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§ 0. Introduction

Irreducible 3 - manifolds are divided into Haken manifolds and non - Haken manifolds. Much
is known about the Haken manifolds and this knowledge has been obtained by using the fact that they
contain incompressible surfaces. On the other hand little is known about non - Haken manifolds. As
we cannot make use of incompressible surfaces we are forced to consider other methods for studying
these manifolds. For example, exploiting the structure of their Heegaard splittings. This approach is
enhanced by the result of Casson and Gordon [CG1] that irreducible Heegaard splittings are either
strongly irreducible (see Definition 1.2) or the manifold is Haken. Hence the study of Heegaard
splittings as a mean of understanding 3-manifolds, whether they are Haken or not, takes on a new
significance.

Let M be an orientable Seifert fibered space with m exceptional fibers and an orientable base
space of genus g, . These manifolds were known to have "vertical" (see Definition 2.1 ) Heegaard
splittings of genus 2gg+ m - 1. These Heegaard splittings were clasified by Lustig and Moriah in
[LM] and [L],unless gy=0and 0<m<4. Heegaard splittings of manifolds of genus 2
(ie.gy=0 and m=3) in this class were classified by Boileau, Collins and Zieschang [BCZ] and
separately by Moriah [Mo] using the work of Boileau and Otal in [BO1]. In this case there are
manifolds which have "horizontal" Heegaard splittings (see Definition 3.1). Schultens [Shl]
classified Heegaard splittings of manifolds which are (orientable surfaces) X S! and showed that
these are all vertical. More recently she showed' [Sh2] that all irreducible Heegaard splittings of
orientable Seifert fibered spaces over an orientable base space with nonempty boundary are vertical. It
should be mentioned that Waldhausen [Wa] classified Heegaard splittings for S3, Bonahon and
Otal [BnO] for Lens spaces and Boileau Otal [BO2] did so for T3.

We will call a Seifert fibered space exceptional if it has S2 as base space, three exceptional
fibers and rational Euler number O . The main result of this paper is the following theorem:
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Theorem 0.1: Let M be an orientable Seifert fibered space over an orientable base space S which

is not exceptional. Then every irreducible Heegaard splitting of M is either vertical or horizontal.

- As a consequence of the proof we also have:

Theorem 0.2: Let M be an ofientable Seifert fibered space with an orientable base space and let >
be a Heegaard splitting surface for M. Then there is an isotopy of M taking a fiber onto the surface.

Let M be an orientable Seifert fibered space with an orientable base space S of genus gg,
m exceptional fibers and Euler number €g, ie., M={gg ep! (x1.B1)s s (Xn:Bm) s where
g.c.d.(x;,6)) = 1 ;cmd B; is normalized so that 0 < B; < ;. The numbers (cx;, ﬁj) are the Seifert
gluing invariants of the j-th exceptional fiber and eg is the rational Euler number. For further details
see [Sc] . Note thatif gg=0 and m<2 then M is a Lens space.

m
Set xxg=1 and Bop=b=-¢€p- Zﬁj/Otj- Let i =lem{e;},j=0,.om,j#1.
j=1

m
Let s;,t; be two integers such that s; z BjOI‘/o:j)+ti x'=0 and Is;| is minimal.
j=0,j#i :

Horizontal Heegaard splittings arise in a very special way, described in Section 3. In
particular not every Seifert fibered space possesses horizontal Heegaard splittings. Each horizontal
splitting corresponds either to one of the singular fibers f; (i=1,..,m) ortoa regular fiber which
we denote by f;. We associate the invariants (&, Bgy) with fp. Whether a Seifert fibered space

possesses a horizontal Heegaard splitting can be determined from its Seifert invariants. The precise
conditions are given in the following theorem:

.

Theorem 0.3: Let M = {gg, eg! (1,81, - (<m-Bm)} be an orientable Seifert fibered space with
an orientable base space S . The manifold M has a horizontal Heegaard splitting corresponding to the
fiber f; if and only if

(a) si=oti and

(b) There are a pair of integers u;, v; such that syv; - tju; = 1 and the equation

{ex;.B;) = (ns; +u;, nt; + v} (where nt; +V; is considered mod(ns; + u;)) holds for some
ne Z.




n
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Theorem 0.1 tells us that given an irreducible Heegaard splitting of one of the Seifert fibered
spaces under consideration, one of two situations occurs: Either the handlebodies of the Heegaard
splitting contain the singular fibers as cores or there is a fiber f which is isotopic into the splitting
surface £ and X - N(f) is incompressible in M - N(f) , where N(f) is a regular neighborhood of
the fiber. Recent work of Moriah and Rubinstein shows that irreducible Heegaard splittings of

hyperbolic manifolds have similar structural features. The following two theorems are consequences
of Theorem 0.1 and Theorem 0.3:

Theorem 0.4: Let M be an orientable Seifert fibered space over an orientable base space S.
Assume that M has rational Euler number O and it is not exceptional. Then every irreducible
Heegaard splitting of M is vertical.

Theorem 0.5: An orientable circle bundle M over an orientable surface S (of genus g) has a
horizontal Heegaard splitting (of genus 2g) if and only if its Euler numberis £ 1. In particular, if
the Euler number is not + 1, then M has a unique irreducible heegaard splitting of (genus 2g + 1) .

¢

A priori it is possible for horizontal and vertical Heegaard splittings to be isotopic and in fact
there are some cases in which this is known to happen. For example when g = 0 and m=3 (see
[BO1]) . However this is not acommon phenomena as can be seen from Theorems 5.1.and 5.2.

If either gg>0 or m> 3, then the vertical Heegaard splittings contain disjoint compressing disks
on both sides of the surface and hence are weakly reducible (see Definition 1.2) . So in order to show
that horizontal and vertical Heegaard splittings are not isotopic it would be sufficient to show that the
horizontal Heegaard splittings are strongly irreducible. Theorem 5.2 establishes the strong
irreducibility of most horizontal Heegaard splittings using a result of Casson and Gordon which is
proven in the appendix. For more background about Seifert fibered spaces see [Se], [Sc] and [Or].

Remark 0.6: Theorems 0.1 and 0.3 generallize Theorem 1.1 (i) of [BZ] and resolve the
undecided cases there. The manifolds M = {0, ey 1(2,1), .y (2,1), (X B )} with o= 2A + 1,
m > 6 and even, have horizontal Heegaard splittings of genus m - 2 ifand only if B =+(A +1)

modc,, . This is a minimal genus Heegaard splitting as the rank of m;(M) is m-2. Otherwise
gM)=m-1.
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§ 1. Pushing fibers onto Heegaard surfaces
In this section we prove a generalization of Proposition 1.1 in [BO1].

Definition 1.1: A compression body W isa 3-manifold obtained by adding 2-handles to a
(surface) x I along simple closed curves on (surface) x {0} and capping off resulting 2-spheres.

