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SYMBOLS USED IN THE PAPER�

� amount of long leaves in a connecting square

B�p� r	 Ball of radius r and center p

c amount of overlap in neighboring squares

C sectors

d distance

k�c	 maximal number of overlapping squares

L linear map

M Symplectic manifold

M� Symplectic boxes

� invariant measure

� symplectic form

Q quadratic form de�ning a sector

R rectangles

G collection of rectangles

S� singularity sets

T map

U big neighborhood in the smooth case

U�x	 neighborhood of x

V side of a sector

W linear symplectic space

W stable and unstable manifolds

In the Figures
the stable direction is vertical

the unstable direction is horizontal
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x�� INTRODUCTION�

The notion of ergodicity was introduced by Boltzman as a property satis�ed by a
Hamiltonian �ow on its energy manifold� The emergence of the KAM �Kolmogorov�
Arnold�Moser	 theory of quasiperiodic motions made it clear that very few Hamil�
tonian systems are actually ergodic� Moreover� those systems which seem to be
ergodic do not lend themselves easily to rigorous methods�

Ergodicity is a rather weak property in the hierarchy of stochastic behavior
of a dynamical system� The study of strong properties �mixing� K�property and
Bernoulliness	 in smooth dynamical systems began from the geodesic �ows on sur�
faces of negative curvature� In particular� Hopf �H� invented a method of proving
ergodicity� using horocycles� which turned out to be so versatile that it endured a
lot of generalizations� It was developed by Anosov and Sinai �AS� and applied to
Anosov systems with a smooth invariant measure� With the advances of the theory
of Kolmogorov � Sinai entropy the Hopf method turned out to be also a basis for
proving the K�property of Anosov systems�

The key role in this approach is played by the hyperbolic behavior in a dynamical
system� By the hyperbolic behavior we mean the property of exponential divergence
of nearby orbits� In the strongest form it is present in Anosov systems and Smale
systems� It leads there to a rigid topological behavior� In weaker forms it seems to
be a common phenomenon�

In his pioneering work on billiard systems Sinai �S� showed that already weak
hyperbolic properties are su�cient to establish the strong mixing properties� Even
the discontinuity of the system can be accommodated�

The Multiplicative Ergodic Theorem of Oseledets �O� makes Lyapunov exponents
a natural tool to describe the hyperbolic behavior of a dynamical system with a
smooth invariant measure�

Pesin �P� made the nonvanishing of Lyapunov exponents the starting point for
the study of hyperbolic behavior� He showed that� if a di�eomorphism preserving
a smooth measure has only nonvanishing Lyapunov exponents� then it has at most
countably many ergodic components and �roughly speaking	 on each component it
has the Bernoulli property�

Pesin�s work raised the question of su�cient conditions for ergodicity or� more
modestly� for the openness �modulo sets of measure zero	 of the ergodic components�

In his work� spanning two decades� on the system of colliding balls �gas of
hard balls	 Sinai developed a method of proving �local	 ergodicity in discontinu�
ous systems with nonuniform hyperbolic behavior� We will refer to it as the Sinai
method� It was improved by Sinai and Chernov �CS� and by A�Kr�amli� N�Sim�anyi
and D�Sz�asz �KSS�� In both papers the discussion is con�ned to the realm of semidis�
persing billiards�

The purpose of the present paper is to recover the Sinai method as a part of the
theory of hyperbolic dynamical systems� In the process we have simpli�ed some of
the aspects of the method� and we have revealed its logical structure and limitations�

We rely on two developments� The �rst is the work of Katok and Strelcyn �KS�
in which they generalized Pesin Theory to discontinuous systems� The other is the
development of criteria for nonvanishing of Lyapunov exponents in Hamiltonian
systems in papers �W��� �W�� and �W��� In the language of these criteria Burns
and Gerber �BG� found a su�cient condition for �local	 ergodicity in the smooth
case of lowest dimension �� for �ows preserving a smooth measure	 It was later
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generalized by Katok �K�� to arbitrary dimension� As a byproduct of our general
approach� which includes discontinuous systems� we obtain a similar theorem �Main
Theorem in the smooth case	 and a new proof�

Let us give some advice to the reader on how to use our paper� The �rst three
Sections demonstrate what the Sinai method is and how it works� The discussion
is conducted in the simplest possible environment of a linear discontinuous system
on the two dimensional torus� It is reasonable to stop here� especially if the reader
is only interested in two dimensional uniformly hyperbolic systems� But we do not
recommend trying to read the heart of the paper without going through the �rst
three Sections�

In Sections ��� and � we develop the linear symplectic language in which we
formulate our results� We suggest that the reader skips these sections and goes
straight to Section  where we formulate the multitude of hypotheses and the two
Main Theorems on local ergodicity� one for smooth systems and the other �much
harder	 for discontinuous systems� The reading of Section � and the following Sec�
tions� will require numerous trips back to Sections ��� for the necessary de�nitions
and theorems�

If the reader does not care about the discontinuous case� she needs to read only
Sections 
� � and �� with signi�cant leaps �since everything is simpler in the smooth
case	� Sections �� and �� contain almost the whole proof of the Main Theorem in
the discontinuous case �it also relies on the results of Sections 
���	� The remaining
part of the proof is contained in Section ��� It stands out by the level of technical
complications�

Section �� contains some classes of examples where all the hard work can be put to
use� and one class where it cannot� The interest in this last example comes from the
fact that it is multidimensional and all the Lyapunov exponents are di�erent from
zero� Unfortunately� it does not satisfy an important property �proper alignment
of singularity sets	� It points towards the need for a more �exible scheme�

x�� A MODEL PROBLEM�

We will discuss here a very simple model problem in which the important features
of the Sinai�s method are not obscured by technical details� Our discussion will be
very careful so that in the future when the technical details will cloud the horizon
we will be able to refer the reader to these basic clari�cations�

We consider a family of linear maps of the plane de�ned by

x�� � x� � ax�

x�� � x��

where a is a real parameter� We use these linear maps to de�ne �discontinuous	
maps of the torus by restricting the formulas to the strip f� � x� � �g and further
taking them modulo �� In this way we de�ne a mapping T� of the torus T� � R

��Z�

which is discontinuous on the circle fx� � Zg �except when a is equal to an integer	
and preserves the Lebesgue measure ��

Similarly we de�ne another family of maps depending on the same parameter a
by restricting the formulas

x�� � x�

x� ax � x
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Figure � The map�

to the strip f� � x� � �g and then taking them modulo �� Thus for each a we get
a mapping T� of the torus which is discontinuous on the circle fx� � Zg �except
when a is equal to an integer	 and preserves the Lebesgue measure ��

Finally we introduce the composition of these maps T � T�T� which depends on
one real parameter a� An alternative way of describing the map T is by introducing
two fundamental domains for the torus M� � f� � x� � ax� � �� � � x� � �g and
M� � f� � x� � �� � � �ax� � x� � �� g �see Fig��	�

The linear map de�ned by the matrix�
� a
a � � a�

�
�

�
� �
a �

��
� a
� �

�

takes M� onto M� thus de�ning a map of the torus which is discontinuous at most
on the boundary of M� and preserves the Lebesgue measure� This is our map T �

Let S� � �M� be the boundary of M�� Except for integer values of a the
mapping T is discontinuous on S� and its inverse T�� is discontinuous on S�� Let
us stress that the map T is well de�ned in the closed domain M� but two di�erent
points on the boundary S� which correspond to the same point on the torus will
be mapped onto two di�erent points on the boundary S� which correspond to two
di�erent points on the torus �except for the corner	� We adopt the convention that
the image under T of a point from S� is the pair of image points in S�� With this
convention we can apply T or any of its powers to any subset in the torus�

For integer values of a �� � we have a hyperbolic algebraic automorphism of the
torus� a prime example of an Anosov system� It is thus a Bernoulli system and has
a nice Markov partition �AW�� We restrict ourselves to the study of ergodicity and
we repeat the proof of ergodicity by the Hopf method� since the Sinai method is
built upon it�

Let f � T� � R be a continuous function We want to prove that for almost
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every x � T� the time averages

f�x	 � f�Tx	 � � � �� f�Tn��x	

n

converge as n� �� to the average value of f � i�e��
R
fd�� Once this is established

one can obtain the same property for all integrable functions by an approximation
argument� From Birkho� Ergodic Theorem �BET	 we know that the time averages
converge almost everywhere to a function f� � L��T�� �	 which is invariant on
the orbits of T � i�e�� f� � T � f�� and has the same average value as f � i�e��R
f�d� �

R
fd�� Further applying BET to f and T�� we obtain that the time

averages in the past

f�x	 � f�T��x	 � � � �� f�T�n��x	

n

converge almost everywhere as n� �� to f� � L��T�� �	 for which f� � T � f�

and
R
f�d� �

R
fd��

It is the usual magic of the ergodic theory which forces the functions f� and f�

to coincide almost everywhere� �Let us recall the argument� let

A� � fx � T� j f��x	 � f��x	g�

by de�nition A� is an invariant set� henceZ
A�

�f��x	� f��x	� d��x	 �

Z
A�

f�x	d��x	�
Z
A�

f�x	d��x	 � �

which implies ��A�	 � � and f� � f� ��almost everywhere� The same argument�
this time applied to the set A� � fx � T

� j f��x	 � f��x	g� implies the converse
inequality�	

For a �� � the matrix �
� a
a � � a�

�
is a hyperbolic matrix with eigenvalues � � ��a	 � � and �

�
	 �� For x � T

�

let us denote by Wu�x	 �W s�x		 the line in T
� passing through x and having the

direction of the unstable eigenvector �the stable eigenvector	� i�e�� the eigenvector
with eigenvalue � � �

�
	� We call Wu�x	 �W s�x		 the unstable �stable	 leaf of x� The

leaves of x have the following property� If y �Wu�x	 �y �W s�x		 then the distance

d�Tny� Tnx	 � ��jnjd�y� x	 � � as n� �����	�

Hence for y� z �Wu�s��x	

jf�Tny	� f�Tnz	j � � as n� �����	�

It follows that for y� z � Wu�s��x	 either f��y	 and f��z	 are both de�ned and
equal or they are both unde�ned� Lifting the functions f� and f� to R� and using
the directions of the eigenvalues as coordinate directions we can say that f� is a



ERGODICITY IN HAMILTONIAN SYSTEMS� �

function of one coordinate alone and f� is a function of only the other coordinate�
Since the two functions coincide almost everywhere they must be constant�

Let us examine what can be saved of this argument when a is not an integer� In
such a case� we still have the stable and unstable directions but a line parallel to�
say� the unstable direction is cut by S� into pieces and if y and z belong to two
di�erent pieces the distance d�Tny� Tnz	 does not decrease to zero as n � ���
Since this last property is of crucial importance in the Hopf method� the unstable
�and stable	 leaves have to be much shorter than before� Here is how we construct
them� For simplicity of notation we will formulate everything for the unstable leaves
alone�

We proceed inductively� Thus� for x � intM�� we de�ne Wu
� �x	 as the open

segment of the line through x with the direction of the unstable eigenvector which
contains x and has both endpoints on S�� The preimage T��Wu

� �x	 is by a factor
of � shorter than Wu

� �x	 and� in general� is cut into two or three pieces by S�� We
pick the piece which contains T��x and take its image under T � this is our second
approximate unstable leaf Wu

� �x	� i�e��

Wu
� �x	 � T

�
T��Wu

� �x	 �Wu
� �T���x		

�
�

Unless T��x � S� the second approximate unstable leaf Wu
� �x	 is again an open

segment containing x with endpoints on S� 	TS� and naturally Wu
� �x	 
Wu

� �x	�
Given Wu

n �x	� n � �� �� � � � � we de�ne the n � � approximate unstable leaf of x
Wu

n���x	 by

Wu
n���x	 � Tn

�
T�nWu

n �x	 �Wu
� �T�n�x		

�
�

If x �� S��
i�� T

iS� then this inductive procedure will yield a nested sequence of
open segments containing x

Wu
� �x	 � Wu

� �x	 � � � �

with endpoints on
���
i��

T iS� �

We can also describe this construction in the following way� First we consider a
fairly long segment Wu

� �x	� Then we look at TS�� if it does not intersect Wu
� �x	

then we do not change it� if it splits Wu
� �x	 into several segments� then we keep

the segment which contains x� We repeat it with T �S� and further images of
S�� so that the segment may be cut shorter in�nitely many times� The property
x �� S��

i�� T
iS� ensures that x stays always strictly inside the segment� It is quite

remarkable that� for almost every x� this inductive process shortens the segment
only �nitely many times� More precisely we have

Proposition ���� For almost all x � M�nS��
i�� T

iS� the sequence of approximate
unstable leaves of x stabilizes� i�e�� there is a natural N � N�x	 such that

���
Wu

i �x	 �
N�

Wu
i �x	�
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Proof� For t � �� let
Xt � fx � M� j d�x� S�	 � tg

where d��� �	 is the distance of a point form a set� Because S� is a �nite union of
segments we have

� �Xt	 � const t�

Choosing tn � �
n�

we get
��X
n��

� �Xtn	 	 ���

hence also
��X
n��

� �TnXtn	 	 ���

It follows by the Borel�Cantelli Lemma that almost every x belongs to only �nitely
many of the sets

TXt� � T
�Xt� � � � � �

which means that except for �nitely many values of n

d�T�nx� S�	 �
�

n�
�

Choosing c�x	 � � su�ciently small we can take care of the �nite number of excep�
tional values of n so that

d�T�nx� S�	 �
c�x	

n�

for each n � �� �� � � � � Each time Wu
n���x	 is shorter than Wu

n �x	 we must have

d�T�nx� S�	 	
length �Wu

n �x		

�n
�

But then
c�x	

n�
	

length �Wu
n �x		

�n
� length �Wu

� �x		

�n
�

which can hold for at most �nitely many values of n� �

We de�ne the unstable leaf only for points x in the set of full measure described
in Proposition ���� by taking the intersection

Wu�x	 �
���
i��

Wu
i �x	�

In view of Proposition ���� for each Wu�x	� there are natural numbers nl�x	 and
nr�x	 such that Tnl�x�Wu�x	 has the left endpoint on S� and Tnr�x�Wu�x	 has the
right endpoint on S�� Most importantly we have the exponential contraction of
Wu�x	� i�e�� for y �Wu�x	 the distance

d�T�ny� T�nx	 �
d�y� x	 � � as n� ���
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Everything that we have done to construct the unstable leaves can be repeated
for the stable leaves and they have analogous properties� Once we have the stable
and unstable leaves we are ready to do the Hopf argument�

For any continuous function f � T� � R the forward ergodic average f� is
constant on the stable leaves and the backward ergodic average f� is constant on
the unstable leaves� Let us call a point x � T

� f �typical� if f��x	� f��x	� Wu�x	
and W s�x	 are well de�ned and f��x	 � f��x	� The set of f �typical points has full
measure� so a stable �or an unstable	 leaf contains a set of f �typical points of full
arc�length� except for a family of leaves of total measure zero� If W s�x	 is not one
of those exceptional leaves� then the set

C� �
�

y�W s�x�
y is f�typical

Wu�y	

has positive measure and f� � f� � const on C�� We can proceed by adding
all the stable leaves through f �typical points in C� to obtain C�� etc�� but a priori
there is no reason to expect that we will be able to cover all of the torus in this
way� �Indeed one can imagine that there is a dividing line between two ergodic
components of our system and that all the stable and unstable leaves stop short of
crossing this line�	 That is where the Hopf method breaks down� It can only tell us
that the ergodic components have positive measure and� therefore� that there are at
most countably many of them� �To be more precise� we cannot really claim that C�

belongs to one ergodic component� To argue this we have to modify our argument
by taking a sequence of continuous functions dense in L� and considering the set
of points which are f �typical for all the functions f in the sequence� This set� as
the intersection of countably many sets of full measure� has full measure� We can
then use it in the de�nition of C� and claim that f� � f� � const on C� for all
the functions in our dense sequence� This implies that such C� does belong to one
ergodic component� It follows easily that every invariant subset of positive measure
contains an ergodic component of positive measure� Hence all ergodic components
have positive measure�	

x�� THE SINAI METHOD�

We have seen� in the previous section� that the Hopf method is not su�cient to
prove the ergodicity of a discontinuous map because the stable and unstable leaves
may be short� The Sinai method amounts to establishing that most of the stable and
unstable leaves are� in a certain sense� su�ciently long� The �rst �highly nontrivial	
step in this method is to formulate precisely what is meant by �su�ciently long��
As before� we do it only for the unstable leaves� the changes necessary in the case
of stable leaves are automatic�

Let U 
 T
� be a �small	 square with the sides parallel to unstable and stable

directions respectively �to make the geometry simpler let us think that the unstable
direction is horizontal and the stable direction vertical	� For any � 	 c 	 � we
construct a sequence Gn�c	� n � �� �� � � � � of coverings of U in the following way�
Without loss of generality we can let

U f�u v	 j b 	 u 	 b b 	 v 	 bg
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Figure � The covering�

We consider the net N �n� c	 de�ned by

N �n� c	 � f c
n

�m� k	 � U j m� k � Zg�

Now the covering Gn�c	 is the collection of squares having centers at points from
N �n� c	 and sides� of length �

n
� parallel to the sides of U � If c 	 �

� then Gn�c	 is a
covering of U �otherwise Gn�c	 may cover only a smaller square	� The parameter
c will be chosen later to be very small� so that many squares in Gn�c	 overlap�
However� once c is �xed� a point in U may belong� at most� to a �xed number�
independent of n � �� �� � � � � of squares in Gn�c	� we denote this number by k�c	
�one can easily establish that k�c	 � � �

�c � �	�� but we will not use any explicit
estimate	�

We call two squares� in Gn�c	� immediate neighbors if the distance between their
centers is c

n
�Two immediate neighbors overlap on �� c part of their areas�

One can naturally de�ne a column of squares and a row of squares as special
collections of squares in Gn�c	 �see Figure �	� For example� a sequence fRigli�� of
squares from Gn�c	 is called a column of squares if� for every i � �� � � � � l��� Ri and
Ri�� are immediate neighbors� Ri�� is above Ri� and there is no square in Gn�c	
below R� or above Rl�

For each square R � Gn we introduce the stable� �sR� and unstable� �uR� bound�
aries of R� �sR is the union of the two boundary segments of R which have the
stable �vertical	 direction and �uR is the union of the two boundary segments of R
which have the unstable �horizontal	 direction� Given a point x � R� the unstable
leaf Wu�x	 may intersect both segments in �sR or it may be too short to reach one
of them �or both	� In the �rst case we say that Wu�x	 is long in R� or that it is
connecting in R � in the second that it is short in R or that it is not connecting in
R�

De�nition � � Given � � 	 � 	 � we call a square R � G �c	 � connecting if
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the measure of the set of points x � R whose unstable leaf Wu�x	 is long in R is at
least � part of the total area of R�

Sinai formulates the property that most of unstable leaves are su�ciently long
in the following way�

Sinai Theorem ���� There is �� 	 � such that for any �� � 	 � � �� and any
c� � 	 c 	 ��

lim
n���

n �
��

fR � Gn�c	 j R is not ��connecting g
�

� ��

In other words� the theorem says that if � is su�ciently small� then the union of
the squares in Gn�c	 which are not ��connecting has measure o� �

n
	�

Before proving the Sinai Theorem let us show how it can be used to get informa�
tion about ergodic components� Notice that De�nition ��� and the Sinai Theorem
can be repeated for stable leaves�

Proposition ���� The square U 
 T
� �for which the Sinai Theorem holds for both

unstable leaves and stable leaves� belongs to one ergodic component of T �

In view of the arbitrariness of the square U to which we can apply this Theorem
we obtain immediately

Corollary ���� The map T is ergodic�

Proof of Proposition ���� Let us �x � su�ciently small so that the Sinai Theorem
holds for ��connecting squares both in the unstable and stable versions� Next we
�x c smaller than �� As a consequence two ��connecting squares in Gn�c	� which
are immediate neighbors� contain in their intersection a set of connecting leaves of
positive measure� The reason is that immediate neighbors intersect over �� c part
of their areas and hence the guaranteed � part of the square covered by connecting
leaves cannot �t into the remaining c part of the square� In the following we will
not change the values of � or c and� for simplicity� we will call an ��connecting
square simply a connecting square� Thus a connecting square is ��connecting both
with respect to stable and unstable leaves�

Consider any continuous function f on the torus� We call a point y � T� f �typical
if the forward time average f� and the backward time average f� are well de�ned
at y and f��y	 � f��y	� The set of f �typical points has full measure� We call a
stable �unstable	 leaf f �typical if its points� except for a subset of zero arc�length�
are f �typical� The union of leaves which are not f �typical is a set of measure zero�

For any connecting square R let us de�ne

Wu�s��R	 � fx � RjWu�s��x	 is f �typical and long in Rg�

Although we cannot apply the Hopf argument to the whole torus we can use it
in a connecting square R to claim that f� is constant on all of W s�R	 and f� is
constant on all of Wu�R	 with the two constants coinciding� Note that we say here
�and we mean it	 �all of W s�u�� and not almost all� Indeed� �rst of all f� is constant
on each of the stable leaves in W s�R	� Further let us �x an ustable leaf in Wu�R	�
The stable leaves from W s�R	 intersect this unstable leaf in f �typical points� except
for a set of stable leaves of total measure zero� Hence excluding these exceptional
stable leaves the value of f� on the stable leaves has to coincide with the constant
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value of f� on the distinguished unstable leaf� We conclude that f� is constant
almost everywhere on W s�R	 and the constant is equal to the constant value of f�

on the unstable leaf� Since we could have used any other unstable leaf in Wu�R	
it follows that f� is constant on all of Wu�R	� By symmetry f� is constant on all
of W s�R	� �The reader must have noticed the implicit use of the Fubini Theorem
in the arguments above� It is only natural since the stable and unstable leaves are
parallel segments� In the nonlinear case one has to use the �absolute continuity� of
the foliations into stable and unstable manifolds� This property is all that we need�
to make the present argument work�	

Further for two connecting squares R� and R� which are immediate neighbors f�

is constant on W s�R�		W s�R�	 and f� is constant on Wu�R�		Wu�R�	 with the
two constants coinciding� Indeed at least one of the intersections Wu�R�	�Wu�R�	
�if one square is above the other	 or W s�R�	 �W s�R�	 �if one square is next to
the other	 must have positive measure and hence is nonempty� forcing the constant
value of f� or f� to be the same for both squares�

After this observation we proceed to prove that the time average of f is almost
everywhere constant in U � To that end let y� z � U be two f �typical points with
f �typical leaves� Wu�y	 and W s�z	 respectively� Our goal is to prove that f��y	 �
f��z	�

We say that Wu�y	 �Ws�z		 intersects completely a column �row	 of squares
in Gn�c	 if it is connecting in one of the squares of the column �row	� The Sinai
Theorem allows us to claim that� for su�ciently large n� Wu�y	 intersects completely
at least one column of connecting squares in Gn�c	� i�e� a column in which all
the squares are connecting� and W s�z	 intersects completely at least one row of
connecting squares� Indeed� suppose to the contrary that every column of squares in
Gn�c	 intersected completely by Wu�y	 contains at least one non�connecting square�
Since the number of columns intersected completely by Wu�y	 grows linearly with
n and the measure of one square in Gn�c	 is �

n�
� we obtain that the measure of

the union of non�connecting squares would be O� �
n

	 which contradicts the Sinai
Theorem� �Here we have used the fact that the squares in Gn�c	 cannot overlap
more than k�c	 times�	

Let us �x a column and a row of connecting squares which are intersected com�
pletely by Wu�y	 and W s�z	 respectively� Let R be the �unique	 square which
belongs both to the column and the row� Let further R� denote a square in which
Wu�y	 is connecting and R� denote a square in which W s�z	 is connecting� By
the construction y � Wu�R�	 and f� is constant on the� possibly disjoint� set
Wu�R�		Wu�R	� Similarly z �Wu�R�	 and f� is constant on W s�R�		W s�R	�
It follows that f��y	 � f��z	� In view of the arbitrariness in the choice of the
f �typical leaves Wu�y	 and W s�z	 we obtain that the time average of f must be
constant in U �

To �nish the proof let us consider a T �invariant measurable subset A� Let g be
the indicator function of A and

fn � g in L��T�� �	

be a sequence of uniformly bounded continuous approximations to the indicator
function� We will use the fact that the time average is continuous with respect to
the L� norm to establish that the time average of g must be constant on U Indeed
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if we denote by k � k� the L��T�� �	 norm� then

kf�n � g�
��
�

�

���� lim
N��

�

N

NX
i��

�
fn � T i � g � T i

�����
�

� lim
N��

�

N

���� NX
i��

�
fn � T i � g � T i

�����
�

by the Lebesgue Dominated Convergence Theorem�
Using the invariance of the measure we get

kf�n � g�
��
�
� lim

N��
�

N

NX
i��

�����fn � T i � g � T i
�����

�

�
��fn � g

��
�

Since the time averages f�n of fn are all constant �almost everywhere	 on U the
above inequality implies that the time average g� is constant �almost everywhere	
on U � But the invariance of A forces g� � g so that either U n A or U � A has
measure zero� In view of the arbitrariness of the invariant set A it follows that U
must belong to one ergodic component� �

x�� PROOF OF THE SINAI THEOREM�

The proof of the Sinai Theorem does not require a rigid geometric structure of
the coverings Gn�c	� it holds for any sequence of coverings by squares with side �

n

as long as there is a uniform bound on the number of squares covering one point�
However� the lattice structure of the centers of the squares in Gn�c	 allows to work
with columns and rows of squares� as we did in the above application of the Sinai
Theorem�

The �rst step in the proof is the choice of ��� To that end we consider the smallest
sector C in R

� symmetric about the horizontal �unstable	 line which contains the
lines with the two directions of the sides of M�� i�e�� the directions of the segments
in S�� Let

C � f�
� �	 j j�j � ��a	j
jg�
It can be checked that ��a	 	 � for any a �� �� We put �� � �

� �����a		� The reason
for this choice is that� for any square with vertical and horizontal sides crossed by a
line with the direction contained in C� the shaded area in Figure � does not exceed
�� �� part of the area of the square�

Let us observe that all of the segments in
S��
i�� T

iS� have directions contained
in the sector C� Indeed a linear hyperbolic map pushes lines towards the unstable
direction except for the stable line� which stays put�

It follows from the construction of the unstable leaves �Proposition ���	 that an
unstable leaf has endpoints on forward images of S� under T � Hence if an unstable
leaf is short in a square then the square must be intersected by

���
T iS� �
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Figure � Leaves cut by a line with direction contained in the sector�

Although this does not look like a severe restriction� since we can expect that the
last set is dense� it has far reaching consequences� The reason being� heuristically�
that the singularity lines T iS� become more and more horizontal as i� �� and
they cannot cut e�ectively unstable leaves which are themselves horizontal�

We claim that� for any �xed M � �� the singularity lines

S�M �
M�
i��

T iS�

by themselves can produce only few squares which are not ��connecting so that
their total measure is O� �

n�
	� To make this precise �and clear	 we introduce an

auxiliary notion of an M �bad square in a covering Gn�c	� We say that a square
R � Gn�c	 is M �bad if the measure of the set of points y � R such that the unstable
leaf Wu�y	 has an endpoint in R � S�M �so that it is short in R	 is greater than
�� �� part of the measure of the square� �Loosely speaking a square is M �bad if it
is not connecting because of the singularity lines in S�M �	

If a square R intersects only one segment in S�M then the measure of points in
R whose unstable leaves have endpoints on the intersection of this segment with R
does not exceed ����� � ��a	 part of the measure of the square since the direction
of the segment is in the sector C� Hence an M �bad square has to intersect at least
two segments in S�M � But the singularity set S�M is a �xed �nite collection of closed
segments with only �xed �nite number of intersection points �i�e�� belonging to
several segments	� Away from the intersection points the segments are fairly wide
apart and a small square cannot extend from one to another� see Figure �� Hence�
for su�ciently large n� an M �bad square in Gn�c	 cannot be farther from one of the
intersection points than const

n
� It follows that the total measure of M �bad squares

does not exceed const
n�

� where the constant depends only on a� c� � and M �
In this way we took care �in some sense	 of the �nite number of singularity lines

in S� � we now face the problem of controlling the e�ects of the �tail�
S�� T iS�
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Figure � Singularity lines�

Let us suppose that a square R � Gn�c	 is not ��connecting and it is not M �bad�
Hence at least � part of its area is covered by short leaves with endpoints in

R �
���

i�M��

T iS��

Let Wu�y	 be such a leaf short in R with an endpoint on T iS�� Then

T�i �Wu�y	 �R	 
 Xti

where ti � n����i and� as before� Xt � fx � M� j d�x� S�	 � tg� Indeed� under
the action of T��� an unstable leaf contracts by a factor of � and the length of the
part of Wu�y	 in R does not exceed �

n
�

In view of this observation we can claim that each square which is not ��
connecting and which is not M �bad has at least � part of its area covered by

���
i�M��

T iXti �

Since each point in U is covered by� at most� k�c	 squares from Gn�c	� then the
measure of the union of squares in Gn�c	 which are not ��connecting and which are
not M �bad does not exceed

k�c	 �

�

��X
i�M��

const

n�i
�

�

n

	
k�c	

�

��X
i�M��

const

�i



�

�here the constant is equal to the total length of S�	� We have thus estimated the
measure of the union of squares in G �c	 which are not � connecting and which are
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not M �bad� by the size of an individual square times the M �tail of a �xed convergent
series� Some of the readers may have noticed that this completes the proof� For
clarity� let us do it explicitly�

Let us take an arbitrary  � �� We choose and �x M � M�	 so large that the
last series does not exceed �

�n � i�e��

k�c	

�

��X
i�M��

const

�i
	



�
�

Given M we can still choose n� � n��� M	 so large that� for any n � n�� the
measure of the union of M �bad squares in Gn�c	 is less than �

�n � To estimate the
measure of the union of squares in Gn�c	� for n � n�� which are not ��connecting we
split them into those which are M �bad and those which are not� For both families
of squares the measure of their union is less than �

�n � This proves our claim� �

Remark ����

Let us point out that the property that the sector C� de�ned by the directions of
the segments in S�� is su�ciently narrow ���a	 	 �	 can be relaxed� For a general
hyperbolic piecewise linear map it is su�cient that the segments in S� are not
parallel to the stable direction� In such a case we can �nd a natural N such that all
the segments in

S��
i�N�� T

iS� have directions contained in a chosen narrow sector

C � N is the number of iterates of T which do not put the singularity lines S� into
the chosen sector C	� Then the argument above applies to any square neighborhood
U which does not intersect

S�N �
N�
i��

T iS� �

Similarly in the version of the Sinai Theorem for the stable leaves we would have
arrived at a natural N � such that the claim holds for any square U which does not
intersect

S�
N � �

N ��
i��

T�iS� �

Hence� it follows from Proposition ��� that any open square� with horizontal and
vertical sides� which does not intersect S�N 	S�

N � belongs to one ergodic component�
This implies that the partition of T� into ergodic components is coarser than the
partition into �open	 connected components of

T
� n �S�N 	 S�

N �

�
�

Since S�N 	 S�
N � is a �nite collection of segments we obtain that there are at most

�nitely many ergodic components� To argue that there is only one component
let us note that S�N�� 	 S�

N � and TNS� intersect in at most �nitely many points

which split the segments in TNS� into �nitely many segments fIkgKN

k�� so that the
interior of every Ik lies in the boundary of at most two connected components of
T
� n �S�N 	 S�

N �

�
� i�e�� it has only one connected component on each side� Suppose

that for such a segment Ik is in the boundary of two di�erent ergodic components�
Then TI is also in the boundary of two di�erent ergodic components But TI and
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S�N 	 S�
N � have only �nitely many points of intersection� so that whole open sub�

intervals of TIk must end up inside one connected component of T�n�S�N 	 S�
N �

�
and

thus it must have the same ergodic component on both sides� This contradiction
implies that Ik does not take part in the splitting of T� into ergodic components so
we can drop it� In this way we can drop all of TNS� and claim that the partition
into ergodic components is coarser than the partition into connected components of

T
� n �S�N�� 	 S�

N �

�
�

It is now clear that we can proceed by dropping TN��S� and T�N
�S� as possible

boundaries for the ergodic components and arriving eventually at S� 	 S� as the
only possible boundaries we see that even these can be dropped� Hence there is
only one ergodic component�

Let us spell out the property of T which is basic in this argument�
Although some points of S� return to S� under iterates of T � no interval in S�

can do it�

x�� SECTORS IN A LINEAR SYMPLECTIC SPACE�

For the convenience of the reader we will repeat here some of the material from
�W�� and �LW��

Let W be a linear symplectic space of dimension �d with the symplectic form ��
For instance we call W � R

d  R
d the standard linear symplectic space if

��w�� w�	 � h
�� ��i � h
�� ��i�

where wi � �
i� �i	� i � �� �� and h
� �i � 
��� � � � �� 
d�d�

The symplectic group Sp �d�R	 is the group of linear maps of W ��d�d matrices
if W � R

d  R
d	 preserving the symplectic form i�e�� L � Sp �d�R	 if

��Lw�� Lw�	 � ��w�� w�	

for every w�� w� � W�
By de�nition a Lagrangian subspace of a linear symplectic space W is a d�

dimensional subspace on which the restriction of � is zero �equivalently it is a
maximal subspace on which � vanishes	�

De�nition ���� Given two transversal Lagrangian subspaces V� and V� we de�ne
the sector between V� and V� by

C � C �V�� V�	 � fw � W j ��v�� v�	 � � for w � v� � v�� vi � Vi� i � �� �g

Equivalently� if we de�ne the quadratic form associated with an ordered pair of
transversal Lagrangian subspaces�

Q�w	 � ��v�� v�	

where w � v� � v�� is the unique decomposition of w with the property vi � Vi� i �
�� �� then we have

C fw � W j Q�w	 � �g
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In the case of the standard symplectic space� V� � R
d  f�g and V� � f�g  R

d

we get
Q ��
� �		 � h
� �i

and
C � f�
� �	 � Rd  R

d j h
� �i � �g�
We will refer to this C as the standard sector� Since any two pairs of transver�
sal Lagrangian subspaces are symplectically equivalent we may consider only this
case without any loss of generality� In the following we will alternate between the
coordinate free geometric formulations and this special case� On the one hand� co�
ordinate free formulations are important because we need to apply these concepts to
the case of the derivative map which in general acts between two di�erent tangent
subspaces� each one with its preferred sector� On the other hand� it turns out that
many arguments are greatly simpli�ed by resorting to these special coordinates�

It is natural to ask if a sector determines uniquely its sides� It is not a vacuous
question since� for d � �� there are many Lagrangian subspaces in the boundary of
a sector� The answer is positive�

Proposition ���� For two pairs of transversal Lagrangian subspaces V�� V� and
V �� � V

�
� if

C �V�� V�	 � C �V �� � V
�
�	

then
V� � V �� and V� � V �� �

Moreover V� and V� are the only isolated Lagrangian subspaces contained in the
boundary of the sector C �V�� V�	�

The proof of this Proposition can be found in �W���
Based on the notion of the sector between two transversal Lagrangian subspaces

�or the quadratic form Q	 we de�ne two monotonicity properties of a linear sym�
plectic map� By intC we denote the interior of the sector� i�e��

intC � fw � WjQ�w	 � �g�

De�nition ���� Given the sector C between two transversal Lagrangian subspaces
we call a linear symplectic map L monotone if

LC 
 C

and strictly monotone if
LC 
 intC 	 f�g�

A very useful characterization of monotonicity is given in the following

Theorem ���� L is �strictly� monotone if and only if Q �Lw	 � Q �w	 for every
w � W �Q �Lw	 � Q �w	 for every w � W� w �� ���

The fact that monotonicity implies the increase of the quadratic form de�ning
the cone is a manifestation of a very special geometric structure of a sector and does
not hold for cones de�ned by general quadratic forms� The proof of the theorem
relies on the factorization ���	� we postpone then the proof until such factorization
has been established
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For a pair of transversal Lagrangian subspaces V� and V� and a linear map
L � W �W we can de�ne the following �block� operators�

A � V� � V�� B � V� � V�

C � V� � V�� D � V� � V��

They are uniquely de�ned by the requirement that for any v� � V�� v� � V�

L �v� � v�	 � Av� � Bv� � Cv� � Dv��

We will need the following Lemma�

Lemma ���� If L is monotone with respect to the sector de�ned by V� and V� then
LV� is transversal to V� and LV� is transversal to V��

Proof� Suppose that� to the contrary� there exists � �� �v� � V� such that L�v� � V��
We choose �v� � V� so that

Q ��v� � �v�	 � � ��v�� �v�	 � ��

We have also

� ��v�� �v�	 � � �L�v�� L�v�	 � � �L�v�� B�v� � D�v�	 � � �L�v�� B�v�	 �

Let v� � �v���v�� We have that for  � � v�belongs to intC� Hence alsoQ �Lv�	 � �
for  � �� On the other hand

Q �Lv�	 � �� �B�v�� D�v�	� � �L�v�� B�v�	

which is negative for su�ciently small positive �
This contradiction proves the Lemma� �

It follows� from Lemma ���� that the operators A � V� � V� and D � V� � V� are
invertible�

We switch now to coordinate language� Let

L �

�
A B
C D

�
be a symplectic map of the standard symplectic space R

d  R
d monotone with

respect to the standard sector� A�B�C�D are now just d d matrices�
Let us describe those symplectic matrices which are monotone in the weakest

sense� namely they preserve the quadratic form Q� We will call such matrices Q�
isometries� Obviously a Q�isometry maps the sector onto itself� The converse is
also true�

Proposition ���� If L is a linear symplectic map and

LC � C

then

L �

�
A �
� A���

�
�
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In particular it preserves the quadratic form Q
Q � L � Q�

Proof� If LC � C then L maps also the boundary of the sector C onto itself� It
follows from Proposition ��� that both sides of the sector stay put under L� Hence
B � C � �� By symplecticity D � A���� �

By Lemma ��� given a monotone L we can always factor out the following Q�
isometries on the left

L �

�
A B
C D

�
�

�
A �
� A���

��
I R
P �

�
�P and R are uniquely determined	� Symplecticity of L forces R� P symmetric

and RP � A�D � I� which allows the further unique factorization

���	 L �

�
A �
� A���

��
I �
P I

��
I R
� I

�
�

Moreover monotonicity forces P and R to be positive semide�nite �P � �� R � �	�
Strict monotonicity means that P and R are positive de�nite �P � �� R � �	�
These claims follow from the following

Proof of Theorem 	�	� Using the above factorization we get for w � �
� �	

Q�Lw	 � h
� �i� hR�� �i� hP �
 � R�	� 
 � R�i�
Putting � � � we obtain that P � �� To show that also R � � let us consider an
eigenvector �� of R with eigenvalue � and let 
 � a��� We get that if a � � then
w � �
� ��	 � C so that Q�Lw	 � �� It follows that

�a � �	h�� �i� �a � �	�hP�� �i � ��

This implies immediately that � � �� This proves the monotone version of the
Theorem� The strictly monotone version is obtained in a similar way� �

As a byproduct of the proof we get the following useful observation

Proposition ��	� A monotone map L is strictly monotone if and only if

LVi 
 int C 	 f�g� i � �� ��

�

The following Proposition simpli�es computations with monotone maps�

Proposition ��
� If

L �

�
A B
C D

�
is a strictly monotone map then by multiplying it by Q�isometries on the left and
on the right we can bring it to the form�

I I
T I � T

�
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where T is diagonal and has the same eigenvalues as C�B�

Proof� The factorization of the monotone map L yields�
A �
� A���

�
L �

�
I R
P I � PR

�
where P � �� R � � and PR � C�B�

We have further�
R�

�
� �

� R
�
�

��
I R
P I � PR

��
R

�
� �

� R�
�
�

�
�

�
I I
K I � K

�
where K � R

�
�PR

�
� has the same eigenvalues as C�B � PR�

Finally if F is the orthogonal matrix which diagonalizes K� i�e�� F��KF is diag�
onal� then �

F�� �
� F��

��
I I
K I � K

��
F �
� F

�
�

�
I I
T I � T

�
has the desired form with T � F��KF having the same eigenvalues as C�B� �

Let us note that in the last Proposition we can ask for the diagonal entries of T
to be ordered because any permutation of the entries can be accomplished by an
appropriate Q�isometry�

x�� THE SPACE OF LAGRANGIAN SUBSPACES CONTAINED IN
A SECTOR�

Let us �x a sector C � C�V�� V�	 between two transversal Lagrangian subspaces
V� and V�� We say that a Lagrangian subspace E is strictly contained in C if

E 
 int C 	 f�g�
We denote by Lag�C	 the manifold of all such Lagrangian subspaces and by dLag�C	

its closure in the Lagrangian Grassmanian� i�e�� dLag�C	 is the set of all Lagrangian
subspaces contained in C�

We will introduce a metric and a partial order into Lag�C	� This will allow us to
extend to the multidimensional case �d � �	 the most relevant features of the two
dimensional case �d � �	� Let

�i � W � Vi� i � �� ��

be the natural projections� i�e��

w � ��w � ��w for every w � W�

If a Lagrangian subspace E is strictly contained in C then �iE � Vi� i � �� �� so
�ijE �the restriction of �i to the subspace E	 is a one to on map of E onto Vi�

With every subspace E � Lag�C	 we can associate a positive de�nite quadratic
form on V� obtained by the formula

Q � ���jE	�� �

It will turn out that this is actually a one�to�one correspondence between positive
de�nite quadratic forms on V and Lagrangian subspaces contained strictly in C
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De�nition ���� For two Lagrangian subspaces E�� E� � Lag�C	 we de�ne the re�
lation E� � E� �E� 	 E�� by the inequality of the corresponding quadratic forms

Q � ���jE�	�� � �		Q � ���jE�	�� �

We de�ne the distance of two Lagrangian subspaces E�� E� � Lag�C	 by

d�E�� E�	 �
�

�
sup

� ��v�V�
j lnQ � ���jE�	�� �v	� lnQ � ���jE�	�� �v	j�

It is easy to see that d��� �	 is indeed a metric�
There are other ways to introduce the partial order and the metric� The coordi�

nate free de�nitions simplify some of the arguments in the following� For equivalent
de�nitions of the metric see �LW�� �Ve�� Theses de�nitions are justi�ed by the fol�
lowing theorem�

Theorem ���� For two transversal Lagrangian subspaces E�� E� � Lag�C	

E� 	 E� if and only if C�E�� E�	 
 C�V�� V�	�

Further if E� 	 E� then for a Lagrangian subspace E � Lag�C	

E 
 C�E�� E�	 if and only if E� � E � E��

Corollary ���� If E�� E� � Lag�C	 and E� 	 E� then the diameter of the setdLag �C�E�� E�		 in Lag�C	 is equal to the distance of E� and E��

�

We will prove Theorem ��� at the end of this Section�
Let us introduce a convenient parametrization of Lag�C	 by symmetric positive

de�nite matrices� We consider the standard sector C in Rd Rd with V� � R
d f�g

and V� � f�g  R
d � Let U � Rd � R

d be a linear map and

gU � f�
� �	 � Rd  R
d j � � U
g

be its graph� The linear subspace gU is a Lagrangian subspace if and only if U is
symmetric and further for a symmetric U its graph gU 
 C if and only if U � ��
Every Lagrangian subspace in Lag�C	 is transversal to V� so that it is a graph of a
linear map as above� We will �nd the following Lemma useful�

Lemma ���� If a Langrangian subspace E 
 C�V�� V�	 is transversal to both V�
and V� then it is strictly contained in the sector�

Proof� We use the coordinate description of the standard sector� Thus the La�
grangian subspace E being transversal to V� is the graph of a symmetric positive
semide�nite matrix� Since E is also transversal to V� the matrix is nondegenerate
and hence positive de�nite� It follows immediately that E is strictly contained in
the sector� �

We have obtained a one�to�one correspondence between Lagrangian subspaces in
Lag�C	 and symmetric positive de�nite matrices� The quadratic form on V� intro�
duced in De�nition ��� becomes the form de�ned by the positive de�nite matrix�
The partial order becomes the familiar partial order between symmetric matrices
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The image of a Lagrangian subspace under a symplectic linear map is again a
Lagrangian subspace� Moreover monotone maps take Lagrangian subspaces strictly
contained in C into Lagrangian subspaces strictly contained in C� Hence a monotone
map L de�nes a map of Lag�C	 into itself� We will denote it again by L � Lag�C	 �
Lag�C	� To simplify notation we will also write U instead of gU � We have that

L �

�
A B
C D

�
acts on Lagrangian subspaces by the following M�obius transformation

LU � �C � DU	 �A � BU	�� �

In particular the action of a Q�isometry

L �

�
A �
� A���

�
is given by

LU � A���UA���

By putting A � U
�
� we see that any U � � can be mapped onto identity matrix I�

Thus Q�isometries act transitively on Lag�C	� Moreover it is not hard to see that

Proposition ���� The action of a Q�isometry on Lag�C	 preserves the partial
order and the metric�

�

Let E� � f�
� �	 j 
 � �g� By straightforward computations we �nd that

����	
C�V�� E�	 � f�
� �	 j h
� �i � h�� �i � �g�
C�E�� V�	 � f�
� �	 j h
� �i � h
� 
i � �g�

We get that

���	

C�V�� E�	 
 C�V�� V�	�

C�E�� V�	 
 C�V�� V�	�

C�V�� E�	 � C�E�� V�	 � E��

Because the group of Q�isometries acts transitively on Lag�C	 ���	 holds not just
for the special Lagrangian subspace E� from ����	 but for any Lagrangian subspace
from Lag�C	� �It just happens that the easiest way to establish ���	 is to do the
calculation in the standard sector�	

Proposition ��	� For two Lagrangian subspaces E�� E� � Lag�C	 the following are
equivalent

��	 E� � E��

��	 E� 
 C�E�� V�	�

��	 E� 
 C�V�� E�	�

Proof� We will be using the coordinate description of the standard sector� Since the
group of Q isometries acts transitively on Lag�C	 we can assume that E is equal
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to E� from ����	� Let U� be the positive de�nite matrix de�ning E�� We get from
����	 that E� 
 C�E�� V�	 if and only if U� � I� Hence ��	 is equivalent to ��	�
Similarly let E� be equal to E� and U� be the positive de�nite matrix de�ning E��
Using ����	 again we get that E� 
 C�V�� E�	 if and only if U� � U�

� � � which is
equivalent to U� � I� This proves the equivalence of ��	 and ��	� �

Proof of Theorem 
��� If E� 	 E� then� by Proposition ��
 and Lemma ���� E� is
strictly contained in C�E�� V�	� Using ���	 we get

C�E�� E�	 
 C�E�� V�	 
 C�V�� V�	�

Suppose now that C�E�� E�	 
 C�V�� V�	� By Proposition ��
 it su�ces to show
that E� 
 C�E�� V�	� If it is not so then there is e� � E� which does not belong to
C�E�� V�	� Let us consider v� � ��e� where �� � W � V� is the projection onto V� in
the direction of V�� Let further e� be the unique element in E� such that ��e� � v�
�i�e�� e� � ���jE�	�� v�	� Clearly the di�erence between the two vectors v� � e��e�
belongs to V�� Because e� � e� � v� and e� �� C�E�� V�	 we have ��e�� v�	 	 � so
that ���e�� e�	 � �� It follows that v� � e� � e� � int C�E�� E�	 
 int C�V�� V�	�
We have then reached a contradiction� since v� cannot belong simultaneously to V�
and to int C�V�� V�	� The above contradiction proves that indeed E� 
 C�E�� V�	
which by Proposition ��
 implies that E� 	 E� �remember that E� and E� are
assumed to be transversal	� The �rst part of the Theorem is proven�

To prove the second part let E� 	 E� and E 
 C�E�� E�	� By Proposition ��

we get E� 
 C�E�� V�	� It follows in view of ���	 that C�E�� E�	 
 C�E�� V�	 and
hence E 
 C�E�� V�	 which is equivalent �again by Proposition ��
	 to E� � E�
Similarly we get E � E��

In the opposite direction if E� � E 	 E� then by Proposition ��
 E� and E are
strictly contained in C�V�� E�	 and E� 
 C�V�� E	� Applying now the equivalence
of ��	 and ��	 in Proposition ��
 to the case of E�� E � Lag�C�V�� E�		 we get
immediately E 
 C�E�� E�	� The case of E� � E � E� can be now treated by
continuity� �

Let us consider a special family of Lagrangian subspaces in the standard sector�
the graphs of multiples of the identity matrix� i�e�� for a real number u let

Zu � f�
� �	 j � � eu
g�
We have that

d�Zu� � Zu�	 �
�

�
ju� � u�j�

In the next Lemma we have chosen two numbers u� � u��

Lemma ��
� If for a Lagrangian subspace E � Lag�C	

d�Zu� � E	 � �

�
�u� � u�	

then
E � Zu� �

Proof� Let the Lagrangian subspace E be the graph of a positive de�nite matrix U �
For every nonzero 
 � Rd � we have

lnh
 U
i lnh
 eu�
i � u u
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It follows that� for every nonzero 
 � Rd �

ln
h
� U
i
h
� 
i � u��

We conclude that U � eu�I� �

We will use the following consequence of the last Lemma�

Proposition ����� Let E� 	 E� be two Lagrangian subspaces contained strictly
in C�V�� V�	� There is a symplectic map which maps the sector C�V�� V�	 onto the
standard sector C and the sector C�E�� E�	 into the sector C�Z�u� Zu	 if and only
if d�E�� E�	 � u�

Proof� By a symplectic map we can map the subspace V� onto Rdf�g� the subspace
V� onto f�gRd and E� onto Z�u �because Q�isometries act transitively on Lag�C		�
It follows from Lemma ��� that the sector C�E�� E�	 will be then automatically
mapped into C�Z�u� Zu	�

The converse follows from the Corollary ���� �

For aesthetical reasons we will be using Proposition ���� in a di�erent coordinate
system obtained by the following linear symplectic coordinate change


� �
�p
�

�
 � �	�

�� �
�p
�

�
 � �	�

Let us introduce the family of sectors

C� � f�
� �	 j k�k � �k
kg
for any real � � ��

Proposition ����� Let E� 	 E� be two Lagrangian subspaces contained strictly
in C�V�� V�	� There is a symplectic map which maps the sector C�V�� V�	 onto the
sector C��� and the sector C�E�� E�	 into the sector C� if and only if

d�E�� E�	 � ln
� � ��

�� ��
�

with � 	 � 	 ��

Proof� It is enough to de�ne the coordinate change L� de�ned by


� �
�p
�

���
�
� 
 � �

�
� �	�

�� �
�p
�

���
�
� 
 � �

�
� �	�

A direct computation shows that� if � 	 �� LC��� � C and LC� � C�Z�u� Zu	� with

u � log ����

���� � The result follows then from Property ����� �
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x�� UNBOUNDED SEQUENCES OF LINEAR MONOTONE MAPS�

In this section we �x a sector C � C�V�� V�	 between two Lagrangian subspaces�
One can think that C is the standard sector� We start by computing the coe�cient
of expansion of Q under the action of a monotone symplectic map�

For a linear symplectic map L monotone with respect to the sector C we de�ne
the coe�cient of expansion at w � intC by

� �w�L	 �

s
Q �Lw	

Q �w	
�

We de�ne further the least coe�cient of expansion by

�C �L	 � inf
w�intC

� �w�L	 �

Let us note that� for any two monotone maps L� and L��

�C �L�L�	 � �C �L�	�C �L�	 �

i�e�� the coe�cient of expansion �C is supermultiplicative�
We will omit the index C in �C�L	 when it is clear what sector we have in mind�
We want to �nd the value of the expansion coe�cient in coordinates� We will

use the fact that this in�mum does not change if L is multiplied on the left or on
the right by Q�isometries� So let

L �

�
A B
C D

�
be a monotone matrix� By the factorization ���	 C�B � PR is equal to the
product of two positive semide�nite matrices and so it has only real non�negative
eigenvalues� Let us denote them by � � t� � � � � � td� The monotone map L is
strictly monotone if and only if t� � ��

Proposition ���� For a monotone map L

� �L	 �
p

� � t� �
p
t� � exp sinh��pt��

moreover� if L is strictly monotone

� �L	 � � �w�L	

for some w � int C�
Proof� Let us put

m �L	 �
p

� � t� �
p
t� � min

��i�d
�p

� � ti �
p
ti
�
�

First we prove the inequality � �w�L	 � m �L	 for w � intC� Since both � �w�L	
and m �L	 are continuous functions of L it is su�cient to prove the inequality for
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strictly monotone maps only� In view of Proposition ��� we can restrict ourselves
to maps L of the form

L �

�
I I
T I � T

�
with diagonal T and t�� � � � � td on the diagonal� We compute ��w� L	 directly� for
w � �
� �	 such that Q �w	 � �

�� �w�L		� �
dX
i��

�
ti


�
i � �� � �ti	 
i�i � �� � ti	 �

�
i

�
�

X
i��i�i	�

��p
ti
i �

p
� � ti�i

��
�
�p

� � ti �
p
ti
��

i�i
�

�
X

i��i�i��

��p
ti
i �

p
� � ti�i

��
�
�p

� � ti �
p
ti
��

i�i
�
�

�
X

i��i�i	�

�p
� � ti �

p
ti
��

i�i �

X
i��i�i��

�p
� � ti �

p
ti
���


i�i �

� �� � �	m �L	� � �m �L	�� � m �L	�

where

� �

�� X
i��i�i	�


i�i

A� � �
X

i��i�i��


i�i � �

and all the inequalities become equalities for


� �

�
� � t�
t�

� �
�

� �� �

�
t�

� � t�

� �
�

� 
i � �� �i � �� i � �� � � � � d�

Thus the Proposition is proven for strictly monotone matrices and for all mono�
tone matrices we get the inequality ��L	 � m�L	� To get the equality ��L	 � m�L	
for all monotone matrices we proceed as follows� For any  � � we choose a strictly
monotone matrix L� so close to the identity that m �L�L	 	 m �L	 � � Since L�L
is strictly monotone and our Proposition has been proven for strictly monotone
matrices there is w� � intC such that

� �w�� L�L	 � m�L�L	 � � �L�L	 �

But � �w�L�L	 � � �w�L	 for any w � intC� Hence

m�L	 � � �L	 � � �w�� L	 	 � �w�� L�L	 � m �L�L	 	 m �L	 � 

which ends the proof� �

For a given sector C � C�V�� V�	 let C� � C�V�� V�	 be the complementary sector�
We have
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Proposition ���� If L is �strictly� monotone with respect to C then L�� is �strictly�
monotone with respect to C� and �C�L	 � �C��L��	�

Proof� We have that the union

C �V�� V�	 	 intC �V�� V�	

is equal to the whole linear symplectic space W� Hence if

LC �V�� V�	 
 C �V�� V�	

then
C �V�� V�	 
 L��C �V�� V�	

and �nally
L��intC �V�� V�	 
 intC �V�� V�	 �

The last property is easily seen to be equivalent to the monotonicity of L���
To obtain the equality of the coe�cient of least expansion we will use the standard

sector and the block description of L� Let �see ���		

L �

�
A �
� A���

��
I �
P I

��
I R
� I

�
�

The linear symplectic map

�
� I
�I �

�
takes the standard sector C onto C� and

further

L� �

�
� �I
I �

�
L��

�
� I
�I �

�
has the same least coe�cient of expansion with respect to C as L�� with respect to
C�� Since

L�� �

�
I �R
� I

��
I �
�P I

��
A�� �

� A�

�
we get

L� �

�
I P
R I � RP

��
A� �
� A��

�
�

Our claim follows now from the formula in Proposition ��� and the fact that PR
has the same eigenvalues as RP � �

The next Proposition is a useful addition to the Corollary ����

Proposition ���� For a strictly monotone map L

d�LV�� LV�	 � ln
��L	� � �

��L	� � �
�

Proof� Since Q� isometries preserve the distance between Lagrangian subspaces it
follows from Proposition ��� that we can restrict our calculations to

