, the action of T'|,, is strictly ergodic).

(2) We have the following cases. If x = 0 or x = 1, then #¢p, = 1. If z = {INA} for some
N € Z, then it is easy to see that ¢, is countable and that the unique invariant measure for
T is concentrated in a finite number of paths (see Example 1 below). Henceforward in this
proof we assume that = has an infinite canonical expansion. Let x = E;’il g;A7771 be the
generalized canonical expansion of z. We first split it in the following way: (e1e2...) =
BOBWM where B is either 0° or 1° for some s > 0 (if s = 0, then B = (), and BM
begins with “10”. Such a splitting is caused by the trivial reason: the action of T" does not
touch at all the set B(®), as T only replaces certain triples “100” and “011”. So, we have
the following cases (they correspond to those enumerated in the theorem).

a. If B contains infinitely many even pieces, then = is regular (see Section 2), hence,

BW = BByBs...,

where

L a;ﬁ a§j> agj) agq) o agﬂ aé” agﬂ aw
Bj = 1(00)*" (01)%(00)% ... (00)"0 or Bj;=1(01)"" (00)" (01)*" ...(00)"

with az(-j) € N and £; < oo.
b. If B does not contain any even piece, then, obviously,

B =1(00)(01)72(00)* ... or B® =1(01)™(00)*2(01)"* ...

with a; € N for any j > 1.
c. Finally, if the number of even pieces is finite (but nonzero), then

BM = BB, ...B,,BWY,

where Bq,...,B,, have the form described in the previous item, and B is an infinite
block of the form described in item b.
(3) Consider items a, b, ¢ from the viewpoint of the action of Ty, :=T|,, .
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a. The idea of the study of T, in this case is based on two assertions of the previous
section, namely on Lemmas 2.1 and 2.2. In particular, from Lemma 2.2 it follows that
blocks B; and B,y for all ¢+ € N are replaced by any equivalent sequences independently,
hence it is clear that for such a point x the transformation 7}, is the shift by 1 in the group
of a-adic integers with a = (p1 + ¢q1,p2 + g2, ...). This transformation T, is known to be
strictly ergodic, i.e. there is a unique (product) measure pu, invariant under it.

b. We recall that in this case

B =1(00)"(01)?2(00)** ... or B® =1(01)™(00)*2(01)"* ...

Let o = [1, a1, a2, ...]| denote a (regular) continued fraction. We claim that in this case the
transformation T}, is strictly ergodic and metrically isomorphic to the rotation through c.
The idea of the proof lies in recoding the space ¢, into the second model of the adic
realization of the rotation from [VerSi] (see Section 3 of the cited work and Example 3
below). The unique invariant measure can be described with the help of Theorem 2.3 from
the cited work.

c. This case in a sense is a “mixture” of the previous ones. One can easily see that if
B is parametrized by the infinite sequence (ay,as,...) in the sense of the previous item,
and if B; = B; (ag’), e, ag)), then T, acts on ¢, as the special automorphism over the
rotation through o = [1, a1, as,...| with the constant step function (= 1) and the number
of upper steps equal to [[]"(p; + ¢;) — 1. So, T} is again strictly ergodic. The proof of the
theorem is complete.

Remarks. 1. It is known (see, e.g., [VerKe]) that any ergodic central measure on the Pascal
graph is also parametrized by a real in [0, 1] but in a completely different manner, namely,
by means of the first transition measure. It is appropriate to compare that situation
with the Fibonacci graph. We see that in the graph ® for any a € [0, 1] there exists a
central ergodic measure p such that p(e; = 0) = . If « is irrational, then this measure
is unique, namely p = p, for z = 3, e 7771 with o = [1,a4,a9,...] and (g162...) =
1(00)2(01)?2... for @ > 1, and 1 — a = [1,a1,as,...] and (e162...) = 1(01)*(00)*2 ...
otherwise. If « is rational, then there exists the whole interval of z in [0, 1] such that
pe(e1 =0) = a.