The component (surface) X (1} is denoted by 9, W, and oW - 9, W, which might be disconnected
is denoted by @ W. Note that if o, W = @ .then W is a handlebody. Recall thata Heegaard
splitting for a 3-manifold M with boundary is a decomposition of M into two compression bodies

sothat M=W,;UW,,and £ = W nW,= 9, W;=0,W,. Wecall 2 the splitting surface .

Definition 1.2: A Heegaard splitting surface T is reducible (weakly reducible) if there is a
compressing disk D, for £ in Wy anda compressing disk D, for Z in Wy so that ID; n'DZI =1
(ID; n Dyl =0) . If the manifold is not weakly reducible then we say it is strongly irreducible.

Theorem 1.3: Either a Heegaard splitting surface Z is weakly reducible or there is an isotopy of
M pushing some fiber onto Z . ‘

We prove this theorem at the end of the section.

Let M be a Seifert fibered space with base space S an orientable surface of genus g , with
m exceptional fibers and Euler number ¢ i.e., M= {gp. € I (e, B1)s ooms (Ko B}, where
ged(o,By) = 1 and B is normalized so that 0 < f; < ;. Remove small open disk neighborhoods
9Dy, ..., O, of the points Xy, ..., Xy on S corresponding to the exceptional fibers, to get a surface
S*. Choose a point p on s* corresponding to a regular fiber and a cutting system of curves

apby, .., ago,bgo for S* based at p as indicated in Fig. 1.
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Fig. 1

In addition, choose a system of simple closed curves cy, ..., ¢, also based at p which are pairwise
disjoint and so that each c¢; goes once around the disk 9; (see Fig,1) . There is an embedding of
S*in M anda projection of M - {regular neighborhood of exceptional fibers} onto S*. The
preimage of the curves aj, by, ..., ag, bgys €15 -+ Cm under this projection is a collection of annuli
Ay, By, ... Ag, BgO’ Cy, o Cp in M.

Now M -N((U A)u(UBy)u U CJ-)) =VgU.. U me UV where ij is a regular
neighborhood of the singular fiber f;, 1< j<m,and V is aregularly fibered solid torus. Notice
that 9V =Cj, 1<j<m, and V=(UCHUUAHUUAT)UU B.*) U (UB; ), where A;*
and A; (B-,+ and B;™) are parallel copies of A; (B;).

Let S bea Heegaard splitting surface for M. A Heegaard surface determines a Morse
function h on M so that its splitting surface Z is a level surface which lies between the critical
levels of index O, 1 and those of index 2,3 (ft')r details see [Sh1] ; § 3). Let & denote the link
fiu..ufpuf, in M. By general position we can push the link & into acollar ZxIcM and
after a small isotopy we can arrange that hl 3 is a Morse function (see [Mi)).

Let h be a morse function on M such that h1 3 has critical levels ug, ..., up on ¥
distinct from the critical levelson M . Let ry, ..., r, be regular values for h so that u; | <r<uy;.

Then h™\(r;) is a level surface F;. Let IF; n &I denote the number of intersection points of F;n & .



Definition 1.3: A link & is in thin position within its isotopy class if it minimizes the sum over all
i of IF;n BI.

[n what follows , we shall assume that & is in thin position with respect to the Morse function h

induced by the Heegaard splitting with Heegaard surface Z . For the proof of Theorem 1.3 we

require the following two lemmas.

Lemma 1.5: If no fiber in M can be isotoped onto the surface S , then after an isotopy the
transverse intersection of Z N A; € A;, 2 N B; < B;, ZnC;cCjand T n AcC A, contains, for
each annulus A;,B;,Cj,15i<g, 1 <j<m, at least one essential arc, no non-essential arcs, and
perhaps some null-homotopic curves.

Proof: This follows from the proof of Lemma 3.3 in [Shl].

It follows from Lemma 1.4 that if we cannot isotope any fiber onto the surface Z , then anj ,
avfp contain simple closed curves that are either null homotopic curves in the annuli A{" A Bi+ ,

B ,C; orare simple closed curves that are the union of essential arcs on these annuli.

Lemma 1.6: If no fiberin M can be isotoped onto the surface T . Then the essential simple closed
curves on dV and a\lfj (i.e., those comprised of the essential arcs in the annuli above) are meridians

bounding disks in the solid tori V, ij ,1<j<m.

Proof: Let y denote such a simple closed curve. If y is not a meridian of, say, V then it must
follow around the core of some torus V at least once. There is a singular annulus between the core of
the torus V and the curve g . A singular annulus is the image of amap o(A)— V of aregular
annulus A . We can choose a level surface isotopic to 2 (also denoted by Z ) whose intersection
with o(int A) is not empty. When we consider the intersection pattern of £ and o(A) on A ie,

o (6(A) n Z), we see a collection of level arcs with end points on exactly one of the boundary
components of A , namely the one which is mapped to the fiber. These arcs must intersect in a
configuration as indicated in Fig. 2 below.




Fig. 2

Consider the arcs (yg, ;) and (y,, y3) on 0A, there are two possibilities. If the images,
o(yp, Y1)» and o(yz,y3) of the two arcs are distinct, then the disks D; and D, or D, and D3 are
an upper and lower disk pair. They are disjoint from the other components of the link & as they are
contained inside a regular neighborhood of one of the fibers away from the boundary. Hence we can

reduce the number of intersections with the level curves. This contradicts the fact that the link & isin
thin position (see also [Ga], [BO1]) . If a(yo, y1) and o(y,,y3) coincide, then o(y;,y3) isa
copy of the fiber. As o(A) is an embedding on the interior of A , the union of the disks D; and D,

or D, and D5 isan embedded disk which describes an isotopy of the core of V onto 2 , contrary to

the assumption that this is impossible. Hence these simple closed curves must be meridians of each of
the solid tori V,ij ,1<j<m.

Proof of Theorem 1.3: Let us assume that there is no isotopy pushing a fiber onto the Heegaard
surface < . Thenby Lemmas 1.5 and 1.6 the intersection curves of Z and the tori E)ij ,dV,

1 <j<m are either null homotopic or meridians for the solid tori V, ij ,1<j<m. Hence there is
a set of compressing disks for the surface 2 so that = compresses along them to a surface which is
the union of the meridians disks in Vg U...U Vg UV. It is thus transverse to all fibers and hence is

a horizontal incompressible surface. Since handlebodies do not contain incompressible surfaces the



compressions can not have been only to one side of the surface T . This implies that Z is weakly

reducible.

Note that in particular an orientable Seifert fibered space M contains a horizontal incompressible

surface if and only if e;=0 or, equivalently, if and only if M fibers as a circle bundle over S!.

§ 2. Vertical Heegaard splittings

It follows from [Sh1] that irreducible Heegaard splittings which are weakly reducible are
obtained by a process called amalgamation. We will use this fact to prove that irreducible but weakly

reducible Heegaard splittings of M are vertical whenever M is an orientable Seifert fibered space
over an orientable base space but is not exceptional.

