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x�� Introduction

The simplest holomorphic dynamical systems which display interesting behavior are the
polynomial maps of C� The dynamical study of these maps began with Fatou and Julia in
the �����s and is currently a very active area of research� If we are interested in studying
invertible holomorphic dynamical systems� then the simplest examples with interesting
behavior are probably the polynomial di�eomorphisms ofC�� These are maps f � C� � C�

such that the coordinate functions of f and f�� are holomorphic polynomials�
For polynomial maps of C the algebraic degree of the polynomial is a useful dynamical

invariant� In particular the only dynamically interesting maps are those with degree d
greater than one� For polynomial di�eomorphisms we can de	ne the algebraic degree
to be the maximum of the degrees of the coordinate functions� This is not� however� a
conjugacy invariant� Friedland and Milnor 
FM� gave an alternative de	nition of a positive
integer deg f which is more natural from a dynamical point of view� If deg f � �� then
deg f coincides with the minimal algebraic degree of a di�eomorphism in the conjugacy
class of f � As in the case of polynomial maps of C� the polynomial di�eomorphisms f
with deg�f
 � � are rather uninteresting� We will make the standing assumption that
deg�f
 � ��

For a polynomial map of C the point at in	nity is an attractor� Thus the �recurrent�
dynamics can take place only on the set K consisting of bounded orbits� A normal families
argument shows that there is no expansion on the interior of K so �chaotic� dynamics can
occur only on J � �K� This set is called the Julia set and plays a major role in the study
of polynomial maps�

For di�eomorphisms of C� each of the objectsK and J has three analogs� Correspond�
ing to the set K in one dimension� we have the sets K� �resp� K�
 consisting of the points
whose orbits are bounded in forward �resp� backward
 time and the set K �� K� � K�

consisting of points with bounded total orbits� Each of these sets is invariant and K is
compact� As is in the one dimensional case� recurrence can occur only on the set K�
Corresponding to the set J in dimension one� we have the sets J� �� �K�� and the set
J �� J� � J�� Each of these sets is invariant and J is compact� A normal families argu�
ment shows that there is no �forward� instability in the interior of K� and no �backward�
instability in the interior of K�� Thus �chaotic� dynamics� that is recurrent dynamics
with instability in both forward and backward time� can occur only on the set J �

The techniques that Fatou and Julia used in one dimension are based on Montel�s
theory of normal families and do not readily generalize to higher dimensions� A di�erent
tool appears in the work of Brolin 
Br�� who made use of the theory of the logarithmic
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potential� Potential theory associates to any compact subset of the plane a measure which
is called the harmonic or equilibrium measure� and the �potential� of this measure which
is called the Green function� Brolin showed that for a polynomial map of C there is an
explicit dynamical formula for the Green function� He proceeded to show that the harmonic
measure of the Julia set is an invariant measure with interesting dynamical properties� It
was later observed that potential theory provides alternate proofs of many of the basic
facts of Fatou�Julia theory �see 
Si�� 
T�� and 
C�
�

Potential theory in one variable has a natural extension to several complex variables
called pluripotential theory �cf� Klimek 
Kl�
� In this context the analogs of the Green func�
tion corresponding to the sets K� and K� are the functions G� and G�� These functions
were studied by J�H� Hubbard from a topological viewpoint �see 
H� and 
HO�
� N� Si�
bony had the idea of introducing potential theory into the study of these two�dimensional
mappings� he introduced the two ����
 currents �� � ���
��ddcG� and the measure
� � ���
���ddc�G� � G�

�� Bedford and Sibony established some properties of �� and
�� the results they obtained are contained in x� of 
BS��� �See also 
Be��
 Further results
are contained in 
BS����� 
FS�� In the pluri�potential context� � is the analogue of the equi�
librium �or harmonic
 measure of the set K �and also of J
� Hubbard and Papadopol 
HP�
have shown that a current like �� also arises naturally from a �non�invertible
 holomorphic
mapping f � Pn � Pn�

In this paper we combine potential�theoretic methods with tools from ergodic theory�
especially Pesin�s theory of non�uniform hyperbolicity� These tools allows us to describe
the geometric structure of the currents �� and to give a geometric description of the
relation between �� and �� The starting point for these results is a characterization of the
measure � in terms of entropy which we now describe�

We can associate to each invariant probability measure � its measure�theoretic entropy
h��f
� The variational principle states that the supremum of h��f
 taken over the set of
all invariant probability measures is the topological entropy� htop�f
� A measure � for
which h��f
 � htop�f
 is called a measure of maximal entropy� For polynomial maps in
one dimension the topological entropy is log d where d is the degree of the polynomial
�see 
G� and 
Lyu��
� and � is the unique measure of maximal entropy �see 
Lyu�� and

Ma�
� In two complex dimensions the topological entropy is log deg f �see 
FM� and 
S�
�
and h��f
 � log deg f �see 
BS��
� In x� we prove� The harmonic measure is the unique
measure of maximal entropy for a polynomial di�eomorphism of C� �Theorem ���
�

For polynomial maps of C� Fatou and Julia used Montel�s theorem to show that
expanding periodic points are dense in J � This result can also be proved using potential
theory� A key observation in such a potential�theoretic proof is the fact that the support
of harmonic measure is the set J � For polynomial di�eomorphisms of C� the situation is
not so straightforward� If J� � C� denotes the support of �� then it follows easily that
J� � J � For polynomial di�eomorphisms which are hyperbolic� we have shown in 
BS��
that J � J�� But the question of whether equality holds in general seems to be very
di�cult�

Periodic saddle points are the analogs of expanding periodic points for two dimensional
di�eomorphisms� These are points of period n for which Dfn has one eigenvalue outside
and one eigenvalue inside the unit circle� It is relatively easy to show that every saddle
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orbit is contained in J � In x� we prove the more di�cult result� Every saddle orbit is
contained in J�� It was shown in 
BS�� that the closure of the saddle orbits contains J��
Combining these results gives� J� is the closure of the set of saddle orbits� Thus J� plays a
role for polynomial di�eomorphisms of C� analogous to the role played by J for polynomial
maps of C�

Let p be a periodic saddle point� The stable�unstable manfolds of p are de	ned as

W s�u�p
 �� fq � C� � lim
n��

dist�f�nq� f�np
 � �g�

In x� we show that for � almost every point p� the set W s�u�p
 is conformally equivalent
to C and is a dense subset of J�� This result was obtained independently by Wu in 
W��

For distinct periodic saddle points� p and q� the intersections of W s�p
 and Wu�q

are called heteroclinic intersections� We show in x� that J� can be characterized in
terms of heteroclinic intersections� For any pair of periodic saddle points p and q� J� �
W s�p
 �Wu�q
� It is interesting to contrast this description of J� with a similar descrip�
tion of J from 
BS��� For any pair of periodic saddle points� J � W s�p
 �Wu�q
� The
intersections ofW s�p
 and Wu�p
 other than p itself are called homoclinic intersections� It
was observed in 
BS�� that the set of periodic saddle points that create homoclinic inter�
sections is dense in J�� In x� we prove the more delicate result that every periodic saddle
point creates homoclinic intersections�

The harmonic measure � and the currents �� are related by the analytic equation
� � ������ This formula does not give much geometric insight into the relation between
these objects� The results on periodic saddle points and stable manifolds are consequences
of a geometric description of the currents �� and the way in which these currents �in�
tersect� to give �� In order to explain the results of this paper about general polynomial
di�eomorphisms it is useful to recall results from 
BS�� about the special case of uniformly
hyperbolic polynomial di�eomorphisms�

A polynomial di�eomorphism f is uniformly hyperbolic if there is a hyperbolic split�
ting of the tangent bundle over J � Hyperbolicity implies that for every point p � J the
sets W s�u are immersed submanifolds� In the uniformly hyperbolic case� the collection of
stable manifolds has the following �laminar� structure� At a point p � J � we may let Tu

be a small complex disk transversal to W s�p
� For points q � J near p� the local stable
manifold W s

� �q
 will intersect T
u in a unique point a � Tu� If we let Au � Tu denote the

set of such intersections� then we may parametrize the local stable manifolds by a � Au�
and locally J� is topologically equivalent to the product of Au and a disk� Given two such
transversals T� and T� and corresponding sets Aj � Tj � j � �� �� there is a �continuous

holonomy map � � A� � A�� de	ned by following a stable disk from its intersection point
a� � A� to the point a� � A� where it intersects T�� This gives a homeomorphism between
the intersections with nearby transversals� In 
BS�� we showed that the holonomy map
preserves the slice measures ��jTj �

There is a corresponding theory� due to Pesin� of �non�uniform
 hyperbolicity with
respect to a measure �� An �ergodic
 measure � is said to be hyperbolic if no Lyapunov
exponent is zero� �See x� for the relevant de	nitions�
 The theory of Pesin for a hyperbolic
measure � implies that for � almost every point p the setsW s�u are immersed submanifolds�
It is shown in 
BS�� that the measure � is ergodic and hyperbolic� In the case of a hyperbolic
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measure� we may de	ne a holonomy map on a compact set of positive measure �but not
necessarily everywhere
� In x� we show� The holonomy map preserves the slice measures
��jTj �

In the uniformly hyperbolic case� we may take a similar transversal T s � W s�p
�
and we may parametrize the local unstable manifolds by As � T s� It follows that a
neighborhood in J is homeomorphic to As�Au� In the case of a hyperbolic measure� it is
possible to 	nd product sets with positive measure� which we call Pesin boxes and denote
again as As � Au� The measure � induces conditional measures on each stable slice� As
a byproduct of the characterization of � as the unique measure of maximal entropy in x�
we show� The conditional measures on the stable�unstable slices are given by ����� As a
consequence of the holonomy invariance of �� and the identi	cation with the conditional
measures� we obtain in x� the result� � restricted to a Pesin box is a product measure�
This allows us to invoke results of Ornstein and Weiss which imply that � is Bernoulli�
This is the strongest mixing property that a measure can possess�

Now let us pass from the analysis of the slice measures of �� to the currents themselves�
A closed manifoldM de	nes a current of integration� denoted by 
M �� �See x� for a general
discussion of currents�
 In the uniformly hyperbolic case� the laminar structure of Ws�u

passes over to a laminar structure for ��� That is� at a point p � J � we may choose an
open set U and a transversal Tu such that for each a � A� the local stable manifold Ds�a

is a closed submanifold of U � and the restriction of �� to U is given by �

�� U �

Z
�u�a
 
Ds�a
�� �z


which is a direct integral of currents of integration with respect to �u� which is the measure
obtained by restricting �� to Tu� A current of the form �z
 is called uniformly laminar if
the manifolds Ds�a
 are pairwise disjoint� With the family Ws�u given by Pesin theory�
there is no uniformity to the size of the manifolds� i�e� we cannot choose U such that for
M � Ws�u every component of M � U is closed in U � In x� we de	ne the more general
class of laminar currents and show that a laminar current T is given as a countable sum�
T �

P
Tj � where the Tj �s have disjoint carriers� and Tj is uniformly laminar on some

�possibly small
 open set Uj � The closed� laminar currents give a natural generalization
of the current of integration and seem to be an interesting class in their own right� In
x�� it is shown that �� is laminar� In x�� it is shown that �� contains uniformly laminar
�pieces� whose structure is induced by the Pesin boxes� This allows us to show that the
wedge product that de	nes the measure � is in fact given by an intersection product of
stable and unstable manifolds� This yields further structure for the currents ���

Much attention has been paid to polynomial di�eomorphisms with real coe�cients� In
this case the real subspace R� � C� is invariant and we may let fR denote the restriction
of f to R�� The �real
 H�enon map is a much studied example with deg � �� In contrast
to the complex case� where the topological entropy is log d� the topological entropy of

� Throughout this paper we use the following notation for integration� If � is a measure
on A� and if f is an integrable function on A with values in the space of currents� then we
write the integral as

R
a�A ��a
 f�a
�
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fR � R
� � R� can be any real number in the interval 
�� log d� �see 
FM� and 
Mi�
� In x��

we give several equivalent criteria for the entropy of fR to be equal to log d� One of these
is that K � R�� that is to say that every complex bounded orbit is actually real� A second
criterion is that every periodic point of f is in R�� A third is that� For any hyperbolic
point p� all intersection points W s�p
 �Wu�p
 lie inside R�� These results may be used
to show that� when topological entropy is maximal� the loss of a single periodic point or
homoclinic intersection forces a decrease in the the topological entropy�

This paper is divided into di�erent parts� according to the methods that predominate�
In xx��� the principal tools are Smooth Ergodic Theory� especially Pesin�s Theory� In xx��
�� the primary tools are the theory of currents and the Ahlfors Covering Theorem� These
sections do not use Ergodic Theory� Finally� these methods are combined in xx����

The speci	c contents are as follows� x� gives a summary of the part of Smooth
Ergodic Theory that we will use� At the end of x� it is shown that� for � almost every
point p� the stable manifold of p is dense in J� and conformally equivalent to C� In
x� the conditional measures are shown to be induced by the current ��� �This permits
estimates on the Hausdor� dimension and Lyapunov exponent at the end of the section�

Then it is shown that � is the unique measure of maximal entropy� The holonomy map is
discussed in x�� and it is shown that the holonomy of the Pesin stable manifolds preserves
the restriction measures of ��� Finally� it is shown that � has a local product structure� In
x� we summarize the main ideas and de	nitions that we use from the theory of currents�
Laminar currents are de	ned in x�� and the basic structure is developed� In x� it is shown
that �� are laminar currents� In x� we show that the laminar structure of �� coincides
with the structure induced by the Pesin manifolds and the conditional measures� And in
x� we apply the previous work to the study of saddle points� Real H�enon mappings are
discussed in x��� and several �equivalent
 criteria are given for f to be essentially real� x��
is an appendix which outlines an alternative sequence in which the results of this paper
can be obtained� This alternate approach starts with results of Pesin theory and then
proceeds to the theory of currents� The main di�erence is that the use of the methods of
entropy theory is delayed until the end�

x�� Preliminaries from Ergodic Theory

���� Measurable Partitions and Conditional Measures

The technique of measurable partitions developed by Rokhlin 
Ro�� is a powerful tool in
measure theory� Somehow it is not widely known beyond ergodic theory� So� we will spend
some time to de	ne the main concepts and to establish notation�

Let J be a compact metric space� and let � be a probability Borel measure on J � A
partition 	 �

S
	� of J is a decomposition of J into disjoint� measurable subsets� The

element of the partition containing x will be denoted by 	�x
� and will be called the �ber
through x� Note that all 	bers can have zero measure� For example we can consider
a partition 
 into single points� Two partitions are considered to be equivalent if they
coincide on a subset J � of full measure�

Each measurable function � generates a partition whose 	bers are level sets of ��
Such partitions are called measurable� Any countable partition is measurable� An orbit
partition of an irrational rotation of the circle �with Lebesgue measure
 gives an example
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of non�measurable partition� More generally� one can consider an orbit partition of any
ergodic transformation� see the discussion below�

The basic property of measurable partitions is for any measure � there is a family of

conditional measures ���j	�x

 on the 	bers� This family is uniquely determined by the
following properties�

�i
 Each ���j	�x

 is a probability measure on 	�x
�
�ii
 For any integrable function �� the function

���x
 �

Z
��y
 ��yj	�x



along the 	bers is measurable and integrable� and
�iii
 Z

���x
 ��x
 �

Z
� ��

Remark� The above averaging of � over the conditional measures is equivalent to taking
of the conditional expectation of � with respect to the ��algebra generated by 	�

By �countable� set we will mean �at most countable�� If we have a countable family
of measurable partitions 	i then we can construct a partition

W
	i by intersecting 	bers of

	i� i�e�

�
�

	i
 �x
 �
�

	i�x
�

One can check that this construction leads to a measurable partition�
Finally� let us mention that for an arbitrary �non�measurable
 partition 
 there exists

its measurable envelope� i�e� the 	nest measurable partition which is coarser than 
�

���� Elements of Entropy Theory

The reader can see 
Ro�� or 
CFS� for the background in entropy theory� Our exposition
will be adapted to our goals �in particular� it will not be as general as possible
�

Entropy of a countable �mod �
 measurable partition 	 � f	ig is de	ned as

H��	
 �� �
X

��	i
 log ��	i
 �

Z
log

�

��	�x


��x
 ����


�it can be in	nite
� If the partition is not countable then its entropy is in	nite by de	nition�
If we have two measurable partitions 	 and 
 then we can restrict 	 on the 	bers of


� thus we can calculate the entropy of 	 with respect to 
 in terms of the conditional
measures as H���j��x���	j
�x

� We then de	ne the conditional entropy by averaging this
with respect to ��

H��	j

 ��

Z
H���j��x���	j
�x

 ��x
�

Let us consider now a homeomorphism f � J � J preserving a measure �� Then it
naturally acts on the space of measurable partitions 	 	� f	� where �f	
�x
 � f�	�f��x

�
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A partition 	 is called f �invariant if f	 is a re	nement of 	� A partition 	 is called a
generator if

��
n���

fn	 � 
�

Given a partition 	� consider the f���invariant partition 	u �
W�
n�� f

n	� Let us call
the 	bers of this partition 	�unstable 	bers� We can de	ne the Jacobian Juf of f in the
�	�unstable direction� as the Radon�Nikodym derivative of f with respect to conditional
measures�

Juf�x
 �
df����j	u�fx



d���j	u�x


�

Since � is invariant� Juf is constant on the 	bers of f��	u� and hence

Juf�x
 �
�

p�x

����


where p�x
 � ��f��	u�fx
j	u�x

� Now de	ne entropy of f with respect to 	 as

h��f� 	
 � H��f
��	uj	u
 � �

Z
log p�x
��x
 �

Z
log Juf�x
��x
 ����


�the middle equality follows from ����

� So� from the dynamical point of view entropy of
a transformation with respect to a partition is just the logarithm of the geometric average
of the Jacobian of f in the 	�unstable direction�

Finally� the entropy of � with respect to f is de	ned as

h��f
 � sup
�
h��f� 	


where supremum is taken over all measurable partitions 	� Actually� one can take the
supremum over 	nite partitions only� Moreover� it is enough to evaluate entropy of any
generator with 	nite entropy�

Proposition ���� If 	 is a generator with �nite entropy then h��f
 � h�f� 	
�

In conclusion let us discuss the ergodic decomposition of the transformation f � Let
us consider the orbit partition O of f �whose 	bers are orbits of f
� The transformation
f is ergodic if the measurable envelope of O is a trivial partition �whose only 	ber is the
whole space
�

In general� let us consider the measurable envelope E of O� The 	bers of 
 supplied
with conditional measures are called ergodic components of �� Note that all ergodic com�
ponents may have zero measure �consider the identity transformation
� However it makes
sense to consider the whole space of these components mod �� Restricting f onto ergodic
components and then taking them together we obtain a representation of f as a �direct
integral� of ergodic transformations� It follows from ����
 that

h�f
 �

Z
h�f jE�x

��x
� ����
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This formula gives a method for reducing entropy questions for arbitrary measures to the
case of ergodic measures� If f is ergodic then it has a 	nite generator by the Krieger Theo�
rem 
Kr�� So� in the ergodic case we can always compute entropy according to Proposition
����

For ergodic � let us say that a point x is ��equidistributed if for any continuous
function �

lim
n��

�

n

n��X
k��

��fkx
 �

Z
���

By the Birkho� Ergodic Theorem � almost every point is ��equidistributed�

���� Measures of maximal entropy

For the material of this section we refer to Bowen�s book 
Bo�� We will not de	ne the
topological entropy of f � but a basic property is given by the so�called Variational Principle�
which asserts that the topological entropy h�f
 is given as

h�f
 � sup h��f
 ����


where � runs over all probability Borel measures invariant with respect to f �
A measure � is called a measure of maximal entropy if h��f
 � h�f
� This measure

does not neccessarily exist� but if it does� then by ����
 all its ergodic components are
measures of maximal entropy as well� Hence� existence�uniqueness of a measure of maxi�
mal entropy are equivalent to the existence�uniqueness of an ergodic measure of maximal
entropy�

The problem of uniqueness of the measure of maximal entropy is not handled yet in
a general setting� The status of the existence problem is much better�

Newhouse Theorem �Ne�� If f � M � M is a C� di�eomorphism of a compact C��
manifold then f has a measure of maximal entropy�

���� Stable and unstable manifolds

Some basic references for the material in this section are 
P��� 
FHY�� 
R�� and 
PS��
Let M be a Riemannian C��manifold� f � M � M be a C��di�eomorphism� J be an
invariant compact subset of M � Let � be an invariant ergodic measure of f supported on
J � As usual TxM denotes the tangent space at x� A measurable function r�x
 is called �
slowly varying if

�� � �
��r�x
 � r�fx
 � �� � �
r�x
�

Oseledec Theorem� There exist �nitely many distinct real numbers �i� i � �� ���s called
characteristic exponents� an invariant set R of full measure� and s invariant measurable
distributions Ei�x
 � TxM� x � R� such that

�i� TxM � 
Ei�x
	

�ii� For any nonzero v � Ei�x
�

lim
n���

�

n
log kDfn�x
vk � �i�

�



�iii� For i �� j and � � � there is an � slowly varying function sij�x
 � � which is less than
the angle between Ei�x
 and Ej�x
�

The points of the set R are called regular� We can also assume that R consists of
��equidistributed points�

Let us state now the Pesin Theorem which says that the above distributions are
integrable� Denote by B�x� r
 a ball of radius r centered at x� and Bs�u�x� r
 � Es�u�x� r
�
B�x� r
� Now let us de	ne stable and stable�center distributions

Es�x
 � 
�i��Ei� Esc�x
 � 
�i��Ei�

Similarly one can de	ne the unstable and unstable�center distributions Eu�x
 and Euc�x
�

Pesin Theorem �P��� Let dimEs � �� Then for any � � � there are ��slowly varying
positive functions C�x
 � C��x
 and r�x
 � r��x
 on R� and a family W s

loc�x
� x � R of
smooth manifolds satisfying the following properties�

�i� W s
loc�x
 is a graph of a function Bs�x� r�x

� Euc�x
 tangent to Es�x
 at x	

�ii� For any y �W s
loc�x
 and n � �� �� � � �

C�x
�� exp����� �
n
 � dist�fnx� fny
 � C�x
 exp����� �
n
�

�iii� The f under
ows the manifolds W s
loc�x
� fW

s
loc�x
 � W s

loc�fx
�

The manifolds W s
loc�x
 are called local stable manifolds� For r � r�x
 let W s

r �x
 be
a part of W s

loc�x
 lying over B
s�x� r
� In order to obtain the Theorem on local unstable

manifolds Wu
loc�x
 we just interchange the roles of f and f

���
Let us indicate one immediate consequence of this result�

Proposition ���� If the measure � is not supported on a periodic orbit then all charac�
teristic exponents cannot be negative �positive��

Proof� Otherwise W s
loc�x
 � B�x� r�x

� Since ��equidistributed points x � R are re�

current� we can 	nd a moment n � � such that fn maps B�x� r
 into itself uniformly
contracting it� It follows that x is periodic� and � is supported on its orbit�

The family of local unstable manifolds does not form a partition� The following
statement supplies us with a f���invariant measurable partition �called a Pesin partition

subordinate to the family of manifolds�

Theorem ��� 	see �P��
 �LS��� There is a measurable f���invariant generator 	u whose
�bers are open subsets of the local unstable manifolds� and such that

h��f
 � h��f� 	
u
�

Remark� When f has no zero characteristic exponents then the Pesin partition 	u is a
	�unstable partition for some partition 	 with 	nite entropy 
LY�� So� in this case the above
entropy formula follows from Proposition ����
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Let us now de	ne the global unstable manifoldWu�x
 at x as the set of points y whose
backward orbits are asymptotic to the backward orbit of x� Clearly fWu�x
 � Wu�fx
�
One can prove that for x � R

Wu�x
 �
�

fnWu�f�nx
�

This implies the following two consequences�
�i
 The backward orbits y �Wu�x
 are exponentially asymptotic to the orbit of x�
�ii
 The set Wu�x
 is an immersed Euclidean space�

The global unstable manifolds form the partition of the measure space �J� �
 which
we will call the global unstable partition� This partition is in general not measurable�

A partition � is called hyper�nite if there is a sequence of measurable partitions 	i
such that

	��x
 � 	��x
 � ���� and ��x
 �
�

	i�x
�

Let us call a measure de	ned up to a scalar factor a projective measure class� On a 	ber
of a hyper	nite partition one can de	ne a conditional projective measure class ���j��x

 as
the class of the measure�

���j��x

 � lim
i��

���j	i�x



��	��x
j	i�x


�

Thus for any other sequence 	�n which generates � � the measure �
���j��x

 obtained in this

way will be a multiple of the measure above by a constant depending only on x� In fact�
for any measurable partition 
 subordinate to � � the conditional measures on the 	bers of

 are just the normalized projective measure classes of � �

Proposition ���� The global unstable partition is hyper�nite�

Proof� Take a Pesin partition 	u� and represent the global unstable partition as the limit
of measurable partitions f�n	u�

It is evident that the preceding discussion may be applied equally well to the stable
direction instead of the unstable one�

���� Relations between entropy and characteristic exponents

The following inequality was discovered by Margulis in the case of an absolutely continuous
measure� It was later generalized by Ruelle 
R���

Margulis
Ruelle inequality�

h��f
 �
X
�i	�

�i dimEi�

and a corresponding inequality holds with the sum of negative characteristic exponents�

Corollary� If h��f
 � �� and if f has at most two characteristic exponents� then one of
these exponents is negative� and another is positive�

In such a situation we will denote the negative and positive exponents �s and �u

correspondingly�

��



More recently a number of remarkable relations between entropy� characteristic expo�
nents and Hausdor� dimension have been discovered �see Pesin 
P�� and Ledrappier�Young

LY� and the references there�
 The Hausdor� dimension of a measure �� written HD��
�
is de	ned as the in	mum of the Hausdor� dimension of X� for all Borel subsets X with
full � measure� Clearly� the Hausdor� dimension depends on the measure class only�

Lai
Sang Young�s Formula �Yg�� Assume that f has only one characteristic exponent
�s � �� Then for � a�e� x�

HD����jW s�x


 �
h��f


j�sj
�

���� Complex analytic case

Let M be a Hermitian complex analytic manifold and let f be analytic� Then Ei�x
 are
complex subspaces in TxM � and all local manifolds are complex analytic�

Assume now that dimCM � �� and and � be any invariant probability measure with
two non�zero characteristic exponents of opposite signs� �s � � and �u � �� �In particular�
this will be the case if h��f
 � �� see the Corollary of the Margulis�Ruelle inequality
�
Hence dimCE

s�u � �� the global stable�unstable manifolds are regular complex curves�
The following statement says that almost all of them are parabolic�

Proposition ���� The stable and unstable manifolds Wu�x
 and W s�x
 are conformally
equivalent to the complex plane for � a�e� x�

Remark� It is possible to prove Proposition ��� along the lines of the proof of Theorem ���
of 
BS��� That is� for x � R� Wu�x
 contains a sequence of disks D� � D� � � � � such
that the modulus of Dj�� � Dj is bounded below� From this� it follows that Wu�x
 is
equivalent to C� To sketch this argument� we note that Wu

r�f�kx��f
�kx
 is a graph over

a disk of radius r�f�kx
 
 c�� � �
�kr�x
� On the other hand� the derivative of f�k on
Wu
r�x��x
 is approximately e

�n�u � For a small disk Dj containing x inside W
u�x
� we may

choose n su�ciently large that the modulus of the annulus Wu
r�f�nx��f

�nx
� f�nDj is at

least �� Then we may let Dj�� � fnWr�f�nx��f
�nx
�

Remark� The proof we give below uses a technique that will also be used in x�� Two
measurable functions � and � are called cohomologous if there is a measurable function �
such that the following cohomology equation

��x
� ��x
 � ��fx
� ��x


is satis	ed ��almost everywhere�
Usually� the cohomology equation comes up when we calculate the logarithm of the

Jacobian �or norm
 of f with respect to two equivalent measures �metrics
� The following
statement will be useful on several occasions�

Lemma ���� Let � be a measurable function bounded from below� If � is cohomologous
to � then Z

� � � ��

��



This is trivial if � is integrable� Otherwise� the proof is based upon the Birkho�
ergodic theorem �see� e�g�� 
LS� Proposition �����


Proof of Proposition ��
� We consider the unstable manifolds Wu�x
� Let FWu�x� denote
the Kobayashi metric on Wu�x
� This metric depends in a lower semicontinuous manner
on x if Wu�x
 depends continuously on x� And since we may 	nd compact subsets of J of
measure arbitrarily close to � on which Wu�x
 depends continuously on x� the correspon�
dence x 	� FWu�x� is measurable� W

s�x
 is conformally equivalent to either a plane or a
disk� depending on whether FWu�x��x�E

u
 � � or not� By ergodicity� the type of Wu�x

is the same for almost all x� We assume that it is hyperbolic and derive a contradiction�

Let ��x
 � log kDf�x
jEuk� where the norm is taken with respect to the Hermitian
metric on M � Similarly� for x � R we de	ne the function ��x
 � log jDf�x
jEu j� where
jDf�x
jEu j denotes the norm taken with respect to the Kobayashi metric� If we let ��x

denote the ratio of the Hermitian to the Kobayashi metrics in the unstable direction� then
� and � are cohomologous in the sense that

��x
� ��x
 � log ��fx
� log ��x
�

But f is an isomorphism between Wu�x
 and Wu�fx
 and hence preserves the Kobayashi
metric� So ��x
 � � almost everywhere� and � is cohomologous to �� By Lemma ����

�u �

Z
� � � �

contradicting the assumption that �u � ��

Assume now that f is a polynomial automorphism of C�� and J�� J�� J � J� � J�

etc�� be the sets introduced in x�� Consider also the currents �� and ��� We can �slice�
the current �� with any complex one dimensional variety W �see x�
� The result can be
interpreted as a measure on W which we denote by ��jW � In particular� we can consider
the measure ��jWu�x� on the unstable leaf containing x� We will call it an unstable slice

of ���

Lemma ���� Any � regular point x � R belongs to the support of ��jWu�x��

Proof� Let � be a disk with x � � � Wu�x
� If ����
 � � then G� is harmonic in ��
Since the orbit of x is bounded G��x
 � � and by the minimum principle G� is zero in ��
Thus � � K�� It follows that fn��
 � K� so fn��
 is uniformly bounded for all n� By
the Schwartz lemma jjD�fnj�
jj � C but this contradicts the fact that at a regular point
the Lyapunov exponent is positive in the unstable direction�

Proposition ���� For � a�e� x� Wu�x
 is a dense subset of J�� and W s�x
 is a dense
subset of J��

Proof� For x � R it is evident that W s�x
 � K�� We show that W s�x
 � J�� Let us
suppose that y �W s�p
� intK�� Since the iterates fn for n 
 � form a normal family� it
follows that jjDfny jj is bounded� The fact that y � W s�x
 implies that d�fn�x
� fn�y

 �
Crn for r � �� This in turn implies that jjDffn�x��Dffn�y�jj � C ��n with some � � �� It

��



follows from 
R� Theorem ���� that the asymptotic behavior of Dfnx and Df
n
y is the same�

In particular

lim
n��

�

n
log jjDfny jj � lim

n��

�

n
log jjDfnx jj � �u

We see that jjDfny jj is therefore not bounded� This completes the proof that W
s�x
 � J��

We now show that that W s�x
 is dense in J�� Let Ds denote a disk inside W s�x

with x � Ds and such that ��jW s�x���D

s
 � �� By 
BS��� d�n
f�nDs� converges to c��

as n��� with
c � ��jW s�x��D

s
�

By Lemma ��� �in the �stable� setting
 c � ��
Now let U be an open set with U �J� �� �� Thus �� U �� �� and so �f�nDs
�U �� �

for all n greater than some large N � It follows that

f�nW s�x
 � U �W s�f�nx
 � U �� ��

Let SN � fx � R � W s�f�nx
 � U �� � for n 
 Ng� Clearly� S� � S� � � � �� and by the
previous remark

S
SN � R� Further� fSN � SN��� and since f is ergodic� each SN has

measure � or �� Thus it follows that S� has full measure� which completes the proof�

Remark� If p is a �periodic
 saddle point� then the average � of point masses over the orbit
of p is a hyperbolic measure� Thus Theorem � of 
BS�� is a consequence of Proposition
����

x�� The unique measure of maximal entropy

The goal of this section is to prove the following Uniqueness Theorem� Our approach is
reminiscent of the proof of the uniqueness theorem for rational endomorphisms of C given
in 
EL� and also of Ledrappier�s proof of the �Variational Principle� for absolutely continu�
ous invariant measures 
Le�� An important consequence of the proof is that the conditional
projective measure class of � on the unstable foliation is induced by the current ��� At
the end of the section we will derive estimates of Hausdor� dimension and characteristic
exponents�

Theorem ���� The measure � is the unique measure of maximal entropy�

Note that this result gives a characterization � in terms of topological dynamics which
makes no reference to potential theory�

By Theorem ��� and the comment preceeding it� there is an an ergodic measure � of
maximal entropy� h��f
 � log d� We are going to show that � � � which yields Theorem
���� In fact� this gives an alternative proof that � is a measure of maximal entropy� which
was originally proved in 
BS�� �yet another approach is outlined in x��
�

By the Corollary of the Margulis�Ruelle inequality� � has two non�zero characteristic
exponents of opposite signs� �s � � and �u � �� So� we can consider the complex one
dimensional unstable foliation and the projective measure class ���jWu�x

 on its leaves
�see Section ���
� On the other hand� we can consider measures ��jWu�x� induced by
the current �� �see Section ���
� For an open set B � Wu�x
� we will use the notation
���B
 �� ��jWu�x��B
�

��



Proposition ���� If � is a measure of maximal entropy then for � almost all x� the
conditional projective measure class ���jWu�x

 is induced by the current ���

Proof of Proposition ���� The Jacobian Ju�� of f with respect to the family of unstable

slices of �� is equal to log d since for any B �Wu�x
 we have

���fB
 � f����B
 � d

Let 	u be the unstable Pesin partition for �� By Lemma ��� ��x
 � ���	u�x

 � �� So�
we can normalize the above family of measures in order to get probability measures on the
Pesin pieces�


�Bj	u�x

 � ���B

�
��x
�

Then the Jacobian Ju� is multiplicatively cohomologous to the Jacobian J
u
�� � that is�

Ju� �x
 � d
��x


��fx

�

So� log Ju� �x
 is �additively
 cohomologous to log d�

log Ju� �x
� log d � log ��x
� log ��fx
�

This formula and the following property of the function ��x
 imply that log Ju� �x
 is
positive�

Claim� ��f�x

 � d��x
�
By the increasing property of 	u� we have �f��	u
�x
 � 	u�x
� So

����f��	u
�x

 � ���	u�x

�

On the other hand f��f��	u
�x

 � 	u�f�x

� So

���	u�f�x


 � d����f��	u
�x

�

Thus ���	u�f�x


 � d���	u�x

 as was to be shown�
Hence log Ju� 
 �� and Lemma ��� yields

Z
log Ju� �x
��x
 � log d�

or

�

Z
log q�x
��x
 � log d ����


where q�x
 is the 
�measure of �f��	
�x
�
On the other hand� set p�x
 � ��f��	u�fx
j	u�x

� Then by ����
 and Theorem ���

�

Z
log p�x
��x
 � h��f� 	

u
 � h��f
 � log d� ����


��



From ����
 and ����
 we conclude

Z
log

q�x


p�x

��x
 � ��

But Z
q�x


p�x

��x
 �

Z
X

�
� X
�u�y��f���u

q�z


p�z

p�z


�
A ��y
 � ��

By concavity of log� we get q�x
 � p�x
 almost everywhere� Thus conditional measures
coincide on the partition f��	uj	u�y
 for � almost all y� The same argument applied to
fn shows that they coincide on f�n	uj	u�y
� Since

��
n��

f�n	u � �

we conclude that ���j	u�y

 � 
j	u�y
 � ����j	u�y

�
Since fn	u is also the Pesin partition for any n� the conditional measures of � and ��

coincide on it� Passing to the limit as n��� we get the required agreement of � and ���

Proof of Theorem ���� By the ergodic theorem ��almost every point p is equidistributed
with respect to �� that is

lim
n��

�

n

n��X
i��

��fn�p

 �

Z
�� ����


holds for any continuous function � on C� with compact support� Let �x � ���j	u�x


denote the conditional measure on the Pesin piece 	u�x
� Then for almost every x we
have that �x�almost every point in 	

u�x
 is equidistributed with respect to �� By bounded
convergence we can average ����
 over 	u�x
�

Z
�� � lim

n��

Z
�

n

n��X
i��

��f i�p

�x�p


� lim
n��

Z
��p
�

�

n

n��X
i��

f i���x

�p


Since this holds for any continuous function we have�

�

n

n��X
i��

f i���x
� � ����


in the weak topology of measures�

��



On the other hand� let ��x � ����j	u�x

 denote the normalized measure ��j	u�x
�
Then it follows from 
BS�� that

f i���
�
x 
� �� ����


To see this we observe that the proof of Lemma ��� in 
BS�� is still valid if L is a continuous
function and S is a current for which the conclusion of Theorem ��� holds� We take L � G�

and S to be the current of integration of the set 	u�x
� In the notation of 
BS�� we have
 n � �� and �n � dn��x � The conclusion of Theorem ��� holds for S by the third remark
following the proof of Theorem ��� �cf� example following Corollary ���
�

Since �x � ��x by Proposition ���� properties ����
 and ����
 yield � � �� This
completes the proof of the theorem�

Corollary ���� The conditional projective measure class ���jWu�x

 is induced by the
current ���

Remark� The Jacobian of f with respect to the conditional measures on the unstable
manifolds is thus d� This can be considered as the natural analogue of the balanced
property of the Brolin measure�

It is known that for a polynomial endomorphism P of the complex plane the char�
acteristic exponent � of the measure of maximal entropy �which coincides with harmonic
measure of the Julia set J�P 

 is greater or equal than log d� Moreover� � � log d if and
only if J�P 
 is connected �see 
Man�� 
Pr�
� Here we discuss related properties of polynomial
automorphisms of C��

It follows from the Lai Sang Young formula �see x���
 and Corollary ��� that for � a�e�
x�

HD���jWu�x�
 �
h��f


j�sj
�
log d

j�sj
� ����


Let us consider for a moment the dissipative case� i�e� jaj � �� where a is the �constant

Jacobian determinant of f � We have j�sj � �u � log jaj� It was shown in 
BS�� that
�u 
 log d� so in this case� Young�s formula gives

HD���jW s�x�
 � � ����


for � a�e� x� By Corollary ��� and the fact that the conditional measures are in the measure
class of harmonic measure� we have�

Corollary ���� If f is dissipative� then for � a�e� x the harmonic measure of W s�x
� J�

inside W s�x
 has Hausdor� dimension strictly less than ��

In the following result� we relate the topological property of the connectedness of J
to the rate of expansion of f �

Theorem ���� If the map f is hyperbolic� and if J is connected� then �u � log d and
�s � log jaj � log d�

Proof� Since f is hyperbolic� J has a local product structure at any point p� That is� there
are neighborhoods V s of p in W s�p
 and V u in Wu�p
 such that �V s � J�
 � �V u � J�

is homeomorphic to a neighborhood of p in J �

��



We claim that eitherW s�p
�J� orWu�p
�J� has the property� There is a neighbor�
hood U of p such that every connected component ofW s�p
�J��U �resp�Wu�p
�J��U

is noncompact� For otherwise there are compact connected components which are arbi�
trarily small and arbitrarily close to p inside both W s�p
� J� and Wu�p
� J�� Thus the
product neighborhood of p in J contains arbitrarily small compact� connected components�
But in this case� J is not connected� which proves the claim�

Thus we may assume that Wu�p
 � J� has this property� If q � J is close to p�
then by the local product structure� Wu�q
 � J� also has this property� It follows that
U � Wu�q
 � J� is simply connected� By a Theorem of Makarov 
Mak�� the harmonic
measure of Wu�q
 � J� has Hausdor� dimension �� Now since this holds for a set of q
of positive measure� we conclude from the formula of Young� with the stable manifolds
replaced by the unstable manifolds� that �u � log d�

x�� Product Structure of �

In this Section we will show that there are sets ��Pesin boxes�
 on which � has a local
product strucure� and the union of these sets has full � measure� The main step in doing
this is to study the holonomy map along the stable�unstable manifolds and to show that
the conditional measures of � are preserved by the holonomy map�

We consider a familyM of complex manifolds� A complex manifold D is a transversal
toM if D intersects each M � M in a unique point� and this intersection is transverse�
Let D� and D� be two transversals toM� and set

Xi �
�

M�M

Di �M

for i � �� �� We de	ne the holonomy map

� �� ��D�� D��M
 � X� � X�

as ��x�
 �M�x�
 �D�� where M�x�
 � M is the unique manifold containing x��
Throughout this Section we will consider the case where M is a family of stable �or

unstable
 disks given by the Pesin theory �see the discussion in x�
� If r � � is su�ciently
small� and if x � R satis	es r�x
 
 r� then each stable �or unstable
 disk W s

r �x
 �or
Wu
r �x

 is given as a graph over the r�ball in the tangent space E

s�x
 �or Eu�x

� More
generally� we will work with complex disks that are graphs over Eu

r �x
� i�e� which have the
form

M � f�z� ��z

 � z � Eu
r �x
� ��z
 � Es

r�x
g�

We will say that two such graphs are C� close if their corresponding graphing functions �
are C� close�

For any subset F � fx � R � r�x
 
 rg� we write

W
s�u
loc �F 
 �W s�u

r �F 
 �
�
x�F

W s�u
r �x
 and Fs�u � fW s�u

r �x
 � x � Fg� ����


��



For � � � � � and for x� � R with r�x�
 
 r� we let F � fx � R � B�x�� �r
 � r�x
 
 rg�
We may choose � su�ciently small that if D� and D� be disks such that Dj is within �r
�in the C� topology
 of Wu

r �xj
 for some xj � F � then Dj is transversal to the family Fs

for j � �� �� It follows that the holonomy map ��D�� D��Fs
 is de	ned�
For m� � �� r� � r�� � �� and x � R such that r�x
 
 r� we consider the property

��jWu
r �x�

�Wu
r�
�x

 
 m�� ����


For C �� we also consider the properties

dist�fn�x
� fn�y

 � Ce�n
 for n 
 � and y �W s
r �x
 ����


dist�f�n�x
� f�n�y

 � Ce�n
 for n 
 � and y �Wu
r �x
 ����


Choosing m� � � su�ciently small and C �� su�ciently large� we have

��J �Q
 � � ����


where
Q � fx � R � r�x
 
 r� and ����
� ����
� ����
 holdg�

Now let
S � fx � J � fn�x
 � Q for in	nitely many ng� ����


By the Ergodic Theorem� ��S
 � �� In the sequel� we let Q denote the set Q � S� which
di�ers from the original Q by a set of measure zero� Now let us 	x x� � Q and use the
following notation�

F � Q � B�x�� �r
� ����


let D � Wu
r �x�
� and let D

� be a transversal which is within C��distance �r of D� The
domain of the holonomy map ��D�D��Fs
 is given by

X � D �W s
r �F 


and the range is
X � � D� �W s

r �F 
�

We recall that the construction of the Pesin unstable manifolds �as given� for instance�
in 
PS�
 may be carried out by applying the graph transform� starting with disks� called
�trial disks�� that are transverse to the stable direction� It is shown that these trial disks�
under forward iteration� approach the stable manifolds in a semi�global C� sense� Now let
us consider a large n such that fnx� � Q� We de	ne y� � D� �W s

r �x�
 and view D� as
a trial disk for the unstable manifold D � Wu

r �x�
� Let D
�
n denote the portion of f

nD�

which can be represented as a graph over Eu
r �f

nx�
 and which contains f
ny�� By 
PS�

Corollary ����� D�
n converges to Dn � Wu

r �f
nx�
 in the C

� topology� and the distance is
bounded by Ce�n
� Let us de	ne

Xn � �f
nX
 �Wu

�r�f
nx�
�

��



Evidently� f�nXn � X�

For each x � fnXn� the local stable manifoldW
s
r�fnx��f

nx
 intersects D�
n transversally

because r�fnx
 
 �� � �
�nr� and the angle between W s
r�fnx��f

nx
 and Dn is at least

���� � �
�n� whereas D�
n is exponentially close to Dn� Thus D

�
n and Dn are transversals

to the family Fn � fW s
r�fnx��f

nx
 � x � Xng� and so the holonomy

�n �� ��Dn� D
�
n�Fn
 ����


is de	ned�

Lemma ���� If n is su�ciently large� and fnx � Q� then �n�f
nx
 � fn��x
 for all

x � Xn� Given r� � �r� n may be taken su�ciently large that for a � f�nXn

�n�Xn �B�f
na� r� � �Ce

�n


 � ��nXn
 � B�f
n��a
� r�
 �

��n�Xn � B�f
na� r� � �Ce

�n


�

Proof� For x � Xn� let y � ��x
� and let � be a path inside W s
r �x
 connecting x to y�

Then fn� lies inside fnW s
r �x
� Further� by ����
� f

n� has diameter less than Ce�n
� and
thus fn� � W s

r�fnx��f
nx
� Since fn� connects fnx to fny inside W s

r �f
nx
� it follows

that �n�f
nx
 � fny� This proves the 	rst assertion� The required inclusions are now a

consequence of ����
�

Remark� Sometimes abusing rigour we will write ��fn � fn�� and say that fn commutes
with holonomy� Let us use the notation y� � ��x�
� xn � fn�x�
� and yn � fn�y�
�

Lemma ���� Let f
ng be a sequence of numbers decreasing to zero� Let us pass to a
subseqence n � nj for which xn � Q� and let D�

n be a sequence of complex disks such that
distC��Dn� D

�
n
 � 
n� Then there exists � with r��� � � � r� such that

lim
n��

� ���jD�nB�yn� �� �Ce�n

� ��jDn
B�xn� �� �Ce

�n


�
� ��

where lim� means that the limit is taken through a further subsequence�

Proof� Without loss of generality� we may assume that Q is compact� and a subsequence
of fxng converges to x � Q� Thus the unstable disks Dn converge in C

� to D � Wu
r �x
�

Now choose r��� � � � r� such that �
�jD puts no mass on �B�x� �
� The Lemma then

follows because the measures ��jD�n converge weakly to �
�jD�

Lemma ���� If� in addition to the hypotheses of Lemma ���� we require that xn � Q�
then

lim
n��

���jD�nB�yn� �� �Ce
�n



	
��jDn

B�xn� �� �Ce
�n




��
� ��

Proof� Lemma ��� follows from Lemma ��� by property ����
�

��



Lemma ���� Let F � Q� D �Wu
r �x�
� andD

� be as above� With the notation � �� ��jD�
�� � ��jD� � and � � ��D�D��Fs
� we have

����jX
 � ��jX� � ����


Proof� It will su�ce to show that ����
 holds for X replaced by X �B�x� �
 for some small
� � �� Then we can add over a partition of X to obtain ����
� We will de	ne two coverings
C� of X and a covering C� of X �� The coverings will have the property that if a � X� there
are elements C��a
 � C� and C ����a

 � C� of arbitrarily small size containing a such that

�C��a
 � C ����a

 � �C��a
� �����


For a � X we may choose n arbitrarily large such that fna � Q� We de	ne

C�n �a
 � f�n�Wu
r �f

na
 �B�fna� �� �Ce�n




with � as in Lemmas ��� and ���� In analogy with notation used earlier in this Section�
we let D�

n denote the portion of f
nD� which lies as a graph over Eu

r �f
na�
� a� � ��a
� and

which contains fn a�� Now we de	ne

C �n�a
�
 � f�n�Dn � B�f

na�� �

�

The inclusions in �����
 are a consequence of Lemma ���� By Lemma ���� we have

lim
n��

� ��C
�
n �a



���C �n�a
�


� �� �����


By the over!owing property of the unstable disks� f�n � Wu
r �f

na
 � Wu
r �a
� Since

Wu
r is a graph� we may identify it with the disk fj�j � rg� and thus we may consider

h��
 �� f�n�r�
 as a univalent mapping of the disk fj�j � �g to C� By the Koebe
Distortion Theorem� ����f

����


f ���


���� � �� � r��r

	

��� r��r



for j�j � r��r� The image of the disk fj�j � �g is a convex set if ��� r��r

	��� r��r


�
 �
���
��� We conclude� then� since C�n �a
 is the image of such a disk� and since � � r� � r���
that C�n �a
 is convex� Similarly� C

��a�
 is convex�
Now let E � X be a compact subset� and let E� � �E� For � � �� choose an open set

O �Wu
r �x
 containing E such that

��O
 � ��E
 � ��

The coverings C� and C� are 	ne in the sense that any point is contained in an element
of arbitrarily small diameter� Since the elements of the cover are convex� we may apply

��



the Covering Theorem of A�P� Morse 
Mo� to conclude that there is a disjointed family
fC �j � j � �� �� � � �g � C� such that

��

�
�E� �

��
j��

C �j

�
A � �� �����


Each C �j is of the form C �nj ���aj

 for some aj and nj � The corresponding sets C
�
j in

the cover C� satisfy C�j � ����C �j
 by �����
 and are thus pairwise disjoint� Since �
��

is continuous� and since the diameters of the C �j may be taken arbitrarily small� we may

assume that C�j � O� Thus

��O
 

�X
j��

��C�j 
�

Since we may take the diameters arbitrarily small� it follows from �����
 that

��O
 
 �� � �
��
�X
j��

���C �j
�

By �����
� then� ��O
 
 ���E�
� It follows that

��E
 
 ���E�
�

Now if we cover E by a disjointed subcover of C� and repeat the previous argument�
we conclude that

��E
 � ���E�
�

Thus ��E
 � ���E�
� and this completes the proof�

Theorem ���� Let F � Q� and Fs be as above� Let D�� D� be two transversals� and
set �j �� ��jDj

for j � �� �� Xj � Dj �W s
r �F 
� Then the holonomy � �� ��D�� D��F

s

satis�es

�����jX�

 � ��jX�

�

Proof� We may assume that for each x� � X�� there is a point z � Q such that x�� ��z
 �
W s
�r�x

�
� For otherwise we may apply fn and use ����
 and the fact that fn � � � � � fn�
As in Lemma ��� we work locally on X�� so we may assume thatW

u
r �z
 is a transversal

to Fs� Let us de	ne �� � ��D��W
u
r �z
�F

s
 and �� � ��Wu
r �z
� D��Fs
� By Lemma ����

then� �� � �� � � takes ��jX�
to ��jX�

�

Let F � Q denote a compact subset� and let W s
r �F 
� F

s�u be as in ����
� If the
diameter � of F is su�ciently small� then we may assume that F is contained in a ��ball
about the origin� and that every leaf W s

r �x
 �resp� W
s
r �x

 is a graph over the horizontal

�resp� vertical
 coordinate axis� Further� for x � F �W s
r �x
 is transversal to F

u� andWu
r �x


is transversal to Fs� Since the holonomy induces a homeomorphism on transversals� there
is a 	xed compact set Pu which is homeomorphic to Wu

r �x
 � W s
r �F 
 for all x � F �

��



Similarly� there is a 	xed P s which is homeomorphic to W s
r �x
�W

u
r �F 
 for all x � F � We

call the set P �� W s
r �F 
 �Wu

r �F 
 the Pesin box generated by F � and we note that P is
naturally homeomorphic to P s � Pu� It is evident that� up to a set of measure zero� R is
a countable union of �not necessarily disjoint
 Pesin boxes�

If P is a Pesin box� then the partitions 	s�u of P � whose elements are W
s�u
r �x
 � P

are measurable partitions of P � We let c �� ��P 
 so that � �� c��� "P is a probability
measure� It follows from Theorem ��� that the conditional measures of � are given by

���j	s�x

 � cs�x
����jW s
r �x�

P

where cs�x
 is the total mass of ��jW s
r �x�

P � and a similar expression for ���j	u�x

� By
Theorem ��� we see that cs � cs�x
 is constant for x � F � In fact�

Theorem ���� If P is a Pesin box as above� then the holonomy maps along Fs�u preserve
the conditional measures of � � c��� P �

To explore the product structure further� we let Es�u � P s�u be Borel sets� For x � F �
we may de	ne the measures �s�u on P s�u to be the measures induced by the conditional
measures cs�u���j	s�u�x

 via the homeomorphism between 	s�u and P s�u� By Theorem
���� the measures �s�u are independent of the point x � F � By properties �ii
 and �iii
 of
conditional measures� we have

��Es � Pu
 �

Z
x� �P

��Esj	s�x

��x


�

Z
x� �P

�cs
���s�Es
 � �cs
���s�Es
�

Similarly� we have

��Es � Eu
 �

Z
x�P s	Eu

��Esj	s�x

��x


�

Z
x�P s	Eu

�cs
���s�Es


� �cs
���s�Es
��P s �Eu
 � �cscu
���s�Es
�u�Eu
�

Thus we have the following�

Theorem ���� If P is a Pesin box� then there are measures �s�u on P s�u such that
� P � �s � �u has the structure of a product measure�

Corollary ���� The measure � is Bernoulli�

Proof� D� Ornstein and B� Weiss discuss invariant measures with nonzero Lyapunov ex�
ponents in 
OW� p� ���� Given such a measure which is mixing with respect to f � they
remark that it is Bernoulli if it is locally equivalent to a product measure with respect to
the stable and unstable manifolds� By Theorem ���� then� we conclude that � is Bernoulli�

��



Since the entropy� log d� depends only on the degree of f � and the entropy is the unique
invariant for Bernoulli measures� it follows that any two polynomial automorphisms with
the same degree are measurably conjugate with respect to their equilibrium measures�

x�� Uniformly Laminar Currents

Let # � Cn be an open set� and let Dp�q denote the smooth �p� q
�forms � �
P

�IJdz
I �

dzJ � jIj � p� jJ j � q� with compact support in #� The dual space Dp�q of D
p�q is the set

of �p� q
�currents or currents of bidimension �p� q
� A current of dimension � acts on test
functions and may thus be considered as a distribution� Cn itself may be identi	ed with the
�n�dimensional current 
Cn�� which acts on an �n� n
 form � by integration� 
Cn���
 �

R
��

If T is a �p�� q�
�current� and � is a smooth �p�� q�
�form� then the contraction T �� de	ned
by

�T �
��
 � T �� � �


is a �p� � p�� q� � q�
�current� The space An�p�n�q of smooth �n� p� n� q
 forms on Cn

may be identi	ed with a set of currents of bidimension �p� q
 via the mapping

An�p�n�q � � 	� 
Cn� � � Dp�q�

The mass norm of a current T is given by

M
T � � sup
j
j��

jT ��
j�

If T is an ��� �
 current� then the mass norm is 	nite if and only if T is represented as a
distribution by a 	nite� signed Borel measure �� and M
T � is the total variation of �� A
current T is representable by integration if �T has 	nite mass norm for any test function
� on #� If T is representable by integration� then there is a Borel measurable function t
from # to the �p� q
�vectors �the dual of the �p� q
�forms
 and a Borel measure � on # such
that T � t� holds in the sense that

T ��
 �

Z
x��

h��x
� t�x
i��x
�

We will require that jtj� � � at � a�e� point� �j � j� denotes the norm on �p� q
�vectors which
is dual to the norm on �p� q
 forms�
 In this case t and � are uniquely determined� and
� � jT j is the variation measure associated with the current T � We will call t� the polar
representation of T � If T is representable by integration� and if S � # is a Borel subset�
then we will use the notation

T S � t� S

for contraction� which coincides with restriction in this case�
A �p� p
�current T is positive if T �i�� � �� � � � � � i�p � �p
 
 � for all ��� �
 forms

�j �
P

k �
k
j dzk with compact support� This de	nition of positivity is analogous to the

positivity of a distribution� And as in the case of distributions� a positive current is
representable by integration� Further� if we let � �

P
i
�dzj � dzj denote the standard

��



K$ahler form on Cn� then for a positive �p� p
 current T � the contraction T �p�p% is a
Borel measure� and the mass norm M
T � is just the total variation of this measure�

LetM be a k�dimensional complex manifold of #� If eitherM is locally closed �without
boundary
 or if M is a smooth submanifold�with�boundary �or more generally� if the area
of M is locally 	nite
� then the pairing with test �k� k
�forms given by


M ���
 �

Z
M

�

de	nes 
M � as a current of bidimension �k� k
 on #� We call 
M � the current of integration
associated to M � The mass norm of 
M � is the Euclidean �k�dimensional area of M � It is
evident that 
M � is representable by integration� and


M � � tM�M � ����


where tM is the �k�vector of norm � de	ning the tangent space to M �a vector which is
uniquely de	ned� since M is an oriented submanifold of Cn
� and �M � H�k M is the
Hausdor� �k�dimensional measure restricted to M � The boundary �T of a current T is
de	ned by

�T ��
 � T �d�
�

If �M is regular� we may apply Stokes� theorem to obtain �
M ��	
 �
R
�M

	� We say that
T is closed if �T � �� and so 
M � is closed if M has no boundary�

More generally� if V is a �closed
 subvariety of #� then the set Reg�V 
 of regular
points �where V is locally a manifold
 are a dense open set� and it may be shown that

V ���
 �

R
Reg�V � � de	nes a positive� closed current� The device of studying the current

of integration 
V � has been useful in the study of metric properties of V � such as the area
growth� For instance� the fact that 
V � is a current at all corresponds to the fact that the
area of 
Reg�V 
� is locally bounded near singular points� And �
V � � � holds because the
amount of mass in a neighborhood of the singular set is small�

It is useful to apply similar considerations to the stable and unstable manifolds� How�
ever� since W s�x
 �resp� Wu�x

 is often dense in Ws �resp� Wu
 an individual stable
manifold does not de	ne a current of integration� since the amount of mass is not locally
bounded� Thus we wish to consider the whole stable and unstable laminations as currents�
as was suggested by Ruelle and Sullivan 
RS� and Sullivan 
S��

Let us consider a family of graphs of analytic functions fa � � � �� a � �� We
assume that the graphs &a � f�x� fa�x

 � x � �g are pairwise disjoint� i�e� if a� �� a��
then fa��x
 �� fa��x
 for all x � �� We denote the set of graphs as G � f&a � a � Ag�
Without loss of generality� we may take the parameter space to be a closed subset of the
unit disk� and we may take a � f��
� Further� since the graphs are disjoint� it follows that
a 	� fa is continuous�

A current T on �� is uniformly laminar if it has the form

T �

Z
a�A

��a
 
&a� ����


��



where � is a positive measure on A� the parameter space for the set G of graphs� The
action on a ����
 form � is given by

T ��
 �

Z
A

��a


Z

a

��

We say that a current S is locally uniformly laminar on an open set # if for each p � #
there is a coordinate neighborhood equivalent to �� on which S is uniformly laminar� The
currents of integration 
&a� are positive� closed currents on �

�� so T � too� is positive and
closed�

For a transversal M to the family G� the set of all intersection points� AM � could
equally well be taken as a parameter space� Further� letM� andM� be transversals� Then
the holonomy map �M��M�

� AM�
� AM�

gives a homeomorphism between parameter
spaces� For a point p � C�� we let 
p� denote the ��current which puts a unit mass at the
point p� For each transversal� the current �measure
 
&a �M � depends continuously on a�
We de	ne the restriction of T to M by

T jM �

Z
A

��a

&a �M �� ����


which is a measure onM � IfM� andM� are transversals� then the restrictions are preserved
by the holonomy map � � �M��M�

� i�e�

��T jM�
� T jM�

� ����


A family of measures fT jMg on transversals induces a transversal measure on Ws if it
satis	es ����
� T may be reconstructed from any transversal �or� equivalently� from any
family of transversal measures
 as

T �

Z
a��AM

T jM �a
�

&a� �� ����


Equations ����
 and ����
 are trivial if T � 
&a� is a current of integration� and the general
case is obtained by integrating with respect to �� Let h be a holomorphic function on ��

such that M � fh � �g and dh �� � on M � Then log jhj is locally integrable on each &a�
and

ddc log jhj
&a� � 
M � &a�

holds in the sense of currents� Thus
�

��
T jM � ddc�log jhjT 
�

We may ask� more generally� which positive� closed currents on C� may be represented
in the form

T �

Z
a�A


�a
 
Va� ����


where A � a 	� Va is a measurable family of varieties in C
�� and 
 is a Borel measure on

A� This is closely related to the Choquet representation of T as an integral over extremal
rays on the cone of positive� closed currents� It is known that an irreducible subvariety
Va � C� generates an extreme ray �see 
D� and 
L�
� On the other hand� not all extremal
rays are of the form c
V �� This will also be a consequence of the examples below�

��



Examples� Let �x� y
 denote coordinates on C�� and de	ne

u� � log
� j�x� y
j � maxf��

�

�
log�jxj� � jyj�
g

u� � maxflog jxj� log jyj� �g�

For � � C�� we let L� denote the complex line through � and �� and we set L�
� �

L� � �C
� �B

�

� Then we may compute

T� �� ddcu� � ��

Z
��P�


L�
� ����
 � S��

where � is normalized spherical measure on P�� and S� is supported on �B
�� Similarly�

T� �� ddcu� �

Z ��

�


L�
���ei��

� d� �

Z ��

�


x � ei�� jyj � �� d�

�

Z ��

�


y � ei�� jxj � �� d� � S�

where S� is supported on the ��torus fjxj � jyj � �g�
It is evident� then� that T� is locally uniformly laminar on C

���B�� and T� is locally
uniformly laminar on C� � fjxj � jyj � �g�

Now if T � t� is any positive current satisfying T � T�� then at � a�e� point � �

C� � B
�
� the ����
 vector t��
 must be tangent to L�� If� in addition� T has the form

����
� then it follows that for 
 a�e� a the variety Va must be contained in L� for some ��
Since Va is a subvariety� we must have Va � L�� On the other hand� since T� � � on B

��
it follows that T � � on C� � �B�� But now for 
 a�e� a� we must have Va � �B�� which
is impossible� so T � �� A similar argument shows that if � � T � T� and T has the form
����
 then T � ��

These examples then show that� There are extreme rays in the cone of positive� closed
currents which are not generated by currents of integration over varieties� This observation
was made by Demailly in 
D�� using the current T� written in a somewhat di�erent form�

Sullivan conjectured in 
S� that a positive� closed current might be written locally in the
form ����
 on a dense� open set� This cannot be the case� however� because of the following
examples� which are taken from 
BT��� For a number r � � let �r�z
 � rz denote dilation�
and for a point a � C� let �a�z
 � z � a denote translation� Let frj � j � �� �� �� � � �g be
dense in R�� and let faj � j � �� �� �� � � �g be dense in C�� Then the currents

"T� �
X

��j�rj�T� ����


"T� �
X

��j�aj�T� ����


are positive and closed� and both have the property of being nowhere locally uniformly
laminar� From this it may be shown that neither current can be represented in the form
����
 on any open set�

��



We note that the manifolds of "T� intersect correctly in the sense of x�� although "T� is
not a weakly laminar current� even locally �cf� Proposition ���
� In fact� if Lj is uniformly
laminar on an open set Uj � and if

P�
j�� Lj � T�� then in fact

P�
j�� Lj � T� � S� �with a

similar property for T�
� Thus

M

X

Lj � �M
T���M
S���

and so T� and T� cannot be approximated from below by uniformly laminar currents� even
in the sense of measure�

Remark� Let us observe that it is possible to de	ne the wedge products "Tj � "Tj for j � �� �
�see x��
 We do not know of an example as above with the additional property that
"Tj � "Tj � ��

x�� Laminar Currents

The currents that arise in dynamical systems often derive their structure from the stable
and unstable manifolds� The examples in x� show that the category of positive� closed
currents is too general for the dynamical context� Stable �or unstable
 manifolds have
no self�intersections and are pirwise disjoint� so a represtentation ����
 should involve the
additional requirement that the varieties V be pairwise disjoint� In fact� the context in
which currents have been constructed from dynamical systems has been the uniformly
hyperbolic case� and the currents obtained in this case are uniformly hyperbolic� In the
case of a hyperbolic measure� this uniformity is lost� and so we turn to the study of laminar
currents� The philosophy behind the Sullivan conjecture is substantiated by Proposition
��� below� which says� A laminar current is uniformly laminar outside a set of small
measure�

We say that two manifolds M� and M� intersect correctly if either M� �M� � � or
M� �M� is an open subset of Mj for j � �� �� i�e� they intersect in a set of codimension ��
We consider a measurable set A � C and a measurable function f � ��A� C� such that
f��� a
 is an analytic injection in � for 	xed a� We assume that any pair of image disks

Ma � ff��� a
 � � � �g

intersects correctly� Let � denote a ��	nite measure on A� If

Z
A

��a
M
Ma � U � �� ����


for all relatively compact open sets U � C�� then

T �

Z
a�A

��a
 
Ma�

de	nes a positive current on C�� A current obtained in this way is called a weakly laminar

current onC�� The current T is laminar if the disksMa are pairwise disjoint� With suitable
modi	cations� we can also de	ne �weakly
 laminar currents on an open set # � C�� Thus

��



if U is open� then T U is again �weakly
 laminar� We will say that T is represented by the
data �A�M� �
� We note that for 	xed a � A� the function � 	� f��� a
 in the de	nition
of T is far from unique� If we 	x 
Ma�� then we can replace f��� a
 by any holomorphic
imbedding f � � ��Ma such that Ma � f ���
 has zero area�

The parametrizing function f in the de	nition is not� strictly speaking� necessary� If
we consider "M ��

S
M�MM be a total space� thenM is a partition of "M � and A � "M�M

is the quotient� The essential point is the requirement that this partition be measurable�
We say that the familiesM� andM� intersect correctly if all of the component manifolds
intersect correctly�

A Borel set E is a carrier for T if T E � T � or equivalently� E carries all the mass
of jT j� A carrier for a �weakly
 laminar current may be taken to be a union of complex
disks�

Lemma ���� Let Tj � j � �� �� �� � � � be a sequence of weakly laminar currents with rep�
resentations �Aj �Mj� �j
� If the Mj intersect correctly� and if for every bounded open
U

�X
j��

M
Tj U � ��� ����


then
P

Tj is a weakly laminar current� If the Tj are laminar with pairwise disjoint carriers�
and if �
��� holds� then

P
Tj is laminar�

Proof� We letM �resp� A
 denote the disjoint union of theMj �resp� Aj
� and we de	ne
the measure � �

P
�j by setting � Aj � �j � By ����
� it follows that ����
 holds� so

�A�M� �
 represents a positive current� which must coincide with
P

Tj �

Example� Weakly laminar currents are well behaved with respect to taking summations�
but for our applications we will need to take the supremum of an increasing family of
laminar currents� To understand some of the technical points of the sequel� it may be
helpful to note that although T� and T� are uniformly laminar currents� and T� � T�� it
may happen that the positive current T� � T� is not weakly laminar� Similarly� T� � T�
and max�T�� �T�
 may fail to be laminar� For a simple example� consider T� � 
M�� �
T� � 
M��� where M� �M� � C� but M� � �M� has positive area�

Let us discuss the polar representation T � t� of a laminar current� From ����
 we
have 
M � � tMH� M � Thus the underlying measure is

� �

Z
a�A

��a
H� Ma � jT j� ����


and the set
S
a�AMa carries full measure for �� By ����
� ��E
 � � holds for a Borel set

E if and only if Area�Ma�E
 � � for � a�e� a� Since the manifoldsMa intersect correctly�
it follows that for � a�e� x �

S
a�AMa� the ��vector is t�x
 � tMa

�x
� Thus t is a simple
� vector at � a�e� point� In other words� there are vectors t� and t� such that t � t� � t��
The 	eld of ��vectors t and � depend only on T and are independent of the representation
used to de	ne them�

��



We let 	 denote a family of ��dimensional complex manifolds � � C� such that each
� � 	 de	nes a current of integration 
�� with 	nite mass norm� We will say that 	 is a
strati�ed carrier for a weakly laminar current T if
�i
 E ��

S
��� � is a Borel set�

�ii
 	 is a measurable partition of E�
�iii
 For � a�e� M � M there is a countable family f�ig � 	 such that M �

S
i �i has zero

area�
If T is laminar� then M is a strati	ed carrier� It is a consequence of ����
 that if 	

satis	es �i
� �ii
� and �iii
� then E is a carrier for T � In Corollary ��� it will be shown that
condition �iii
 is in fact independent of the choice of representation �A�M� �
� We note
that the main di�erence betweenM and 	 is that the complex manifolds in 	 are disjoint�
We will say that two strati	ed carriers intersect correctly if the complex manifolds in the
strati	cations intersect correctly� We say that a representation �A�M� �
 is subordinate to
	 if for � a�e� a � A there exists � � 	 with Ma � ��

The point of considering a strati	ed carrier is as follows� Let us suppose that a laminar
current T has a representation �A�M� �
 which is subordinate to a strati	ed carrier 	� �It
will be shown in Lemma ��� that any representation may be re	ned to be subordinate to
a given strati	ed carrier 	�
 For � � 	 we set A� � fa � A � Ma � �g� We may let ��
denote the measure � restricted to the �coarser
 ��algebra which is generated by 	� For ��
almost every � � 	 there is a conditional measure ���j�
 on A�� as in x�� Let us de	ne a
function on � by setting

�� ��

Z
a�A�

�Ma
��aj�
� ����


where �Ma
denotes the function which is � on the setMa and � on ��Ma� Since Ma is an

open subset of �� and since the conditional measure is positive� �� is lower semicontinuous
on �� It is immediate that

��
�� �

Z
a�A�


Ma���aj�
�

It follows from the de	ning property of the conditional measures that

T �

Z
���

��
������
� ����


This di�ers from the original representation of T as a direct integral in that the currents
involved are not locally closed� but it has the advantage that the supports may be taken
to be essentially disjoint�

Proposition ���� Let T be a weakly laminar current� Then for � � � and any bounded�
open set U � there exist uniformly laminar currents Tj with disjoint supports such that

M
h�
T �

X
Tj



U
i
� �� ����


If T is a laminar current� then there exist uniformly laminar currents T�� T�� � � � with
disjoint supports such that T �

P
Tj � Further� there is a compact K � U such that

��



M
T �U � K
� � � and T K is the �nite sum of uniformly laminar currents with
disjoint supports�

Proof� Let T have a representation �A�M� �
� Let Qn denote the decomposition of C into
squares of side ��n and vertices at the points �j� ik
��n for j� k � Z� Let ��x� y
 � x� We
may assume that the set of a � A such that ��Ma
 is a point has � measure zero� For each
a � A� we call a componentM � ofMa����Q good if �jM � �M � � Q is a homeomorphism�
We let 'Ma�Q
 be the union of all of the good components of Ma � ���Q� and we set

TQ �

Z
a�A

��a
 
 'Ma�Q
�� ����


It is immediate that X
Q�Qn

TQ � T�

Let N denote the set of every disk which arises as a good component of Ma � ���Q
for some a � A� Thus there is a measure �Q on N such that

TQ �

Z
N
�Q�N
 
N ��

We observe that if N�� N� � N � then the condition of correct intersection implies that
either N� �N� � �� or N� � N�� Thus each TQ is uniformly laminar�

We let
T ��� �

X
Q�Q�

TQ�

so that T ��� is the sum of uniformly laminar currents with disjoint carriers�

Now we suppose that T
�j�
Q have been constructed for � � j � n�� and Q � Qj � Each

T
�j�
Q is uniformly laminar� and T �j� �

P
Q T

�j�
Q is laminar� Further� T ����� � ��T �n��� � T �

Since T � T ��� � � � �� T �n��� is weakly laminar� we may let

T
�n�
Q �� �T � T ��� � � � �� T �n���
Q

be the uniformly laminar current obtained in the construction ����
�
We observe that if U � fjRexj� jRe yj� jImxj� jImyj � mg for some integer m� then

�T ��� � � � �� T �n�
 U is a 	nite sum of uniformly laminar currents with disjoint carriers�
By the construction above� the mass norm in ����
 is given by

Z
��a
Area

�
�Ma � U �

�
Q�Qn

'Ma�A


�
A �

For 	xed a � A� the area decreases to zero as n � �� so this integral tends to zero by
monotone convergence�

��



If Q � Qn� then �T
���� � � ��T �n�
 �Q�C
 is uniformly laminar� Thus the currents

in the family fTjg �� f�T ��� � � � � � T �n�
 �Q � C
 � Q � Qng are uniformly laminar
and have disjoint carriers and satisfy ����
 for n su�ciently large� If Tj is restricted to a
smaller compact inside its carrier� the supports of fTjg will be parwise disjoint�

Finally� let us observe that if T is laminar� then the carriers of T
�j�
Q are already pairwise

disjoint� and T �
P

Q�j T
�j�
Q � By subdividing the support of each T

�j�
Q into countably many

compact sets� we have the 	rst assertion� The existence of K with the required properties
is a property of Radon measures�

Remark� It follows that the currents "T� and "T� de	ned in ������
 are not locally weakly
laminar on any open set�

Lemma ���� If T�� � � � � Tk are laminar currents with representations that intersect cor�
rectly� then there exists 	 which is a strati�ed carrier for Tj for � � j � k�

Proof� The proof of this Lemma is a repetition of the proof of Proposition ��� with M
replaced byM�� � � ��Mk� To obtain a strati	ed carrier� we 	x n and Q � Qn� We use the
notation N n