L �

�
I I
T I � T

�
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with diagonal T � By the De�nition ��� we have

d�LV�� LV�	 �
�

�
sup

�����Rd
j lnh
� T 
i � lnh
� �T � I	
ij

�
�

�
sup

�����Rd
ln
h
� �I � T��	
i

h
� 
i � max
i

ln
�
� � t��

i

�
�

�
ln
�
� � t��

�

�
�

where t� � t� � � � � � td are the eigenvalues of T � The desired formula is now
obtained by a straightforward calculation� �

We introduce now an important property of a sequence of monotone maps� Let
us consider a sequence of linear symplectic monotone maps fLig��i�� � To simplify
notation let us put Ln � Ln � � � L��

De�nition ���� A sequence fL�� L�� � � �g of monotone maps is called unbounded if
for all w � intC

Q�Lnw	 � �� as n� ���

It is called strictly unbounded if for all w � C� w �� ��

Q�Lnw	 � �� as n� ���

Theorem ���� A sequence fL�� L�� � � �g of maps monotone with respect to C is
unbounded if and only if

���
n��

L��
� L��

� � � � L��
n C� � one Lagrangian subspace

where C� is the complementary sector�

Corollary ���� If a sequence of monotone maps fL�� L�� � � �g is unbounded then
the sequence fL�� L�� � � �g is also unbounded�

�

We were not able to �nd a proof of Corollary ��� independent of Theorem ����

Proof of Theorem ��
� We note that fL�� L�� � � �g is unbounded if and only if for
any strictly monotone L the sequence fL�L�� L�� � � � g is unbounded�

The next step is to prove that fL�� L�� � � � g is unbounded if and only if for every
strictly monotone L

���	 �C �LnL	 � �� as n� ���

Indeed the last property implies immediately that fL�L�� L�� � � �g is unbounded
and so� if it holds for all strictly monotone L� then also fL�� L�� � � �g is unbounded�
To prove the converse we will need the following well known fact from point set
topology�
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Lemma� Let f� � f� � � � � � be a nondecreasing sequence of real�valued continuous
functions de�ned on a compact Hausdor� space X� If for every x � X

lim
n��� fn�x	 � ��

then
lim

n���
inf
x�X

fn�x	 � ���

If fL�� L�� � � �g is unbounded and L is strictly monotone then we have

�C �LnL	 � inf
w�intC

pQ�LnLw	pQ�w	
� inf

� ��w�C

pQ�LnLw	pQ�Lw	
�C �L	 �

Applying the Lemma to

fn�w	 �

pQ�LnLw	pQ�Lw	
� n � �� �� � � � �

which can be considered as a sequence of functions on the compact space of rays in
C we obtain ���	�

Now we will be proving that ���	 is equivalent to

���
n��

L��L��
� L��

� � � � L��
n C� � one Lagrangian subspace

where C� � C�V�� V�	 is the complementary sector� The sectors

C�n � L��L��
� L��

� � � �L��
n C� � L�� �Ln	�� C� � C�L�� �Ln	�� V�� L

�� �Ln	�� V�	

n � �� �� � � � � form a nested sequence� We consider the space Lag�C�	 of all La�
grangian subspaces contained strictly in C� with the metric de�ned in Section ��

The sequence of subsets dLag�C�n	 
 Lag�C�	� n � �� �� � � � � � � � � is a nested sequence
of compact subsets� Hence its intersection contains one point �� Lagrangian sub�
space	 if and only if their diameters converge to zero� By Corollary ��� the diameter

of dLag�C�n	 is equal to the distance of the Lagrangian subspaces L�� �Ln	�� V� and

L�� �Ln	�� V�� By Proposition ��� this distance is equal to

ln
s�n � �

s�n � �

where sn � �C�
�
L���Ln	��

�
� But by Proposition ���

�C�
�
L���Ln	��

�
� �C�LnL	�

This shows that indeed the set

���
n��

dLag�C �n	

contains exactly one point if and only if ���	 holds� �

We will use the following characterization of strict unboundedness
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Theorem ��	� Let fLig��i�� be a sequence of linear symplectic monotone maps�
The following are equivalent�

��	 The sequence fLig��i�� is strictly unbounded�

��	 inf
� ��w�C

pQ�Lnw	

kwk � �� as n� ���

��	 ��Ln	 � �� as n� ���

��	 the sequence fLig��i�� is unbounded and Ln� is strictly monotone for some

n� � ��

Proof� The Lemma from set topology used in the Theorem �� can also be applied
to the sequence of functions

fn�w	 �

pQ�Lnw	

kwk � n � �� �� � � � �

to shows that ��	 � ��	� Further ��	 � ��	 because

��Ln	 � inf
w�intC

pQ�Lnw	pQ�w	
� inf

���w�C

pQ�Lnw	

kwk inf
w�intC

kwkpQ�w	
�

The implication ��	 � ��	 is obvious ���Ln	 � � if and only if Ln is strictly
monotone� cf� Proposition ���	� Finally let the sequence fLig��i�� be unbounded and
Ln� be strictly monotone� By Corollary ��� also the sequence fLn���� Ln���� � � �g
is unbounded� It follows that fLig��i�� is strictly unbounded� �

The following example plays a role in the study of special Hamiltonian systems�

Example�

Let

Ln �

�
An �
� A���

n

��
I �
Pn I

��
I Rn

� I

�
�

n � �� �� � � � � be a sequence of monotone symplectic matrices with nonexpanding
An� i�e�� kAn
k � k
k for all 
� We assume further that the symmetric matrices Rn

satisfy

� �nI � Rn � �nI and
� �n
�n

� C

for some positive constants C and �n� �
�
n� n � �� �� � � � � We do not make any assump�

tions about Pn �beyond Pn � � which is forced by the monotonicity of Ln	� Note
that if a symmetric matrix R satis�es �I � R � � �I then �k�k � kR�k � � �k�k�
Indeed

hR�� R�i �

D
RR

�
� �� R

�
� �
E

D
R

�
� �� R

�
� �
E hR�� �i

which yields the estimate
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Proposition ��
� If
P��

n�� �n � �� then the sequence fL�� L�� � � �g is unbounded�
Proof� Let w� � �
�� ��	 � intC and wn�� � �
n��� �n��	 � Lnwn� n � �� �� � � � �
Our goal is to show that

qn � Q�wn	 � �� as n� ���

We have 
n�� � An �
n � Rn�n	 so that

�����	 k
n��k � k
nk� kRn�nk � k
nk� � �nk�nk � k
�k�
nX
i��

� �ik�ik�

At the same time qn � h
n� �ni � k
nkk�nk so that

�����	 k�nk � qn
k
nk

and hence �see also the proof of Theorem ���	

qn�� � qn � hRn�n� �ni � qn � �nk�nk� � qn � �nk�nk qn
k
nk �

Using �����	 we obtain from the last inequality

�����	
qn��

qn
� � �

�nk�nk
k
�k�

Pn��
i�� � �ik�ik

� � �
�

C

� �nk�nk
k
�k�

Pn��
i�� � �ik�ik

�

If
P��

i�� �
�
ik�ik 	 �� then by �����	 the sequence k
nk is bounded from above and

hence by �����	 the sequence k�nk is bounded away from zero which is a contradic�

tion �in view of
P��

i�� �
�
i � ��	�

Hence
��X
i��

� �ik�ik � ���

Now the claim follows from �����	 and the following

Lemma ����� For a sequence of positive numbers a�� a�� � � � � if

��X
n��

an � �� then
��X
n��

anPn��
i�� ai

� ���

Proof of the Lemma� We have for � � k � l

lX
n�k

anPn��
i�� ai

�
Pl

n�k anPl
n�� an

� � as l� ���

�

�
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x�� PROPERTIES OF THE SYSTEM AND THE FORMULATION OF
THE RESULTS�

In this section we de�ne rigorously the class of systems to which the present
paper applies� We divide the conditions that the systems must satisfy into several
groups� The multitude of conditions is justi�ed by the fact that we want to include
discontinuous systems �there is only one way to be continuous but many ways to
be discontinuous  	� In the case of a symplectomorphism of a compact symplectic
manifold most of these conditions are vacuous� Because of that we will single out
this case and we will refer to it as the smooth case� The bulk of our e�ort is devoted
to the discontinuous case�

A� The phase space�
In the smooth case the phase space M is a smooth compact symplectic manifold�
In the discontinuous case it is a disjoint union of nice subsets of the linear sym�

plectic space� More precisely� let us consider the standard linear symplectic space
W � R

d  R
d equipped with a Riemannian metric uniformly equivalent to the

standard Euclidean scalar product and which de�nes the same volume element
�measure	 �� The measure � is also equal to the symplectic volume element�

By a submanifold of W we mean an embedded submanifold of W� Further we
de�ne a piece of a submanifold S to be a compact subset of S which is the closure
of its interior �in the relative topology of the submanifold S	� A piece X of a
submanifold has a well de�ned boundary which we will denote by �X �it is the
set of boundary points with respect to the relative topology of the submanifold	�
Notice that at every point of a piece of a submanifold� including a boundary point�
we have a well de�ned tangent subspace�

A submanifold carries the measure de�ned by the Riemannian volume element�
for this measure the boundary of a piece of a submanifold is not necessarily of zero
measure�

The phase space is made up of pieces of W which have regular boundaries in the
sense of the following de�nition�

De�nition ���� A compact subset X 
 W is called regular if it is a �nite union
of pieces Xi� i � �� � � � � k� of �d� ��dimensional submanifolds

X � X� 	 � � � 	Xk�

The pieces overlap at most on their boundaries� i�e��

Xi �Xj 
 �Xi 	 �Xj� i� j � �� � � � k�

and the boundary �Xi of each piece Xi� i � �� � � � k� is a �nite union of compact
subsets of �d� ��dimensional submanifolds�

To picture such sets one can think of the boundary of a �d�dimensional cube�
The faces are pieces of �d � ��dimensional submanifolds and they clearly overlap
only at their boundaries� The boundary of each face is a union of pieces of �d� �
dimensional submanifolds �actually it is a union of �d� � dimensional cubes	� Let
us stress that in the de�nition of a regular set we do not impose any requirements
on the �d � � dimensional subsets in the boundary� Due to the generality of the
de�nition one cannot even claim that the union of two regular sets is regular
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As a consequence of De�nition �� the natural measures on the pieces Xi� i �
�� � � � � k� of any regular subset X can be concocted to give a well de�ned measure �X
on X �the �d� � dimensional Riemannian volume	� It is so because the boundaries
of the pieces being themselves �nite unions of subsets of submanifolds of lower
dimension have zero measure� Hence if we put

�X �
k�
i��

�Xi�

then

���	 �X ��X	 � ��

Moreover� by the regularity of the measure �X � it follows from ���	 that� if we
denote by ��X	� the ��neighborhood of �X in X� then

���	 lim
���

�X
�
��X	�

�
� ��

Further we have the following Proposition�

Proposition ���� For a subset Y of X 
 W let the ��neighborhood of Y in W be
denoted by Y �� i�e��

Y � � fx � W j d�x� Y 	 � �g�
If X is a regular ��d� ��dimensional� subset of W and Y 
 X is closed then

lim
���

��Y �	

��
� �X�Y 	�

Although Proposition �� holds as we formulated it� we will use only the weaker
property

���	 lim sup
���

��Y �	

�
� const�X�Y 	�

We leave the proof of the Proposition or of the easier property ���	 to the reader�

De�nition ���� A compact subset M
W is called a symplectic box if the bound�
ary �M of M is a regular subset of W and the interior intM of M is connected
and dense in M�

We can now formulate the requirements on the phase space of a discontinuous
system�

The phase space of our system is a �nite disjoint union of symplectic boxes�
To simplify notation we assume that the phase space consists of just one symplec�

tic box M� It will be quite obvious how to generalize the subsequent formulations
to the case of several symplectic boxes�

B� The map T �the dynamical system�
In the smooth case the map T is a symplectomorphism T � M�M
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In the discontinuous case we assume that the symplectic box M is partitioned
in two ways into unions of equal number of symplectic boxes

M � M�
� 	 � � � 	M�

m � M�
� 	 � � � 	M�

m�

Two boxes of one partition can overlap at most on their boundaries� i�e��

M�
i �M�

j 
 �M�
i � �M�

j � i� j � �� � � � �m�

The map T is de�ned separately on each of the symplectic boxes M�
i � i �

�� � � � �m� It is a symplectomorphism of the interior of each M�
i onto the interior

M�
i � i � �� � � � �m and a homomorphism ofM�

i ontoM�
i � i � �� � � � �m� We assume

that the derivative DT is well behaved near the boundaries of the symplectic boxes�
Namely� we assume that it satis�es the Katok�Strelcyn conditions so that we can
apply their results �K�S� on the existence of the foliation in �un	stable manifolds
and its absolute continuity�

We will say that T is a �discontinuous	 symplectic map of M� Formally T is not
well de�ned on the set of points which belong to the boundaries of several plus�
boxes� it has several values� We adopt the convention that the image of a subset of
M under T contains all such values�

Let us introduce the singularity sets S� and S��

S� � fp � M j p belongs to at least two of the boxes M�
i � i � �� � � � �mg�

The plus�singularity set S� is a closed subset and T is continuous on its com�
plement� Similarly T�� is continuous on the complement of S�� Note that most of
the points in the boundary �M of M do not belong to S� or S��

We have that S� 	 �M is the union of all the boundaries of the plus�boxes and
S� 	 �M is the union of all the boundaries of the minus�boxes� i�e��

S� 	 �M �
m�
i��

�M�
i �

Note that most of the points in the boundary �M of M do not belong to S� or
S�� We assume that the singularity sets S� and the union of boundaries

Sm

i�� �M�
i

are regular sets�

An important role in our discussion will be played by the singularity sets of the
higher iterates of T � We de�ne for n � �

S�
n � S� 	 T��S� 	 � � � 	 T�n��S��

and

S�n � S� 	 TS� 	 � � � 	 Tn��S��
We have that Tn is continuous on the complement of S�

n and T�n is continuous on
the complement of S�
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Regularity of singularity sets� We assume that for every n � � both S�
n and

S�n are regular�

We will formulate� in Lemma �� an abstract condition on the �rst power of T
alone that guarantees the regularity of the singularity sets but it requires that the
map is a di�eomorphism on every symplectic box up to and including its boundary
i�e�� it can be extended to a di�eomorphism of an open neighborhood of M�

i onto
an open neighborhood of M�

i � i � �� � � � �m�
Hence it is very appealing to restrict the discussion to such maps� Unfortunately�

such a restriction would leave out important examples� billiard systems where the
derivative may blow up at the boundary� The conditions in the work of Katok and
Strelcyn �K�S� were tailored for such systems�

Nevertheless the reader is invited to be generous with the restrictions on the
regularity of T � this will make it easier to follow the main line of the argument�

C� Monotonicity of T �
In the smooth case we assume that two continuous bundles of transversal La�

grangian subspaces are chosen in an open subset U 
 M �U is not necessarily
dense	� We denote them by fV��p	gp�U and fV��p	gp�U respectively�

In the discontinuous case we assume that two continuous bundles of transversal
Lagrangian subspaces are chosen in the interior of the symplectic box M� Their
limits �if they exist at all	 at the boundary �M are allowed to have nonzero inter�
section�

We consider the bundle of sectors �see De�nition ���	 de�ned by these Lagrangian
subspaces

C�p	 � C�V��p	� V��p		�

Let
C��p	 � C�V��p	� V��p		

be the complementary sector�
We require that the derivative of the map and its iterates� where de�ned� is

monotone� if only monotonicity is well de�ned �cf� De�nition ���	�
More precisely� in the smooth case we require that� if p � U and T kp � U for

k � �� then
DpT

kC�p	 
 C�T kp	�

In the discontinuous case we assume that

DpTC�p	 
 C�Tp	

for points p in the interior of every symplectic boxes M�
i � i � �� � � � �m �

We call a point p � intM �p � U in the smooth case	 strictly monotone in the
future if there is n � � such that DpT

n is de�ned and it is strictly monotone � in
the smooth case we require naturally that Tnp � U	� i�e��

DpT
nC�p	 
 intC�Tnp	 	 f�g�

Similarly a point p is called strictly monotone in the past if there is n � � such
that DpT

�n is strictly monotone with respect to the complementary sectors� i�e��

DpT
�nC��p	 
 intC��T�np	 	 f�g�

It is clear that if p is strictly monotone in the future then its preimages are also
strictly monotone in the future� By Proposition ��� we also have that if p is strictly
monotone in the future then there is n � � such that Tnp is strictly monotone in
the past
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Strict monotonicity almost everywhere� We assume that almost all points in
M �U in the smooth case� are strictly monotone�

This property implies that all Lyapunov exponents are non�zero almost every�
where in M �in U in the smooth case	� The proof of this fact is quite simple and
can be found in �W��� It will also follow easily from our Proposition 
��� Thus
by the work of Pesin �P� in the smooth case and of Katok and Strelcyn �K�S� in
the discontinuous case through almost every point there are local stable and unsta�
ble manifolds of dimension d and the foliations into these manifolds are absolutely
continuous�

The sectors C�p	 contain the unstable Lagrangian subspaces �tangent to the
unstable manifolds	 and the complementary sectors C��p	 contain the stable La�
grangian subspaces �tangent to the stable manifolds	� The sectors can be viewed as
a priori approximations to the unstable and stable subspaces� We will refer to the
sectors as unstable sector and stable sector respectively�

This ends the list of required properties for the smooth case� The last three
properties of our system are introduced only for the discontinuous case�

D� Alignment of Singularity sets
For a codimension one subspace in a linear symplectic space its characteristic

line is� by de�nition� the skeworthogonal complement �which is a one dimensional
subspace	�

Proper alignment of S� and S�� We assume that the tangent subspace of S�
at any p � S� has the characteristic line contained strictly in the sector C�p	 and
that the tangent subspace of S� at any p � S� has the characteristic line contained
strictly in the complementary sector C��p	� We say that the singularity sets S� and
S� are properly aligned�

Let us note that if a point in S� belongs to several pieces of submanifolds then
we require that the tangent subspaces to all of these pieces have characteristic lines
in the interior of the sector�

It will be clear from the way in which the proper alignment of singularity sets is
used in Section �� that it is su�cient to assume that there is N such that TNS�
and T�NS� are properly aligned� We will show� in section ��� that for the system
of falling balls even this weaker property fails� Hence the study of ergodicity of this
system would require some further relaxation of this property�

Let us note that it is helpful in establishing the regularity of singularity sets S�n
if the boundaries of M have tangent subspaces characteristic lines contained in the
boundary of the sectors C�p	� It is so in some examples� More precisely we have
the following lemma�

Lemma ���� If the map T is a di�eomorphism up to and including the boundaries
of the symplectic boxes M�

� � � � � �M�
m� satis�es properties C� D and the boundary

�M of M has all the tangent subspaces with characteristic lines contained in the
boundary of the sectors then the sets S�n � n � �� are regular �i�e� the property B is
automatically veri�ed��

Proof� Let us recall that� by assumption� S� and
Sm
i�� �M�

i are properly aligned
regular subsets� Further the intersection of any properly aligned regular subset X
�the characteristic lines of its tangent subspaces are contained strictly in the un�
stable sector C	 with any of the symplectic boxes M� M� is a regular subset
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Indeed let X�� � � � � Xp be the pieces of �d � � dimensional manifolds which make
up X �X �

Sp
i��Xi	 and Y�� � � � � Yq be the pieces of �d� � dimensional manifolds

which make up the boundary of say M�
� ��M�

� �
Sq
j�� Yj	� By the proper align�

ment of the pieces we can assume that any Xi and any Yj are pieces of transversal
submanifold� Hence the intersection of the submanifolds is a submanifold of dimen�
sion �d��� and therefore Xi�Yj are disjoint pieces of �d���dimensional manifolds
�allowed to intersect only at the boundary	� It follows that the intersection of Xi

with M�
� is a piece of the �d � � dimensional manifold and also a regular subset�

The same can be repeated for the other symplectic boxes M�
� � � � � �M�

m�
Moreover we have that any �Xi�M�

� 		�M�
� � i � �� � � � � p� is a regular subset and

further �X�M�
� 		�M�

� is a regular subset� It follows that T
�
�X �M�

� 	 	 �M�
�

�
� �TX �M�

� 		 �M�
� is a regular subset and after repeating the argument for the

other symplectic boxes we get that for any regular and properly aligned subset X
TX 	Sm

i�� �M�
i and therefore TX 	 S� are regular properly aligned subsets�

Now the proof can clearly be completed by induction since

S�n�� � TS�n 	 S��

The argument for S� is completely analogous� �

The last two properties are rather technical� They are used only in Section ��
in the proof of the �tail bound�� It remains an open question if one can do without
them�

E� Noncontraction property�
There is a constant a� � 	 a � �� such that for every n � � and for every

p � M n S�
n

kDpT
nvk � akvk

for every vector v in the sector C�p	�
Notably the above condition holds in all the examples to which the other con�

ditions apply �see x��	� apart from the case of semi�dispersing billiards in more
then two dimensions �the case from which this type of strategy originated	� In fact�
through a tangent collision a vector in the unstable direction can shrink by an arbi�
trary amount� Instead of the present condition the original article of Chernov�Sinai
�CS� was taking advantage of a special property of semi�dispersing billiard� Namely
the existence of a semi�norm �the con�guration norm	 that is increased by the dy�
namics for vectors in the unstable direction� Moreover� such norm is well aligned
with respect to the singularity manifolds and with respect to the cone bundle� on
the one hand a � neighborhood of the singularity in this semi�norm is of measure
O��	� on the other hand the hyperplane of vectors on which the seminorm has value
zero is not contained in the interior of the cone �note that this two requirement�
together with the requirement of the proper alignment of the singularities� imply
that the singularity manifold is aligned with the boundary of the cone	� It would
be possible to generalize such setting and use the generalization of these properties
instead of the non�contraction property� The bold reader can see how it would
be possible to adapt x�� to this setting� We choose not to do this explicitly for
reasons of clarity and also because we do not know of any example �apart from
semi�dispersing billiards	 to which such alternative condition could apply�

F Sinai Chernov Ansatz
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This is a property pertaining the derivatives of the iterates of T on the singularity
set itself� of T�� on S� and of T on R�� Namely� we require that� for almost every
point in R� with respect to the measure �S ��S is the �d�� dimensional Riemann�
ian volume on R� 	 R�	� all iterates of T are di�erentiable and for almost every
point in S� all iterates of T�� are di�erentiable� Note that the last requirement
holds automatically under the assumptions of Lemma �� Moreover�

we assume that for almost every point p � S� with respect to the measure �S �
the sequence of derivatives fDTnpTgn	� is strictly unbounded �cf� De�nition �����
Analogous property must hold for S� and T���

By Theorem ��
 the forward part of Sinai � Chernov Ansatz is equivalent to the
following property� For almost every point p � S� with respect to the measure �S

lim
n��� ��DpT

n	 � ���

where the coe�cient � is de�ned at the beginning of Section ��
In several examples unboundedness holds for all orbits by virtue of Proposition

��� but strict monotonicity is hard to establish�
We have completed the formulation of the conditions� Under these conditions we

will prove the following two theorems�

Main Theorem �Smooth case� For any n � � and any p � U such that Tnp �
U and ��DpT

n	 � � �i�e�� p is strictly monotone� there is a neighborhood of p which
is contained in one ergodic component of T �

It follows from this theorem that if U is connected and every point in it is
strictly monotone then

S��
i��� T iU belongs to one ergodic component� Such a

theorem was �rst proven by Burns and Gerber �BG� for �ows in dimension �� It
was later generalized by Katok �K� to arbitrary dimension and recently also to a
non�symplectic framework �K��� Our proof is a byproduct of the preparatory steps
in the proof of the following

Main Theorem �Discontinuous case� For any n � � and for any p � MnS�
n

such that ��DpT
n	 � � there is a neighborhood of p which is contained in one

ergodic component of T �

Let us note that the conditions of the last theorem are satis�ed for almost all
points p � M� Indeed let

Mn�� � fp � M j ��DpT
n	 � g�

Since almost all points are strictly monotone� then

���
n��

�
���

Mn��

has full measure� By the Poincare Recurrence Theorem and the supermultiplicativ�
ity of the coe�cient � we conclude that

���
Mn��
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Figure � The Baker Map and the Modi�ed Baker Map�

has also full measure�
Hence the theorem implies in particular that all ergodic components are essen�

tially open� The theorem allows also to go further since we assume that only �nitely
many iterates of T are di�erentiable at p so that we can apply it to orbits that end
up on the singularity sets both in the future and in the past �e�g� p � S� and
Tnp � S�	� We need though a speci�c amount of hyperbolicity on this �nite or�
bit ���DpT

n	 � �	� note that in the smooth case any amount of hyperbolicity
���DpT

n	 � �	 is su�cient�
This theorem gives a fairly explicit description of points which can lie in the

boundary of an ergodic component� By checking that there are only few such
points �e�g� that they form a set of codimension �	 one may be able to conclude
that a given system is ergodic�

Although the techniques used in the proof make it unavoidable to require more
hyperbolicity in the non�smooth case� we do not know of any examples of non�
ergodic systems satisfying all the conditions above where some points on the bound�
aries of two ergodic components are strictly monotone� i�e�� ��DpT

n	 � � for some
n � ��

In all the examples that we know� any point with an in�nite orbit �in the future
or in the past	 has the unbounded sequence of derivatives �in the sense of De�nition
���	� In such case� it follows from Theorem ��
 that for any strictly monotone
point with the in�nite orbit in the future the condition ��DpT

n	 � � is satis�ed
automatically� if only n is su�ciently large�

There is no need to formulate the Main Theorem separately for a point p which
has only the backward orbit �p � S�	� We can simply apply the theorem to T�np
�one can appreciate now the convenience of Proposition ���	�

Let us �nish this Section with an example where the role of the proper alignment
of singularities is exposed� The well known Baker�s Transformation maps the unit
square as shown in Fig��a and it is ergodic� Let us consider a variation of this
construction where the square is stretched and squeezed as before but now the
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Figure � The discontinuity lines of the Modi�ed Baker Map�

middle one half is left at the bottom and the quarters on the left and right are
translated to the top as shown in Fig��b� This time the map T is not ergodic� The
ergodic components are separated by the dotted line although for any point p on
the dotted line we have that

��DpT
�	 � ��

Of all the conditions formulated in this Section only the proper alignment of singu�
larity sets is violated� namely part of S� has stable �vertical	 direction �all of S�

has stable direction which is �ne	� see Fig�� where S� are indicated by bold lines�
For the standard Baker�s transformation the condition of the proper alignment is
clearly satis�ed�

x	� CONSTRUCTION OF THE NEIGHBORHOOD AND THE COOR�
DINATE SYSTEM�

We will construct a convenient coordinate system in a neighborhood of a strictly
monotone point p � M� There are two cases� strict monotonicity in the past and
strict monotonicity in the future but they are completely symmetric� Therefore� we
will discuss only one of them� Namely we assume that there is N � � such that

�
��	

i	 T�N is di�erentiable at p � p �� S�N 	 �M� �discontinuous case�

T�Np � U� �smooth case�

ii	 DpT
�N is strictly monotone�

We will �nd a neighborhood U�p	 in which there is an abundance of �long� stable
and unstable manifolds� Let us emphasize that we have assumed only that p �and
its N preimages	 does not belong to S� but it may very well belong to S�� Such
a level of generality is crucial in obtaining local ergodicity also for points in the
singularity sets S�
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Our �rst requirement on the neighborhood is that T�N is a di�eomorphism of
U�p	 onto a neighborhood of �p � T�Np �and in the smooth case both neighborhoods
are contained in U	�

By the Darboux theorem a symplectic manifold looks locally like a piece of the
standard linear symplectic space� Hence reducing U�p	 further� if necessary� we can
identify it with a neighborhood U of the standard linear symplectic space Rd  R

d

U � Ua � Va  Va�

where

Va � fx � �x�� � � � � xd	 � Rd j jxij 	 a� i � �� � � � � dg�

�In the discontinuous case we have assumed from the very beginning that a sym�
plectic box is a subset in R

d  R
d 	� We assume that the point p becomes the zero

point and the symplectic structure is the standard one� In particular all the tan�
gent spaces in U�p	 can be identi�ed with R

d  R
d � The choice of a cube for the

shape of the neighborhood is important only for some of the arguments in Section
�� otherwise we want to stress that our neighborhood U is the cartesian product of
neighborhoods Va in the d�dimensional linear space and we will not use any special
directions there�

Let us further introduce for any positive � the following sectors in the tangent
space of U �

C� � f�
� �	 � Rd  R
d j k�k � �k
kg

and the complementary sector

C�� � f�
� �	 � Rd  R
d j k
k � ���k�kg�

By the assumption �
��	 the sector D	pT
NC��p	 is strictly inside the sector C�p	�

We change coordinates in U in such a way that for some !� 	 �

C��p	 � C�
���

and

D	pT
NC��p	 
 C
��

By Propositions ����� ��� and ��� this can be done with !� � ���D	pT
N 		�� �

We pick �� !� 	 � 	 �� By the continuity of the sector bundle C�z	� z � U � and of
the derivative DyT

N � y � T�NU � if we reduce the size of U appropriately� we can
achieve that for any z � U �see Figure 	

�
��	 C��z	 
 C����

and for any y � T�NU

�
 �	 D TNC�y	 
 C
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Figure � The cones at TzM�

The properties �
��	 and �
��	 seem to be asymmetric in time� i�e�� T plays in
them a di�erent role than T��� Nevertheless we can obtain from them the following
fundamental Proposition which is perfectly symmetric in time�

We will say that a point z � U has k spaced returns in a given time interval if
there are k moments of time in this interval

i� 	 i� 	 � � � 	 ik

at which z visits U � i�e��

T ij z � U for j � �� � � � � k�

and the visits are spaced by at least time N � i�e��

ij�� � ij � N for j � �� � � � � k � ��

Proposition 	��� If Tn is di�erentiable at z � U for n � N and z� � Tnz � U
then

�
��u	 DzT
nC��� 
 C�

and

�
��s	 Dz�T
�nC�� 
 C���� �

Moreover for �
�� ��	 � DzT
n�
� �	 if �
� �	 � C� then

�
��u	 k
�k � b��kk
k
and if �
�� ��	 � C�

���
then

�
 �s	 k�k � b��kk��k
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where k is the maximal number of spaced returns of z in the time interval from N
to n and

b �
p

�� ���

Proof� It follows from �
��	 that for any x � U

C� 
 C��� 
 C�x	�

Hence
DzT

n�NC��� 
 C�Tn�Nz	�

Now �
��u	 follows from �
��	�
Let us further note that �
��	 implies that for any x � U

DxT
�NC�� 
 C��T�Nx	�

We obtain �
��s	 by applying �rst Dz�T
�N � then DT�Nz�T

�n�N and using �
��	
again�

The properties �
��u	 and �
��s	 follow from �
��u	 and �
��s	 respectively in
exactly the same way� We will prove only the unstable version� To measure vectors
in C� we use the form Q associated with the sector C��� � It is equal to

���k
k� � �k�k�

and on every spaced return to U the value of this form on vectors from C��� gets
increased by at least the factor ���� cf� Propositions ���� and ��� � It remains to
compare the value of this form at �
� �	 � C� with k
k�� We have

���k
k� � ���k
k� � �k�k� � ���� � ��	k
k�

which immediately yields �
��u	�
�

Having achieved the symmetry with respect to the direction of time we will
restrict the discussion in the next section to the case of unstable manifolds using
the unstable version of Proposition 
��� It can be then repeated for the stable
manifolds with the use of the stable version�

Remark 	��� If p is not a periodic point then by reducing the neighborhood U we
can guarantee that any successive visits to U are spaced by� at least� a time N � In
such a case the number of spaced returns becomes simply the number of returns to
U � It is so also if N � ��

x
� UNSTABLE MANIFOLDS IN THE NEIGHBORHOOD U �

Let us repeat the properties of T and U established in the previous section which
we will rely upon� Note that the original point p does not appear explicitly�

There is a positive number � 	 � such that for any z � U

�� �	 C 
 C 
 C�z	
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and for any y � T�NU
����	 DyT

NC�y	 
 C��
It follows that if z � U and Tnz � U for n � N then

����	 DzT
nC��� 
 C��

Moreover if
�
� �	 � C� and �
�� ��	 � DzT

n�
� �	

then

����	 k
�k � b��kk
k
where k is the maximal number of spaced returns to U between the times N and n
and b �

p
�� ���

By the Pesin theory �P� in the smooth case and the Katok�Strelcyn theory �K�S�
in the general case for almost all z � U we have a local unstable manifold Wu

loc�z	
through z� Further the tangent spaces of Wu

loc�z	 � U are Lagrangian subspaces
contained in C�� Unfortunately the general theory does not give us a good hold on
their size�

Let �i � VV � V� i � �� �� be the projection on the �rst and second component
respectively� We denote by B�c� r	 the open ball with the center at c and the radius
r�

De�nition 
��� We say that an unstable manifold in U of a point z � �z�� z�	 � U
has size � if it contains the graph of a smooth mapping from B�z�� �	 to V� We
denote such a graph by Wu

	 �z	 and we will call it the unstable manifold of size ��

By the de�nition of an unstable manifold Wu
	 �z	 of size � its projection onto the

�rst component is the open ball with the center at ��z and radius ��

Lemma 
��� The projection onto the second component of an unstable manifold
through z � �z�� z�	 � U of size � lies in the open ball with the center at z� and the
radius ��� i�e��

�� �Wu
	 �z		 
 B�z�� ��	�

Proof� Let Wu
	 �z	 be the graph of

� � B�z�� �	 � V�
The subspace f�
� D�
	j
 � Rdg is tangent to Wu

	 �z	 and hence is contained in C��
It follows that

kD�k � ��

By the mean value theorem if z� � �z��� z
�
�	 �Wu

	 �z	 then

kz�� � z�k � k��z��	� ��z�	k � sup kD�kkz�� � z�k 	 ���

�

In contrast to the model problem at the beginning where we had fairly long initial
unstable leaves and then we cut them because of the discontinuity of our system
we start here with small unstable manifolds and �grow� them until they are large
or until they hit the singularity whichever comes �rst� This is done in the proof of
the following Theorem
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Theorem 
��� For any � � � almost every point z in U�
� �

U�
� � Ua����

where a���	 � a�b��� �Ua is de�ned in x� and b �
p

�� ���� either has an unstable
manifold of size � or it has an unstable manifold of size �� 	 � such that the closure
of Wu

���z	 intersects
S
j�N T jS��

Proof� Let A��	 
 U�
� be the set of points which have unstable manifolds of size ��

By the Katok�Strelcyn theory almost all points in U�
� belong to

S
	��A��	� Let us

�x A��	 of positive measure and let k be the smallest natural number such that

b��k� � ��

Almost all points in A��	 have k spaced returns to A��	 in the past� Let z be such
a point and let

�N � �i� � � � � � �ik � �n
be the k times of spaced returns of this point� i�e��

T�ij z � A��	� j � �� � � � � k�

The geometric idea for growing unstable manifolds is to take the unstable mani�
fold of size � through the point T�nz and map it forward under Tn� The expansion
property ����	 guarantees then that the image contains the unstable manifold of
size �� There are two complications in this argument� First it may happen that Tn

is not continuous on the unstable manifold Wu
	 �T�nz	� that is

Wu
	 �T�nz	 � S�

n �� ��

The other problem occurs when parts of the images of the unstable manifold are
outside of U where the expansion property ����	 may fail�

To present clearly the core of the argument we ignore for the time being these
two di�culties and assume that Tn is di�erentiable on Wu

	 �T�nz	 and that

Tn�ijWu
	 �T�nz	 
 U � j � �� � � � � k�

here we set i� � �� We can prove then that z has an unstable manifold of size ��
Indeed let Wu

	 �T�nz	 be the graph of

� � B����T�nz	� �	 � V

and let us consider the map

� � B����T
�nz	� �	 � V

de�ned by ��x	 � �� �Tn�x� �x		� By ����	 this map is an expanding map with the
coe�cient of expansion not less than b��k� i�e��

kD�
k � b��kk
k
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Hence the image of B����T
�nz	� �	 by � contains the ball B���z� �	� Additional

complication is caused by the fact that � is not necessarily one�to�one� But since
� is a local di�eomorphism we can de�ne ��� on B���z� �	 as the branch of the
inverse for which �����z � ���T�nz	� Therefore� TnWu

	 �T�nz	 contains the graph
of the map

�� � Tn � �id �	 � ���

which de�nes Wu
� �z	�

Let us now address the general case� We will construct the maximal subset of
Wu

	 �T�nz	 on which Tn is di�erentiable and its images at the return times to U
are contained in U � Our �rst step is to consider the connected component of

Wu
	 �T�nz	 n S�

n

which contains T�nz and denote it by
ggWu
	 �T�nz	� Further the connected compo�

nent of
k�

j��

T ij�n
�
Tn�ijggWu

	 �T�nz	 � U
�

which contains T�nz will be denoted it by gWu
	 �T�nz	� It is the part of the unstable

manifold which has the desired properties�
Now we consider the image

TngWu
	 �T�nz	

and we let �� be the largest positive number such that Wu
���z	 is well de�ned and

contained in TngWu
	 �T�nz	�

If �� � � then we are done� Let us hence assume that �� 	 ��
It follows from the maximality of �� that the boundary of Wu