Definition 2.1: We call a Heegaard splitting vertical if it is isotopic to one obtained by the
following costruction: Let M be an orientable Seifert fibered space with an orientable base space S,
m exceptional fibers f), ..., f, and d boundary components 9, .-» 93 (where d could be 0) . Let

p, ay, by, ..., agy, by, 8y, ... B, Cpy oo €y be as in section 1 . Furthermore choose a collection

of arcs o, with one end point at p and the other at X » j=1, ..., m,asystem of simple arcs u;
connecting p to 9;,i=1,..,d, and a system of simple closed curves dy, ..., dq based at p, so
that d; goes once around the i-th boundary component 9;. These curves can be chosen so that they
are all disjoint and so that S cut along a;, by e g bgO, dy, ..., dg, €15 -s € is a disk. Now in
the case where d #0 (case 1), choose two subsets of indices {jj, ---, irl € {1, ., m} and
{i|, - ig} € {2, ..., d} atleast one of which is not empty. In the case where d=0 and m> 1
(case 2) choose one nonempty subset of indices its - Je} € {2, ..., m}. In the case where d =0
and m< 1 (case 3), we denote by f either the unique singular fiber or, if it does not exist, a regular
fiber. In case | let {kj, ... Ky ..} and {l},...1g__} be the complementary sets and in case 2, let
{Ky, ... Km .. 1} be the complementary set. In case 1 denote by T(jy, ---» jp 115 - ig) the graph
embedded in M which is the union of the curves:

apby, ..., ag()’bgo’ Cj, - fjl e Ujr'fir' Ck o o0 Ckpy . Wiy - Big d,l, R

In case 2 denote by T(y. ...y i|» ---s ig) (s=0) the graph embedded in M which is the union of
the curves:




alvb] LEREEE) agO,bgO‘ UJI . f-” s eney Gjr. fi]" Ckl, ey Ckm. r- l,

and in case 3 denote by T(jy, ... jps s o ig) (r<1,8=0) the graph embedded in M which is
the union of the curves:

a‘l,b] g ooy ago,bgo, f .

Set Wy =N(T @y, oo o iy - 1) U @5, X SHU .. U (05 % S!)) and W, = closure (M - W)
(see Fig. 3) . Clearly W, is a compression body. For the proof that W, is a compression body and

that (W,, W) is well defined, see [BZ], [LM], [Sh2] . Note that if d =0 then W, W, are
handlebodies.

32. Gm
o, 0N .o S
c Cl €2 ' Cp -

Fig.3

The following defines the process of amalgamation of Heegaard splittings. This process
producess a Heegaard splittings for M from Heegaard splittings of submanifolds of M .

Definition 2.2: Let R be a closed surface contained in the boundary of a 3-manifold M. Let
U, Uy be a pair of compression bodies defining a Heegaard splitting for M, and assume that
R € dU, . Note that there is some component R'c dU; (R'can be empty ) so that U;=N(RRUR)

U I-handles. Let h be a homeomorphism N(R)— R x1 and p:RxI—R the projection onto the
first factor.
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Let M|, M; betwo manifolds each with non-empty boundary and with Heegaard splittings
(U.Ua) . (V.V2) respectively. Let Ry, Ry betwo homeomorphic surfaces such that R, cdU,c
oM, and R, € dV, C oM, and let h;,p;.i=1,2, be the corresponding functions respectively.

Define an equivalence relation ~ on M, U M; as follows:
1) If x;,y; are points such that x;, y; € N(R;) and pihi(x;) = pihi(yi) then Xx;~Y;-
2) If xeR;,y € Ry and g(x)=y, where g:R; —R; isthe homeomorphism between
the surfaces, then X ~Yy .
Furthermore we can arrange that the attaching disks on Ry x I (Ry x 1) for the one handles in U; (Vy)
respectively, have disjoint images in R; (Ry) and hence they do not get identified to each other. Now
set:

M=(M|UM2)/~ ,W|=(U1UV2)/~ ,W2=(U2UV1)/~

Note that W, =V, UNR') U (1-handles) and W, =Up U NR'p) U (1-handles) (The 1-handles
connect 9,V, to dN(R')) (0,U; to ON(R'y) respectively)) so that W, , W, are compression
bodies defining a Heegaard splitting (W1,W,) for M (see also [Sh1]) .

The Heegaard splitting (W ,W2) of M is called the amalgamation of the Heegaard splittings
(U;,Up) of M; and (V},V2) of M, along Ry, R;.

A weakly reducible Heegaard splitting surface S in M compresses to both sides along a
maximal system of disjoint nonparallel compressing disks A . The result is a possibly disconnected
surface. We denote by ¥ = o(Z, A) the surface obtained from T by doing 2-surgery along the
curves oA and deleting the 2-sphere components. If T is irreducible then st 20 (see [CG1])) .
We will assume that A minimizes the geometric intersection of =% with Z.

The next two lemmas are proved in [Sh1]. We include the proof of Lemma 2.3, because it
illustrates how the Heegaard splitting of M naturally yields a Heegaard splitting for certain
submanifolds of M . In particular , it defines the induced Heegaard splitting for N as in the lemma .

Lemma 2.3: Let (W[,W,) be a Heegaard splitting of M with splitting surface Z . Assume that

S is weakly reducible and let A be as above. Let N denote the closure of a component of M - b
Then the Heegaard splitting (W {,W5) induces a Heegaard splitting (U,Ua) of N . Moreover,
N - 9M is contained either entirely in d_U; or entirely in d.U; .




Proof: We can assume that N € W, UN(A,) i#j,where A=Aj UA; and 4; is the subcollection
of A consisting of compression disks for £ in W;. Set U; =W, nN. We can obtain N from
U, by attaching 2-handles and hence one can obtain U, from N by removing 2-handles ( i.e., by
drilling out tunnels), thus Uy is connected. So Uy is a single component of W, -N(A,) and hence
is a compression body. Now Up =N - U is obtained from a collar of N n =* by attaching

| - handles. It is connected because 9,U; =d,U, and therefore is also compression body. Thus

(U,,U,) is a Heegaard splitting for N . Itis called the induced Heegaard splitting on N . Note that
oN - OM is contained either entirely in 0.U; or entirely ind_U; .

Lemma 2.4: Let (W, W,) be a Heegaard splitting of M with splitting surface T . Assume that Z
is weakly reducible and denote by A the pairwise disjoint collection of compressing disks on both
sides of £ . Let N, .., N, be the closure of the components of M - =* and let (U;,Upy, -, (UpU2)y
be the induced Heegaard splittings on Ny, ..., Ny . Then (W,W5) is the amalgamation of
(U;,Us)p. oo (U}.Up), along =¥ = (U ON;) - 9M .

Proof: See proof of Proposition 2.8 in [Sh1]. ¢

The following theorem is due to the second author. For the excluded case, the exceptional

manifolds, the question remains as to whether or not a Heegaard splitting which is obtained as the

amalgamation of two Heegaard splittings of (closed orientable surface) X I is isotopic to a vertical
Heegaard splitting.