Q for the set N de	ned above� the union over a � A of the set of disks which

are good components of Ma � ���Q� We let 	� �
S
Q�Q�

N �
Q� We continue inductively�

setting 	n �
S
Q�Qn N n

Q � 	n��� Finally� 	 �
S
	n has the desired properties�

Given a representation �A�M� �
 of T � we may de	ne a family of germs of complex
manifolds as follows� for x �

S
a�AMa� we let 'M�x
 be the germ of x of the manifold

Ma�x� containing x� The correspondence x 	� 'M�x
 is thus well de	ned � a�e� in terms of
the representation� By ����
 and ����
� we have

T �

Z
a�A

��a
 tMa
�Ma

�

Since the Ma overlap correctly� it follows that if �A
��M�� ��
 and �A���M��� ���
 are two

representations� then
Tx 'M

��x
 � Tx 'M
���x
 ����


holds for � a�e� x �so the germs intersect tangentially
� We now show that these germs
coincide at � a�e� point�

First we need a lemma�

Lemma ���� Let M� and M� be complex submanifolds of C� such that M� �M� � fpg�
and TpM� � TpM�� IfM

�
� is su�ciently close toM�� butM

�
��M� � �� then the intersection

M �
� �M� is nonempty� and nontangential at all intersection points�

Proof� Let k be the multiplicity of the intersection of M� and M� at p� By the continuity
of the intersection of complex manifolds� the intersection ofM �

� andM� �with multiplitity

near p is k� Thus it su�ces to show that M �

� �M� contains k distinct points near p�
Without loss of generality� we may work in a small neighborhood of p � � and assume

that fy � f�x
 � jxj � � � �g �� M� for some holomorphic function f�x
 � xk � � � � and
fjxj � � � �� y � �g �� M�� We may assume that fy � f�x
 � � � jxj � � � �g � f�g� A
manifold M �

� which is C
� close to M� is of the form fy � g�x
 � jxj � � � �g ��M �

�� The

��



hypothesis that M� �M �
� � � implies that g �� �� By the Harnack inequalities there is a

constant C� such that
C��� jg��
j � jg�x
j � C�jg��
j

for jxj � �� This implies that the higher order terms in g��
�g�x
 � � � � � � are uniformly
small� Since M �

� � fy � f�x
 � jxj � �g is given by

g��
 � f�x

g��


g�x

� xk � � � � �

and the higher order terms are uniformly bounded� this equation has k distinct solutions
near x � � for g��
 su�ciently small�

Lemma ���� Let �A��M�� ��
 and �A���M��� ���
 be two representations for the weakly
laminar current T � Then 'M ��x
 � 'M ���x
 for � a�e� x�

Proof� Let B � fx � 'M ��x
 �� 'M ���x
g� Removing a set of measure zero� we may assume
that ����
 holds at every point of B� We must show that ��B
 � �� Otherwise� we may
choose � such that � � � � ��B
 and let T �

P
T �j be the sum of uniformly laminar

currents obtained in Lemma ��� corresponding toM�� If Tj B � � for all j� then

M
h
T �

X
T �j

i

M
T B� � ��B


so it follows that T �j B �� � for some j� Now the current T � �� T �j is uniformly laminar
and has the form

T � �

Z
a��A�

���a�

&�a� �� ����


Let us set
B� �

�
a��A�

&�a� �B�

Since T � B �� �� we have

jT �j�B
 �

Z
A�
���a�
Area�&�a� � B
 � �� �����


as in ����
� It follows that Area�&�a� �B
 � � for a set of positive �
� measure� so ��B�
 � ��

Now we let T �
P

T ��j be as in Lemma ��� for � � ��B�
� As before there exists k such
that T ��k B� �� �� Now we set T �� �� T ��k � and we represent T

�� in a form analogous to ����
�
By the analogue of �����
� we know that there exists a�� such that

Area�&��a�� �B
�
 � ��

Now let b � &��a�� �B
� be a point of density with respect to area measure� thus there is

a sequence fbjg � &��a�� � B� converging to b� Since b� bj � B�� there exist a�� a�j � A� with
b � &�a� and bj � &�a�

j
� Let M� � &

�
a� � M

�
� � &

�
a�
j
� and M� � &

��
a�� � Since b � B� M� and

M� de	ne di�erent germs of complex manifolds� and we may intersect them with B�b� �
�
if necessary� to have M� �M� � fbg� Since ����
 holds at b� M�� M

�
�� and M� satisfy the

hypotheses of Lemma ���� so we conclude that all intersection points of M �
� and M� are

transversal� But bj � M �
� �M�� and the intersection at bj is tangential by ����
� By this

contradiction we conclude that ��B
 � ��

��



Corollary ���� Let �M�� ��
 and �M�� ��
 be two representations of a weakly laminar
current T � Then for �� a�e� M� � M� and �� a�e� M� � M�� M� and M� intersect
correctly�

In other words� the set of manifoldsM associated with a weakly laminar current T are
unique� up to subdivision or re	nement� We say that weakly laminar currents T � and T ��

intersect correctly if they have representations �A��M�� ��
 and �A���M��� ���
 such that the
disks of M� and M�� intersect correctly� By Corollary ���� this condition is independent
of the representationsM� andM�� chosen� Another consequence is the following�

Corollary ���� If 	 is a strati�ed carrier which satis�es condition �iii� for M�� then �iii�
holds for any other representation M��

Let �A�M� �
 be a representation of a weakly laminar current� and let 	 be a strati	ed
carrier� We will show how to subdivide the elements of M so that the representation
is subordinate to 	� We set "A � A � 	� and we de	ne a measure "� on "A by setting
"��E�f�g
 � ��E
 for any measurable E � A and any � � 	� In other words� "� � ��H�

is the product measure obtained from � and the counting measure H� on 	� We de	ne "M
by setting "M�a��� �Ma � � for any a � A and � � 	�

Lemma ���� If �A�M� �
 is a representation of T � and if 	 is a strati�ed carrier of T �
then � "A� "M� "�
 is a representation of T which is subordinate to 	�

Proof� By de	nition of "A� "M� and "�� we have

Z
�a� �A


 "M�a�"��"a
 �

Z
�a����A	�


Ma � ��"��a� �


�

Z
a�A

��a


Z
���

Ma � ��H

���


�

Z
a�A

��a

X
���


Ma � ��

�

Z
a�A

��a

Ma� � T

where the second line follows by the Fubini Theorem� and the fourth line is by �iii
 of the
de	nition of strati	ed carrier�

Since we may subdivide any representation �A�M� �
 to be subordinate to a given
strati	ed carrier 	� it follows that T may be given as a direct integral over the elements of
	� as in ����
 and ����
� This yields the following�

Lemma ���� If T is weakly laminar� and if 	 is any strati�ed carrier� then T may be
represented in terms of 	 as follows� For � � 	� there exists a lower semicontinuous
function �� 
 � on � such that 	 � � 	� �� is measurable� and

T �

Z
���

����
�
�
���

��



T is laminar if and only if �� is locally constant a�e� on f�� � �g�

The maximum� written max�T�� � � � � Tn
� of the currents T�� � � � � Tn �if it exists
 is
characterized by the properties� Tj � max�T�� � � � � Tn
 for j � �� � � � � n� and if S is any
current satisfying Tj � S� j � �� � � � � n� then max�T�� � � � � Tn
 � S�

Lemma ����� Let T�� � � � � Tn be weakly laminar currents which intersect correctly� Then
max�T�� � � � � Tn
 exists as a positive current and is weakly laminar�

Proof� By Lemmas ��� and ���� we may assume that the representations of Tj are subor�
dinate to some carrier 	� By Lemma ���

Tj �

Z
���

��j 
���
j
���


with the measurable family of lower semicontinuous functions ��j on � being given by ����
�

Let us de	ne � �� ��� � � � �� �n� � and let hj be a measurable function such that �
j
� � hj��

It follows Z
���

max�h��
�
� � � � � � hn�

�
n

�����
�

de	nes a laminar current which has the properties of max�T�� � � � � Tn
�

Lemma ����� Let T�� � � � � Tn be uniformly laminar currents which intersect correctly�
Suppose that for any Mi � Mi and Mj � Mj � Mi � �Mj has zero area in Mi� Then
max�T�� � � � � Tn
 exists as a positive current and is laminar�

Proof� The existence of max�T�� � � � � Tn
 follows from Lemma ����� Since the relative
boundaries have zero area� this current is laminar by Lemma ����

Lemma ����� Let T� � T� � � � � be an increasing sequence of weakly laminar currents
whose mass is locally bounded� Suppose that there exists 	 which is a strati�ed carrier for
all Tn� Then supn Tn exists as a positive current and is weakly laminar�

Proof� Each current Tn may be written as

Tn �

Z
��n
���

n
� ��
�

There exists a sequence of functions gn � � on 	 such that m �
P

gn�
n
� is a probability

measure� Clearly �n� � m for each n� so there exist measurable functions hn such that
�n� � hnm� Further� since the currents Tn are increasing� the functions �

�
nhn are increasing

in n for 	xed �� Thus the function

"�� �� lim
n��

��nhn

is 	nite for m a�e� � �since the Tn have locally bounded mass
 and is thus lower semicon�
tinuous� We conclude� then� that

T ��

Z
���

"��
��m��


is a geometric current� which clearly has the property of supn Tn�

��



Remark� Some of the properties of weakly laminar currents may be summarized as follows�
Let T be weakly laminar� and let S�T 
 denote the set of weakly laminar currents � � S � T �
Then the subset of S�T 
 consisting of 	nite sums of uniformly laminar currents with
disjoint supports is dense in the local mass norm �Proposition ���
� If � � � � � is lower
semicontinuous� then �S�T 
 � S�T 
 �Lemma ���
� Finally� S�T 
 is convex and closed
under countable maxima �Lemmas ��� and ����
�

x�� �� is a Laminar Current

In this section� we show that �� is laminar�� Let "D denote a ��dimensional complex
submanifold of C�� and let D � "D be a relatively compact domain with smooth boundary�
Let us suppose that

��j �D�D
 � c � � and ��j �D�D �D
 � ��

It follows by 
BS��� then� that

lim
n��

d�nf�n
D� � c��� ����


Further� by general properties of the 	ltration �see 
BS�� x��
� we may choose R �� such
that for all n ��

f�n "D � fjyj � Rg � fjyj � jxjg� ����


Let Q � C be a connected open set� For each n� we consider the connected components
M of �f�nD
 � �Q�C
 and the preimage components D� in the domain D � fn�Q�C
�
If a component D� of D is relatively compact in D� we say that D� is an island� otherwise�
it is a tongue� Let � � C� � C be the projection ��x� y
 � x� If D� is an island� we say
that it is a good island if the projection � � f�n is univalent on D��

We let Gn�Q
 denote the set of components M of �f�nD
 �Q�C which are graphs
over Q� This corresponds to the set of good islands� and each good island may be identi	ed
with the graph of analytic function � � Q� C� If we 	x a point xQ � Q� then each element
of Gn�Q
 is uniquely determined by the value ��xQ
� i�e� the intersection M � �fxQg�C
�

By ����
� the union
S
n Gn�Q
 is a normal family� and we let G�Q
 consist of all graphs

fy � ��x
 � x � Qg which are obtained as limits of sequences �n � Gn�Q
� Since f
is a di�eomorphism� the components of Gn�Q
 are disjoint� It follows from the Hurwitz
Theorem� then� that any two di�erent graphs in G�Q
 are in fact disjoint� We let AQ � C
denote the closed set of points f��xQ
 � � � G�Q
g� For a � AQ we let Mj�a
 denote the
element of G�Q
 passing through �xQ� a
�

For each n we de	ne a measure ��n � d�n
P

�p� where the summation is taken over
all p � fxQg �C which are parameters of elements � � Gn�Q
� For each Q� we choose a
subsequence fnkg such that the limit limk�� ��nk exists� We let �

�
Q denote this limit� and

it follows that ��Q supported on AQ� Now we de	ne

��Q � c��
Z
a�AQ

��Q�a
 
M�a
�� ����


� We wish to thank Cli� Earle for telling us about the Ahlfors Covering Theorem� which
is the principal tool in the proof�

��



It is evident that

d�n
f�nD� �Q�C
 
 d�n
X

M�Gn�Q�


M �� ����


Thus� passing to the limit through the subsequence fnkg� we have

c�� �Q�C
 
 c��Q�

Let us use the following notation� For k 
 � we let Qk denote a dyadic subdivision of
the complex plane C into open squares with vertices of the form r��k � is��k with r and

s both odd� Let Q
���
k � Q

���
k � and Q

�	�
k denote the three di�erent translates of Q

���
k � so that

Qk �
S	
���Q

���
k �

As before� we construct families of graphs Gk�Q
 for Q � Q
���
k � for each � � �� �� �� ��

If we write
��k �

X
Q�Qk

��Q�

then it is evident from ����
 and ����
 that

��� � ��� � � � � � ��k � � � � � ��� ����


Now suppose that j � k� Q � Q� Q� � Qk� and Q � Q�� If G�Q�
jQ denotes the
restriction of the disks to Q� then it is evident that G�Q�
jQ � G�Q
� Similarly� making
the natural identi	cation via the holonomy for the transversal measures� it follows that
��Q� � ��Q� Thus if we set

"��Q �� ��Q �maxf�
�
Q� � Q

� � Q�Q� �� Qg�

then "��Q is a positive measure� For each Q� then� we set

"
�Q �

Z
a�AQ

"��Q�a

MQ�a
�

and

"
�j �
X
Q�Q

"
�Q�

Thus by Lemma ��� we have shown�

Lemma ���� The currents "
�j are uniformly laminar over the squares of Qj and have
disjoint carriers� and

lim
k��

��k �
�X
j��


�j �

��



Further� this limit is a laminar current�

In Theorem ��� we will show that this limit is equal to ���
Let Q�� � � � � Qq � C be simply connected� open sets such that Qi � Aj � � for i �� j�

We let Q �� Q� � � � � � Qq� and I� �� Area�Q
� We set D�n� �� D � fn�Q� C
� and we
consider the map

gn �� � � f�n � D�n� � C�

We let I�n� denote the area �with multiplicity
 of gn�D�n�
� The mean sheeting number of
the map gn is S�n� �� I�n��I�� The length of the relative boundary is de	ned by

L�n� �� Length�gn��D
 �Q
�

Fixing the number n of iterates� we write N�Qj
 for the number of good islands over Qj�
i�e� this is just the cardinality of the set Gn�Qj
� We will use the following celebrated result
of Ahlfors �see Nevanlinna 
N� Chapt� XIII�� or Hayman 
Ha�
�

Ahlfors� Covering Theorem� There is a constant h depending only on Q such that the
mappings gn� n � �� �� � � � satisfy

qX
j��

N�Qj
 
 �q � �
S�n� � hL�n��

We will use this inequality to estimate the amount of mass in
P

��Qj � By 
BS�� we
have

lim
n��

d�nI�n� � cArea�Q
� or lim
n��

d�nS�n� � c� ����


with c as in ����
� Further� by 
BS��� there is a constant C �� such that

L�
�n� � Cdn� ����


We note that for a current T � the mass norm of T i
�dx� dx on the set B�C is the

same as M
��T B�� Each Mj�a
 � Gn�Qj
 is the graph of an analytic function on Qj�
Thus the mass norm is