2. A typical z from the viewpoint of Lebesgue measure, of course, corresponds to the
case a. of the theorem.

Examples. We illustrate possible situations in the previous theorem with four examples.
For a better illustration we will use the following agreement:
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We will use generalized canonical expansions writing = ~ (e1e3...).
1. 2 =A%~ (1000...). Here ¢, is countable, and the measure p, is concentrated on a
single path (010101...). Hence, T}, is constant (see Fig. 5 below).

Fig. 5. The case x = A2

2. z =1 ~ (100)>. Here B = (, BM = (1(00)})™. We have: ¢, = [[3°{011,100},
and, thus, T, is isomorphic to the 2-adic shift, i.e. the shift by 1 in the group of dyadic
integers. Therefore, T,, has the binary rational purely discrete spectrum. Below we depict
the way of recoding the paths in ¢, into the full dyadic compactum by the rule: “011 ~
0, 100 ~ 17 (see Fig. 6).

0 1
0 1
0 1

Fig. 6. Recoding the paths for x = %, case a

3. x ~ (1(0001)*). Here o = [1,1,1,...] = A71, and T} acts as the rotation by the
golden ratio. Fig. 8 below shows the way of recoding the paths in ¢, into the usual model
for this rotation (“Fibonacci compactum”). Note that the natural ordering of these paths
is alternating (see Fig. 7, 8).
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Fig. 7. Transition measures for o = A\~71

Fig. 8. Recoding the paths for « = A7!, case b

4. x ~ (1001(0001)*°). For this x, the transformation T, acts as the special automor-
phism over the rotation by A=! with a single step equal to the base (see Fig. 9).
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0 1

Fig. 9. Recoding the paths for case ¢

APPENDIX B. ARITHMETIC EXPRESSION FOR BLOCK EXPANSIONS

We remind that in Section 2 we have defined the mapping ¥ juxtaposing to a regular
x € (A71,1) the sequence of blocks By(z), Ba(x),.... In this Appendix we are going
to specify the mapping ¥ in an arithmetic way. To this end, we gather the canonical
expansion of a given regular x blockwise.

Recall that similarly to the canonical expansion (1.1) of reals, there exists the corre-
sponding representation of positive integers. Namely, each N € N has a unique represen-

tation in the form
k
N =) &F;,
i=1

where ¢; € {0,1}, g;6501 = 0, e, = 1 for some k£ € N. It is usually called Zeckendorf
decomposition. We denote by F the class of positive integers whose Zeckendorf decom-
position has e; = 1 and ¢; = 0 for all even 7. Obviously, F as a subset of N has zero
density. Let the height of e with a finite canonical expansion of the form e = ;€5 A7 be,
by definition, the positive integer h(e) := max{j: e; = 1}.

Proposition B.1. Each regular © € (A%, 1) has a unique representation of the form

J

(B.1) r = Zej(x))\_ i;ni(m),
j=1

where
(i) ej(x) =mA—n,n e F,n=[mA
(ii) nj is odd, nj > 3 for j > 1.
(iii) n; > 2h(e;) + 1 for all j.
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Proof. Let U(z) = B1By ... be the block expansion of . Suppose B; = B; (agj), e, ag)).
We set n;(z) := 22?21 al('j) + 1, 5 > 1, i.e. n; is the length of the j’th block. Let

m(()j) =0, m,(cj) = Zle az(j), and let e; be the “value” of B; in the sense of formula (1.1)
as if it was the first block, i.e.

1(t;—1) al)

ej(r) = A"t + A7t Z Z )\_Z(mé]’;’)—lJrU)
k=1 v=1

3 (tj—1) ,_ _
_ )\—]_ + )\—2 Z ()\—2mgjk>_1 . )\—Zméjk)> , t] Odd,
k=1

1y o)
20 2kl )

ej(z) = ALt Z Z )\—z(ka_eru)

k=1 v=1

1
Ly
e ) )

A laa2 Z ()\—Zm2k72 _ )\—2m2J;;71> , tj even.
k=1

The uniqueness of expansion (B.1) follows from the condition (iii) and from the uniqueness
of expansion (1.1) for any finite sequence (and, therefore, for any block).

