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x�� Introduction�
The Fibonacci recurrence of the critical orbit appeared in the work of Branner and

Hubbard on complex cubic polynomials �BH� x���� and in Yoccoz�s work �Y� on quadratic
ones� as the �worst� pattern of recurrence� On the other hand� a real quadratic Fibonacci
map f was suggested by Hofbauer and Keller �HK� as a possible candidate for a map
having a �wild� attractor 	because the � 
limit set of the critical point possesses all known
topological properties of wild attractors �BL�� �� Also� Shibayama �Sh� has described this
real Fibonacci map as the limit of a sequence of quadratic maps with attracting orbit
whose period is a Fibonacci number�

This paper will study topological� geometrical and measure
theoretical properties of
the real Fibonacci map� Our goal was to �gure out if this type of recurrence really gives
any pathological examples and to compare it with the in�nitely renormalizable patterns
of recurrence studied by Sullivan �S�� It turns out that the situation can be understood
completely and is of quite regular nature� In particular� any Fibonacci map 	with nega

tive Schwarzian and non
degenerate critical point� has an absolutely continuous invariant
measure 	so� we deal with a �regular� type of chaotic dynamics�� It turns out also that
geometrical properties of the closure of the critical orbit are quite di
erent from those of
the Feigenbaum map� its Hausdor
 dimension is equal to zero and its geometry is not rigid
but depends on one parameter�

Branner and Hubbard introduce the concept of a tableau in order to describe recurrence
of critical orbits� Their �Fibonacci tableau� is a basic example� which corresponds to one
particularly close and regular pattern of recurrence� If a complex quadratic map z �� z��c
realizes this Fibonacci tableau� then the orbit

� � z� �� z� �� z� �� � � �
of the critical point returns closer to zero 	in a certain invariant sense� after each Fibonacci
number of iterations� In the real case� it follows that

jz�j � jz�j � jz�j � jz�j � jz�j � jz��j � � � � �
In x� we will prove that a real quadratic map is uniquely de�ned by the last property�
More precisely we prove the following� We denote the Fibonacci numbers by

u	�� � � � u	�� � � � � � � � with u	n� �� � u	n� � u	n� �� �

Theorem ���� There is one and only one real quadratic map of the form

fc	x� � x� � c with the property that the critical orbit � � x� �� x� �� � � � has

closest recurrence at the Fibonacci values� so that jx�j � jx�j � jx�j � jx�j � � � � �
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with x� � � � y The kneading invariant for this uniquely de�ned map fc can be

described by the conditions that

xu�n� � � for n � � � � mod �

xu�n� � � for n � � � � mod � �

and that

sgn	xi� � sgn	xi�u�n�� for u	n� � i � u	n� �� �

In fact numerical computation shows that c � ������������������������� � � � �
The associated topological entropy is h � log ������������ � � � �

For a fairly general unimodal map f with this same kneading data� we prove the
following� Let O � fx� � x� � � � �g � R be the critical orbit�

Theorem ���� If f is C� � smooth with non��at critical point� and with kneading

data as above� then�

�� The closure O of the critical orbit is a Cantor set� with the xi � i � �� as

the end points of the complementary intervals�

�� The map f from O onto itself is one�to�one except that the critical point

has two pre�images� This map f jO is minimal� and is uniquely ergodic with

entropy zero� It is semi�conjugate to the golden rotation

t �� t� 	
p
�� ���� 	mod ��

of the circle R�Z �

The proof� in x�� will give an explicit description of the ordering of this critical orbit closure�
It will also show that it is canonically homeomorphic to the set of all in�nite sequences
	a� � a� � � � � � of zeros and ones with no two consecutive ones� or to the set of all �nite or
in�nite �Fibonacci sums�� 	Compare ��� and �����

Theorem ���� If f is C� �smooth with non�degenerate critical point then�

�� The ratio of xu�n� to xu�n��� decreases exponentially� with

�n � jxu�n�j�jxu�n���j � a��n�� as n��
for some constant a � � �

�� The critical orbit closure O has Hausdor� dimension zero and the Liapunov

exponent at the critical value is equal to zero�

�� Any two Fibonacci maps with the same parameter a are smoothly conjugate

on O �

�� If the Schwarzian derivative is negative� then f has a unique absolutely

continuous invariant measure� with support equal to the entire closed interval

�x� � x�� � and with positive entropy �

y We conjecture that this condition on x� is automatically satis�ed�
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Remark �� Uniqueness and other properties of an absolutely continuous invariant
measure hold automatically 	see �BL���� Existence we will derive from the Nowicki
van
Strien �series� condition �NvS��

Remark �� Unlike the Feigenbaum map� the geometry of O goes down to zero under
renormalization� and is not rigid but depends on the parameter a � 	We can e
ectively
vary this parameter��

Remark �� It is essential here that the critical point be non
degenerate 	 f ��	�� 	� � ��
We hope to show in a later paper that� for example� a Fibonacci map of the form f	x� �
x� � c has completely di
erent behavior� with bounded geometry and with no absolutely
continuous invariant measure�

Let us describe the structure of the proof of the last theorem� which is somewhat
complicated� In x� we get some a priori bounds on the ratios �n � In x� we prove the
Theorem assuming that inf �n � � � In order to verify this assumption we introduce in x�
an appropriate notion of renormalization so that in�nitely renormalizable maps are exactly
Fibonacci ones� Applying Sullivan�s ideas �S� to our case we prove that if geometry of O
is bounded from below then there is a sequence of renormalizations converging to a map
which can be analytically continued in a quite big domain of the complex plane�

In x� we discuss polynomial
like maps� in an appropriate generalized sense� A version
of the Douady
Hubbard theorem is valid in this situation� any cubic
like map is quasi

conformally conjugate to a cubic polynomial with one escaping critical point� It follows
that all real cubic
like Fibonacci maps are quasi
symmetrically conjugate� So� any example
of a cubic
like Fibonacci map with unbounded geometry shows that all of them have
unbounded geometry� Finally� we renormalize a quadratic
like Fibonacci map into a cubic

like one which completes the proof for the polynomial
like case�

In the last x� we show that the limits of the renormalizations of a smooth Fibonacci
map are actually polynomial
like which completes the proof of the Theorem�

Remark �� The Fibonacci recurrence is a well
known phenomenon for monotone
maps of the circle with golden rotation number� The scaling laws in this situation were
studied by Herman 	at least implicitly�� by Swiatek �Sw�� 	smooth homeomorhisms with
critical points� and by Tangerman and Veerman �TV� 	maps with �at spots�� In the two
former cases one has bounded geometry� in the latter the geometry goes down to zero in
the similar manner as in our example� Such circle maps are explicitely related to certain
unimodal maps of the interval which are di
erent from ours but also have a sort of Fibonacci
recurrence � see �PTT��

The notation fn will always be used for the n 
fold iterate of f �

Acknowledgement� We want to thank Branner� Douady� Sullivan� and Tresser� for
helpful conversations� We also pro�ted from the discussions with the participants of the
Stony Brook dynamical systems seminar� particularly� Brucks� Yu�Lyubich� Shishikura�
Tangerman and Veerman�
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x�� Kneading�
Let f � I � I be a unimodal map with minimum at x � � � As usual� let

� � x� �� x� �� � � � be the critical orbit� and let

u	�� � � � u	�� � � � u	�� � � � u	�� � � � � � �

be the Fibonacci numbers� In order to avoid the hypothesis that f is an even function� we
will use the notation x �� x� for the order reversing involution� de�ned on some suitable
subinterval of I � which satis�es f	x�� � f	x� � Let kxk be the larger of x and x� �

De�nition� We will say that f is a Fibonacci map if kxu�n�k � kxu�n	��k for n � � �
so that

kx�k � kx�k � kx�k � kx�k � kx�k � kx��k � � � � � 	�� ��
and if x� � � �

Lemma ���� The map f is a Fibonacci map if and only if the signs of the

successive images xi are given by

sgn	xj� � sgn	xj�u�n�� for u	n� � j � u	n� �� � with 	�� ��
sgn	xu�n�� � 	����n	���n	���� � 	�� ��

Remark �� Some condition such as x� � � is needed in order to avoid the
uninteresting case

x� � � � lim
m��

xm � � � � � x� � x� � x� � x� �

	Note that such a map would have to have at least three �xed points� counted with
multiplicity� Thus this particular case can never occur for a quadratic map��

Remark �� We can describe these conditions in di
erent language as follows� If we
assume that x� � � � x� � then Conditions 	�
�� and 	�
�� are completely equivalent to
the statement that the interval between � and xu�n� is mapped homeomorphically by the

iterate f�i for � 
 i 
 u	n��� � but is not mapped homeomorphically by f�u�n���	� � The
condition that some large iterate of f restricted to an interval �a� b� is a homeomorphism
is an invariant way of specifying that a is very close to b � Thus Lemma ��� can be thought
of as giving an invariant description of just how close xu�n� is to the critical point�

Remark �� The Branner
Hubbard description of f would be rather di
erent� Fol

lowing Yoccoz� they cut the interval not at the critical point� but rather at the interior
�xed point � � � � In terms of the resulting partition of the interval� the appropriate
description of the critical orbit is that the two images xi and xi	u�n� lie on the same side
of � for i � u	n� ��� � � but on opposite sides of � for i � u	n� ��� � �

Proof of ���� If 	�
�� and 	�
�� are satis�ed� then according to Remark � above� we
see that the successive images xu�n� are closer and closer to zero� Since x� � � � it follows
that f is a Fibonacci map� Conversely� the proof that every Fibonacci map satis�es 	�
��
and 	�
�� will be by induction on n � using the following induction hypothesis�
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Hypothesis Hn � For i in the range � � i � u	n� with i 	� u	n � �� � the
points xi have sign as speci�ed in Conditions 	� � �� and 	� � �� above� and

furthermore kxik � kxu�n���k �

The following elementary observation will be used over and over� For any unimodal map

with minimum at x� � � �

if kxpk � kxqk then xp	� � xq	� �

To start the induction� we must show that every Fibonacci map satis�es H� � Since
kx�k � kx�k � kx�k by de�nition� we need only show that

x� � x� � � � x� � and that kx�k � kx�k �
Note �rst that the kxik must all be distinct� For otherwise the critical orbit would have
only �nitely many distinct elements� We have assumed that x� � � � If � � x� then we
see inductively that � � x� � x� � � � � � which contradicts our hypothesis� Similarly� if
x� � � hence x� � x� � � � then we see inductively that

x� � x� � x� � � � � � x
 � x� � x� � � �

which contradicts our hypothesis� Finally� suppose that kx�k � kx�k � Applying the
map f � we see that x� � x� � � � and applying f again we see that x� � x
 � Since
kx�k � kx�k by hypothesis� hence x
 � x� � we have x� � x
 � x� � � and a similar
inductive argument shows that x� � x� � x� � � � � � x� � x
 � x� � � � which again
contradicts our hypothesis� This proves H� �

We will show that Hn � Hn	� for n � � � Since � � kxu�n�k � kxu�n���k � we have
x� � x�	u�n� � x�	u�n��� �

Now xi and xi	u�n��� have the same sign for � � i � u	n� �� by Hn � Hence it follows
by induction on i that xi	u�n� lies between them� and hence also has the same sign� for
i in this range� Since both xi and xi	u�n��� have absolute value greater than kxu�n���k
by Hn � it follows also that kxi	u�n�k � kxu�n���k � kxu�n�k � for i in this range� For
i � u	n � �� � this argument proves that xu�n���	u�n� lies between xu�n��� and xu�n� �
but does not determine its sign� However� it does follows that

� � kxu�n���	u�n�k � kxu�n���k � hence x� � x�	u�n���	u�n� � x�	u�n��� �

Now a similar inductive argument shows that xi	u�n���	u�n� lies between xi and
xi	u�n��� � and hence has the required sign� for � � i � u	n � �� � Furthermore� this
shows that kxi	u�n���	u�n�k � kxu�n���k � kxu�n�k for i in this range� In the limiting
case i � u	n � �� � this argument proves that xi	u�n���	u�n� � xu�n	�� lies between
xu�n��� and xi	u�n��� � xu�n��� � but does not determine its sign� However� since
kxu�n	��k � kxu�n���k � kxu�n���k � this proves that xu�n��� and xu�n��� have op

posite sign� so that xu�n��� also has the required sign� Thus� we have almost proved
Hn	� � The only missing pieces of information are the sign and magnitude of xi for
i � u	n� �� � u	n� �

We must prove that kxu�n���	u�n�k � kxu�n�k � But if kxu�n���	u�n�k � kxu�n�k
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then
x� � x�	u�n���	u�n� � x�	u�n� �

This is impossible� For a similar inductive argument would show that xi	u�n���	u�n� must
be between xi and xi	u�n� for � � i 
 u	n� �� � In particular� taking i � u	n � �� it
would follow that xu�n	�� must be between xu�n��� and xu�n���	u�n� � By the part of
Hn	� which has already been proved� these two have the same sign� and it would follow
that kxu�n	��k � kxu�n�k � which contradicts our hypothesis� Thus kxu�n���	u�n�k �
kxu�n�k �

Now recall that xu�n���	u�n� is known to lie between xu�n��� and xu�n� � Since
kxu�n���	u�n�k � kxu�n�k � it follows easily that xu�n���	u�n� has the same sign as
xu�n��� � This completes the proof that Hn �Hn	� � tu

