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Abstract� We prove the existence of at least cl�M� periodic orbits for certain
time dependant Hamiltonian systems on the cotangent bundle of an arbitrary
compact manifold M � These Hamiltonians are not necessarily convex but they
satisfy a certain boundary condition given by a Riemannian metric on M � We
discretize the variational problem by decomposing the time � map into a product
of �symplectic twist maps�� A second theorem deals with homotopically non trivial
orbits in manifolds of negative curvature�

� Introduction

The celebrated theorem of Poincar�e�Birkho� states the existence of at least
two �xed points for an area preserving map of the annulus S�� ��� �� which
	twists
 the boundaries in opposite directions�

In the ��s� Arnold proposed a generalization of this theorem for a time
� map F of a time dependent Hamiltonian of Tn � Bn �where Bn is the
closed ball in IRn�� While the Hamiltonian condition naturally generalizes
the preservation of area� a linking of the boundary of each �ber � a sphere in
IRn� with its image by F in the boundary of Tn�Bn was to replace the twist
condition� Arnold �Ar�� conjectured that such a map has at least as many
�xed points as a real valued function Tn has critical points� The philosophy
was that �xed points for symplectic maps should arise from Morse theory
and not� say� from Lefshetz theory�

Later� in �Ar��� he explained how �xed points theorems on the annulus
could be derived from theorems on the ��torus� by glueing carefully two
annuli together �see also �Ch���� He thus transformed the problem to one of
�xed points of symplectic maps on a compact symplectic manifold� This
last conjecture� which asserts that the number of �xed point for the map is at
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least equal to the minimum number of critical points of a real valued function
on the manifold� is what got to be well known as the Arnold conjecture�

However� it is unclear whether the glueing construction can be done
�symplectically� in higher dimensions� Even if it could� one would �if one
could� have to use existing proofs of the Arnold conjecture �e�g� �F���� which
we think are substantially harder than the techniques we use here �and do
not deal with homotopically non trivial orbits as our Theorem � does��

In ����� Conley and Zehnder �CZ �� gave a �rst proof of the Arnold
conjecture for the torus T�n� In the same article� they also gave a direct
proof of Arnolds original conjecture on Tn �Bn�

However� they were not able to use the linking of spheres in its full gen�
erality� Their result remains crucial since it was the �rst non perturbational
one in this direction� The boundary condition that they used is expressed on
the Hamiltonian in the following way� Letting �q� p� be the coordinates on
Tn�Bn which is endowed with the canonical symplectic structure dp� dq�
they set�

����� H�q� p� t� � hAp� pi� hb� pi for kpk � K�

where A � At is a non degenerate n�n matrix and b � IRn � This condition
implies the linking of spheres at the boundary�

We propose here a version of this theorem on the cotangent bundle of
an arbitrary compact manifold� We also �nd� in a second theorem� orbits of
all free homotopy classes �and large enough period��

The bulk of this work was done as I was on a Postdoctoral position at the
Forschungsinstitut f�ur Mathematik� E�T�H� Z�urich� I would like to express
my deep gratitude to Prof� Moser and Prof� Zehnder for inviting me there� I
had some invaluable discussions with them as well as with my companions
Fredy K�unzle� Boris Hasselblat� Frank Josellis� to whom I extend my thanks�
I am very much endebted to Patrice LeCalvez� whose work is the starting
point of mine�

Special thanks to Maciej Wojtkowski� Claude Viterbo� Misha Bialy�
Leonid Polterovitch� Phil Boyland and Dusa McDu� for their speci�c help
on this work�

Finally� were it not for the narrow mindedness of the French immigration
o�ce� this work would have been joint with Augustin Banyaga� I dedicate
this work to him�
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� Results and basic ideas

Let �M� g� be a compact Riemannian manifold� De�ne

B�M � f�q� p� � T �M j g�q��p� p� � kpk� � C� � R�g�

where R is the radius of injectivity of �M� g�� Let � denote the canonical
projection � � B�M �M �

Theorem � Let F � B�M � B�M be the time � map of a time dependent
Hamiltonian H on B�M � where H satis�es the boundary condition�

H�q� p� t� � g�q��p� p� for kpk � C�

Then F has cl�M� distinct �xed points and sb�M� if they are all non de�
generate� Moreover� these �xed points can all be chosen to to correspond to
homotopically trivial closed orbits of the Hamiltonian �ow�

We remind the reader that cl�M� is the cup length ofM � which is known
to be a lower bound for the number of critical points of any real valued
function on M � Non degenerate means that no Floquet multiplier is equal
to one� sb�M� is a lower bound for the number of critical points for a Morse
function on M �

Remark ��� It is important to note that� in the case where M has IRn

as covering space� Theorem � can be expressed for a lift of F � In this case�
the radius of injectivity may be � �e�g� for a metric close to a �at metric
on the torus� or when M has a metric of negative curvature�� and the set
B�M can be as big as one wants� Theorem � can then serve as a starting
point to study Hamiltonian systems with asymptotic boundary conditions�

Theorem � Let F be as in Theorem �� If �M�g� is of negative curvature� then
F has at least two periodic orbits of period d in any given free homotopy
class� provided d is big enough� In particular� F has in�nitely many periodic
orbits in B�M �

Exactly how big d should be in Theorem � depends only on the metric�
For a more precise statement� see section �� Note also that if H is ��periodic
in time� periodic orbits of F correspond to periodic orbits of the Hamiltonian
�ow of H� Such a Hamiltonian system will then have in�nitely periodic
solutions in B�M � �

� If H is not �	periodic
 periodic orbits of F will correspond to orbits of the
Hamiltonian �ow that come back to their starting point
 but generally at an
angle� One can �nd in�nitely many of these orbits from Theorem �
 by applying
it to time t map
 t � �� C�
 rescaling the metric each time�
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Note the di�erence in the boundary conditions ����� and that of Conley�
Zehnder ����� � theirs allow basically all pseudo Riemannian metrics that
are completely integrable and constant� Ours only deals with Riemannian
metrics� but with no further condition� Note also that the orbits they �nd
are homotopically trivial� We refer the reader to �G����� �J� for the study of
the homotopically nontrivial case for M � T �Tn �the former with a method
akin to that of this paper� the latter in the spirit of �CZ ����

The method used to prove Theorem � and � is quite di�erent from that
of Conley and Zehnder� whereas they use cut�o�s on Fourier expansions�
we decompose the time � map into 	symplectic twist maps
 to get a �nite
dimensional variational problem�

Symplectic twist maps are a natural generalization of monotone twist
maps of the cotangent bundle of the circle �i�e� the annulus��

In short� a symplectic twist map is a di�eomorphism F from some neigh�
borhood U of the zero section of T �M onto itself with the property that
F �pdq � pdq � dS for some S and that �q� p� � �q�Q� is a change of
coordinates� where F �q� p� � �Q�P ��

To give an example� we make the following trivial remark� The shear
map of the annulus �

�q� p�� �q � p� p��

which is a key model in the twist map theory� is nothing more than the time
� of the Hamiltonian H��q� p� �

�
�p

� and in fact� its �rst coordinate map�

T �S� � S�

�q� p�� q � p

is just the exponential map for the standard ��at� metric on S��IR � T �S��
This suggest that the key model for symplectic twist maps on the cotan�

gent bundle T �M of a general compact manifold M should be the time one
map of a metric� The twist condition is given in that case by the fact that
the exponential map is a di�eomorphism of a neighborhood of zero in each
�ber T �

qM and a neighborhood of q in M � Of course� most of the time� such
a map is not completely integrable�

If F is a symplectic twist map� we have a simple proof of the original
conjecture of Arnold�

Theorem � �Banyaga� Gol	e 
BG� � Let F be a symplectic twist map of
B�M � Suppose that each sphere �B�

qM links with its image by F in �B�M �
Then the �xed points of F are given by the critical points of a real valued
function on M �

In Appendix B� we reproduce the proof of �BG�� for the convenience
of the reader� As in all these questions about �xed points� the major task
is to make the argument global� symplectic twist maps should be seen as
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local objects �even though they should not be seen as perturbations� and
the problem is to piece them together to form global ones� Here is one
fundamental principle involved in this�

Suppose we have two 	exact symplectic maps
�

F �pdq � pdq � dS and G�pdq � pdq � dS�

Then it is simple to see that�

�F �G��pdq � pdq � d�S �G� S��

which we express as � generating functions add under compositions of maps�
This simple fact is key to the method in this paper� the functional we use
is a sum of generating functions of a �nite sequence of twist maps that
decompose the time � map we study�

This additivity property is the common thread between the method
exposed here and that of 	broken geodesics
 reintroduced in symplectic
geometry by Chaperon �Ch��� The essential di�erence is in the choice of
coordinates in which one expresses the generating function ��p�Q� in the
method of Chaperon� �q�Q� in the twist map method� In this sense the
twist map method is closer to the original method of broken geodesics as
discribed in �Mi�� It even coincides with it in the case of the geodesic �ow�

Whereas Moser �Mo�� noticed that the time � map of a two dimensional
convex Hamiltonian can be decomposed into a product of twist maps� the
idea of decomposition of a time � map of a general Hamiltonian stems from
the work of LeCalvez �L� on twist maps of the annulus� We generalize his
simple but extremely e�cient construction to any cotangent bundle �Lemma
�������

There are various theorems on the suspension of certain classes of sym�
plectic twist maps by Hamiltonian �ows ��D�� �Mo��� �P�B��� In this sense�
one might decide to forget about symplectic twist maps and concentrate on
Hamiltonian systems instead� In this paper� we take the opposite point of
view� we think that symplectic twist maps are a very useful tool to study
Hamiltonian systems on cotangent bundles �see also the work of LeCalvez
�L� on the torus��

The rest of the paper is organized as follows�
In section �� we review some facts about geodesic �ows and exponential

maps� We prove a lemma which is crucial for the construction of an isolating
block in section ��

In section � we give a precise de�nition of symplectic twist maps and
prove the Decomposition Lemma ������

In section �� we use this decomposition and the additive property of
generating functions to construct a �nite dimensional variational problem�
i�e� a functional W on a �nite dimensional space� This method is basically
Aubrys � �Au�� �Ka�� � when seen on maps of the annulus�
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In section �� we construct an isolating block for the functional W � For
this� the boundary condition in the theorem is crucial�

In section �� we make use of a theorem of Floer �F�� on global continua�
tion of normally hyperbolic invariant sets� we exhibit such an invariant set
for the time � map of H� whose cohomology survives under a deformation
to our H� We then use the Conley�Zehnder Morse theory to �nish the proof
of Theorem ��

In section �� we show how to adapt the proof of theorem � to the case
of non trivial homotopy classes� and prove theorem ��

In Appendix A� we outline the connection that there is between the
index of the Hessian of W and the Floquet multipliers along a closed orbit
of F � This is used in sections � and � to prove normal hyperbolicity of the
invariant set�

In Appendix B� we reproduce the proof of Theorem �� given in �BG��

� A few facts about the geodesic �ow

We start with some notation� Let �M� g� be a Riemannian manifold� Both
the tangent �ber TqM and the cotangent �ber T �

qM are endowed with
bilinear forms�

�v� v��� g�q��v� v�� for v� v� � TqM� and

�p� p��� g��q��p� p�� for p� p� � T �
qM�

We will denote by

kvk ��
p
g�q��v� v��� and kpk ��

q
g��q��p� p��

hoping that the context will make it clear whether we speak about a vector
or a covector�

The relation between g and g� is better understood in local coordinates�
If A�q� denotes the matrix for g� then A���q� is the matrix for g� The terms
of these matrices are usually denoted gij and gij respectively� The matrix
A�q� also gives the standard � although g� dependent� isomorphism between
T �
qM and TqM � which is an isometry for the above metrics� We will use the

same notation 	A�q�
 for this isomorphism� even though it is coordinate
independent� whereas the matrix is not�

We want to outline here some connections between the geodesic �ow
for the metric g� the exponential map and the Hamiltonian �ow for the
Hamiltonian�

H��q� p� �
�

�
kpk��
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Let T �M be given the usual symplectic structure dp � dq� and canonical
projection �� Let ht� denote the time t map of the Hamiltonian �ow of H��
Then�

expq�tA�q�p� � �
�
ht��q� p�

�
�

This is basically a rewording of the equivalence of Hamiltons and
Lagranges equations under the Legendre transformation� Here H� and
L��q� �q� �

�
�k �qk

� are Legendre transforms of one another under the change
of coordinate �q � �H�

�
�p � A�q�p ��Arnold�� section �� or �Abraham�M�

theorem ����� and ������� This change of coordinate we will refer to as the
Legendre transformation as well�

What is usually called the geodesic �ow is just the �ow ht� restricted to
the �invariant� energy level f�q� p� � T �M j H��q� p� � � � kpkg �the
unit sphere bundle��

Because the exponential map �

�����
exp � TM �M �M

�q� v�� �q�Q� �� �q� expq�v��

de�nes a di�eomorphism between a neighborhood of the ��section in TM
and some neighborhood of the diagonal in M �M ��Mi�� Lemma ����� � we
also have� via the Legendre transformation�

exp � T �M �M �M

�q� p�� �q�Q� �� �q� expq�A�q�p�

which gives a di�eomorphism between a neighborhood of the ��section in
T �M and some neighborhood of the diagonal in M�M � Just how big these
neighborhoods are is measured by the radius of injectivity R�

Because the Legendre transformation A�q� is an isometry� equation �����
gives a relation between distances between points inM and norms of vectors
in T �M �

�q�Q� � exp�q� p�	 kpk � Dis�q�Q�

It will be of interest for us to know the di�erential of the map 	Dis
�

Lemma ��� If �q�Q� � exp�q� p�� and h���q� p� � �Q�P �� then�

����� ��Dis�q�Q� � �
p

kpk
and ��Dis�q�Q� �

P

kPk

Proof� Let v � A�q�p� We have Dis�q�Q� � kvk� The point expq��tv� is
on the same geodesic as the one running from q to Q� namely fexpq�tv�

��
t � ��� ��g� For all small and positive t we must then have�

Dis�expq��tv�� Q� � �� � t� kvk �
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Di�erentiating with respect to t at t � � yields�

����� ���Dis�q�Q��v � kvk �

On the other hand� by Gauss lemma ��Mi�� Lemma ������ the geodesic
through q and Q must be orthogonal to the sphere centered at Q and of
radius Dis�q�Q�� This sphere is just the level set of the function�

q� � Dis�q�� Q�

whose gradient A�q���Dis�q�Q� at q must be colinear to v� Equation �����
yields�

A�q���Dis�q�Q� �
�v

kvk

which immediately translates to the �rst equation we wanted to prove�
For the proof of the second equation� one must remember that V �

A�Q�P is tangent at Q to the geodesic between q and Q and has same norm
as v� It is � more precisely� the parallel transport of v along this geodesic�
Thus�

d

dt
Dis �q� expq ��� � t�v��

��
t��

� kV k � ��Dis�q�Q��V

and the rest of the reasoning is the same as for the �rst equation� ut

� Symplectic twist maps and the decomposition

lemma

If H�q� p� t� is an optical Hamiltonian function �i�e� Hpp is convex�� then its

�ow has many similar features to that of H��q� p� �
�
�kpk

�� In particular if
F is its time � � and F �q� p� � �Q�P �� the correspondance �q� p�� �q�Q� is
a di�eomorphism between suitable neighborhoods of the ��section in T �M
and the diagonal in M �M �compare equation ����� This can be seen in
a chart� looking at the Taylor series of the solution with respect to small
time�

Q � q��� � q��� � ��Hp � o����

P � p��� � p���� ��Hq � o����
�

�From this we see that �Q
�p

�z���� is non degenerate� This remark was

made by Moser in the dimension � case ��Mo����
Another feature enjoyed by Hamiltonian �ows is that they are exact

symplectic�
These two properties put together give us the following�
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De�nition ��� A symplectic twist map F is a di�eomorphism of a neigh�
borhood U of the ��section of T �M onto itself satisfying the following�

��� F is exact symplectic� F �pdq�pdq � dS for some real function S on
U �

��� �Twist� if F �q� p� � �Q�P �� then the map � � �q� p�� �q�Q� is embed�
ding of U in M �M �

The function S�q�Q� is then called the generating function for F �

Remark ���Of course ��G�������� monotone twist maps of the annulus
�i�e� of T �S��� are symplectic twist maps in the sense of this de�nition� U is
usually taken to be either the whole cylinder� or the subset S�� ��� ��� Note
that one way to express the twist condition is by saying that the image by
F of a �vertical� �ber in U intersects any �ber in at most one point�

To my knowledge� the term symplectic twist map was introduced by
McKay� Meiss and Stark� Their de�nition ��MMS�� is a little more restric�
tive than the above� in that they work on T �Tn and ask that �Q��p be
de�nite positive� Our condition only implies that det��Q��p� 
� �� Similar
maps have also been studied extensively by Herman ��H��� he called them
monotone� We also have used this terminology ��G����� but in the end found
it misleading because we were also dealing with monotone �ows �G��� the
two concepts being only related in certain cases�

Remark ��� Equation ����� tells us that the time � map h�� of H� is
also a symplectic twist map on some neighborhood U of the ��section� Note
that for the time � of an Hamiltonian H� the function S is �when de�ned�
the action�

S�q�Q� �

Z �P�Q�

�p�q�

pdq �Hdt

taken along the unique solution of the Hamiltonian �ow between �p� q� and
�P�Q�� If L is the Legendre transform of H� the above integral is just

S�q�Q� �

Z �

�

L�q� �q� t�dt

along the solution� In the case where H � H�� L�q� �q� t� �
�
� k �qk

�
� i�e� S is

the energy of the �unique� geodesic between q and Q�
As noted in the introduction� h�� should be our model map� the way the

shear map is the model map in the theory of monotone twist maps�
The reason why twist maps can be so useful lies in the following funda�

mental lemma� due to LeCalvez �L� in the case of di�eomorphisms of the
annulus isotopic to the Id�

Lemma ��� �Decomposition� �LeCalvez� Banyaga� Gol	e��
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Let F be the time � map of a �time dependent� Hamiltonian on a compact
neighborhood U of the �section� Suppose that F leaves U invariant� Then�
F can be decomposed into a �nite product of symplectic twist maps�

F � F�N � � � � � F�

Remark ���No convexity is assumed of the Hamiltonian� nor any close�
ness to an integrable one�

Proof� Let Gt be the time t map of the Hamiltonian� starting at t � ��
We can write �

F � G� �G
��
N��

N

� � � � �G k

N

�G��
k��

N

� � � � �G �

N

� Id

and each of the G k

N

�G��
k��

N

is an exact symplectic map� which we can make as

close as we want to the Id by increasing N � If Hpp is positive de�nite� each of
these maps are twist� by Mosers remark� and we are done �F is the product
of N twist maps in this case� � In general� we do the following� The twist
condition ��� in De�nition ����� of symplectic twist is an open condition�
Hence� if ht� is the time t map of H�� the map F�k�� �� h��� � G k