Definition. We call expansion of z € (A71,1) of the form (B.1) satisfying the conditions
(i)—(iii), the arithmetic block expansion.

Remark 1. n; and e; depend on B; only.

Remark 2. In fact, series (B.1) is nothing but series (1.1) rewritten in a different notation.
However, we will see that it has its own dynamical sense (see relation (B.2) below).

Remark 3. By Item (iii), the quantities e; and n; are not completely independent. Taking
into consideration new quantities s; := n; — 2[; and representing n; as the sum s; and
20 in formula (B.1), we come to independent multipliers but this new form of the block
representation does not seem to be natural.

Remark 4. In terms of arithmetic block expansion the goldenshift acts as

(B.2) S =3 e @n =",

APPENDIX C. COMPUTATION OF DENSITIES BY MEANS OF THE BLOCK EXPANSION

We return to the subject of the first section. Recall that we have already denoted the
rotation of the circle by A~! by R, and the transformation x — {A\z} by 7.

C.1. Computation of densities.
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Proposition C.1. The densities d(f”), d(d”‘)
I I

stant with a countable number of steps.

and Z—Z are unbounded and piecewise con-

Proof. By virtue of results of Section 1, it suffices to prove the proposition only for d(%).

Let F be a Borel subset of (0,1). The idea of the study lies the fact that R does not change
any block beginning with the second. As usual, we consider three cases.
I. EC (0,A72). If E € (A2, A=2k+1) &k > 1, then each point x of the set E has the
canonical expansion (1.1) of the form 02~110%. Hence the canonical expansion of x + A1
is 1(00)¥=110%, and
p(E+ A7
pE

as f(1(00)k=1) = k. If, on the contrary, E C (A™2*=1 A=2F) k > 1, then the situation
is as follows. This interval in terms of the canonical expansion is | Jz 0%*B mod 0, where

the union runs over all closed blocks B. We have two subcases.
Ia. Let in terms of the canonical expansion, £ C 02%1(00)%1(01)%2...(00)*1. Here E +

A~1 C 1(00)*1(01)(00)*1(01)?2 ... (00)%1, hence “(E:bi‘il) = ic((lg)), where B’ is the closed

block defined as B’ = B'(k — 1,1, a1, a9, ...,a;). So, we conclude from Lemma 2.1 that

k,

w(E4+ A1 kp+(k+1)g
pE p+q

Y

where, as usual, ’é = lay,az,...,a4.
Ib. In the same terms, E C 02%1(01)%1(00)%2...(00)?¢1. Similarly to the above,

WE+A"Y  (k+1Dp+ kg

plE p+q

II. E C (A"2,A71). This case is analogous to Case I. If E C (A2 + A72F=3 \=2 4
A=26=2) L'> 1, then

pE—-1"? _1

wE k

Tf E C (A2 + A=26=2 A=2 L A=26=1) 1> | then

W(E—A"2) { Pt Fc 01(00)*=101(00)* (01)% ... (00)*1

Fpt-(k+1)g
pkE R C 01(00)57101(01)*1(00)*2 . ... (00)* 1.

L. EC (A L1). fEC (A LA A7), then p(E—A"2) = puE. IfE C (A7 + 274, 1),
then E —A72 C (A72,A71), hence E — A2 C 010x.

IITa. £ — A=2 C 1(00)?(01)?2...(00)%1, then

pE -2

p
=1+-.
pk q
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IITb. E — A=2 C 1(01)%(00)% ... (00)*1. Here

u(E—27?)

4
nE '

=1+
p
The proof is complete.

d(;z” ), Then, as it was mentioned in Section 1 (see Propo-

sition 1.5), %74 (z) = 1(p~H(R™(z) + 1), and

Remark 1. Let, as above, p =

2
. 2+ ip7 Nz + A7) + gp(z), z€[0,A7?)
L) = @A), re A2
T4+ ip7 Nz — AT, re A7
Remark 2. From this relation it follows Proposition 2.10.