Remark 2.5: Recall that a connected incompressible surface S in an orientable Seifert fibered
space over an orientable base space is either a vc‘:rtical annulus or torus, or is a horizontal surface which
is also a fiber in fibrations over S!. If S is the boundary of a twisted I-bundle over a surface F
then S is a connected 2-fold cover of F. Thus F must be non-orientable. This is a contradiction as
F intersects every fiber transversally and hence is a non-orientable cover of the orientable base space.
This argument also holds if F has boundary and S is the boundary of a twisted I-bundle over F less
the annuli which are the restriction of the bundle to the boundary components. (see [Ja] VI. 34)

Theorem 2.6: Let M be an orientable Seifert fibered space with orientable base space which is not

exceptional. Let £ be an irreducible Heegaard splitting of M which is weakly reducible . Then Z
is a vertical Heegaard splitting.
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Proof: Let A be a maximal set of compressing disks for S as above. Compressing 2 along A,
suppose we obtain an incompressible horizontal surface £* . Note that if M is to contain a horizontal
incompressible surface of positive genus , then either the base space of M has positive genus or M

has at least three exceptional fibers. This fact together with the assumption that M is not exceptional
guafamees that M has saturated essential tori. Let Zi* be a component of =* hence M isa Zi*
fiber bundle over over S! asin Remark 2.5. If we cut M along Zi* we obtain a manifold
homeomorphic to Zi* x [. Bycase 1 of Theorem 10.3 of [He] all components pX j* of ¥ are
isotopic. The surface T* is homologous to X ; hence it must be separating and so has an even
number of components. Let T be a saturated incompressible torus in M . Consider a component ¢
of Z*n T andlet N;, N, be components of M - * whose boundary contains c . It follows that
N; = Z*i x1,i=1,2. Asin Lemma2.3, 2 induces a Heegaard splitting on N; = Zi* xI,i=1,2

Heegaard splittings of Zi* x I are standard by a result of Scharlemann and Thompson (see
[ST]) . It follows that the induced Heegaard splitting is defined by two copies of the surface Zi*
together with the boundary of a regular neighborhood of a spanning arc (in the terminology of [ST] it
is standard of type IT) . Note that the Heegaard splitting is independent of the choice of the arc.
Therefore we can choose the spanning arcs i, &, to be straight arcs on the annular components Aj,
Ay of NynT,NpnT (see Fig4) .

Fig. 4




By slightly pushing the disks A - c; and A; - @, lo opposite sides of T we obtain two disjoint
disks, one in each handlebody, such that when we compress along these disks, we obtain a surface
which intersects T two fewer times than did Z* . If this new surface is compressible, we may

compress it further to obtain an incompressible surface of lower genus than =* . Thus it is possible

to choose a collection of compressing disks A' satisfying all the conditions that A does, but such that
either o( Z; A") has lower genus than T* or1o(Z;A)NTILIo(Z;A)nTI-2. When we
choose a collection A that minimizes (genus(a( Z; A, | o( Z; A) n T ), the intersection must be

empty. Hence =* is a collection of vertical tori, contradicting our assumption that =* is a horizontal
surface.

If on the other hand = compresses to a vertical incompressible surface then it must be a
collection of saturated incompressible tori. In other words the Heegaard splitting (W,W>)
determined by £ is an amalgamation of Heegaard splittings of Seifert fibered spaces with boundary.
Theorem 4.2 of [Sh2] states that all irreducible Heegaard splittings of fiberwise orientable Seifert
manifolds with non-empty boundary are vertical. Proposition 1.3 of [Sh2] states that a Heegaard
splitting of Seifert fibered manifolds which is the amalgamation of vertical Heegaard splittings along
vertical tori is itself vertical. Hence the claim follows.

§ 3. Horizontal Heegaard splittings

Not all Seifert fibered spaces have horizontal Heegaard splittings. We begin by describing a
method to construct horizontal Heegaard splittings in the Seifert fibered spaces which admit them.
Consider a Seifert fibered space M* with one torus boundary component. Such manifolds are
surface fiber bundles over S! (see [Ja] VI. 32). Consider a surface fiber S in such a fibration of
M* over S!. Itis aonce punctured surface and hence a regular neighborhood of S is a handlebody
H, whose genusis 2 % (genus S). The manifold M* - N(S) is homeomorphic to S %I and is also
a handlebody H, . The two handlebodies H;, H, are glued to each other along their boundaries less
two annuli A; € H;, Ay € Hy. The two annuli A}, A, are glued to each other along their
boundaries to form the boundary torus (see Fig. 5).
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Fig. 5

Any Dehn filling on oM™ produces a closed Seifert fibered space. However only surgery
corresponding to n - Dehn twists along one of the annuli, say A, produces a manifold for which the
surface dH, is a splitting surface. This can be seen as follows: The solid torus V in the Dehn
filling is glued to A; along an annulus A’} C dV. A necessary and sufficient condition for the
resulting manifold to be a handlebody is that the generator of 7j(A")) is also a generator in (V).

Thus the 2 x 2 - matrix in GL,(2) with entries a,b,c,d determining the Dehn filling must have

a=+1. Hence the meridian of V is gluedtoa 1/n curve. Note that the surgery coefficients are
computed with respect to the framing determined by dA; .

Definition 3.1: Let M be a Seifert fibered space and let f; be a fiber (regular or exceptional) in M.
Let S be a surface in a fibration of M* =M - N(f;) over S!. Suppose that M is obtained from M*
by 1/n - Dehn filling with respect to the framing determined by S. Then the Heegaard splitting for

M constructed as above (using M™ and S)is called a horizontal Heegaard splitting corresponding to
the fiber f;.

Remark 3.2: It should be pointed out that the Heegaard surface of a horizontal Heegaard splitting
is not a horizontal surface in the standard sense. More specifically it is transverse to the Seifert
fibration everywhere except on an annulus in the splitting surface.
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Proof of Theorem 0.3: Let M be an orientable Seifert fibered space with an orientable base
space. To see whether or not M possesses a horizontal Heegaard splitting corresponding to the fiber
f; (regular or exceptional), remove int(N(f;)) from M to obtain a Seifert fibered space M* with one
torus boundary component. We need to determine the surgery coefficients for the Dehn fillings of

M* ‘which yield horizontal Heegaard splittings in terms of the Seifert invariants of M. The
construction above shows that M has a horizontal Heegaard splitting corresponding to f; if and only
if we obtain M from M* by a 1/n - Dehn filling with respect to the framing determined by the
boundary component 3S . In order to check this condition is fulfilled we need to determine the
coordinates of dS with respect to the basis {cross curve, regular fiber} .

Let T be an incompressible torus in M* separating the exceptional fibers and the boundary
torus from the rest of the manifold. We can assume that M* has k exceptional fibers with invariants

([, B)), - (X, By) - Thatis k=m if the fiber on the surface is a regular one and otherwise k =
m-1. Ifwecut M™ along T we obtain two components, one, MO* isa Seifert fibered space over
S2 with k exceptional fibers and two boundary components and the other, Ml isa
(once punctured surface S*) x S! . If we cap off the boundary component in M0* corresponding to
T by a trivially fibered torus we geta Seifert fibered space MO over S2 with k exceptional fibers
and one boundary component. If SO is a horizontal surface in M? then we can obtain a horizontal
surface in M* by the following process. Remove the interior of a regular neighborhood V of a
regular fiber in MO, (@V =T) . For each boundary component of SO N T select a copy of S* in
M! and glue M! to MO so that the boundary curves of the copies are glued to the curves of sonT
and also so that regular fibers in both spaces match up. This can always be done as the surfaces
intersect the regular fibers transversely. In fact any horizontal surface in M* canbe cutup by T into
a horizontal surface SO in M? and some copies of S* in M1 . The number of copies needed is
exactly the number of intersection points of a regular fiber and the horizontal surface in M?.