N

� G��
k��

N

must satisfy ��� for N big enough �here� the compactness of U is needed��
We then set F�k � h�� for all k to get the decomposition advertized� ut

Remark ���We leave it to the reader to check that Lemma ��� is also
valid for lifts of maps to the covering space of M �

� The discrete variational setting

Let F be as in Theorem �� From the previous section� we can write

F � F�N � � � � � F��

with the further information that F�k restrained to the boundary �B�M of
B�M is the time � map of H�� that we have called h��� Likewise� F�k�� is

h
�

N
��

� on �B�M � by the proof of the decomposition Lemma ����� and the
boundary condition ����� imposed on F �

Let Sk be the generating function for the twist map Fk and �k the
di�eomorphism �q� p� � �q�Q� induced by Fk� We can assume that �k is
de�ned on a neighborhood U of B�M in T �M � Let

�����
O � fq � �q�� � � � � q�N��� �M�N j�qk� qk��� � �k�U� and

�q�N � q�� � ��N���U�g
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O is an open set in M�N � containing a copy of M �the elements q such that
qk � q�� for all k��

Next� de�ne �

����� W �q� �
�N��X
q��

Sk�qk� qk����

where we have set q�N � q�� Let pk be such that �k�qk� pk� � �qk� qk���
and let Pk be such that Fk�qk� pk� � �qk��� Pk�� Pk and pk are well de�ned
functions of �qk� qk����

We claim�

Lemma ��� The sequence q of O is a critical point of W if and only if the
sequence f�qk� pk�gk�f�������N��g is an orbit under the successive Fk�s� that is
if and only if �q�� p�� is a �xed point for F �

Proof� Because the twist maps are exact symplectic and using the de�ni�
tions of pk� Pk� we have�

����� Pkdqk�� � pkdqk � dSk�qk� qk����

and hence

dW �q� �
�N��X
k��

�Pk�� � pk�dqk

which is null exactly when Pk�� � pk� i�e� when Fk�qk��� pk��� � �qk� pk��
Now remember that we assumed that q�N � q�� ut

Hence� to prove Theorem �� we need to �nd enough critical points for
W � For this � we will study the gradient �ow of W �where the gradient will
be given in terms of the metric g� and use the boundary condition to �nd
an isolating block�

We now indicate how this variational setting is related to the classical
method of broken geodesics� and how to modify it to deal with homotopically
non trivial solutions�

Because each Fk is close to htk� for some positive or negative tk� we have
that�

q � �k�B
�Mq�

and� since B�
qM � �k�B

�M� is a di�eomorphism� we can de�ne a path
ck�q�Q� between q and a point Q of �k�B

�
qM� by taking the image of the

oriented line segment between ���
k �q� and ���

k �Q� in B�
qM � In the case

where Fk � h��� this amounts to taking the unique geodesic between q and
Q in �k�B

�
qM� �

If we look for periodic orbits of period d and of a given homotopy type�
we decompose F d into �Nd twist maps� by decomposing F into �N � Anal�
ogously to ������ we de�ne �
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Od � fq � �q�� � � � � q�Nd��� �M�Nd j�qk� qk��� � �k�U� and

�q�Nd� q�� � ��Nd���U�g�

remarking that the �ks here correspond to the decomposition of F d into
�Nd steps �U is as before a neighborhood of B�M��

To each element q in Od� we can associate a closed curve� made by joining
up each pair �qk� qk��� by the unique curve ck�qk� qk��� de�ned above� This
loop c�q� is piecewise di�erentiable and it depends continuously on q� and
so does its derivatives �left and right�� In the case of the decomposition of
h�� � taking Fk�h

�
�� this is exactly the construction of the broken geodesics

��Mi�� x���� Now any closed curve in M belongs to a free homotopy class m�

To any d periodic point for F � we can associate a sequence q�x� � Od

of q coordinates of the orbit of this point under the successive Fks in the
decomposition of F d�

De�nition ��� Let x be a periodic point of period d for F � Let q be the
sequence in Od corresponding to x� We say that x is an �m� d� point if
c�q�x�� is in the free homotopy class m�

To look for �m� d� orbits in �Theorem � in section ��� we will work in�

����� Om�d � fq � O j c�q� � mg

Since c�q� depends continuously on q � O� we see that Om�d is actually a
connected component of O�

The functional W will be given this time by�

W �q� �
�Nd��X
k��

Sk�qk� qk���

de�ned on Om�d� Again� as in Lemma ���� critical points of W in Om�d

correspond to �m� d� periodic points�

Remark ��� The reader that wants to make sure that� in the proof of
Theorem �� the orbits found are homotopically trivial� should check that
throughout the proof� one can work in the component Oe�� of O� � O of
sequences q which have c�q� � e� where e is the identity element of ���M��
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� The isolating block

In this section we prove that the set B de�ned as follows�

����� B � fq � O j kpk�qk� qk���k � Cg

is an isolating block for the gradient �ow of W � where O is de�ned in ������
C is as in ����� and pk is the function de�ned in the previous section �see
below ������ � To try to visualize this set in M�N � the reader should realize
that the twist condition on Fk and the fact that Fk coincides with the time
� or time �

n
� � of the hamiltonian H� at the boundary of B�M implies

that�

����� Dis�qk� qk��� � ak kpkk where

�
ak � � if k is even
ak � ��N

N
if k is odd

Note that B still contains a copy of M � the constant sequences��
We will de�ne an isolating block for a �ow to be a compact neighbor�

hood with the property that the solution through each boundary point of
the block goes immediately out of the block in one or the other time direc�
tion � �C�� ��� �� Sometimes� more re�ned de�nitions are made� but this one
is su�cient to ensure that the maximal invariant set for the �ow contained
in the block is actually contained in its interior� a block in this sense is an
isolating neighborhood� which is really the only property we need here�

Proposition ��� B is an isolating block for the gradient �ow of W �

Proof� Suppose the point q of U is in the boundary of B� this means
that kpkk � C for at least one k� As noted in ������ this means that
Dis�qk� qk��� � akC for some factor ak only depending on the parity of
k� We want to show that this distance increases either in positive or nega�
tive time under the gradient �ow of W � This �ow is given by�

����� �qk � Ak�Pk�� � pk� � rWk�q�

Where Ak � A�qk� is the duality morphism associated to the metric g at
the point qk �see beginning of section ��� Remember that we have put the
product metric on O� induced by its inclusion in M�N �

Let us compute the derivative of the distance along the �ow at a bound�
ary point of B� using Lemma ����

�����

d

dt
Dis�qk� qk���

��
t��

� ��Dis�qk� qk����rWk�q�

� ��Dis�qk� qk����rWk���q�

� �
ak
jakj

�
�pk
kpkk

�Ak��Pk�� � pk�

� �
ak
jakj

�
Pk
kPkk

�Ak����Pk � pk���
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We now need a simple linear algebra lemma to treat this equation�

Lemma ��	 Let h � i denote a metric form in IRn� and k�k its corresponding
norm� Suppose that p and p� are in IRn �that kpk � C and that kp�k � C�
Then �

hp � p� � p i � ��

Moreover� equality occurs if and only if p� � p�

Proof� From the positive de�niteness of the metric� we get�

h p� � p� p� � p i � ��

with equality occuring if and only if p� � p �call this last assertion  �� From
this� we get�

�h p� p� i � h p�� p� i� h p� p i

with  � Finally�

h �p� � p�� p i � h p�� p i � h p� p i � �

with  � ut
Applying Lemma ��� to each of the right hand side terms in ������ we

can deduce that d
dt
Dis�qk� qk��� is positive when k is pair� negative when k

is odd� Indeed� because of the boundary condition in the hypothesis of the
theorem� we have kPkk � kpkk whenever kpkk � C� the boundary �B�M
is invariant under F and all the Fks� On the other hand q � B 	 kplk �
C and kPlk � C� for all C� by invariance of B�M � Finally� ak is positive
when k is even� negative when k is odd�

But what we really want is this derivative to be of a de�nite sign� not
zero� It is certainly the case when at least one of rWk�q��rWk���q� is not
zero� Suppose they are both zero� Then k is in an interval fl� � � � �mg such
that� for all j in this interval� kpjk � C � kPjk and rWj�q� � ��

It is now crucial to notice that fl� � � � �mg can not cover all of f�� � � � � �Ng�
this would mean that q is a critical point corresponding to a �xed point of h��
in �B�M � But such a �xed point is forbidden by our choice of C� geodesics
in that energy level can not be �xed loops �C � ��� and they can not close
up in time one either �C is less than the injectivity radius��

We now let k � m in ����� and see that the �ow must de�nitely escape
the set P at q in either positive or negative time� from the the mth face of
P � ut

Remark ���If we have decomposed the time � map of a Hamiltonian
that is positive de�nite into a product of N twist maps� all the Fks coincide

with h
�

N

� on the boundary of B�M � In that case�

kpkk �
�

N
Dis�qk� qk���� for all k
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and the aks in the above proof are always positive� Following the argument
through� we �nd that B is a repeller block in this case� all points on �B
exit in positive time�

Remark ���LeCalvez ��L�� provides a more detailed analysis of the be�
havior of the �ow at 	corner
 points of his analog of the set B� He indicates
an induction to show that the �ow enters or exits the jth face �j is in
fl� � � � �mg as in the above proof� at di�erent orders in small time� Such a
reasoning could be made in our context also� but we �nd it unnecessary�
given our working de�nition of an isolating block�

� Proof of Theorem �

To �nish the proof of Theorem � we will be using a re�nement of the Con�
ley Index continuation proved by Floer ��F���� The homology group of the
invariant set G� appearing in this lemma bears the germs of what became
later Floer Cohomology �see e�g� �F��� and also �McD�� � and in the case
that we study� it is probable that it is one and the same thing� The present
approach enables us to avoid the problem of in�nite dimensionality in �F���
i�e� all the analysis�

Lemma 	�� �Floer� Let 	t� be a one parameter family of �ows on a C�

manifold M � Suppose that G� is a compact C� submanifold invariant under
the �ow 	t�� Assume moreover that G� is normally hyperbolic� i�e� there
is a decomposition�

TMjG� � TG� � E� �E�

which is invariant under the covariant linearization of the vector �eld V�
corresponding to 	t� with respect to some metric h � i� so that for some
constant m � ��

���
h
�DV�
i � �mh
� 
i for 
 � E�

h
�DV�
i � mh
� 
i for 
 � E�

Suppose that there is a retraction � � M � G� and that there is a com�
pact neighborhood B which is isolating for all �� Then� if G� denotes the
maximum invariant set for 	t� in B� the map�

�
�jG�

��
� H��G��� H��G��

in �Cech cohomology is injective�

In this precise sense� normally hyperbolic invariant sets continue globally�
their topology can only get more complicated as the parameter varies away
from �� Note that we have given here a watered down version of Floers
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theorem� His uses the notion of Conley continuation of invariant sets� He
also works in the equivariant case� But the above� taken from his Theorem
� in �F��� is what we need here�

The family of �ows we consider is t�� the �ow solution of

d

dt
q � rW��q��

and W� is de�ned as in ��� for the map F�� time � map of the Hamiltonian�

H� � ��� ��H� � �H

We can assume that this construction is well de�ned� i�e�� that we make
the decomposition in the Decomposition Lemma ��� �ne enough to �t any
F�� � in ��� ��� The manifold on which we consider these �local� �ows is O�
an open neighborhood of B in M�N � Of course� each of the F� satis�es the
hypothesis of Theorem �� and thus Proposition ��� applies to t� for all � in
��� ��� B is an isolating block for each one of these �ows�

The part of Floers lemma that we are missing so far is the normally
hyperbolic invariant manifold for t��

Lemma 	�� Let G� � fq � B j qk � q�� �kg� Then G� is a normally
hyperbolic invariant set for t�� It is a retract of O and is the maximal
invariant set in B�

Proof� All the Fks in the decomposition of h�� are time ak maps of the
Hamiltonian H�� for ak as in ������ But for this Hamiltonian� the ��section
of T �M is made out of �xed points� These translate� in terms of sequences�
to points in G�� Moreover� these are the only periodic orbits for the Hamil�
tonian �ow of H� in B�M � by the de�nition of this set� �e�g� in the case
M � Sn with the standard metric� the orbits corresponding to great circles
would not be �xed points of h�� in B�M��

This implies that G� is the maximum invariant set for t� in B� Indeed�
since t� is a gradient �ow� such an invariant set should be formed by criti�
cal points and connections between them� We saw that there are no other
critical points but the points of G�� If there were a connection orbit entirely
lying in B� it would have to connect two points in G�� which is absurd since
by continuity any two points of G� give the same value for W �� whereas W �

should increase along non constant orbits�
G� is a retract of M�N under the composition of the maps�

q � �q�� � � � � q�N �� q� � �q�� q�� � � � � q�� � ��q�

which is obviously continuous and �xes the points of G��
We are left to show that G� is normally hyperbolic� For this� we are

going to appeal to a relationship between the linearized �ow of t� and that
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of H�� The following lemma was proven by McKay and Meiss in the twist
map of the annulus case� We present their proof in Appendix A� it holds in
the setting of general cotangent bundles�

Lemma 	�� � 
M�M�� Let F be the time � map of a Hamiltonian and let W
be its associated functional� If q is a critical point corresponding to the orbit
of �q�� p��� the set of eigenvectors of eigenvalue � of DF�q��p�� are in ��
correspondence with the set of eigenvectors of eigenvalue � of HessW �q�

To use this lemma� we remark that since G� is made out of critical points�
saying that it is normally hyperbolic is equivalent to saying that HessW ��q�
has exactly n � dimG� eigenvalues equal to zero for any point q inG�� These
eigenvalues have to correspond to eigenvectors in TG�� the normal space of
which must be spanned by eigenvectors with non zero eigenvalues �HessW �

is symmetric�� Hence� from Lemma ���� it is enough to check that at a point
�q�� �� � B�M corresponding to q� � is an eigenvalue of multiplicity exactly
n for Dh���q�� ��� Let us compute Dh���q�� �� in local coordinates� It is the
solution at time � of the linearized equation�

�U � JHessH��q�� ��U

along the constant solution �q�t�� p�t�� � �q�� ��� where J denotes the usual

symplectic matrix

�
� I
�I �

�
� An operator solution for the above equation

is given by exp �tJHessH��q�� ��� On the other hand�

HessH��q�� �� �

�
� �
� A�q��

�

which we computed from H��q� p� � A�q�p�p� the zero terms appearing at
p � � because they are either quadratic or linear in p� �from this�

Dh���q�� �� � exp �JHessH��q�� ��� �

�
I A�q��
� I

�

is easily derived� This matrix has exactly n eigenvectors of eigenvalue � � it
has in fact no other eigenvector�� Hence� from Lemma ���� HessW �q� has
exactly n vectors with eigenvalue �� as was to be shown� ut

We now conclude the proof of Theorem ���� We have proved that the �ow
t� which is gradient� has an invariant set G � G� with H��M� �� H  �G��
From this we get in particular�

cl�G� � cl�M� and sb�G� � sb�M��

The corollary of Theorem � in �CZ �� tells us that t must have at least
cl�G� rest points in the set G� whereas the generalized Morse inequalities
in Theorem ��� of �CZ �� tell us that� if they are all assumed to be non
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degenerate� t must have sb�G� rest points� But Lemma ��� tells us that non
degeneracy forHessW at a critical point is the same thing as nondegeneracy
of a �xed point for F �no eigenvector of eigenvalue ���

As was stated in Remark ���� we could have worked in Oe�� all along to
guarantee that the orbits found are homotopically trivial� The only thing
that one should check is that G�

m�d is indeed in this component of O� which
is the case� This concludes the proof of Theorem �� ut

� Negative curvature and orbits of di�erent homotopy

types

��� Setting the problem

We are going to sketch here the changes needed in the proof of Theorem �
in order to prove Theorem � on the existence of orbits of di�erent homotopy
types�

It is a known �see e�g� �GHL�� ����� that on a compact Riemannian
manifold there exists in any nontrivial free homotopy class m a smooth and
closed geodesic which is of length minimal in m� �

Moreover� a theorem of Cartan asserts that if the manifold is of negative
curvature� there is in fact one and only one geodesic in each class m �m not
containing the point curves ��Kl�� Theorem ���������

Let M be of negative curvature and let l�m� denote the length of the
geodesic in m in that case�

In ���� we have de�ned �m� d� orbits by saying that a certain curve that
the orbit de�nes in M is of class m� We could also use a favored lift F of F
to the covering space M of M to de�ne such orbits� by asking�

F
d
�x� � m�x

where m�x denotes the action of m seen as a deck transformation in T �M
�the favored lift is the one corresponding to lifting the solution curves of
the Hamiltonian �ow�� But de�nition ��� turns out to be more convenient
to use here �both are equivalent� of course�� We now restate�

Theorem � Let �M�g� be a Riemannian manifold of negative curvature� and
H be as in Theorem �� Then� whenever �M� g� has a geodesic whose class
in ���M� is m� F has at least � �m� d� orbits in B�M when l�m� � dC �

� We remind the reader that free homotopy classes of loops di�er from elements
of ���M� in that no base point is kept �xed under the homotopies� As a result

free homotopy classes can be seen as conjugacy classes in ���M�
 and thus can
not be endowed with a natural algebraic structure� Two elements of a free class
give the same element in H��M�� Hence free homotopy classes form a set smaller
than ���M�
 bigger than H��M�� All these sets coincide if ���M� is abelian�
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Remark �����The fact that we �nd two orbits and not a number given
by the topology of the manifold is not an artifact of the proof� but derives
from the unicity of the closed geodesic in a given class� Note also that we do
not guarantee that an orbit of the form �mk� kd� is not actually an �m� d�
orbit� We should then ask for �m� d� to be prime� in that very sense�

Note also� there are a priori more of these pairs �m� d� than there are
rational homology directions�

The proof of Theorem � has the same broad outline as that of Theorem
��

We decompose F � F�N � � � � � F� as before� which gives us a decompo�
sition of F d into �Nd twist maps�

We would like to claim� in analogy to Proposition ��� that

B � fq � Om�d j kpk�qk� pk�k � Cg

is an isolating block for the gradient �ow of W �
But this will not be enough for our purpose� To make sure that two

critical points correspond to points that are actually on � distinct orbits�
one should do the following� to decompose F d� we have decomposed F in
�N steps� De�ne�

� � Om�d � Om�d by setting ��q�k � qk��N

where we identify� qk��Nd � qk� It is clear that � critical sequences corre�
sponding to points in the same orbit by F get identi�ed in the quotient by
the action of �� So our candidate for isolating block will be given by the
quotient B�� of B by the action of � �note that � leaves B invariant� so
that the quotient makes sense��

It can be seen that ifm is non trivial� then the action of � is without �xed
points� Since it is also periodic� the action is then properly discontinuous
��Gr�� Chapter ��� and hence the quotient map Om�d � Om�d�� is a covering
map�

We now describe the candidate for normally hyperbolic invariant set� It
will be the quotient by � of the set G�

m�d made of the critical sequences cor�
responding to the continuum of �m� d� orbits that form the closed geodesic
of class m� parametrized so that the Hamiltonian �ow goes through it in
time d� Call this orbit ��

Note that G�
m�d contains all the possible critical points for W � in Om�d

since a critical point for W � must be contained in a continuum of critical
points� if �q�� p�� is an �m� d� point� so is ht��q�� p��� for any t� But we know�
in the case of H� that there is one and only one such set� namely ��

Writing F �
k � � � � � F

�
� � 	k� where the F �

k s decompose the map hd�� we
can write�

G�
m�d � fq�t� � Om�d j qk � � � 	k���t��g

where ��q� p� � q is the canonical projection� Again� since � restricted to
G�
m�d actually corresponds to the action of F on �� G�

m�d is � invariant
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and hence the quotient G�
m�d�� makes sense� Since the quotient map is a

covering map and G�
m�d

�� �� we have �

������� G�
m�d��

�� S�

��� Proof of Theorem �

Lemma 
���� B�� is an isolating block

Proof� Because we have assumed l�m� � dC� F cannot have any �m� d�
orbits con�ned to �B�M � since F coincides with F� on this set� such an
orbit would have to correspond to a closed geodesic of free homotopy class
m� but of length dC� which is absurd� This in turn implies that W has no
critical points on �B� and the reasoning of Proposition ��� applies without
change to show that points in �B must exit B in positive or negative time�
Since the covering map is a local di�eomorphism� this is also true in B���
which is then an isolating block� ut

Lemma 
���� G�
m�d�� is a normally hyperbolic invariant set for t�� It is a

retract of Om�d���

Proof� We prove the statement 	upstairs
� taking the quotient by � only
at the end�

According to Lemma ���� and the reasoning in the proof of Lemma ����
it is enough to show that the di�erential of hd� on a point of � has no other
eigenvector of eigenvalue � than the vector tangent to ��

To compute the di�erential of hd� at the point �q�� p�� � ���� we are going
to choose a coordinate system �z� t� s� around �q�� p�� in the following way�
z� t will be a coordinate system for a tubular neighborhood in the energy
surface containing �q�� p��� t being in the direction of �� We will de�ne s by
the following� a point �q� p� on the energy level of � will be assigned coordi�
nates �z� t� �� and the point �q� sp� will be assigned coordinates �z� t� s�� It is
clear that in an interval s � �a� b�� a � �� this gives a system of coordinates�

It is interesting to notice that ��� t� �� is a parametrization of �� whereas
the cylinder ��� t� s� is foliated by circles s � c invariant under the �ow ht��
each one corresponds to a reparametrization of �� by rescaling the velocity
by s�

The map hd� leaves the cylinder invariant and in fact induces a monotone
twist map on it �

hd���� t� s� � ��� t� �s� ��d� s�

Now� remember that the geodesic �ow of a manifold with strictly negative
curvature is Anosov� This translates into� in the subspace tangent at a point
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��� t� s� to the z coordinate�Dhd� has no eigenvalue equal to � � we can assume
the splitting tangent to t� s to be invariant by Dht�� � Hence� in the �z� t� s�
coordinates�

Dhd���� s� t�

�
�A

� d
� �

	
A

where A has no eigenvalue �� Hence Dhd���� t� s� has only the vector tangent
to � as eigenvector with eigenvalue � �I am endebted to Leonid Polterovitch
for giving me the idea of this argument��

We now have to prove that G�
m�d is a retract of Om�d� De�ne the following

map

� � Om�d��N�� Om�d�N�

�q�� q�� q�� � � � � q�Nd�� �q�� q�� � � � � q�k � � � � q�Nd�

It is not hard to see that � induces a di�eomorphism on G�
m�d� the projection

on the �th factor would itself give a di�eomorphism�We claim that the image
G of G�

m�d under � is a deformation retraction of the image O of Om�d in

Om�N � Call r this retraction� Then ���jG � r � � is a retract of Om�d to G�
m�d�

as we want to prove�

We now construct the map r� Decompose hd� � �h
�

N

� �Nd� Since h
�

N

� is a
symplectic twist map � we can rig up the variational setting relative to this
decomposition� Call

W �q� �
k�NdX
k��

S�qk� qk���

where S is the generating function of h
�

N

� � In this case� the isolating block
B � �B is a repeller block for the gradient �ow of W �see Remark �����
Hence W has attains a minimum value� say a� in the interior of B� It has to
be at a point inG� which contains all the critical points ofW � as we remarked
above for G�

m�d� Hence on all of G � W must equal a� Since we can choose O
to be exhausted by an increasing sequence of repeller neighborhoods of the
same type as P � a is actually a global minimum for the function W in O�

The same argument as for G�
m�d shows that G is normally hyperbolic� In

particular� this implies that the setW � a�� forms a tubular neighborhood
of G ��DNF��x���� Then a standard argument ��Mi� Theorem ���� in Morse
theory shows that� since there are no other critical points but those in the
level W � a� the set W � a � � must be a deformation retraction of O�
Finally� G is a deformation retraction of W � a � �� since the latter is a
tubular neighborhood of G� This �nishes the construction of r�

Finally� we indicate how all these features go through in the quotient by
��

To check that G�
m�d�� is normally hyperbolic� we just note that this no�

tion is a local one� in the tangent space� and the quotient map is a local
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di�eomorphism� It can be checked that the above construction of the retrac�
tion map is � invariant� And� �nally� the quotient of our invariant set G�

m�d

�see ���� is a circle� as noted in ������ This concludes the proof of Lemma
������ ut

To �nish the proof of Theorem �� we use Floers Lemma� as in the proof
of Theorem �� to �nd that there is an invariant set Gm�d for the �ow t in
Om�d�� which is such that�

H��G�
m�d��� � H��S�� �� H��Gm�d�

Since cl�S�� � sb�S�� � �� in all cases� we will get at least � distinct orbits
of type �m� d��

ut

Appendix A Linearized gradient �ow vs	linearized

Hamiltonian �ow

Suppose that �q�� p�� � x� is a �xed point for F � We want to solve the
equation�

�A��� DFx��v� � �v

with v � T �T �M�x� � In terms of Hamiltonian �ow � we want to �nd the
Floquet multipliers of the periodic orbit corresponding to x��

In the �qk� qk��� coordinates� we want to express a condition on the orbit
��qk� �qk��� of a tangent vector ��q�� �q�� under the successive di�erentials
of the maps Fk�� along the given orbit� A way to do it is the following
��M�M��� If q corresponds to the orbit of x� under the the successive Fks�
it must satisfy�

�W �q�

�qk
� ��Sk���qk��� qk� � ��Sk�qk� qk��� � �

�see ����� Therefore� a 	tangent orbit
 �q must satisfy�

�A��� Sk���� �qk�� � �Sk�� � Sk���� ��qk � Sk���qk�� � �

where we have abbreviated�

Skij � �ijSk�qk� qk����

When q corresponds to a �xed point �q�� p��� Equation A�� translates�
in terms of the �q� to�

�A��� �q�N � ��q�
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Equations �A��� and �A��� can be put in matrix form as M����q � � where
M��� is the following �Nn� �Nn tridiagonal matrix�

M��� �

�
BBBBBBBBB�

S��� � S��� S��� � � � � � �
�
S���

S��� S��� � S��� S���
� � � �

� S���
���

���
� � � �

� � � � � S�N��
��

�S��� � � � � � S�N��
�� S�N��

�� � S���

	
CCCCCCCCCA

Hence the eigenvalues of DFx� are in one to one correspondence with the
values � for which detM��� � �� More precisely� to each vector v solution
of �A��� corresponds one and only one vector �q solution of M����q � ��
Setting � � �� this proves Lemma ����

Remark 	A��
 This construction can be given a symplectic interpre�
tation� the Lagrangian manifolds graph�dW � and graph�F � are related by
symplectic reduction� Lemma ��� can then be restated in terms of the in�
variance of a certain Maslov index under reduction ��V���

Appendix B
 Twist maps and linking of spheres

In this appendix� we present the proof given in �BG� of the original conjec�
ture of Arnold in the restrictive case of symplectic twist maps �Theorem �
in the introduction��

To that e�ect� we have to give our interpretation of what linking of
spheres in �B�M is�

Call �q the �ber of B
�M over q� and ��q its boundary in �B�M � Then

��q is an n dimensional sphere� It make sense to talk about its linking with
its image F ���q� in �B�M � the latter set has dimension �n � � and the
dimensions of the spheres add up to �n� ��

We �rst restrict ourselves to the case when the two spheres ��q and
F ���q� are in a trivializing neighborhood in �B�M � say U � Sn � E�

The type of linking of F ���q� with ��q should be given by the class
�F ���q�� � Hn����En��q�

More precisely� we have�

�B���
Hn����En��q� �� Hn��

�
Sn�� � �IRn � f�g�

�
Kunneth
�� Hn���IR

n � f�g��Hn���S
n�
�

Thus� taking ��q from �E creates a new generator in the n��st homology�
i�e� the generator b of Hn���IR

n � f�g��
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De�nition �Linking condition� We say that the spheres F ���q� and ��q

link in �E if they do not intersect and if the decomposition of �F ���q�� in
the direct sum in �B��� has a non zero term in its Hn���IR

n � f�g� factor�
We will say that the symplectic twist map F satis�es the linking condition
if for all q �M these spheres link in �E for some trivializing neighborhood
E 	

If F is a symplectic twist map� it turns out that this is a well de�ned
characterization of linking� we can always construct a trivializing neigh�
borhood containing both ��q and its image� Indeed� take T ��� � F ��q��
�homeomorphic to Bn� IRn since F is twist� if q is in � �F ��q�� If not join
q to this set by a path� and fatten this path� The union of the set and the
fattened path is homeomorphic to a ball� Hence the bundle over this ball is
trivial�

Moreover� it turns out that if the spheres link in one trivializing neigh�
borhood� they do in all of them� as a consequence of the following

Lemma B�� If F is a symplectic twist map� the following are equivalent�

a� The spheres ��q and F ���q� link in some trivializing neighborhood in
�B�M

b� The �ber �q and its image F ��q� intersect in one point of their interior�

Remark B��We can also de�ne the linking condition for a map F of
B�M which is not necessarily symplectic twist� If the covering space of M
is IRn� we say that F satis�es the linking condition if at least one of its lifts
does �the trivializing neighborhood is taken to be M � IRn �� IR�n in this
case�� If M is not covered by IRn� Lemma B�� suggests that we may take as
a linking condition that the intersection number ���q � F ��q�� is ���

Proof� Suppose that E is a trivializing neighborhood containing the �
spheres� We complete B�� into the following commutative diagram�

Hn����En��q� �� Hn���IR
n � f�g��Hn���S

n�

y i�



y j�

Hn���En�q� �� Hn�� ��IR
n � f�g �Bn��

where i� j are inclusion maps� It is clear that j�b generates

Hn�� ��IR
n � f�g�� Bn� �� Hn�� ��IR

n � f�g�� IRn� �

The last group measures the �usual� linking number of a sphere with the
�ber ����q� in T �E �� IR�n� But it is well known that such a number is

� Here
 as a convention
 a trivializing neighborhood will always be homeomorphic
to Bn

� IRn�
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the intersection number of any ball bounded by the sphere with the �ber
����q�� counted with orientation� In our case� where the sphere considered is
F ���q� this number can only be � or � or ��� because of the twist condition
�see Remark �����

Conversally� if �q and F ��q� intersect in their interior � then their
bounding spheres must lie on the trivializing neighborhood over F ��q��
and must link� ut

Remark B��If all �bers intersect their image under a twist map� i�e�
if the linking condition is satis�ed� then the intersection number must be
uniformally � or ��� we could call F a positive twist map in the �rst case�
a negative twist map in the second case� Of course� this corresponds to the
same notion in dimension ��

We can now prove Theorem ��
�From Lemma ���� �xed points of F correspond to critical points of

q � S�q� q�� This function only make sense for all q in M if the diagonal in
M �M is in the image of U by the embedding � �see De�nition ����� This
is exactly the case when q � F ��q� for all q� i�e�� from Lemma B��� exactly
when the linking condition is satis�ed� Hence F has as many �xed points
as the function q � S�q� q� has critical points on M � ut

To our knowledge� Arnolds original conjecture is still open� even in the
case M � Tn�
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