C.2. The polymorphism II. Let as above o : [[{°{0,1} — [[7°{0, 1} be the one-sided
shift. Let us ask the natural question: what is the image of ¢ on the interval [0, 1] under
the mapping 7 defined by the formula (3.1)?

0 N 1
Fig. 10. The polymorphism II
Note first that the partition into mw-preimages of singletons is not invariant under o.
Indeed, if, say, x = 0110°, then on(z) = 0%, while no(z) = 110*°. Thus, II := ror~ ! :
[0,1] — [0,1] is only a multivalued mapping, i.e. a polymorphism by the terminology of
[Ver4]. Topologically it acts by the formula

Az, 0<z<A?2
H(z) =4 AUz — A" A 2<z< !
Az — AL Al<z<li.

This polymorphism was considered in [VerSi]. By definition (see [Verd]), IT preserves
the Erdos measure u, as g = m(p), the latter being preserved by o. Whence in the
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decomposition of the II-preimage, i.e. II7'E = ro~ 77 'E = A" E U X "'E + A\72, the
sets involved do not have equal conditional measures, as A™'E corresponds to e; = 0 and
A"'E 4+ X\~2 corresponds to e, = 1. We state the following claim which is proved in the
same way as Proposition C.1.

Proposition C.2. Let vi(x) and vy»(x) be the conditional measures of TI~1x with respect
to A1z and A7tz + A\72 respectively, or, in other terms, of o~ w1 (x) with respect to the
cylinders (e1 = 0) and (g1 = 1) in [[7°{0, 1} respectively. Then the functions 1 and o are
piecewise constant with a countable number of steps, and we have the following alternative.
1oz e (0,A72). Ifz e (WA then yi(x) = &5, %) = &= If
x € (AT27L X72%) then we use the terms of generalized canonical expansion (see Appen-
diz A for the definition) and blocks. So, if v ~ 0~ B1x with B being a block corresponding
to %’, then

__kpt(k+l)g _
y1(z) = { GrDpt iy B =100...

(k+1)p+kq B
Giprtirng B =101...,

and N

’Yz(l’):{W’ B =100...

__ptq  p_
Gropt (s D = 101...

2. x € (A2, A7), hence yi(z) = y2(z) = 3.

3. x € (AH1). If v ~ 126F10%, k > 1 in terms of generalized canonical expansion, then

v1(x) k%ﬂ, vo(z) = XL If, on the contrary, x ~ 12%0x, then

= %f2-

___ptg _
v1(z) = { (k+2)p+(k+1)q° B =100...
= : j
ey, B=101..,

and

(k+2)p+(k+1)q’

kp+(k+1)q _
(k+1)p+(k+2)q°’ B=10L..

__(k+lptke  p 190 ..
’Yz($)={

if £ ~ 12F~1B1x.

APPENDIX D. AN INDEPENDENT PROOF OF ALEXANDER-ZAGIER’S FORMULA

In this appendix we will present the second proof of formula (3.3) which reveals some
new relations between certain structures of the Fibonacci graph ®.

We first recall that the quantity f, (k) is nothing but the frequency of the k’th vertex
on the n’th level of the Fibonacci graph which was denoted by D,, (see the beginning of
Section 3). We have #D,, = Fj,12 — 1.

Consider level n of the Fibonacci graph for n = 2N + 1. We denote the middle part of
D,,, i.e. the segment from F,, to F,,41 — 1, by D! . The Erdés measure of D] obviously
equals % + O(A™"), and we will introduce the partition of D!, into 2¥~! — 1 intervals of
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vertices in the following way. Let, by definition, a Fuclidean vertex be the one, where
the first block can end (they are marked in Fig. 3 for D3 and Dj). These vertices form
the Euclidean binary tree introduced in [AlZa]. It is easily seen that there are 2V~ such

vertices at level 2N + 1, and all of them lie in D],. Let Vk(N) denote the k’th Euclidean
vertex from the left on level 2N + 1.