Any fibration of M™ is determined by a homomorphism from nl(M*) — Z . Hence, to
understand the fibrations of M¥, it is sufficient to consider homomorphisms 7t;(M0) — 2
(see [EN], p. 90 - 91). ’

Denote the regular fiber fp by fo and set xg=1,By=b. Assume that we have removed
the fiber f, , for some i in {0, ..., m)} . The group m;(M?) has a presentation:

nl(MO) =<qg, -+ qm» D | [qj, h],j=0,..,m ; qjaj hBJ' ,j=0,...,mj#1; qo..."qm > -
We get a homomorphism @:1m;(MY) — Z as follows. Set i = lem{xj},j= 0,...m,j#i and
set @(h)=ol, ®(q) = -Bjoﬁi locj. Itis immediate that the relators qj“i nPi ,j=0,...,m,are
satisfied, so we have a homomorphism. It is also clear that any homomorphism n, (M%) — Z must

satisfy these relators and hence is a "multiple” of @ . As a consequence of the last relator we get
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m

Hisr (2 I"J_iO(»I / «; € Z . The boundary curve S c oMY must be mapped to 0 € Z .
1=0.)#1

So we are looking for a pair of integers s;, t; such that s;-¢(q;) + tyee(h) =0, 1s;lis minimal. If
®(q;) 20, acurve on dM which intersects dS once is given by a {u;, v;} curvein the {g;, h}

basis so that s;v; - uit; = 1 . In the case ®(q;) =0 this curve is just the regular fiber h. The 1/n-
Dehn surgery coefficients with respect to a framing determined by dS, givenin {qj, h} coordinates,
are n({s;, t;}) + {u;, v;} . Thus a necessary condition for the existence of a horizontal Heegaard
splitting is that the Seifert invariants must be: o; = ns; +u;, fj = ntj +v; at the i - th exceptional
fiber. (Or 1=nsg+ug ,b=nty+ vy when we remove a regular fiber.)

The horizontal surface, if itr exists, is a branched cover of the base space branched over m - 1

~

points (or m points if the removed fiber is regular) with branching indices’ €€, L. By, v L

(i.e., o; excluded). Hence the degree of the covering must divide by each o ,j#1, in fact it must

~

be equal to oi = Leam.(ecy, -y O, ..., X ) . The surface must also have a unique boundary
component. The degree of the cover is equal to the number of intersection points between h and dS

which is exactly s; . Hence s; = i . Note thatif s;|cc! but s;# !, then we have more than one
boundary component for the surface fiber and in this case we do not get a horizontal Heegaard
splitting.

If ©(q;)=0,then [0S]= ol [q;] , thatis g; is only one of the components of dS. Soin
this case the construction will not yield a horizontal Heegaard splitting. Applying the above
considerations to the fibers f, ..., f;, one by one proves the "only if " part of the theorem.

On the other hand, if s;= ! and o = ns; + Ui, By =nt +v;, for some n , then we can
define a homomorphism ¢ as above. This homomorphism induces a fibration of M - N(f;) asa

fiber bundle over S!. Let S be a surface so that [S]= ©71(0) . The conditions above enable us to
complete this surface S in M - N(f;) to a horizontal Heegaard splitting of M.

Remark 3.3: It is an easy exercise using the formula for %(S) to show that indeed %(S) is

always an odd integer as it should be for a surface with one boundary component.

. m .
Proof of Theorem 0.4: If M fibers over S! then eg=0,ie,0= ey ! =2 Bjot‘ /o
150
It follows that (q;) = -Bjeci /ec; . In order to compute s;, t; we need to solve si-¢(q;) + ti-e(h) =0,



I's; | minimal. Hence si-(-BiOti o)+ () =s¢(B; /e;)-;=0. As gcd(xj, Bj) =1 we see
that s; = &; and {;=B;. By Theorem 0.3 . in order to have a horizontal Heegaard splitting, we
must have o< = ns; + u;, Bj = nt; + v; and this can only happen if n=1 and (u;, v;) =(0, 0), or
n=0 and (c;, B;) = (u;, v;) . But sjvi-tu; =1 and 0< B < &; so both cases cannot happen.
Thus M does not have a horizontal Heegaard splitting. Hence by Theorem 0.1 all Heegaard
splittings of M are vertical.

3.4 Examples: The first two manifolds have horizontal Heegaard splittings by [BO1]. We
corroborate their result using our computations. In our third example we provide a manifold that does
not have a horizontal Heegaard splitting.

1) Let M=S(0;-1/421{2, 1}, {3,2}, {7, 6}) . Remove the singular fiber {7, 6} . We compute
o3 =lem.(2,3)=6,s0 ®(h) =6, ®(q)) =-B1x3/ ot | =-3, ®(qy) = -Brx3/ &, = -4, and
b=-2, therefore ®(q3)=(-2)6+3+4=-5. Thus s3(-5)+1t3 6 =0 implies that s3=6 and
t3=5 and consequently uz=1,v3=1. Hence in order to get a horizontal Heegaard splitting we
must have x3=6n+1,B3=5n+1 for some n,and indeed for n=1 we have x3=7,83=6,
so M has a horizontal Heegaard splitting.

Note that if we remove the fiber (3,2} we get x2=lcm(2,7)=14,s0 @(h) =14,
@(q)) =-B1x2/ &) =-7,9(qp) = -Bpx?/ xxp =-12 and b=-2, therefore ®(qy) =(-2) 14+7+ 12
=-9. Thus s, (-9) +t, 14 =0 implies that s, =14 and t, =9 and consequently up=3,vp=2.
Hence in order to get a horizontal Heegaard splitting we must have oty =14n+3,B2=9n+2 for
some n and indeed for n=2 we have o9 =3,B,=2,s0 M has a horizontal Heegaard splitting

coming from this fiber. (They are distinguished in 3.5 .)

.

2) Let M=S(0;-1/211{3,2}, {3,2}, {7,5}) . Remove the singular fiber {7,5} . We compute
«3=lem(3,3)=3,s50 ®(h)=3,0(q))=-B1x3/x|=-2,9(q) = -Bpex3/xy=-2 and
b=-2, therefore ®(q3)=-6+2+2=-2. Thus s3(-2) +t33 =0, implies that s3=3 and t3=2
and consequently u3 =1, v3=1. Hence in order to get a horizontal Heegaard splitting we must
have 3= 3n+1,B3= 2n+ 1 forsome n and indeed for n=2 we have (3= 7,B3=5 so
M has a horizontal Heegaard splitting.

