
Section 5: Newton's Method

Bad Polynomials for Newton's Method

Scott Sutherland

Newton's method for solving f(z) = 0 corresponds to iteration of z 7! z � f(z)=f

0

(z),

which is a degree d rational map of C in the case where f is a polynomial of degree d

with distinct roots. Newton's method has long been an important source of examples and

theorems in complex dynamical systems (for example, the work of Schr�oder [Sch, Sch1],

Fatou [Fa], and more recently Douady and Hubbard [DH]), as well as being one of the

most commonly used numerical schemes for approximating roots. See [HP] and [Sm] for an

introduction to the dynamics of Newton's Method.

Describing the set of polynomials for which the corresponding Newton's method has

periodic sinks which are not roots is an important open problem, (problem 6 of [Sm]). We

shall refer to such polynomials as \bad polynomials". This question is essentially answered

for cubic polynomials by the work of Tan Lei [Ta] and Janet Head [He], in which the more

comprehensive task of giving a combinatorial description of the parameter space for Newton's

method is undertaken. A complete description of the parameter space for higher degrees still

seems some way o�, however.

In order to answer Smale's question for higher degree polynomials, it may be helpful to

consider the relationship between the \relaxed Newton's method"

N

h;f

(z) = z � h

f(z)

f

0

(z)

and the \Newton Flow" N

f

given by the ordinary di�erential equation

_z = �

f(z)

f

0

(z)

:

One sees immediately that the map is an Euler approximation to the ow using step size

h. The attractors of N

f

are sinks located at the zeros of f(z), 1 is the only source, and

the other �xed points are at the singularities corresponding to the critical points of f . We

can rescale time for N

f

to obtain _z = �f(z)f

0

(z) (or alternatively _z = �rjjf(z)jj

2

), from

which we can easily see that these singularities are hyperbolic saddles. Furthermore, solution

curves of N

f

are mapped by f to straight lines emanating from the origin. Thus, if f has

two critical values with the same argument, then the ow N

f

is degenerate in the sense that

there are solution curves which begin at one singularity and terminate at another. Refer to

[JJT], [Sa], [STW], [Sm], and [Su] for more details about N

f

.

We propose the following conjecture (for which we have some numerical evidence) relating

the degenerate ows and bad polynomials. This basically says that one can connect a

polynomial which is bad for Newton's method to one which is bad for the ow.
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Conjecture 1. Let f

1

be a bad polynomial of degree d, that is one for which Newton's

method has an attractor which is not a root of f . Then there is a one-parameter family of

polynomials ff

h

g

0<h�1

which are bad for the relaxed Newton's method N

h;f

h

. Furthermore,

as h! 0, the corresponding ow N

f

h

tends to a ow N

f

0

which is degenerate.

This conjecture is consistent with the following, as explained below.

Conjecture 2. Let f be a polynomial of degree d with all its roots in the unit disk, let

� be a root of multiplicity m for f , and let A

�

h

(�) be the immediate attractive basin of � for

the map N

h;f

. Then the intersection of the set

A =

\

0<h�m

A

�

h

(�)

with any circle of radius R � 3 contains arcs whose total length is at least

2�R

cd

, where c is a

constant not depending on �, f , or d.

This second conjecture says that there is a de�nite neighborhood of the singular tra-

jectories of N

f

in which the Julia set of N

h;f

must be contained for all h 2 (0; m]. Since

the periodic orbits for N

h;f

which are not roots must be contained in the complement of

S

f(�)=0

A

�

h

(�), conjectures 1 and 2 taken together give some idea of the structure of the

parameter space for N

h;f

.

Conjecture 2 has been partially established by Benzinger [Be] (for all h su�ciently near

0), and is a generalization of the main result of [Su], which shows this for h = 1. I believe

that with slight modi�cations, the proof in [Su] can be made to work for 0 < h � m, which

should nearly complete the proof of conjecture 2.
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