Definition. An open interval of vertices Q) := (V™ , VY)) will be called the Euclidean
interval.
2N71

So, we have divided the set of vertices D/, into 2V~! Euclidean vertices (Vk(N)>
k=1

and — 1 open intervals Q,(CN). Now we introduce the subgraph I'yy associated with
each Euclidean vertex V. It is defined as the one containing all the successors of V' in the
sense of the Fibonacci graph, except any other Euclidean vertices (see Fig. 11).

vV

2N—1

Fig. 11. The graph I'yy
We state the straightforward lemma.

Lemma D.1. For any Fuclidean interval Q,(CN) there is a unique Fuclidean wvertex

Vi(j), j < N such that Q,(CN) CIlyo-

So, any Euclidean interval is determined by a certain Euclidean vertex on one of the
preceding odd levels of the Fibonacci graph. Moreover, in the notation of the above lemma,

the entropy of Q,(CN) may be computed in terms of the frequency of Vi(j ) and the entropy of

- Foi1-1 .

Dan1-j. Namely, let Hy:= > fo(k)logy fu(k), and let next Hoy1 = Y0 | H{N, 1,
k=F),

where Hég\),ﬂ denotes the sum over the vertices V € FV}” for all i < 2971, So, Hég\),ﬂ

corresponds to all Euclidean vertices of level 25 + 1.
(

Let next goij ) denote the frequency of VZ(J ). For instance, for j = 3, gogg) = gof) =
4, gogg) = cp:(,)?’) = 5. In this notation k; = 212:1 goz(j) logy (pm

i .
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For any v € (Vk(N), Vk(ivl)) its frequency equals f (Vi(j )) times the frequency of the cor-
responding vertex of the central part of level 2NV + 1 — j. So, we established an essential

relationship between the central part of level 2N + 1 of the Fibonacci graph and all Eu-
clidean vertices Vi(J), 1<j<N,1<4<27L

Lemma D.2. The following recurrence relation holds:

N

N-1
2 - 1 k;
(Dl) H2N+1 = g E SJHQN_QJ' + g : 4N . E 4—; + O E kj R N — 0.
i=1 i=1 i=1

Proof. By the above considerations,

. 21—t Fon_2j+1—1 . .
HR =" Y o fan_aj(k) log, (@gj)fZN—Zj(k))
121 k}:FQN_Qj

27 -1

1 . .
=Y ¢ <H2N—2j + 5 logy ! (47 ¢ 0(1>)>

. 1 ks
= 2Hon 95371+ 3 4—j. AN 1+ O(k;)
(we used the fact that 212]:_11 goz(j ) = 2391 casily obtained from Corollary 2.9. Hence it
follows relation (D.1).

Remark. Formula (D.1) shows that the entropy of the n’th level with n odd can be com-
puted by means of the entropies of the previous even levels and the entropy of the Euclidean
tree.

Now we are ready to complete the second proof of formula (3.3). We have

Fn+2—2

fn(k) 2"
nHy ~ Zﬁ o OB )

whence . .
n+1—
fn(k) 2n
TLHH, ~ 3 Z on 10g>\ fn—(k),
k=F,
and
1 n
(D.2) H, ~ g(A — H,)n2".
N-1
From relation (D.2) it follows that in the sum ) 3/Hjn_; the first terms are more
7=1

valuable than the last. Thus, from formulas (D.1) and (D.2) and from the fact that
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kn = Zz—l ( )log 80( ) < 2(N — 1)3¥~1 it follows that

whence,

(A—H,) - (2N + 1)22N+! ~ XpJ%A—HQ@N—%MMﬁ

Wl

[ kj
RO
1=1
after straightforward computations,

N
18(A — Zf N —oco. O

Remark. The Euclidean tree naturally splits into two binary subtrees (left and right) being
symmetric. If we label each vertex of the left subtree with the corresponding rational p/q,
then this left subtree turns out to coincide with the Farey tree introduced and studied in
detail in [La].
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