If we remove the fiber {3.2} we get o?=1lc.m.(3,7)=21 so @(h)=21, and ®(q))=
B2/, =-14,¢(qy) = -Bpx2/ o =-15 and b=-2, therefore @(q3) =(-2)21 +14+15=
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-13. Thus sy (-13) +1, 21 =0 implies that s, =21 and t; =13 and consequently u;=8,vy=5.
Hence in order to get a horizontal Heegaard splitting we must have oy =3 = 2In+8,By=2=

I3n+5 for some n andso M has no horizontal Heegaard splitting corresponding to this fiber.

3) Let M=S(5;-21/401(3, 1}, {6, 1}, {8,5}.{5,2 }). Remove the singular fiber {5,2}. We
compute oc? =Lem.{3, 6,8} =24,50 @(h) =24, o(q)) =-Bjx?/ox|=-8,9(q) = Byt /Xy =
-4, @(q3) = -B3x?/ x3=-15 and b =-1, therefore ©(qq) =(-1)24 +8+4+15=3. Thus

s4 (3) +t4 24 =0 implies that s4 = 8 #24 = ox? and consequently M has no horizontal Heegaard
splittings corresponding to this fiber.

The genus of the horizontal Heegaard splitting can be computed. In the generic case it tends to
be high, as we see below. The horizontal surface contains ! copies of S* each of genus gj. The

horizontal surface SO in M? also contributes to the genus. Itis a o! - fold branched cover of the
disk branched over either m - 1 or m points depending on whether we removed a singular fiber or a

”~~

regular one. The branching indices are o, ..., &, ..., i . The formula for the Euler characteristic
for %(SO) is given by

%Y = WD) i - Y, (1- 1ex)) ! = ol (1- Y, (1-1/ex)))
j#i j#i

where D is the base space of M0. We need to remove i disks and attach «! copies of S* each
with Euler characteristic 1-2gq. So the Euler characteristic of the horizontal surface S in M* is

%(S) = o (1- Y, (1- o) - i+ i (1-2g9) = ol (1-2g9- 2, (1- Vexy)

j=i j#i
Recall that the Heegaard surface I is the boundary of a regular neighborhood of S. Hence the

genus of the horizontal Heegaard splitting X is given by
g(2)=1-(%B(S).

3.5 Examples: We compute the genus of horizontal Heegaard splittings of the manifold M in
Example (1) of 3.4.

1) Let M=S(0;-1/421(2, 1}, {3.2}, {7, 6}) and remove the {7, 6} fiber as in Example (1) of

3.4. We have g,=0 and $3=0 so g(23)=l-6(1-(1-1/2)-(1-1/3))=2 as we know by
[BOI].
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2) Let M=S(0;-1/421(2,1}, {3,2},{7,6}) and remove the {3, 2} fiber as in example (1) of
34. We have gy=0 and s, = 14 so g(2y)=1- 14(1-(1-1/2)-(1-1/7)=6.

Hence the two horizontal Heegaard splittings of M are different. A more general result is the
following:

Theorem 3.6: Let M= { gy;¢y | (xy, By), ..y (X, Bn) } bea Seifert fibered space so that the

invariants oc; are pairwise relatively prime. Then horizontal surfaces corresponding to different fibers

are non-homeomorphic.

m
Proof: Foreach k,1 <k<m,k=#i abuse notation and write g;=( Z |3jod/ o)+ By / oxy
j=0.j#ik

Note that o divides the first factor but does not divide the second factor as both By and oi/ ey
are relatively prime to oy . Hence g; is relatively prime to oc! . This implies that §; = ! . Now

consider o; and oty , for some fixed k,k#i and the Euler characteristic of the corresponding

surfaces Si and Sk'

B(Sy) = ot (1-2gg- (1 - V)= N+, Vexy)

j#i j#i

WSy = k(N + il/o:j), N=2-2gp-m
j#i
Assume that %(S;) = %(S;) to derive a contradiction. We can assume that i=1,k=2 and note
that ! / x5 = 2/ ec | . Hence:
!N+l /oty +.. + ol o = 02N+ o2/ &3 +... + &2/ ety thus
~(otp - 0 N3 .. 0y = 02/ 03 - ol fog+ o2/ oy- ol fog+ o/ oy - ol feg
Therefore we can divide both sides by (cc; - &c}) and after rearranging obtain:
N3 ... Ky - X3 X5 ... Ky - X3 g Koo Ky = oo = X3 Xgooe By ) = g Ko Oy
but the left hand side divides by o3 while the right hand side does not. So the genus of the horizontal
Heegaard splitting surfaces S; and Sy is not equal and the surfaces are not homeomorphic.
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§ 4. The Main Theorem

We prove Theorem 0.1 .

Proof: Let M be an orientable Seifert fibered space over an orientable base space S. Let Z be the
splitting surface of the Heegaard splitting (H;, Hy) of M. IfM isa Lens space then all its
Heegaard splittings are vertical by [BnO] . If M is a small Seifert fibered space, then the result

follows from [BO]. Furthermore, if 2 is weakly reducible. then it is vertical by Theorem 2.6 .
Thus we can assume, in what follows, that M is nota Lens space and Z is strongly irreducible.

By Theorem 1.3 we can isotope a fiber f (either regular or singular) into the surface Z . Let
M* =M -N(f) andlet £* =2 - N(f). Since = n N(f) is an annulus, =* has two boundary
components and since Z is separating =* is also separating. There are two possible cases, either

* . . . . * * . . . *
=* isincompressiblein M~ or X" is compressiblein M .

Case 1: The surface ¥ is incompressible in M*.

Since =* is an orientable, separating, incompressible surface with two boundary components
in M™ it is either a vertical annulus (boundary parallel or saturated) or consists of two fibers in a
fibration of M™ as a surface bundle over S! (see [Ja] VI. 34). The surface =* cannot be the
boundary of a twisted I-bundle over a compact surface by Remark 2.5.

If £* is a vertical annulus then £ is atorus and is a genus one Heegaard splitting of M.
This is impossible when M is nbt a Lens space.

If the separating surface =* is a fiber in a fibration of M* as a surface bundle over S! then
it must consist of two components =;*, £, , The components z,*,Z," mustbe parallel. For if
we cut M* along 2, then T,* € ,* x I and parallelity follows from ([He] 10.3 Case 1) . Now

the handlebody H , say, is obtained from the handlebody Z ¥ % I by gluing on a solid torus along
an annulus. As in the first paragraph of section 3., H; is a handlebody if and only if M is obtained

from M* by 1/n - Dehn surgery with respect to the framing determined by 0Z*. In these cases =
will be a horizontal Heegaard splitting of M . In order to to determine whether or not this case occurs
in M we need to calculate the Seifert invariants of the fiber f with respect to the basis of the

homology of OM* determined by 0=* and a curve intersecting it once. Note that as genus &M=
gy y

genus () /2, this can occur only when genus (Z) is even.

W



Case 2: The surface 27 1s compressible in M~ .