M

�

Mj�a
�

i

�
dx � dx

�
� Area�Qj
�

Lemma ���� If Area�Q�
 � � � � � Area�Qq
� then

M

�
� qX
j��

��Qj
i

�
dx � dx

�
� 
 q � �

q
Area�Q
�

Proof� By the de	nition ����
� it follows that the mass norm of ��Qj is

M
��Qj
i

�
dx � dx� � c��M
��j �Area�Qj
� ����


��



In order to estimate M
��j �� we count the number of components M that appear in
the right hand side of ����
� This is the same as the number of good islands over Qj � Thus
we have

M

�
�X

j

d�n
X

M�Gn�Qj�


M�
i

�
dx � dx

�
� 
 d�n

qX
j��

(Gn�Qj
Area�Qj



 d�n
Area�Q


q

qX
j��

N�Qj




d�n

q
Area�Q
��q � �
S�n� � hL�n�
�

where the middle inequality follows from the identity Area�Qj
 � q��Area�Q
� and the
last inequality follows from the Ahlfors Covering Theorem� Applying ����
� we have

M

�
�X

j

d�n
X

M�Gn�Qj�


M�
i

�
dx � dx

�
� 
 q � �

q
Area�Q
�d�nS�n� �O�d�

n
� 

�

Letting n��� we see from ����
 that the right hand side tends to c�q � �
Area�Q
�q as
the left hand side tends to

P
jM
�

�
j �Area�Qj
� Combinded with ����
� this yields Lemma

����

Lemma ���� Let B � C denote the unit square� Then

M
����
� � ��k 
 B� � � � ��k�

Proof� We note thatM
���
� B� � Area�B
 for any open set� And since �� 
 ��k �

M
����
� � ��k 
 B� �M
���

� B��M
���
�
k B��

Thus the Lemma follows by setting q � �k�� and adding the estimate of Lemma ��� over

the four partitions Q
���
k �

Theorem ���� limk�� ��k � ��� and �� is a laminar current�

Proof� If we show that the limit holds� then �� is laminar by Lemma ���� By ����
� it
su�ces to show that

lim
k��

M
��k ���B�� �M
�� ���B��

for any open B� � C� Without loss of generality� we may choose B� to be relatively
compact in the unit square B�

For � � C� we de	ne the projection ���x� y
 � x��y� Let us choose � �� � su�ciently
small that

����B�
 � spt�
� � ��

��
B�

��



Following the procedure for constructing the current ��k � except that the projection ��

is used in place of �� we may construct a current ���k � Thus we use the function gn ��
���f�n� and G�n�Qj
 consists of manifolds which are graphs with respect to the coordinates
x� � x� �y and y� � y� Corresponding to Lemma ���� we have

M
�����
� � ��

�
k 
 B� � � � ��k�

By Lemma ��� there is a geometric current Tk such that �
�
k � �

��
k � Tk � ��� Thus

we have

M
��� � Tk
 �����B��
i

�
d�x� �y
 � d�x� �y
� � � � ��k�

Now we use the values � � � and � � �a � R and the identity

d�x� ay
 � d�x� ay
 � d�x� ay
 � d�x� ay
� �dx � dx � �dy � dy

to obtain

jaj�M
��� � Tk
 �����B��
i

�
dy � dy� � �� � ��k�

Thus
M
��� � Tk
 �����B���� � ��� � �jaj

��
��k

where � � i
� �dx � dx� dy � dy
� Since �� � Tk is positive� this gives

M
��� � Tk
 �����B��� � ��� � �jaj
��
��k�

Thus limk�� Tk � ���
Now let us recall that Tk is obtained by taking ��k and adding all of the currents

of integration that appear in ��
�
k � after removing the sets where a manifold M � G�Qk


overlaps a manifold M � � G��Q�k
� But let us consider such a manifold M
� � G��Q�k
� As

we increase k to a larger index� say K� we subdivide it into the pieces ����Q
 �M � for

Q � Q
���
K � For any point P � M �� except at the �	nite
 set where � is branched� there

is a square Q � Q
���
K for some large K such that a component of ���Q �M � contains P �

and this component belongs to G�Q
� Thus it follows from monotone convergence that
limj�� ��j 
 Tk� Thus limk�� ��k � ���

Let us denote the total space of the graphs in G�G
 as E�G
 �
S

�G�G� &� We may

write �� in the polar form �� � tj��j� where j��j is the total variation measure� and for
j��j a�e� point p� t�p
 is the unit ��vector tangent to M�p
 � M� Thus we may de	ne

m� �� �� �
i

�
dx � dx
 � h

i

�
dx � dx� t�p
ij��j�

We note� further� that the integral of h i�dx � dx� t�p
i over a complex manifold M is just
the area �with multiplicity
 of the projection of M to the x�axis� Since �� is laminar� and
since h i�dx � dx� t�p
i does not vanish identically on any stable manifold� it follows that
m� and j��j de	ne the same measure class�

��



Theorem ���� Let G�� G�� and G� be Jordan domains in C with disjoint closures� Then
for some j�

m��E�Gj

 

�

�
Area�Gj
�

Proof� Let us recall the current ��Qj � constructed above� The total variation measure

associated with this current satis	es j��Gj j � j��j �with Gj � Qj
� It follows that

m��E�Gj

 �

Z
E�Gj�

ht
�p
�
i

�
dx � dxij��j�p
 
M
��Qj

i

�
dx � dx��

Without loss of generality� we may enlarge Gj to a larger Jordan domain G
�
j � so that

the three domains have the same area� If we set q � � in Lemma ���� then we have

�X
j��

m��E�Gj

 

�

�
Area�G�
�

where Area�G�
 is the area of any of the G�j � It follows� then� that for some j�

m��E�G�j

 

�

�
Area�G�j
�

Finally� since each &� is a graph over the �larger
 domain G�j � this inequality remains after
we shrink to the domain Gj �

Theorem ��� 	Three Islands�� Let G�� G�� and G� be Jordan domains with disjoint
closures� Then for some j� the total space of G�Gj
 has positive j�

�j measure�

Remark� In x�� Corollary ���� it will be shown that �almost every
 manifold making up
the laminar structure of �� is in fact an open subset of one of the stable manifolds W s�p
�
p � R given by the Pesin theory� The utility of this theorem is that it gives the existence
of stable manifolds that are graphs over arbitrarily large sets�

A more general formulation is as follows� Let h be any polynomial� and let G�G� h

denote the set of all components M of manifolds obtained in the construction of �� such
that hjM � M � h�M
 is a conformal equivalence� Thus� with our previous notation� we
have G�G
 � G�G� �x
� Thus we have�

Corollary ���� Let G�� G�� and G� be Jordan domains with disjoint closures� and let h
be any polynomial� Then for some j� the total space of G�Gj � h
 has positive j��j measure�

x�� Geometric intersection of �� and ��

By Sections � and � we know that j��j almost every point lies inside a uniformly laminar
current which makes up part of ��� In this chapter we will obtain a uniformly laminar
structure for the currents �� and �� near any regular point for �� This is possible due to
a hyperbolic structure given by Pesin boxes� Given a Pesin box P � we can identify it with
P s � Pu via an appropriate homeomorphism �see x�
� Then by Theorem ���� � also has

��



a product structure on this box� i�e� � P is taken via this homeomorphism to �s � �u�
where the measures �s and �u are induced by the currents �� and �� correspondingly�
Let us 	x an �origin� o � P � For any a � Pu� b � P s� denote by &s�a
 a piece of W s

loc�a� b

which is projected onto the disk Bs�o� r
 parallel to Eu�o� r
 �it does not depend on b
�
Similarly we can de	ne a family of disks &u�b
 � Now let us consider the following sets
supplied with a uniformly laminar structure�

&s �
�

a�Pu

&s�a
� &u �
�
a�P s

&u�a
�

If a Pesin box Pj is labeled by j� we will use the same label for the corresponding sets
&sj�a
 etc� We let fPj � j � �� �� � � �g be a family of Pesin boxes such that

S
Pj has full

measure� and we set


�j ��

Z
b�Pu

j

�uj �b
 
&
s
j�b
�


�j ��

Z
a�P s

j

�sj�a
 
&
u
j �a
��

which are uniformly laminar currents� Without loss of generality� we may assume that
these currents satisfy the hypotheses of Lemma ����� Thus the currents


��n� � max�

�
� � � � � � 


�
n 
 and 
� � lim

n��

��n�

exist and are laminar� By the holonomy invariance obtained in x�� it follows that 
�j is
well de	ned independently of the transversal used in the de	nition�

Lemma ���� The sets &
s�u
j satisfy 
�j � �� &sj and 
�j � �� &uj � Thus 


�
j � ���

Proof� Let M be any transversal to the lamination &sj � Since the measure �
u
j is induced

by the current ���

�jM � ��jM � ����


Hence 
� � ���
Let 
� � � j
�j and �� � tj��j be the polar representations� Then j
�j � j��j� Since

�� is a laminar current� t is a simple � vector j��j a�e� Thus � � t j
�j�a�e�� and the
Lemma follows�

Lemma ���� If T is a closed current� � � T � ��� then locally there is a continuous
function u with ddcu � T �

Proof� Since T is closed� there is locally an integrable function u such that ddcu � T � If
� � i

� �dx�dx�dy�dy
� then �u � � ddcu� It follows that � � �u � �G�� Let � denote
the positive measure �G� ��u on some open set O� and let s � �c	jxj�� � � denote the
convolution with �� with c	 chosen so that of �c	jxj

�� is the fundamental solution of � on
R	� Thus s is subharmonic� and the di�erence between G� and u� s is harmonic on O �
R	� A subharmonic function v on O satis	es lim infq�q� v�q
 � lim supq�q� v�q
 � v�q�

for all q� � O� Since s and u both satisfy this inequality� and since u� s is continuous at
q�� it follows that s and u are continuous at q��

��



We will de	ne two di�erent ways of taking the product of two currents� First� we
consider a continuous� psh function u and a positive� closed ����
 current T � We de	ne the
����
 current T � ddcu by its action on a test function ��

�T � ddcu
��
 � T �u ddc�
�

�This is essentially just integrating the ddc by parts since T is closed�
 It is evident from
the right hand side of the de	ning equation that if uj converges uniformly to u� then
T � ddcuj converges to T � ddcu� We refer the reader to 
BT�� for further discussion of the
� operation�

If L� and L� are uniformly laminar currents on �
�� then it is also natural to de	ne

L� )�L� �

Z
���a�


Z
���a�
 
&a� � &a� �

with 
&a� � &a� � de	ned as the ��current which puts unit mass on each point of &a� � &a� �
with the exception that 
&a� � &a� � � � if &a� � &a� � This is analogous to the integrated
version of ����
� except that &a� � &a� is not necessarily transversal or 	nite�

Lemma ���� Let L and L� be uniformly laminar currents on �� such that there is a
continuous� psh function u with ddcu � L� Then

L � L� � L )�L��

Proof� Without loss of generality� we may assume that L and L� are represented in the
form ����
� and

u �
�

��

Z
��a
 log jy � �a�x
j�

It will su�ce to work over the relatively compact set fjxj � � � �g� Let us 	x &� � &a� �
Choosing a parameter � � x for points �x� y
 � ��� �a��

 � &

�� we have

log jy � �a�x
j �
NaX
j��

log j� � pj�z
j� ha��
�

where ha is harmonic� Since ha is harmonic on fjxj � �g� it is bounded on fjxj � �� �g�
Let us de	ne

AR � fa � A � khakL��jxj����� � R�Na � Rg�

If we set

uR�x� y
 �
�

��

Z
a�AR

��a
 log jy � �a�x
j�

then� as in Lemma ���� uR is continuous� Further� since the AR increase to A as R���
uR converges uniformly to u� Thus

�ddcuR
 � 
&
�� � �ddc

Z
��a
 log jy � �a�x
j � 
&

��

�

�Z
��a
 
&a�

�
� 
&��

�

Z
��a
 
&a � &

�� � ddcuR )� 
&
���

��



where the next to last equality follows from the Fubini theorem� since the multiplicity of
the intersection is uniformly bounded for a � AR� Letting R��� we have

L � 
&a� � � L )� 
&a� �� ����


Finally� we integrate ����
 with respect to ���a�
� The right hand side yields L )�L� by
Fubini�s Theorem� The left hand side� applied to a smooth test function � is

Z
���a�
�L � 
&a� �
� �

Z
���a�

&a� �u dd

c� �

� L��u ddc�
 � �L� � ddcu
��
�

which completes the proof�

Lemma ���� We have 
�j � 

�
j � � Pj � and thus �� � 
��k� 
 �

Sk
j�� Pj �

Proof� By Lemmas ��� and ���� we have 
�j � 

�
j � 
�j )� 


�
j � By the product structure of

Theorem ���� we have that under the homeomorphism between Pj and P
s
j � Pu

j � 

�
j
)� 
�j

is taken to �sj � �uj � which in turn is equivalent to � Pj � Similarly� since �
� 
 
�j and


��k� 
 
�j � we have

�� � 
��k� 
 
�j � 

�
j � 
�j )�


�
j � � Pj �

Since this holds for all j� the Lemma follows�

Lemma ���� limn�� d�nf�n
� � ���

Proof� Let � be a test form� We will show that

Z
��� � lim

n��

Z
�d�nf�n
�� ����


Without loss of generality� we may assume that � 
 �� Let � � � be given� By Lemma ����
we may choose k large enough that the total mass of �� � 
��k� is greater than � � �� By

Lemma ���� we may write 
��k� as a sum of uniformly laminar currents
P

Lj with disjoint

carriers� We may take 	nitely many terms from this summation and choose test functions
� � �j � � such that

P
�jLj � 
��k�� and the total mass of �

� �
P

�jLj is c � �� ��

Now by 
BS��� we have limn�� d�nf�n�
P

�jLj
 � c��� Since � 
 �� we have

Z
��� 


Z
�d�nf�n
� 





Z
�d�nf�n

�X
�jLj




 ��� �


Z
���

for n su�ciently large� Since � may be made arbitrarily small� we have ����
�

Let us assume further that for �s a�e� a� the measure induced by �� on the corre�
sponding stable manifold puts no mass on �&sj�a
� Then we have the following�

��



Lemma ���� Let "M be a ��dimensional submanifold of C�� and let M be a relatively
compact submanifold such that ��j �M ��M
 � �� Then

lim
n��

�d�nf�n
�j 
 )� 
M � � c�� � 
M ��

where c �� 
�j j �M 
M ��

If we set Gs � �j&
s
j � then by Lemma ��� we have

d�nf�n
� � �� f�n�Gs
�

Since Gs �
S
x�RW s�x
� where R is the set of all regular points �see x�
� it follows from