���z	 contains� at

least� a point from the boundary of TngWu
	 �T�nz	� Let z� be such a point� If z�

belongs to
Sn��
i	N T iS� then we are again done� If not then T�n is di�erentiable at

z� and hence T�nz� belongs to the boundary of gWu
	 �T�nz	 and it does not belong

to S�
n � It follows now from the construction of gWu

	 �T�nz	 that T�nz� must belong
to the boundary of Wu

	 �T�nz	 or for some j� � � j � k� T�ijz� belongs to the
boundary of U �

We will obtain now a contradiction by using the expansion property ����	 � Let
Wu

���z	 be the graph of
� � B���z� ��	 � V

and let
�� � ��� �	 � B���z� ��	

be the segment connecting ��z and ���z
�	� We consider the preimages of the curve

f����t	� ����t		 j � � t 	 �g and obtain �j � ��� �	 � V� j � �� � � � � k by the formula

�j�t	 � ��
�
T�ij ����t	� ����t		

�
�

It follows from ����	 that the length of �� is not smaller than the length of �j times
b��j � If T�nz� belongs to the boundary of Wu

	 �T�nz	 then the length of �k is at
least � and we get the contradiction

�� � b��k� � �
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Finally if T�ij z� belongs to the boundary of U for some j� � � j � k� then �j which
connects ���T

�ij z	 � U�
� and ���T�ijz�	 must have the length at least b���� We

get again the contradiction
�� � b��jb��� � ��

�

De�nition 
�	� We say that the unstable manifold of size � Wu
� �z	 is cut by

T iS�� i � �� if its boundary contains a point from T iS��
By Theorem �� to guarantee that at least some points �and in the case of a

smooth map almost all points	 have unstable manifolds of size � we need to step
away from the boundary of U by at least b���� In the following we �x a su�ciently
small �� and restrict our discussions to U� � U�

��
� We can then claim that in U�

almost every point has a uniformly large unstable manifold �of size ��	 or a smaller
unstable manifold cut by some image of the singularity set S��

By �B�c� r	 we denote the closed ball with the center at c and the radius r� We
de�ne a rectangle R�z� �	 with the center at z � �z�� z�	 and the size � as the
Cartesian product of closed balls

R�z� �	 � �B�z��
�

�
	 �B�z��

�

�
	�

De�nition 
���� We say that the unstable manifold Wu
���z

�	 of z� � �z��� z
�
�	 of

size �� is connecting in the rectangle R�z� �	 with the center at z � �z�� z�	 and size
� if

�B�z��
�

�
	 
 B�z��� ��	

and

�� �Wu
���z

�	 � R�z� �		 
 B�z��
�

�
	�

We can say equivalently that an unstable manifold Wu
���z

�	 is connecting in the
rectangle R�z� �	 if the intersection of Wu

���z
�	 with the rectangle is the graph of a

smooth mapping from the closed ball �B���z� �� 	 to the open ball B���z� �� 	� Clearly
it is necessary that �� � ����

De�nition 
���� For a given rectangle R�z� �	 with the center at z � �z�� z�	 and
size � we de�ne its unstable core as the subset of those points z� � �z��� z

�
�	 � R�z� �	

for which

�kz�� � z�k� kz�� � z�k 	 ��� �	
�

�
�

The role of an unstable core is revealed in the following Lemma�

Lemma 
���� If an unstable manifold Wu
���z

�	 of size �� � k��z�� ��zk� �
� inter�

sects the unstable core of a rectangle R�z� �	 then it is connecting in the rectangle�

Proof�
Let z � �z�� z�	 and z� � �z��� z

�
�	� let Wu

���z
�	 be the graph of � � B�z��� ��	 � V

and let �x�� �x�	 be a point in the unstable core of the rectangle� By the condition
on ��

�B�z��
�

	 
 B�z�� ��	�
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Figure 	� The core of a rectangle�

We have to check only that if x � �B�z�� �� 	 then

k�x� z�k 	 �

�
�

We have
k�x� z�k � k�x� �x�k� k�x� � z�k

� sup kD�kkx� x�k� k�x� � z�k
� �kx� z�k� �kx� � z�k� k�x� � z�k
	 �

�

�
� ��� �	

�

�
�

�

�
�

�

The point of the above lemma is that a large unstable manifold may fail to be
connecting in a rectangle if it intersects the rectangle too close to the boundary�

x��� LOCAL ERGODICITY IN THE SMOOTH CASE�

Contrary to the title of this section we will consider here several propositions
valid in the general case� Incidentally they will su�ce to obtain local ergodicity in
the smooth case�

It is important to remember that all of Section � can be repeated for stable
manifolds� In this section we will be using both stable and unstable manifolds�

Lemma ����� If an unstable manifold and a stable manifold are connecting in
a rectangle then there is a unique point of intersection of these manifolds in the
rectangle and it belongs to the interior of the rectangle�

Proof� Let the rectangle have the center at z � �z�� z�	 and size �� The intersections
of the unstable and stable manifolds with the rectangle R�z� �	 are the graphs of
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the smooth mappings

�u � �B�z��
�

�
	 � B�z��

�

�
	

and

�s � �B�z��
�

�
	 � B�z��

�

�
	

respectively�
Since both �u and �s are contractions so is their composition

�s�u � �B�z��
�

�
	 � B�z��

�

�
	�

Hence it has a unique �xed point x � B�z�� �� 	� The point

�x� �ux	 � ��s�ux� �ux	

is the desired intersection point� �

For a rectangle R we denote by W �u�s�R	 the union of the intersections with R
of all �un	stable manifolds connecting in R� i�e��

W �u�s�R	 �
�
fR �W �u�s

�� �z�	 j W �u�s
�� �z�	 is connecting in Rg�

The union of the unstable core and the stable core of a rectangle will be in the
following called simply the core of the rectangle�

Proposition ����� For any rectangle R 
 U� if the sets W s�R	 and Wu�R	 have
positive measure then W s�R	 	Wu�R	 belongs to one ergodic component of T �

Proof� The proof is done by the Hopf method as described in Sections � and ��
Let us �x a continuous function de�ned on our phase space� For all points

in one �un	stable manifold the �backward	 forward time averages are the same�
As shown in Section � the forward and backward time averages have to coincide
almost everywhere� Our goal is to show that they are constant almost everywhere
in W s�R	 	Wu�R	�

There is a technical di�culty stemming from the fact that the foliations into
stable and unstable manifolds are not smooth in general� One has to use the absolute
continuity of the foliations which was proven in �KS� under the conditions which �t
our scheme� �It is by far the hardest fact to prove in their theory�	

It follows from absolute continuity of the foliation into unstable manifolds that
except for the union of unstable manifolds from Wu�R	 of total measure zero almost
every point �with respect to the Remannian volume in the manifold	 in an unstable
manifold from Wu�R	 has equal forward and backward time averages� Let us take
such a typical unstable manifold� Again by the property of absolute continuity
the union of stable manifolds in W s�R	 which intersect the distinguished unstable
manifold at points where the forward and backward time averages exist and are
equal di�ers from W s�R	 by a set of zero measure� Hence the time average of our
function is constant almost everwhere in W s�R	� Similarly the time average of our
function is constant almost everywhere in Wu�R	�

Finally using the property of absolute continuity for the third time we can claim
that Wu�R	 and W s�R	 intersect on a subset of positive measure� Hence the time
average of our function is constant almost everywhere in W s�R	 	Wu�R	
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To prove that W s�R		Wu�R	 belongs to one ergodic component we proceed in
the same way as at the end of Section �� �

We are ready to prove the local ergodicity in the smooth case

Proof of Main Theorem �smooth case��

All the constructions started in Section � apply to our point p� We will prove
that a neighborhood U� only slightly smaller than U� belongs to one ergodic com�
ponent� Indeed according to Lemma ���� all the points in the �un	stable core of a
rectangle R 
 U� which have an �un	stable manifold of su�ciently large size belong
to W �u�s�R	� By Theorem �� in the smooth case almost every point in U� has both
the unstable manifold and the stable manifold of size ��� Hence by Lemma ���� for
any rectangle R 
 U� of size � 	 �� the set W s�R	 contains at least the stable core
of R and Wu�R	 contains at least the unstable core of R� Clearly then the sets
W s�R	 and Wu�R	 have positive measure and we can apply Proposition �����

To end the proof we consider a family of rectangles of size � � �� contained in U�

whose cores cover a slightly shrunk neighborhood U� 
 U�� By Proposition ���� we
can claim that each core belongs to one ergodic component� Since the cores form an
open cover of the connected set U� we can conclude that U� belongs to one ergodic
component� �

Actually we can claim that under the assumptions of the Main Theorem the
whole neighborhood U constructed in Section 
 belongs to one ergodic component�
Indeed by taking � � � the above argument applies to U� � U� so that actually
U� belongs to one ergodic component� Again the �� in the de�nition of U� can
be chosen arbitrarily small so that also the whole neighborhood U belongs to one
ergodic component� This does not strengthen the theorem but it demonstrates
the usefulness of coverings with rectangles of size � � �� It will be crucial in the
treatment of the discontinuous case�

Let us outline the plan for proving local ergodicity in the general case� We cover
the neighborhood U� with rectangles of size �� At least for some rectangles R the
sets W s�R	 and Wu�R	 will have positive measure� We will be actually interested
in the property that these sets cover certain �xed �but otherwise arbitrarily small	
percentage of the core of the rectangle and we will call such rectangles connecting�
One may then expect to have more connecting rectangles as � � �� The precise
formulation of such a property is the subject of Sinai Theorem� The method of the
proof requires that the size of the sector satis�es � 	 �

� � In applying Sinai Theorem
it is convenient to work with more structured coverings� namely the centers of the
rectangles will belong to a lattice with vertices so close that the cores of nearest
neighbors rectangles will overlap almost completely� Consequently� if both nearest
neighbors R� and R� are connecting then the union of W s�R�	 	 Wu�R�	 and
W s�R�	 	 Wu�R�	 belongs to one ergodic component �see Preposition ���	� It
will follows from Sinai Theorem that the network of connecting rectangles becomes
more and more dense as � � � so that we will be able to claim that one ergodic
component reaches from any place in the neighborhood U� to any other place� We
will conclude by using the Lebesgue Density Theorem to show that U� belongs to
one ergodic component�

x�� LOCAL ERGODICITY IN THE DISCONTINUOUS CASE
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Given � � � we consider a shrunk neighborhood U�
� de�ned by the requirement

that a rectangle with the center in U�
� and size � lies completely in U�� �One can

easily see that U�
� � Ua���� where a���	 � a����	 � �

�
	� Let us note that U�

� � U�

as � � ��
Let N ��� c	 be the net de�ned by

N ��� c	 � fc��m� k	 � U�
� j m� k � Zdg�

We consider the family G� of all rectangles with the centers in N ��� c	 and size �

G� � fR�z� �	 j z � N ��� c	g�

If c is su�ciently small the family G� is a covering of U�
� � The parameter c will be

chosen later to be very small so that many rectangles in G� overlap� But once c is
�xed a point may belong to at most a �xed number of rectangles� which we denote
by k�c	 �it does not depend on �	�

De�nition ����� Given �� � 	 � 	 �� we call a rectangle R � G� ��connecting in
the �un�stable direction �or simply connecting� if at least the � part of the measure
of the �un�stable core of R is covered by W �u�s�R	�

Sinai Theorem ����� If � 	 �
� then there is �� � 	 � 	 �� such that for any c

lim
���

����
��

fR � G� j R is not ��connecting g
�

� ��

i�e�� the union of rectangles which are not ��connecting in either the stable or the
unstable direction has measure o��	

It is very important for the application of this theorem that given � 	 �
� we get

a certain � �which may be very small if � is close to �
� 	 and we are free to choose c

�which determines the overlap of the rectangles in G�	 as small as we may need�
We will prove Sinai Theorem in Sections �� and ��� In the remainder of this

Section we will show how to obtain the Main Theorem in the discontinuous case
from Sinai Theorem�

We start with some auxiliary abstract facts� The �rst one concerns Measure
Theory� For any �nite subset S we will denote by jSj the number of elements in S�

Lemma ����� Let fAs j s � Sg be a �nite family of measurable subsets of equal
measure a in the measure space �X� �	 such that no point in X belongs to more
than k elements of the family� For any subfamily fAs j s � S�g� S� 
 S� we have

a

k
jS�j � �

	 �
s�S�

As



� ajS�j�

Further if for a measurable subset Y 
 X and some �� � 	 � 	 ��

��As � Y 	 � ���As	 for s � S�

then

��Y 	 � �

	 �
As � Y



� �

k
�

	 �
As



�
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�

The second fact concerns Combinatorics� Let us consider the lattice Zd and its
�nite pieces

Ln � Ln�d	 � f�� �� � � � � n� �gd 
 Z
d�

Let K 
 Ln be an arbitrary subset which we call a con�guration� We think of
elements of K as occupied sites and elements of Ln nK as empty sites�

For a given con�guration K 
 Ln we consider the graph obtained by connecting
by straight segments all pairs of occupied sites which are nearest neighbors� Let
gK 
 K be the family of sites in the largest connected component of the graph�

Proposition ����� Let Kn 
 Ln�d	� n � �� �� � � � � be a sequence of con�gurations�
If

n
jLn nKnj
jLnj � � as n� ��

then jgKnj
jLnj � � as n� ���

Proof� This proposition will follow immediately from the following combinatorial
Lemma�

Lemma ����� Let K 
 Ln�d	 be an arbitrary con�guration� If

jLn nKj
nd��

	 a 	 �

then jgKj
nd

� �� �d� �	a�

Proof� The proof is by induction on d� For d � � the statement is obvious� Suppose
it is true for some d� We will establish it for d � ��

We partition Ln�d��	 into subsets Ln�d	fig� i � �� � � � � n�� and we call them
�oors� We pick the �oor with the fewest number of empty sites� Clearly the number
of empty sites there does not exceed and�� so that we can apply to it the inductive
assumption� We obtain in this �oor a connected graph with at least ����d��	a	nd

elements�
Now we partition Ln�d � �	 into subsets fzg  f�� � � � � n� �g� z � Ln�d	 and we

call them columns� A column is called an elevator if all of its elements are occupied�
The number of elevators is at least ��� a	nd� Hence the number of elevators which
intersect the connected graph in the �oor considered above is at least �� � da	nd�
Adding these elevators to the graph we obtain a connected graph with at least
��� da	nd�� elements which ends the proof of the inductive step� �

�

Proof of Main Theorem �Discontinuous case�� All the constructions of Sections 

through �� apply with some � 	 �

� � We will be proving that the neighborhood U�

belongs to one ergodic component�
The Sinai Theorem gives us � 	 � which depends only on � and may have to

be very small if � is very close to � Let us consider the lattice N �� c	 and the
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covering G�� We choose c so small that if the centers of two rectangles in G� are
nearest neighbors in N ��� c	 then their unstable cores �and then automatically also
stable cores	 overlap on more than � � � part of their measure� Note that such a
property depends on c but is independent of the value of �� This choice of c has
the following consequence� If two rectangles R� and R� with centers at nearest
neighbors in N ��� c	 are ��connecting in the unstable direction then Wu�R�	 and
Wu�R�	 intersect on a subset of positive measure� If in addition we also know that
W s�R�	 and W s�R�	 have positive measure then using Proposition ���� we obtain
that

Wu�R�	 	Wu�R�	 	W s�R�	 	W s�R�	

belongs to one ergodic component�
We consider the con�guration K��	 in the lattice N ��� c	 which consists of the

centers of all rectangles in G� which are ��connecting both in the stable and unstable
directions� As in the discussion proceeding Proposition ���� we consider the graph
obtained by connecting with straight segments all pairs of nearest neighbors in K��	�
Let as before gK��	 be the collection of vertices in the largest connected component
of this graph� By our construction the set

Y ��	 �
�
fWu�R�z� �		 	W s�R�z� �		 j z � gK��	g

belongs to one ergodic component� This set is crucial in our proof that U� belongs
to one ergodic component� It may be very small in measure �if � is small	 but it
covers at least certain �xed �� portion of the measure of each of the rectangles with
centers in gK��	� i�e��

�����	 � �R�z� �	 � Y ��		 � ��� �R�z� �		

for any z � gK��	 ��� is smaller than � since � is only the part of the measure of
the �un	stable core covered by the connecting �un	stable manifolds	� It remains to
show that the points in gK��	 reach into all parts of U�� It will follow from Sinai
Theorem�

By Sinai Theorem the total measure covered by rectangles which are not ��
connecting is o��	� Using Lemma ���� we can translate this estimate as

k�c	��jN ��� c	 n K��	j��d � o��	�

Since in addition jN ��� c	j
�c�	�d

� O��	

we see that the assumptions of Proposition ���� are satis�ed and we can claim that

����	
jgK��	j
jN ��� c	j � � as � � ��

We are ready to �nish the proof by a contradiction� Suppose there are two T
invariant disjoint subsets E� and E� which have intersections with U� of positive
measure� Let us pick two Lebesgue density points p� and p� for E��U� and E��U�

respectively� Next we �x cubes C� and C� with centers at p� and p� so small that

��Ci � Ei	 �
�

�� ��

�k� 	

�
��Ci	� i � �� ��
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It follows from ����	 that

j �N ��� c	 n gK��		 � Cij
jN ��� c	j � � as � � �� i � �� ��

Since jN ��� c	j
jN ��� c	 � Cij � O��	� i � �� ��

we conclude that
j �N ��� c	 � Ci	 n gK��	j

jN ��� c	 � Cij � � as � � �� i � �� ��

Now we get immediately that

����
	 �
���

fR�z� �	jz � gK��	 � Cig
�
�Ci

�
� � as � � �� i � �� ��

where � denotes the symmetric di�erence� i�e�� for any two sets A and B

A�B � �A nB	 	 �B nA	�

By �����	 and Lemma ����

�
��

fR�z� �	jz � gK��	 � Cig � Y ��	
�
� ��

k�c	
�
��

fR�z� �	jz � gK��	 � Cig
�
�

i � �� ��
Comparing this with ����
	 and remembering how dense Ei is in Ci� i � �� �� we

conclude that for su�ciently small � the set Y ��	 must intersect both E� and E�

over subsets of positive measure which contradicts the fact that it belongs to one
ergodic component� �

x��� PROOF OF SINAI THEOREM�

We will be proving only the unstable version of the theorem� i�e�� we will estimate
the measure of the union of rectangles which are not ��connecting in the unstable
direction� Everything can be then repeated for the stable manifolds�

For a point y � �y�� y�	 in the core of a rectangle R�z� �	 there are two possibil�
ities�

��	 the point y has an unstable manifold of size �� � ky� � ��zk � �
� �which is

connecting in R�z� �	 by Lemma ����	�
��	 the point y has an unstable manifold of size �� � ky� � ��zk � �

� cut byS
i	� T

iS��

If a rectangle R�z� �	 is not connecting then the second possibility must occur for
at least �� � part of its core�

The neighborhood U was chosen so small that S�N �
SN��
i�� T iS� is disjoint from

U � It follows that� for points in U�� the unstable manifolds of size �� 	 �� cannot
be cut by these singularities� For any M � N let us introduce the following special
case of the second property�

��M 	 the point y has an unstable manifold of size �� � ky� � ��zk � �
� cut bySM

i�N T iS��
Further� we introduce the auxiliary notion of a M �nonconnecting rectangle�

Roughly speaking� it is a rectangle which is not connecting because of the sin�

gularity set
SM T iS�
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De�nition ����� Given � 	 �
� we say that a rectangle R of size � is M �nonconnec�

ting� if at least ���� part of the measure of the unstable core of R consists of points
which satisfy the property ��M 	�

The plan of the proof is the following� We �x an arbitrary positive � � � and we
divide the argument in two parts� In one part we will prove that there is M � M��	
and �	 such that� for all � 	 �	� the total measure of all rectangles in G� which are
not ��connecting and are not M �nonconnecting is less than � 	� � This is the subject
of the �tail bound� �section ��	 and it is by far the hardest part of the proof� It
will require global considerations �i�e�� outside of U	� The particular value of � is
immaterial there�

We will start with the easier part proving that� for a given � 	 �
� and any M �

there are � and �	 such that� for all � 	 �	� the total measure of all M �nonconnecting
rectangles of size � is less than � 	� � Let us formulate it in a separate Proposition�
Its proof will be completely con�ned to the neighborhood U �

Proposition ����� For any � 	 �
� � there is �� � 	 � 	 �� such that� for any

M � N �

lim
���

����
��

fR � G� j R is M �nonconnecting g
�

� ��

Proof� We rely on our assumption that S� and its images are su�ciently �nice��

More precisely we have required that the singularity set S�M�� �
SM

i�� T
iS� is

regular� The de�nition of regularity was tailored to the needs of this proof� In
particular the singularity set S�M�� is a �nite union of pieces of submanifolds Ik
of codimension one� with boundaries �Ik� k � �� � � � � p� The boundaries �Ik� k �
�� � � � � p are themselves also �nite unions of compact subsets of submanifolds of
codimension � � What is more

Ik � Il 
 �Ik 	 �Il for any k� l�

In each of the closed manifolds Ik� k � �� � � � � p� we consider the open neigh�
borhood of the boundary of radius r� and we denote by Jr the union of these
neighborhoods� i�e��

Jr �

p�
k��

fp � Ik j d�p� �Ik	 	 rg�

For each � let r��	 be the smallest r such that� for any k �� l� the distance of
Ik nJr and Il nJr is not less than ��� �In other words� for any k �� l� the sets Ik nJr
and Il n Jr are disjoint compact subsets� and their distance is at least ���	 Clearly

lim
���

r��	 � ��

Hence� by the property ���	

�����	 lim
���

�S�Jr���	 � �

where �S is the natural volume element on S�M���
Let us note that� if a rectangle R � R�z� �	 contains a point with the unstable

manifold of size �� 	 � cut by S� then it intersects the �� neighborhood of S�
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but it does not necessarily intersect the singularity set itself� For technical reasons�
we prefer to blow up every rectangle� so that the blown up rectangle must intersect
S�M�� itself� and not only its neighborhood� For a �xed b� 	

�
� � to be chosen later�

and for any rectangle R � R�z� �	� we introduce the blown up rectangle

eR � B���z� �� � �b�	
�

�
	 B���z�

�

�
	�

The diameter of eR is less than ��� since we assume that b� 	
�
�
�

Let y belong to the core of R� satisfy the property ��M 	� and

k��y � ��zk � b�
�

�
�

This implies that the unstable manifold Wu
���y	 is contained in eR� so that eR in�

tersects
SM

i�N T iS�� We conclude that� for � su�ciently small� if a rectangle R

of size � is M �nonconnecting� then eR intersects at least one of the submanifolds

Ik� k � �� � � � � p� If for a rectangle R of size � the blown up rectangle eR intersects
two submanifolds Ik and Il� k �� l then� by de�nition of r��	 it must intersect Jr����
and so it must be contained in the neighborhood of Jr��� of radius ��� By �����	 and
Proposition �� the measure of the neighborhood of Jr��� of radius �� is o��	 �i�e��
when divided by �� it tends to zero as � tends to zero	� It remains to consider those
blown up rectangles which intersect only one of the submanifolds Ik� k � �� � � � � p�

The proof will be �nished when we prove that� for all su�ciently small �� if a

blown up rectangle eR intersects only one of the submanifolds Ik� k � �� � � � � p� �and
does not intersect �Ik	� then the rectangle R is not M �nonconnecting�

Our �rst observation is that there is a constant K depending only on the mani�
folds Ik� k � �� � � � � p� such that for any x� x� � Ik there is v in the tangent space to
Ik at x �v � TxIk	 for which

�����	 kx� � x� vk � Kkx� � xk�

Here we consider the tangent space TxIk of Ik at x as a subspace in R
d  R

d � This
property is a formulation of the fact that smooth submanifolds are locally close to
their tangent subspaces and follows easily from the Taylor expansion�

Further� in view of the proper alignment of the singularity manifolds� the tangent
subspaces TxIk� x � Ik � U� must have their characteristic lines in C��

Let us now take a rectangle R � R�z� �	 such that the blown up rectangle eR
intersects Ik� We will show that ���Ik � eR	 is contained in a fairly narrow layer�

To show this� let x � �x�� x�	� x� � �x��� x
�
�	 � Ik � eR and let v � �
� �	 � TxIk be

the vector for which �����	 holds� We pick a nonzero vector v� � �
�� ��	 � TxIk
with the direction of the characteristic line� For convenience� we scale it so that
k
�k � �� We have� by the de�nition of a characteristic line�

��v� v�	 � h
� ��i � h�� 
�i � ��

It follows that
jh� 
 ij jh
 � ij � �k
 kk
k �k
k
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Replacing v by x� x� in the last inequality and using �����	� we get

jh
�� x�� � x�ij � ��kx�� � x�k� Kkx� � xk�	 � Kkx� � xk��

Since both x and x� are in eR� we have that

kx�� � x�k 	 �� � �b�	�

and
kx� � xk 	 ���

Therefore� for any x� x� � Ik � eR� we obtain the inequality

�����	 jh
�� x�� � x�ij � ��� � �b�	� � const ��

where the constant depends only on � and K� The inequality �����	 shows that

���Ik� eR	 is contained in a layer perpendicular to 
� of width �����b�	��const ���

Hence� there is �x� �in the �center� of the layer	 such that every x � �x�� x�	 � Ik� eR
must belong to the layer de�ned by the inequality

�����	 jh
�� x� � �x�ij � ��� � �b�	
�

�
� const ��

We want to estimate the width of the layer where all the points from the core
of the rectangle with �short� unstable manifolds� cut by Ik� must lie� To that end
let us take a point y � �y�� y�	 in the core of the rectangle R�z� �	 and such that
ky����zk � b�

�
� � If y satis�es the property ��M 	 then by Lemma ��� the projection

��W
u
���y	 of the unstable manifold lies in the ball

B�y�� ���	 
 B�y�� ��� � b�	
�

�
	�

Assuming that Wu
���y	 is cut by Ik� there is x � �x�� x�	 � Ik � eR for which

jh
�� y� � x�ij � ��� � b�	
�

�

Hence� by �����	� the point y must belong to the layer de�ned by the inequality

����	 jh
�� y� � �x�ij � ��� � b�	
�

�
� ��� � �b�	

�

�
� const ��

The last step is to choose b� so small that this layer cannot cover all of the core�
We prefer� for convenience� to �t a Cartesian product into the unstable core� and
to prove that a �xed part of this set is cover by connecting manifolds� We choose
such set to be

X�b�	 � B���z� b�
�

�
	 B���z� s�b�	

�

�
	

where s�b�	 � �� �� �b�� By the de�nition of a core the set X�b�	 is contained in
the core of R�z� �	� and its measure is not less than certain �xed part of the measure
of the core depending on b �and the dimension d	 but independent of �
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If the layer ����	 is su�ciently narrow� it cannot cover all of X�b�	� The precise
inequality� which guarantees that� is easily transformed into

����
	 �� � const � 	 �� ��b��

After a moment of re�ection the reader will realize that only if � 	 �
� we can choose

b� so small that not only ����
	 is satis�ed� but also certain �xed part of X�b�	
�depending on b� but independent of �	 is not covered by the layer ����	� Thus�
there is � su�ciently small� depending on � and b�� such that more than �� part
of the measure of the core is free of points satisfying the property ��M 	� Hence the
rectangle R is not M �nonconnecting� �

If the reader �nds it hard to follow the above argument� it is because we strived
to use as little hyperbolicity as possible on our �nite orbit� The amount of hyper�
bolicity is measured by the size � of the sector � We have managed to relax the
condition on � up to � 	 �

� � It is not hard to see that if the last condition is relaxed
further Proposition ���� will not hold in general�

x��� �TAIL BOUND��

We will be proving that for every � � � there is M such that the measure of
points z � U� with the unstable manifold of size �� 	 � cut by

S
i	M�� T

iS� does
not exceed ��� Comparing this set with the union of rectangles in G� which are not
��connecting and not M �nonconnecting� we establish immediately that the measure
of the union can be bigger by at most an absolute ��independent of �	 factor� made
up of �� � and the overlap coe�cient k�c	 �introduced prior to De�nition ����	� To
arrive at this conclusion it is important that we consider only the rectangles from
the covering G� �and not all possible rectangles of size �	�

We start by exploring some of the consequences of the Sinai � Chernov Ansatz�
No reference to the neighborhood U will be made at this stage� So we have assumed
that almost all points in S� �with respect to the measure �S	 are strictly unbounded
in the future� It follows from Theorem ��
 that� for almost every point p � S��

lim
n��� inf

���v�C�p�

pQ�DpTnv	

kvk � ���

For a linear monotone map� let us put

���L	 � inf
���v�C�p�

pQ�Lv	

kvk �

Consequently� for any �arbitrarily small	 h � � and any �arbitrarily large	 t � ��
there is M � M�h� t	 so large that the subset

eEt � fp � S� j ���DpT
M 	 � t � �g

has measure

� � eE 	 � h
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The map TM is� in general� not even continuous in all of S�� The coe�cient
���DpT

M 	 is de�ned only for almost every point p � S�� Hence� so far� the subseteEt is de�ned modulo subsets of measure zero� We need a closed subset� since we
plan to use Proposition ���

The map TM is discontinuous on S�
M � which was assumed to be a regular set�

Using the proper alignment of singularity sets and monotonicity of the system� we
conclude that S�

M is transversal to S� �in the natural sense	� It follows that the
set BM �

�S�
M 	 �M� � S� is a �nite union of compact subsets of submanifolds

of dimension �d � �� Further� S� is decomposed into �possibly very large	 �nite
number of pieces of submanifolds of dimension �d�� such that TM is di�erentiable
in the interior of every piece� and their boundaries are subsets of BM � It follows
that the coe�cient ���DpT

M 	 is continuous in the interior of every piece�
Let us choose � so small that the closure of the ��neighborhood of BM in S�

B

M � fp � S� j d�p� BM 	 	 �g

has small measure

�S
�
B

M

�
� h�

Now the set Et de�ned by

Et � eEt nB

M � fp � S� nB


M j ���DpT
M 	 � t � �g

is closed� and we have

�S
�
Et 	 B


M

�
� �h�

Let
St � fp � S� nB


M j ���DpT
M 	 � t � �g�

St is a compact set and the coe�cient ���DpT
M 	 is continuous in a neighborhood

of St in M� Hence� there is r � � such that

���DpT
M 	 � t�

for every point p in the r�neighborhood of St in M� let

Srt � fp � M j d�p� St	 	 rg�
Now we look at our neighborhood U � Our goal is to estimate� for given �� the

measure of the set Y ���M	 of points in U� which have the unstable manifold of
size �� 	 � cut by

S
i	M�� T

iS�� We will achieve this by splitting Y ���M	 into
convenient pieces and showing that their preimages must end up in extremely small
neighborhoods of S��

For z � Y ���M	 the unstable manifold Wu
���z	 may be cut by several �possibly

in�nitely many	 of the singularity sets T iS�� i � M � �� � � � � Let m�z	 be the
smallest i �M � � such that Wu

���z	 is cut by T iS�� Let further

k�z	 � "fi j � � i � m�z	�M� T�iz � U�g�
Roughly speaking k�z	 is the number of times the point z visits in U� in the past
in the time frame bounded by m�z	� We put for k � �� �� � � � � m � M � �� � � � �

Y k
m � fz � Y ���M	 j m�z	 � m� k�z	 � kg�

We will now �x k and estimate the measure of�
m	M��

Y k
m�
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Lemma ����� For m �� m�

T�mY k
m � T�m�

Y k
m� � ��

Proof� Let m 	 m�� If y � T�mY k
m �T�m

�

Y k
m� then for z � Tmy and z� � Tm�

y we
have

k�z�	 � k�z	 � ��

It contradicts the fact that z � Y k
m and z� � Y k

m� � �

By Lemma ���� we have

��
�

m	M��

Y k
m	 �

X
m	M��

��Y k
m	 �

X
m	M��

��T�mY k
m	 � ��

�
m	M��

T�mY k
m	�

Let z � Y k
m and z� � TmS� be a point in the boundary of Wu

���z	� We connect
z and z� by the curve � in Wu

���z	 which projects under �� onto the linear segment
from ��z to ��z

�� In the neighborhood U we have three ways of measuring the
length of �� We can use the quadratic form Q� or the length of the projection onto
the �rst component� or �nally� we can use the Riemannian metric� All these metrics
are equivalent in U and we will use the following coe�cients de�ned by their ratios

sup

�kvk
k
k j � �� v � �
� �	 � C�

�
�
p

� � ���

q � sup

�pQ�v	

k
k j � �� v � �
� �	 � C�
�

where the last supremum is taken also over all of U �
Our goal is to estimate the distance of T�mz and T�mz� in the Riemannian

metric� such a distance clearly does not exceed the length of the curve T�m�� To
that end� let n � m�M � be the time of the k�th visit in the past by z to U�� i�e��
T�nz � U�� By Proposition 
�� on every spaced return to U the projection of the
preimage of � is contracted by at least the coe�cient �� In the k visits there must
be at least k

N
� � spaced returns� Hence� the projection of T�n� has the length

which� by �
��u	� does not exceed
c��

k��

where

� � �
�
N and c� �

�

�b
�

�

�
p

�� ��
�

It follows that the Riemannian length of T�n� does not exceed

c��
k��

where

c� �
�

�
p

�� ��
�

and its length in the metric Q does not exceed

c �k�
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where
c� �

q

�
p

�� ��
�

Now we apply T��m�n� to T�n� and we use the fact that m � n � M � There
are two di�erent cases�

Case �

T�mz� � Et 	 B

M

We use the noncontraction property� Under the action of T��m�n� the Rie�
mannian length of � can expand at most by the factor �

a
� We conclude that the

Riemannian length of T�m� does not exceed

c�
a
�k��

Thus T�mz belongs to the neighborhood of Et 	 B

M in M of this radius� By

Proposition �� its measure does not exceed

�����	 �h
�c�
a
�k��

if only � is small enough �� � �� and �� does not depend on k or m	�
Case ��

T�mz� � St
We claim that� for su�ciently small � the length of T�m� does not exceed

�

t
c��

k��

Indeed� it is so if T�m� is contained in Srt �the r�neighborhood of St in M	� Since
m� n �M � we have

���DpT
m�n	 � t�

for every point p � Srt � Hence� the length in the metric Q of T�n� is longer than
the Riemannian length of T�m� by at least the factor t� If T�m� is not contained
in Srt � then there must be a segment of this curve in Srt which has at least length
r� It follows that the image of this segment under Tm�n has the length in the
metric Q not less than tr� which is more than the total length in the metric Q of
T�n� for su�ciently small �� This contradiction shows that� for su�ciently small
�� T�m� 
 Srt � We have proven our claim� It follows that T�mz belongs to the
neighborhood of S� of radius �

t
c��

k�� Using again Proposition ��� we can estimate
the measure of this neighborhood by

�����	 ��S�S�	
�c�
t
�k��

if only � is su�ciently small �� � �� and �� does not depend on k or m	�
Combining the estimates �����	 and �����	 we obtain that for any k � �� �� � � � �

��
�

T�mY k
m	 �

�
h

�c�
a

�
�

t
�c��S�S�	

�
�k ��
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It follows that

��Y ���M		 �
�
h

�c�
a

�
�

t
�c��S�S�	

�
�

�� �
��

The last inequality tells us how we should choose a small h and a large t at the
beginning of our argument to guarantee that

��Y ���M		 � ���

The �tail bound� is proven�

x��� APPLICATIONS�

A� Billiard systems in convex scattering domains�

We assume that the reader is familiar with billiard systems� If it is not the case�
we recommend �W�� for a quick introduction into the subject� We will rely on the
results of that paper�

Let us consider a domain in the plane bounded by a locally convex closed curve
given by the natural equation r � r�s	� � � s � l describing the radius of curvature
r as a function of the arc length s� We assume that the radius of curvature satis�es
the condition

�����	
d�r

ds�
	 �� for all s� � � s � l�

Curves satisfying this condition were called in �W�� strictly convex scattering�

Examples�

�� Perturbation of a circle�
�� Cardioid�

Such a domain cannot be convex� and there is a singular point in the boundary
where the curve intersects itself� �If you do not like playing billiards on a table
which is not convex� you may take the convex hull of our domain and everything
below still applies�	

The following theorem is a fairly easy consequence of the Main Theorem�

Theorem ����� The billiard system in a domain bounded by a strictly convex scat�
tering curve �i�e�� satisfying �����	� is ergodic�

Let us consider the map T describing the �rst return map to the boundary� T is
de�ned on the set M of unit tangent vectors pointing inwards� We parametrize M
by the arc length parameter of the foot point s� � � s � l� and the angle �� � � � �
�� which the unit vector makes with the boundary �oriented counterclockwise	� In
these coordinates M becomes the rectangle ��� l� ��� ��� The symplectic form �the
invariant area element	 is given by sin� ds � d�� After we derive the formula for
the derivative of T � we will be able to check immediately that T preserves this area
element
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The map T is discontinuous at those billiard orbits which hit the singular point of
the boundary� They form a curve S� in M which is a graph of a strictly decreasing
function� decreasing curve for short� This curve divides the rectangle M into two
curvilinear triangles� M�

b with a side at the bottom and M�
t with a side at the

top�
To �nd the images ofM�

b andM�
t we use the reversibility of our system� Namely�

let S � M�M be de�ned by S�s� �	 � �s� � � �	� We have

T � S � S � T���

We can now claim that T�� is continuous except on S� � SS� which is an increas�
ing curve �the graph of a strictly increasing function	� S� divides the rectangle M
into two curvilinear triangles M�

b � SM�
t and M�

t � SM�
b � We have constructed

our symplectic boxes� T is a di�eomorphism on their interiors and a homeomor�
phism on the closure� The derivative of T does blow up at least at one point of
the boundary S� �di�erent for M�

b and for M�
t 	 corresponding to the two billiard

orbits tangent to one of the branches of the boundary at the singular point� In
the case of the cardioid the derivative blows up at any point of S� and also at the
vertical boundaries because the curvature at the cusp is in�nite �see the formula
for the derivative of T below	� It is very handy that we did not have to require in
Section  that our map is a di�eomorphism on the closed symplectic boxes�

The derivative of DT at �s�� ��	 has the form

�����	

� ��d�
r� sin��

�
sin��

��d��d�
r�r� sin��

��d�
r� sin��

�
where T �s�� ��	 � �s�� ��	� � is the time between consecutive hits �i�e�� the length
of the billiard orbit segment	 and di � ri sin�i� i � �� �� This derivative can be
obtained by straightforward implicit di�erentiation but we do not recommend it�
There is a more geometric �and safer	 way to obtain the derivative by resorting to
the description of billiard orbit variations by Jacobi �elds� In our two dimensional
situation it amounts to introducing coordinates �J� J �	 in the tangent planes of M

�����	

J � sin�ds�

J � �� �

r
ds� d��

The evolution of �J� J �	 between collisions is given by the matrix

�����	

�
� �
� �

�
�

At the collision �J� J �	 is changed by

�����	

��� �
�
d�

��

�
�

Now the derivative �����	 is obtained by multiplying the matrices �����	 and �����	
and taking into account ��� �	
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The geometric meaning of d�� d�� and the inequality

�����	 � � d� � d�

is explained at length in �W��� It was proven there that �����	 holds for any billiard
orbit segment� if the boundary curve is strictly convex scattering �actually these
two properties are essentially equivalent	� It follows from �����	 that for a strictly
convex scattering curve all elements in �����	 are positive�

We choose as our family of sectors the constant sector between the horizontal line
fd� � �g and the vertical line fds � �g� We see immediately that the derivative
DT is strictly monotone�

We are now ready to argue that the singularity sets S�n �
Sn
i�� T

iS� are regular�
We claim that S�n is a �nite union of increasing curves which intersect each other
only at the endpoints� It can be proven by induction� Indeed S� is an increasing
curve and so it is also properly aligned� The singularity set S� is a decreasing
curve� and as such it may intersect each of the increasing curves of S�n in at most
one point� Hence both M�

b �S�n and M�
t �S�n are �nite unions of increasing curves

with intersections only at the endpoints� Hence in view of the monotonicity of our
system the images under T are also �nite unions of increasing curves in M�

b and
M�

t respectively� It is clear that we can safely add S� to these images� We have
thus checked that S�n�� � S�	TS�n is also a �nite union of increasing curves which
intersect only at the endpoints� Note that the assumptions of Lemma �� are too
restrictive to allow its application in this case�

One can easily compute �and it was done explicitly in �W��	 that

����	 ��DT 	 �
p

� � � �
p
�� where � �

�� � d� � d�	�

d�d�
�

It follows from ����	 and from the supermultiplicativity of the coe�cient of expan�
sion � that the only way in which an orbit can fail to be strictly unbounded is when
the lengths of the segments of the orbit go to zero� It was shown by Halpern �Ha�
that there are no such billiard orbits� if r�s	 is a C� function bounded away from
zero� Hence� under such an assumption� which excludes the cardioid� all orbits for
which arbitrary power of T is di�erentiable are strictly unbounded� To include the
cardioid� or more generally the curves with the radius of curvature r�s	 decreasing
monotonously to zero at the endpoints of the interval� � � s � l� �at the singular
point	� we shall argue that also for this class there is no accumulation of collisions at
the singular point� Indeed� if an arc of the boundary between two consecutive hits
by the billiard ball has monotone curvature� then the angle of incidence�re�ection	
is smaller where the curvature is bigger� Hence� as an orbit gets closer to the sin�
gularity point �the cusp for the cardioid	� it is more and more perpendicular to the
boundary� and so it cannot accumulate at the singularity�

This observation takes care of the Sinai � Chernov Ansatz� We are also guaranteed
that the coe�cient ��DTn	 can be made arbitrarily large by increasing n� except
possibly for points which end up on the decreasing curve S� in the future and the
increasing curve S� in the past� These are the points in S�

n �S�m� for some n and m�
and so there are only countably many such points� �The orbit of such a point �dies�
both in the future and in the past� and it may fail to pick up enough hyperbolicity
before then 	 We can apply the Main Theorem to all other points and they form a
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connected set� Hence� the local ergodicity obtained from the Main Theorem implies
ergodicity�

It remains to check the noncontraction property� It was pointed out to us by
Donnay �D�� that the derivative of T increases jJ �j� on nonzero vectors from the
sector� Indeed the interior of the sector is de�ned by

J �

J
	 ��

d

so that we have jJ �j
jJ j �

�

d
�

If DT �J�� J
�
�	 � �J�� J

�
�	 then we have from �����	 and �����	 that

J� � �J� � �J ���

It follows that

jJ ��j �
�

d�
jJ�j �

�

d�
jJ� � �J ��j �

�

d�
jJ ��j �

�

d�
jJ�j � � � d�

d�
jJ ��j�

In view of �����	 ��d�
d�

� �� So indeed jJ �j� gets increased�
Moreover� for all vectors in the sector we have the following estimates

��
�

r�
ds� � d��	 � jJ �j� � j�

r
ds � d�j� � �

r�
ds� � d���

The metric �
r�
ds� � d�� is equivalent to the standard Riemannian metric in

the �s� �	 coordinates �ds� � d��	 if only r is bounded away from zero� Thus
noncontraction is established under this additional assumption� which excludes the
cardioid�

To cover the case of the cardioid� we observe that the noncontraction property
is used only in the proof of the �tail bound�� In that proof some subsets of the
neighborhood U are transported back to the neighborhood of the singularity set
S�� We need the property that vectors from the sector C are not contracted too
much� along the orbits from the vicinity of the singularity set to the neighborhood U �
even if the orbit is very long� We obtain readily this property from the observation
that although jJ �j� is� in general� only bigger than the scaled standard Riemannian
metric� it is clearly equivalent to one locally in the neighborhood U �

The reader may be worried that the standard Riemannian metric in the �s� �	
coordinates does not generate the invariant area element� However� the Riemannian
area is not smaller than the symplectic area� This is su�cient for the proof of Sinai
Theorem� We could also handle this complication by introducing from the very
beginning coordinates in M in which the symplectic form is standard�

We can conclude that T is ergodic� and so Theorem ���� is proven�
It follows from the results of Katok and Strelcyn �KS� that T is a Bernoulli

system�
The framework of this paper allows to cover also the class of billiard systems in

domains with more than one smooth piece in the boundary� which are not necessarily
convex scattering In the recent paper �D�� Donnay introduced a natural condition
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�focusing arc	 on the convex pieces of the boundary of a billiard table� He proves
that if two focusing arcs are connected by su�ciently long �extremely long may
be required	 straight segments� then the billiard system in such a �stadium like	
domain has nonvanishing Lyapunov exponents� This work puts the original stadium
of Bunimovich �B�� which had arcs of circles in the boundary� into a large class of
billiard systems with nonuniform hyperbolic behavior� larger than the class with
convex scattering pieces introduced in �W���

All the properties listed in Section  are satis�ed for the billiards of Donnay in a
straightforward fashion� with the notable exception of the noncontraction property�
The problem is that the construction of the bundle of sectors depends heavily on the
dynamics� and it is unlikely that there is a geometrically de�ned Lyapunov metric
�like jJ �j� for the convex scattering curves	� Instead we use the following two ideas�

We have remarked in Section  that if the map T is di�erentiable up to and
including the boundary of symplectic boxes� and DT is strictly monotone� then the
noncontraction property holds automatically� In the billiards of Donnay the sectors
are pushed strictly inside at the time of crossing from one convex piece to the other�
Hence� we can use this observation on the compact part of the phase space made
up of orbits which cross over from one convex piece to the other� We have the
noncontraction property for the return map to this set� where we measure vectors
in C using the form Q de�ned by the bundle of sectors uniformly larger than C�
The construction of the bundle of sectors C by Donnay and his condition on the
separation of convex pieces allows to introduce immediately these larger sectors
with respect to which the derivative of the return map is monotone�

It remains to check the noncontraction property along �grazing� orbits which
re�ect many times in one convex piece� This is essentially done in �D��� where
Lazutkin coordinates are used to put the map T in the vicinity of the boundary
into a normal form�

These two observations� put together� give us the unconditional noncontraction
property� and thus our Main Theorem applies�

B� Piecewise linear standard map�

Let T � T� � T
� be de�ned by

T �x�� x�	 � �x� � x� � Af�x�	� x� � Af�x�		

where �x�� x�	 are taken modulo �� f is a periodic function

f�t	 � jtj � �

�
� for � �

�
� t � �

�
�

and A is a real parameter� The mapping T preserves the Lebesgue measure� For
A � � there is a simple invariant domain D in the torus shown in Figure �� It
was proven in �W�� that the Lyapunov exponents are di�erent from zero almost
everywhere in D�

Theorem ���	� T is ergodic in D�
As in the previous application it follows that T is a Bernoulli system in D�
All the conditions of Section  are satis�ed here in a very simple fashion� The

reader can �nd all the necessary details in �W�� and �W��� In this piecewise lin�
ear case one does not have to rely on the general results of Katok and Strelcyn
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Figure 
 The domain D

The existence of stable and unstable leaves can be obtained by the straightforward
approach of Sections ����

There are many other values of A for which nonvanishing of Lyapunov exponents
was established for T in some domains in the torus� �W����W��� The most inter�
esting is the sequence of A�s �roughly speaking	 going to zero for which there is an
invariant domain� with similar geometry as D� where T has nonvanishing Lyapunov
exponents� It is a piecewise linear model for the unstable layer containing the sep�
aratrices of the saddle �xed point ��� �

� 	� One can apply Main Theorem to all these
special domains � so that in each case the map T is ergodic and hence Bernoulli� The
reader should not have any di�culties in recovering the details based on the two
papers cited above �incidentally even the noncontraction property was considered
there	�

C� The system of falling balls�

One of the original motivations for our work was to prove ergodicity of the system
of falling balls� This is a monotone system ��W�� �W
�� �W��	� and all �semi�in�nite	
smooth orbits are strictly unbounded� �The unboundedness of all orbits is obtained�
under mild assumptions� by the application of Proposition ���	 It follows that all
Lyapunov exponents are di�erent from zero� and it looks like a prime candidate for
the application of Main Theorem� It turns out� however� that in this example the
singularity sets are not properly aligned� if the number of balls is greater than two�
We will show this� and brie�y discuss the case of two balls�

The system of falling balls is the system of point particles moving on a vertical
line� which also interact by elastic collisions� and are subjected to a potential ex�
ternal �eld which forces the particles to fall down� To prevent the particles from
falling into an abyss we introduce the hard �oor� and assume that the bottom
particle bounces back upon collision with it� The masses of the particles are in gen�
eral di�erent �the system of equal masses is completely integrable since the elastic
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collision of equal masses in one dimension amounts to the exchanging of momenta	�
The Hamiltonian of the system is

H �
NX
i��

�
p�i

�mi

� miU �qi	

�
where qi are the positions and pi � mivi the momenta of the particles� qi� pi �
R� i � �� � � � � N � and U �q	 is the potential of the external �eld � The di�erential
equations of the system are

#qi �
pi
mi

#pi � �miU
� �qi	 �

i � �� � � � � N �
The description of the dynamics is completed by the assumptions that the par�

ticles are impenetrable� and that they collide elastically with each other and with
the �oor q � ��

We choose the following Lagrangian subspaces

V� � fdp� � � � � � dpN � �g and V� � fdh� � � � � � dhN � �g�

where hi � p�i
�mi

� miU �qi	 � i � �� � � � � N � are individual energies of the particles�
We have

dhi �
pidpi
mi

� miU
� �qi	 dqi�

i � �� � � � � N� so that V� and V� are indeed transversal if only U � �� �� i�e�� if the
external �eld is actually present�

The form Q is equal to

Q �
NX
i��

�
dqidpi �

pi
m�
iU

� �qi	
�dpi	

�

�
�

It was shown in the papers cited above that the system is strictly monotone�
provided that

U � �q	 � � and U �� �q	 	 ��

and
m� � m� � � � � � mN �

The symplectic map T that naturally arises in this system is the map �from
collision to collision�� Our dynamical system is a suspension of the map� So that
the system is ergodic if and only if the map T is ergodic� As usual� the actual
computations are easier done in the full phase space of the �ow�

Singularity set S� corresponds to triple collisions� simultaneous collisions of
three particles and the collision of two particles with the �oor� Part of the �rst
singularity set are not properly aligned� The second set is� So the methods of this
paper apply only to the system of two particles�

Let us show that indeed the triple collision of three particles produces the sin�
gularity set which is not properly aligned� We consider the manifold

f�q p	jq q q g
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Its tangent subspace is described by the equations

dq� � dq� � dq�

Its skew orthogonal complement is the two dimensional subspace given by equations

�����	

dq � ��

dp� � dp� � dp� � ��

dpi � � for i � ��

Restricting the form Q to this plane we get

������	
�X
i��

pi
m�
iU

� �dpi	
��

We should assume that the particles emerge from collisions which means that

p�
m�

	
p�
m�

	
p�
m�

�

But the momenta may� as well� be all negative which makes the quadratic form
������	 negative de�nite� The actual characteristic line is obtained by intersecting
the plane �����	 by the tangent to the constant energy manifold� If all the momenta
are negative� it is guaranteed to be outside of the sector� It is not hard to compute
that the precise condition for the characteristic line to be contained in the sector is

v�
m�

�v� � v�	� �
v�
m�

�v� � v�	� �
v�
m�

�v� � v�	� � �

where vi � pi
mi
� i � � are the velocities�

We close with the discussion of the system of two balls� For clarity� we restrict
ourselves to the case of constant acceleration� U�q	 � q� It was established in �W��
that also in this case all orbits are strictly monotone� if there are only two or three
balls and their masses decrease� �For more than three balls technical problems arise�
and it is an open problem to prove strict monotonicity almost everywhere�	

Let us �x the value of the total energy of the system� H � �
� � In this manifold we

consider the two dimensional section M of the �ow� corresponding to the bottom
particle emerging from the collision with the �oor� the surface M is given by fH �
�
� � q� � �� v� � �g� The state of the system in M is completely described by the
velocities of the particles �v�� v�	� and we use the velocities as coordinates in M�
Hence� our phase space M is the domain bounded by the half�ellipse

m�v
�
� � m�v

�
� � �� � v� � ��

Let us calculate the symplectic form in these coordinates� We have

� � dp� � dq� � dp� � dq��

On the surface of section M

dq� � � and dq� � �m�
v�dv� � v�dv��
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Hence� we get
� � m�v�dv� � dv��

The map T � M � M is de�ned by the �rst return of the �ow to M� Our
symplectic box M is split into two symplectic boxes by S�� which is the arc of
the ellipse fm�v

�
� � m��v� � �v�	� � �g contained in M� The symplectic box M�

f �

above S�� contains all the initial states for which the bottom particle returns to
the �oor without colliding with the top particle� The map T in M�

f is linear

T �v�� v�	 � �v�� v� � �v�	�

The symplectic box M�
c � below S�� contains all the initial states for which there

is a collision of the two particles before the bottom particle returns to the �oor�
The map T in M�

c is nonlinear and is best described in a coordinate system �h� z	
where

h �
�

�
m�v

�
�

z �v� � v��

The symplectic form � � dh � dz� �This coordinate system is derived from the
canonical system of coordinates in the full phase space furnished by the individual
energies and velocities of the particles� The exceptional role of these coordinates is
well documented in �W�� �CW��	

Note that both the energy of the bottom particle and the di�erence of velocities
change only in collisions� Now T � F� � F�� where

F��h� z	 � ��h� az� � b� �z	� a �
m�m��m� �m�	

�m� � m�	�
and b �

m�

m� � m�
�

describes the collision of the two particles� and

F��h� z	 � �h� z � c
p
h	� c �

r



m�
�

describes the collision of the bottom particle with the �oor�
To �nd the image symplectic boxes M�

f and M�
c we can use the reversibility of

our system� Namely� if we put S�v�� v�	 � �v�� �v�	 then T � S � S � T��� and so
M�

f � SM�
f � M�

c � SM�
c �

Our bundle of unstable sectors is constant in the coordinates �h� z	 and equal to
the positive �and negative	 quadrant� the form Q � dhdz� It is immediate that S�

and S� � SS� are properly aligned�
We can now check that T is monotone in M�

f and strictly monotone in M�
c

�both F� and F� are monotone	� Indeed� in the �h� z	 coordinates we have

DF� �

��� ��az
� ��

�
and DF� �

�
� �
c

�
p
h

�

�
�

Moreover the map T in M�
f is equal in the coordinates �h� z	 to F��

Since the collision of the two particles must eventually occur� we obtain strict
monotonicity of all nondegenerate orbits� Unboundedness of all nondegenerate or�
bits follows from Proposition � � So the Sinai Chernov Ansatz holds
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To check the noncontraction property� we observe that the standard Riemannian
metric in the coordinates �h� z	 does not decrease on vectors from the sector� when
we apply one of the above matrices�

Finally� we are guaranteed that the coe�cient ��DTn	 can be made arbitrarily
large by increasing n� except for points which end up on the singularity set S� in the
future and the singularity set S� in the past� There are only countably many such
points in view of the proper alignment of singularity sets� and the Main Theorem
applies to all other points� It follows that T is ergodic and consequently� by the
results of Katok and Strelcyn� it is a Bernoulli system�

The case of variable acceleration �U �� 	 �	 can be treated in a similar fashion� It
is not possible to write down the formulas for the return map T but its derivative
in the coordinates

�h �
p�
m�

�p�

�z �
�

m�U ��q�	
�p� � �

m�U ��q�	
�p��

was essentially calculated in �W
�� It is again a product of triangular matrices�

Afterword�

This paper was greatly improved thanks to many insightful comments and cor�
rections by the anonymous referees of the paper�

While we were writing this paper� several authors pursued similar goals� There
are the papers by Chernov �Ch��� �Ch��� the new version of his old preprint by
Katok� in collaboration with Burns �K��� by Markarian �M�� by Vaienti �Va�� and
the papers by Sim�anyi �S��� �S���
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