Let A be a collection of disjoint compressing disks for >* minimizing intersection with .
If A is on both sides of £* ¢ M* then in particular A would be on both sides of £ ¢ M
contradicting the fact that Z is strongly irreducible. Thus A is either entirely in H, orentirely in
H,. Say A c H,. Denote by >** the incompressible surface obtained from =* by ambient
surgery along the components of A .

Asin Case 1,if =** is connected then it is an annulus (boundary parallel or saturated) and if
it is not connected then it consists of exactly two parallel fibers in a fibration of M* as a surface
bundle over S! . If =** is an annulus then this annulus must be boundary parallel, for otherwise
H, would contain an incompressible torus. In this case f is a core of H,, since it intersects a
meridian disk cut off of H, by =** exactly once. It follows that after a small isotopy of 2 we may
remove a small regular neighborhood of f from M to obtain a manifold homeomorphic to M* such
that Z is also the splitting surface of a Heegaard splitting of M* . By Theorem 4.2 of [Sh2], 2 is
a vertical Heegaard splitting of M* , hence it follows from the construction that Z is a vertical
Heegaard splitting of M .

We show that if the surface Z** consists of two parallel fibers =;**, £,™* in a fibration of
M as a surface bundle over S!, then ¥ is reducible. The two surfaces Z;*", %,** separate M*
into two handlebodies Hi™, H," . (We obtain H; from H{* by drilling out tunnels as indicated in
Fig. 6 (a).) After an isotopy which moves the boundary parallel annulus A(f) = £ n N(f) across
oN(f) = oM™ we obtain a Heegaard splitting (H'{,H',) of Hl* by setting:

H'; = (H, 0 H;*) U (collar of 3H, in H,") and H'p = (H;" - H'p) (see Fig. 6 (D).

The Heegaard splitting (H'j, H',) is a Heegaard splitting of a handlebody. Recall that
Heegaard splittings of handlebodies are all standard (see [CG1]) . As A # @ the Heegaard splitting
is reducible. Notice that a pair of reducing disKs for the splitting (H'y, H'p) is also a pair of reducing
disks for the splitting (Hj, Hp) ; so the claim is proved.

It follows that all irreducible Heegaard splittings of orientable Seifert fibered spaces M over

an orientable base space S are either vertical or horizontal.
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ok drilled out tunnels
2; M1 | ! !
Fig.6 (a)
- reducing disks
1
]
T— H,

A Heegaard splitting for H’;

Fig. 6 (b)

Proof of Theorem 0.2: Let = be a Heegaard splitting for M . If it is a stabilization of a vertical
Heegaard splitting then every singular fiber can be pushed onto < , as the singular fibers are cores of
the handlebodies. If Z is a stabilization of a horizontal Heegaard splitting it is obtained as above;
hence there is some fiber which can be pushed 6nto X .

§ 5. Horizontal and vertical

Heegaard splittings

In this section we will show that in some sense almost all irreducible horizontal Heegaard

splitting surfaces cannot be isotopic to vertical Heegaard splittings. The most elementary invariant
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which distinguishes between irreducible Heegaard splittings is the genus of the splitting surface. In
partial answer to the question at hand, we can say the following:

Theorem 5.1: Let M = {ggy, eg ! (<, By), ooy (X Brp)} ., m22,be a Seifert fibered space with
an orientable base surface of genus gg. If gg>0 or if go=0 and one of the following possibilities

holds: (1) x'>5,(2) «'>4 and m>4,(3) o' >3 and m> 5, then all irreducible horizontal
Heegaard splittings are not isotopic to vertical Heegaard splttings.

Proof: We can assume that if gg=0 then m > 3. The other cases, Lens spaces and small Seifert
fibered manifolds were treated in [BnO] and [BO1] . Let Z be a vertical Heegaard splitting. Then

the genus of T is 2gy+ m- 1. Assume that T is also a horizontal Heegaard splitting for M. By
the formula for the genus (as in section 3) we have

. m . . m
2-m-2gy = %(S) = i (1-2g9- D,(1- o) = xi 2- 2g0- m) + ol D, V/ex;,
: j#i j#i
As «i>1 we have:

m
(2g9 - 1)/2+(m- l)/2£(2g0+m-2)(0t'- 1)/ «! = Zl/och(m- 1)/2
j#i
which is a contradiction if gg>0. If gg=0 and «!>5 then (m-2)4/5<(m-2) (eci-1)/ i<
(m-1)/2,hence 3m< 11, which contradicts m > 3. Similarly if oci >4 , then m <4, contradicting

m>4,andif «!>3,then m<5, contradicting m>5.

This theorem does not answer the questions of whether or not a given horizontal Heegaard
splitting is actually irreducible and the related question of whether or not a given horizontal Heegaard
splitting a stabilization of a vertical one. |

We mentioned in the introduction that for M = {gg, €g | (X1,81), -+ (Xm,Bm)} With go> 0
or m> 3, all vertical Heegaard splittings are weakly reducible. To see this, in the case go>0,
consider a cocore disk D, of a regular neighborhood of 2, in H; anda disk Dy =(b; xS1)-b;.
Note that D, is an essential disk in Hy . In the case where go=0 and r<m- 1, we may construct
D, and D, by using a cocore of a regular neighborhood of fjl and the curve Cj, where k <r and
k notequal 1. Finallyif gg=0 and r=m- I, we can construct D, and D, by using a cocore of

a regular neighborhood of fjl and replacing b, by an arc which is the union of o i1 and oj -
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It is of independent interest whether any Heegaard splitting is strongly irreducible. The
method by which we show that a Heegaard splitting is strongly irreducible is due to Casson and
Gordon (unpublished work (see [CG2])) . Note that their theorem, quoted below, is a theorem about
Heegaard splittings of a sequence of manifolds and it only gives us specific information if we know
that 'some manifold in that sequence has a weakly reducible Heegaard splitting. We give a proof, in

the appendix, of this theorem based on notes taken during Casson's presentation of the result.

Theorem 5.2: Let M= { gq;¢q (g, B1), s (X Brn) } be a Seifert fibered space with an
orientable base space. Let S bea horizontal Heegaard splitting corresponding to 2 fiber (cx;, Bi) .,

1 <i<m thatis &;=s;ng+u;,Bi=tng+Vj. Then either S is strongly irreducible or there are at
most five manifolds M = { go:¢€p | (', B'1)s v (X' B'y) )} sothat (', ﬁ'j) = (o, By for
1<j<m,j#i.and =50+, B0+ ,n'-ngl<2 which have weakly reducible

horizontal Heegaard splittings corresponding to the fiber (cc’;, BY) -

Proof: Let M =H, UH, where dH;=2 isthe Heegaard surface. Let k © 2 bean essential
separating simple closed curve. Let T: S — T bea Dehn twistin k then M(1/n)=H, Urn H, is
the manifold obtained by a 1/n - Dehn surgery on k (as in Section 3). The new Heegaard splitting
surface of M(1/n) =H, UTn H, is 3 = 3(with a n-Dehn twist). In [CG2] the following theorem

is proved.