Lemma ��� that we have�

Corollary ����
S
x�RW s�x
 is a carrier for j��j�

By Corollary ���� we have�

Corollary ���� If �A�M� �
 is a representation of ��� then � almost every M � M is an
open subset of a stable manifold W s�x
� x � R�

Here we give a slightly di�erent formulation of holonomy invariance� This is more
general than the one given in x� because it applies to all stable manifolds� LetM � fM� �
� � Ag be a family of stable manifolds� Let D � fDt � � � t � �g be a continuous
family of manifolds such that each Dt is a transversal toM� We de	ne Xj � Dj �

S
�M��

j � �� �� The holonomy map � � X� � X� is de	ned by at a point x � X� by following
the intersection point with Dt from t � � to t � ��

Theorem ��� 	Holonomy Invariance�� The holonomy map preserves the slices of ���
i�e�

����
�jD�

X�
 � ��jD�
X��

Proof� If the familyM consists of leaves of Gs � �j&sj � then holonomy is preserved� In
general� we consider the compact sets �� � fDt �M� � � � t � �g� For each � the curve
�� is contained in a stable manifold� so there is an n such that f

n�� is contained in one
of the leaves of Gs� Thus for � � � there exists an n such that fx � X� � f

n�� �� Gsg has
measure less than �� Since the holonomy is preserved on the complement of this set� we
see that the Lemma holds�

x�� Saddle Points and the Support of �

Questions about saddle points have motivated much of the preceding work on currents�
and we are grateful to J�H� Hubbard for several discussions on this subject� In this section
we show that there is a homoclinic�heteroclinic intersection between any pair of stable and
unstable manifolds� The general idea is that if Ds is a stable disk through a saddle point p�
then the normalized pullbacks d�n
f�nDs� converge to a nonzero multiple of ��� By the
results of x�� it follows that the product d�n
f�nDs���� converges to a nonzero multiple
of the measure � � �� � ��� Since this is also equal to the intersection wedge product�
it follows that d�n
f�nDs� )��� must be nonzero for some n� This produces intersections
between stable and unstable manifolds�

��



Lemma ���� Let P be a Pesin box� and &u be the corresponding lamination de�ned in
x�� If p is a saddle point� then W s�p
 must intersect �s almost every disk of &u� and the
tangential intersections are an isolated subset of W s�p
�

Proof� Let D � W s�p
 be a relatively compact open set� If D contains p� then ��jD �� ��
so d�n
f�nD� � c�� for some c � � as n � �� Let us suppose that there is a subset
E � Pu such that the corresponding unstable disks are disjoint from W s�p
� Let us de	ne

��E �

Z
a�E

�s�a
 
&u�a
��

By Lemma ���� it follows that ��E � d
�n
f�nD�� c��E ��

�� By Lemma ���� the left hand
side must be zero� But �� 
 �� � �� &s� and

M
��E � �
�� � �s�E
�u�P s
 �� ��

Thus we must have �s�E
 � �� which completes the proof of the 	rst part� The tangential
intersections are isolated by Lemma ����

Theorem ���� If p is a saddle point of f � then p � J��

Proof� Let P be a Pesin box� By Lemma ���� there is a compact subset Ku � Wu�p
 and
a subset Gs� of the leaves of &

s such that �i
 �u�Gs�
 � �� �ii
 for each a
u � Ku there is a

leaf &s�x
 of &s such that faug � Ku � &s�x
� and �iii
 the angle of intersection of &s�au

and Wu�p
 is greater than �� � �� Similarly� we may 	nd subsets Ks � W s�p
 and the
family of leaves Gu� with analogous properties�

Let us choose a coordinate system in a neighborhood U of p so that p � �� U � fjxj �
�� jyj � �g� fy � �g � U is the component of W s�p
 � U containing �� and fx � �g � U is
the component of Wu�p
 � U containing �� By the Lambda Lemma �see e�g�� 
PdM�
� we
may take n su�ciently large that f�nKu � fx � �� jyj � �g� and for each au � Ku the
portion of f�nW s�au
�U passing through f�nau �denoted W s

� �f
�nau

� is uniformly C�

close to fy � �� jxj � �g� Similarly� for each as � Ks� the portion of fnWu�as
�U passing
through fnas �denoted Wu

� �f
nas

� is C� close to fx � �� jyj � �g�

Thus we may choose n large enough that every pair of manifolds W s
� �f

�nau
 and
Wu

� �f
nas
 have nonempty intersection� Finally� since �u�Ku
 � �� it follows that

�un �� f�n� ��u Ku
 � ��jfx���jyj��g
f�nKu �� ��

Thus

��n ��

Z
a�f�nKu

�un�a
 
W
s
� �a
� �� ��

With an analogous de	nition for ��n � we have � U 
 ��n � �� �� �� Thus p is in the
support of ��

Combining Theorem ��� with the density of saddle points proved in 
BS�� gives the
following characterization of J��

��



Corollary ���� J� is the closure of the set of saddle points�

Corollary ���� Any hyperbolic measure has support contained in J��

Proof� According to Katok 
K� Theorem ��� periodic saddle points are dense in the support
of any hyperbolic measure� Thus the Corollary follows from Theorem ����

Corollary ���� If p is a saddle point for f � then every transverse intersection of W s�p

and Wu�p
 is in J��

Proof� By the Birkho��Smale theorem every transverse homoclinic intersection is the limit
of saddle points� So the corollary follows from Theorem ��� and the fact that J� is closed�

Theorem ���� If p and q are saddle points for f � then the set of transverse intersections
of W s�p
 and Wu�q
 is dense in J��

Proof� Let U be an open set with U �J� �� �� Then there exists a Pesin box P � U � Every
pair of points x�� x� � P have the property thatW s

r �x�
 intersectsW
u
r �x�
 in a unique point

in P and the intersection is transverse� Further� there exists � � � such that for any smooth
manifoldsMs andMu such that distC��Ms�W s

r �x

 � � and distC��Mu�Wu
r �x

 � �� then

Ms intersectsMu in a unique point in U and the intersection is transverse� By Lemma ����
there exist x�� x� � P and y� �W s�p
 �Wu

r �x�
 and y� �Wu�q
 �W s
r �x�
� For in	nitely

many values nj �� we have f�njx� � P � By the Lambda Lemma� there is a portion Ds
j

of f�njW s�p
 which contains f�njy� and lies as a graph over W
s
r �f

�njx�
� Further� D
s
j

approaches W s
r �f

�njx�
 in C�� Similarly� fmky� � P for in	nitely many mk � �� and
there is a portion Du

k � fmkWu�q
 � Wu�q
 which approaches Wu
r �f

mjx�
 in C�� For
j� k large� this C� distance is less than �� and it follows that Ds

j and D
u
k have a transverse

intersection� Since W s�p
 � Wu�q
 � U � Ds
j � Du

k � U �� �� it follows that the set of
transverse intersections of W s�p
 and Wu�q
 is dense in J��

A saddle point p is said to generate a homoclinic intersection if W s�p
 and Wu�q

intersect in points other than p�

Corollary ���� Every saddle point generates a homoclinic intersection�

Proposition ���� If p is a saddle point for f � then every point in the intersection ofW s�p

and Wu�q
 is a limit of transverse intersections of W s�p
 and Wu�q
�

Proof� Let x �W s�p
�Wu�q
� Choose a coordinate system at p as in the proof of Theorem
���� Replacing x by fn�x
 we may assume that x � fy � �g � U � Now by Theorem ���
Wu�p
 has a transverse intersection with W s�p
� The Lambda Lemma implies that there
are components of Wu�p
�U arbitrarily close to fy � �g�U � Lemma ��� then completes
the proof�

Theorem ���� If p is a saddle point for f � then every intersection of W s�p
 and Wu�q

is in J��

Proof� This follows from Theorem ��� and the previous proposition�

��



x��� Applications to Real Henon mappings

Consider a polynomial di�eomorphism f with real coe�cients� f leaves invariant the real
subspace R�� In this section we will denote f � C� � C� by fC and f jR� by fR� Recall
that if d � �� then d can be de	ned as the minimal degree of any map conjugate to f � This
number can be computed from fR without making reference to fC� In 
FM� it is shown
that htop�fR
 � log d� In this section we investigate maps for which equality holds�

Hyperbolic �d�fold� horseshoes �see 
FM� and 
HO�
 are examples of maps of maximal
entropy but these are not the only examples� The set of horseshoes is open in parameter
space and continuity of the entropy function �
Mi�
 shows the set of maps of entropy log d
is closed� Thus the set of parameters of maps with entropy log d contains the closure of
the set of horseshoe parameters� It would be interesting to know whether it contains other
maps as well�

Theorem ����� The following are equivalent�
��� htop�fR
 � log d
��� ��R�
 � �
��� J� � R�

��� K � R�

��� Every periodic point of fC is contained in R�

�
� If p is a periodic saddle point then W s�p� fC
 �Wu�p� fC
 is contained in R��
Any of these conditions implies�
��� J� � J � K�

Proof� The result of Newhouse� �Theorem ���
� shows that fR possesses a probability
measure � of maximal entropy� If ��
 holds then the entropy of � is log d so � � � by the
uniqueness result� Theorem ���� Thus ��
 implies ��R�
 � ��

Assume that ��
 holds� Since � is ergodic and R� is and invariant set of positive
measure we have ��R�
 � �� Since R� is a closed set of full measure the support of � is
contained in R�� But the support of � is J� so ��
 implies ��
�

We will show that if J� is real then K is real� Recall that J� is the Shilov boundary
of K which is the minimal closed set S � K with the property that for any polynomial
P the maximum value of jP j on K is equal to the maximum value of jP j on S� It is a
general fact that if the Shilov boundary of a set is real then the set is real� We recall the
proof� Assume that K is not real� Say p � �z�� z�
 is in K but not in R�� Either z� or z�
is not real� For de	niteness assume that z� �� R� Let J� be the projection of J

� onto the
	rst coordinate� Runge�s theorem assures the existence of a complex polynomial P��z
 so
that jP��J�
j � ���� and jP��z�
j � �� Thus the polynomial P �z�� z�
 � P��z�
 takes its
maximum value outside of J� contradicting our assumption� Thus ��
 implies ��
�

If ��
 holds then � is supported in R� so fR has a measure of entropy log d so ��

implies ��
� This demonstrates the equivalence of conditions ��
 through ��
�

We prove the equivalence of ��
� Since every periodic point is in K� ��
 implies ��
�
Since periodic points are dense in J�� �
BS�� Theorem ���
� we have ��
 implies ��
�

We prove the equivalence of ��
� Since every point in W s�p� fC
 �Wu�p� fC
 has a
bounded orbit this set is contained in K� thus ��
 implies ��
� SinceW s�p� fC
�W

u�p� fC

is dense in J�� �Corollary ���
� we have ��
 implies ��
�

��



To show that these conditions imply ��
 we argue as follows� By ��
 K � R�� The
Stone�Weierstrass theorem implies that any continuous function on K � R� can be ap�
proximated by a polynomial function� This implies that the Shilov boundary of K is all
of K� Thus J� � K� Since J� � J � K we have J� � J � K �

The following result gives some consequences of the equivalent conditions described
in Theorem ���� Note that all these results can be stated in terms of fR without reference
to fC or C

�� Nevetheless our proofs of these results require complex techniques�

Theorem ����� Let fR be a polynomial di�eomorphism of R� with entropy log d then�
��� fR has a unique measure of maximal entropy
��� fRjK is topologically mixing
��� fR has no sinks
��� Periodic points are dense in the set of bounded orbits
��� For any periodic saddle point W s�fR� p
 �Wu�fR� p
 is dense in the set of bounded

orbits�

Proof� Since fC has a unique measure of maximal entropy it follows that fR has a unique
measure of maximal entropy when h�fR
 � h�fC
�

We prove ��
� By 
BS�� f is mixing for the measure �� It follows that f is topologically
mixing on the support of � which is J�� By assertion ��
 of Theorem ��� J� � K�

To prove ��
 we note that a sink orbit is in K but not in J �a sink is in the interior
of K� but J � �K� � �K�� So ��
 implies that f has no sinks� In the volume preserving
case the same argument shows that f has no linearizable elliptic points�

Assertion ��
 follows from assertion ��
 of Theorem ���� because periodic points are
dense in J� and the set of bounded orbits is K�

Assertion ��
 follows from ��
 because homoclinic intersections are dense in J� �Corol�
lary ���
 and J� � K from assertion ��
 of Theorem ���� This completes the proof of the
theorem�

Remark� Let us mention the real quadratic mapping h � R� 	� R� given by �x� y
 �
��� ax�� y� bx
 with a � ��� and b � ��� which was considered in detail by H�enon� There
are eight solutions of f�x� y
 � C� � h�

C
�x� y
 � �x� y
g� two of which are real 	xed points�

and the other six lie in two cycles of period �� Numerical computation suggests that the
��cycles consist of nonreal points� Paul Pedersen gave a mathematical proof that this is
indeed the case �
P�
� It follows from Theorem ���� that h has entropy strictly less than
log �� And for any saddle p� W s�p
 �Wu�p
 contains points outside R��

x��� Appendix� Concluding Remarks

Some remarks on the logical inter�relationships between the various sections of this paper
are in order� This paper was organized so that the 	rst methods used were Pesin theory
and entropy� and the 	rst main results obtained were the identi	cation of the conditional
measures and the uniqueness of the measure of maximal entropy� The logical progression
we have adopted was not the only one possible� What follows is an outline of a di�erent
order in which arguments from this paper could be presented� In this scenario� the use of
entropy comes only at the end� And this organization leads to new proofs both that the
entropy of � is log d and that the topological entropy of f is log d�

��



Step �� Let P be a Pesin box� &s be the corresponding stable lamination as de	ned in
x�� First prove the holonomy invariance of measures induced by �� along this lamination
�Lemma ���
� Thus �� induces a transversal measure on &s�

Step �� From Lemma ��� we deduce that �� &s is a uniformly laminar current
�Lemma ���
� Next we prove Lemmas ��� and ���� and it follows that

� P � ��� &s
 )���� &u
�

Thus � P has a product structure�

Step �� The product structure of � on sets P of positive measure� and especially the
fact that the wedge product is equal to the intersection )�� allows us to prove the results
of x� concerning saddle points�

Step �� The product structure of � on the sets P also implies that the conditional
measures of � on the unstable leaves are induced by ���

Step �� Up to this point� these arguments have not involved entropy� But now the
facts obtained in the previous steps may be used to calculate the entropy of � via the
formula�

h��f
 �

Z
log Ju� � � log d�

Step 
� The argument in x� shows that h��f
 � log d for any invariant measure � �� ��
Hence� � is the unique measure of maximal entropy� By the Variational Principle� this also
gives us an alternative proof of the Friedland�Milnor�Smillie formula for the topological
entropy� h�f
 � h��f
 � log d�
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