Theorem A: (Casson Gordon) Suppose M= Hl U H, is a weakly reducible Heegaard splitting
for M and X - N(k) is incompressible in both H; and H;. Then M(1/n) = H; UTn H, isa
strongly irreducible Heegaard splitting for M(1/n) , for Inl2 6.

Recall that in the case of a horizontal Heegaard'splitting the surface X - N(f;) is incompressible.

Also the boundary of £ - N(f;) isa (s, t;) curve in terms of the chosen basis (qg;, h) for the
homology of dN(f;) . Hence 1/n- Dehn surgery on M - N(f;) corresponds to Seifert invariants

o;=s;n+u;,B;=tn+v;. If weassumea weakly reducible Heegaard splitting for o; =s;ny+uj,

B; =t; ng+ v; Theorem 5.2 follows from the theorem of Casson Gordon.
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§ 7 Appendix

Here we prove the theorem due to Casson and Gordon that we used in Section 5. Casson
and Gordon used this theorem to establish the irreducibility of Heegaard splitting of arbitrarily high
genus of manifolds obtained by surgery on certain pretzel knots. The proof given here, due to

Casson, is not the original proof. We would like to thank Martin Lustig for his remarks concerning
Definition A.3.

Let M be a closed orientable 3 - manifold and let M =H; u H, be a Heegaard splitting for
M with Z =0dH; as the splitting surface. Let K < Z be an essential separating simple closed curve
andlet T:S — X be a Dehn twistin K. Denote the manifold obtained by a 1/ n - Dehn surgery
on K by M(1/n) (asin Section 3). Then ¥ defines a Heegaard splitting surface for M(1/n)

which we denote by Z".

Theorem A: (Casson - Gordon) Suppose M =H; U H; is a weakly reducible Heegaard splitting
for the closed manifold M. Let K be a simple closed curve in Z suchthat Z - N(K) is

incompressible in both H; and Hj . Then =" forall Inl=6,is astrongly irreducible Heegaard
splitting for M(1/n).

Definition A.1: A basis B for a genus g handlebody H is a collection of g simple closed
curves By, ..., Bg in oH = 2 bounding disks D;, ..., Dg such that H - int(N(uD,)) is a 3 - ball.

Definition A.2: If B is a basis for a handlebody H , a wave for B isanarc w < Z such that
int(w) N B =@, the two points of dw lie in the same component B of B and that w approaches
B from the same side. We furthermore require that (w,dw) is not homotopic, in 2 , into a

component of B (see Fig. 7).

/ t ——BeB

Fig. 7
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Note that a wave together with a subarc of the disk bounded by B bound a disk in the handlebody.

Lemma 1: Let C be a simple closed curve in T bounding adisk D in H that is not parallel to an

element of B . Assume that the intersection of B and C is minimal (for instance by taking the

componems of B and C to be geodesics). Then C contains a wave for B .

Proof: Consider the intersection between D and the Di's. We can eli

iminate simple closed curves in

the intersection by an innermost disk argument (since handlebodies are irreducible). Hence we may

assume that the intersection is a collection of arcs. Let o be an outermost arc in D and pcdD be
an arc cut off by o for which int(B) nB=@ . Then o« U B bound a sub-disk of D. Since H is

orientable B is on one side of B, the component of B containing dc . Hence B is a wave for B.

¢

Lemma?2: Let K< £ be asimple closed curve so that ¥ - N(K) is incompressible in H. Let B be

a basis for H chosen so that the intersection | K n B | is minimal. Then every wave for B must

intersect K essentially (i.e., the wave cannot be homotoped to reduce

its intersection with K) .

Proof: Suppose w is a wave for B . As = - N(K) is incompressible in H, K must intersect

every component B € B , in particular the component B for which dw € B . The two points in

dw separate B into two arcs which we denote by o and B . Since

w is not homotopic, in Z , to

a subarc of B both simple closed curves o U and B U w areessentialin Z . Let D;.D, be
the disks bounded by x U w ,f U W (respectively) and let Dw be the disk bounded by w and a

subarc of D . Since Z -N(K) is incompressible in H, K intersects

both xUw and BUW.

Now cut H along B -B toobtaina solid torus V . Note that D is a meridian disk for V . If neither
D, nor D, is a meridian disk for V then neither is D . Hence we may assume that D; , say,isa

meridian disk for V. We may now replace B by o Uw toobtainanew basis B' for H.

If wnK=@ then IKN BI<IKnBI contradicting our assumption on minimality.

Lemma 3: Suppose C is a geodesic simple closed curve in S bounding adisk D in H. Then,

- perhaps after isotopy, there is a lift C of C in the universal cover H2 of T meeting a lift K of K

so that if B is a lift of any component B for which BnK#@ then

CnB=90.

(]

(a
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Proof: If C is parallel to a component B of BB we are done, so suppose that Cn B # @ for some

B in B . Now assume to the contrary that every lift C of C which meets a lift K of K intersects
some lift B of B which also intersects K . By Lemma 1, the curve C contains a wave w for
some component B . Let p* be alift of a point p in w n B . The lift W of w emanating from
p* is contained in C between two lifts B and B' of B. On w there are points of intersection
with copies of K since K intersects w . These copies of K must intersect either B or B’
otherwise the geometry of H? would not allow K to intersect any other lifts of (disjoint)
components of IB which intersect C contrary to our assumption. Thus every copy of K meeting t:;

must intersect a copy of B (see Fig. 8).

Fig. 8

Consider an innermost triangle T between C, ‘K and B . The covering projection must map the

triangle T injectively into the surface S since neither the arc between p* and K n B nor the arc

between p* and K n C project to a closed loop. We now use the projection of the triangle T to
isotope K off the wave. The assumption above a ensures that a triangle T always exists and we can

repeat the process until the intersection of w and K is empty, contradicting Lemma?2.

Definition A.3: Consider H2 , the universal cover of 2 . Let K be alift of K and let C bea

lift of a simple closed curve C which intersects K . We may assume that KnC=0e HZ Draw
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perpendiculars from cn S onto K and let p, and p, bethe points where the perpendiculars meet
K . Define n(C) =d(p;. py) if the angle between K and C in the direction in which the Dehn twist

is to take place is bigger than /2 and 1t(C)--d(pl p,) if itis less than /2 (see Fig.9.Where
the angle o is acute as the Dehn twist is always to the right and hence n(C) <0) . Denote the length
of Kon Z by k.

Fig. 9

Lemma 4: If C,C' are disjoint (or coincident) geodesics and C, C' arelifts of C,C' to H? both
meeting a lift K of K, then:

In(C) -n(C)I<k .

Proof: Let m= n(C) and 1=m(C"). Let p= KnC andlet p=Kn C'. Since the length of K
is k we may rechoose C' sothat d =d(p, p)<k/2 (this choice does not affect I1t(C) n(C 9.
Apply an isometry to H? translating along K so that the intersection point x of the perpendicular
from the end point of C to K farthest away from p' is mappedto O (asin Fig.10). The interv