To show that this result is not vacuous� we must prove the following�

Lemma ���� Fibonacci maps exist�

We will outline two di
erent proofs� The proof below is an immediate application
of the formal machinery of kneading theory� as developed in �MT�� An alternative proof�
which is more direct and gives a more explicit description of the critical orbit� will be given
in Lemma ���� Both proofs will make use of the following�

De�nition ���� By a Fibonacci sum we will mean a �nite or in�nite formal sum

� � u	n�� � u	n�� � u	n�� � � � �
of non�consecutive Fibonacci numbers� That is� we always assume that ni	� � ni � � �
with n� � � � It is not di�cult to check that every positive integer has a unique expression
as a �nite Fibonacci sum� As an example� the di
erence u	n�� � can be expressed as

u	n�� � �

�
u	�� � u	�� � u	�� � � � �� u	n� �� for n even �

u	�� � u	�� � u	�� � � � �� u	n� �� for n odd �
	�� ��

	For in�nite Fibonacci sums� compare the proof of Lemma �����

As in �MT�� we describe the kneading invariant of a unimodal map f by a formal
power series D	t� � �� 	�t� 	�t

�� � � � � where each coe�cient 	n is equal to �� or ��
according as the function x �� jf�n	x�j has a local minimum or local maximum at the
origin� Since the xi are non
zero for i � � � we can check inductively that

	n � sgn	x�x� � � �xn� � 	�� ��
Such a kneading invariant is admissible 	ie�� actually occurs� if and only if the inequality

�X
�

	i t
i 


�X
�

		m	m	i� t
i 	�� ��

is satis�ed for every m � � � Here� by de�nition� an inequality
P

ait
i �

P
bit

i between
formal power series means that the �rst di
erence bi � ai which is non
zero is actually
positive� Thus� for each m we require that the smallest i for which 	m	i 	� 	m 	i
	if any such exist� must satisfy 	i � �� �
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In the case of a Fibonacci map� it follows inductively from 	�
��� 	�
�� and 	�
�� that
we must have 	u�n� � �� for every Fibonacci number u	n� � In fact� according to 	�
���
	u�n	�� is equal to 	u�n� multiplied by the sign of the product xu�n�	�xu�n�	� � � �xu�n	�� �
This coincides with sgn

�
x�x� � � �xu�n���

�
� 	u�n��� � �� except that the very last factor

xu�n��� has the wrong sign� Thus it follows inductively that 	u�n� � 	u�n	�� � �� for all
n � In other words� each map x �� jf�u�n�	x�j must have a local maximum at x � � � For
a k 
fold Fibonacci sum

m � u	n�� � � � �� u	nk� � where always n� � � and ni	� � ni � � � 	�� ��
Equations 	�
�� and 	�
�� imply that 	m is equal to the product 	u�n��	���	u�nk���	u�nk� �
Hence it follows inductively that 	m � 	���k � Thus� in order to prove ��� we need only
show that the formal power series

P
	mt

m � with 	m de�ned by this equation� satis�es
Condition 	�
��� That is� for each �xed m the smallest i with 	m	i 	� 	m	i must satisfy
	i � �� � However� if we express m as a Fibonacci sum as above� then it is not hard
to show that the smallest i with 	m	i 	� 	m	i is either i � u	n� � �� or i � u	n�� or
	in the special case n� � � � i � � � Since 	i � �� in each of these cases� the required
inequality 	�
�� follows� This completes the proof of ���� tu

Proof of Theorem ���� Since any unimodal kneading invariant which is admissible
can be realized by a quadratic map� we can certainly �nd at least one quadratic map fc
which realizes the given kneading invariant� 	See for example �MT��� But for any real
quadratic map fc which is not in�nitely renormalizable and has no attracting periodic or

bit� Yoccoz has recently shown that the constant c is uniquely determined by its kneading
invariant� 	This is an immediate corollary of his much more general result about complex
quadratic parameter space�� Since it is easy to check that a quadratic Fibonacci map is
not renormalizable and has no attracting periodic orbit� this proves ���� tu

x�� The critical orbit�
Out of the kneading data� it is not di�cult to determine the precise ordering of the

points xm in the critical orbit� We can describe the resulting ordering by a fairly concrete
model as follows� The construction will provide an alternative proof of ����

Choose a parameter � � t � �� t� � or in other words

� � t � 	
p
�� ���� � ������ � � � �

for example t � �
� � Now for each integer m � � � expressed as a Fibonacci sum 	�
���

de�ne a real number ym by the formula

ym � ��tn� � tn� �� � � � � tnk
�
�

where the initial sign is to be �� for n� � � � � 	mod �� � and �� for n� � � � � 	mod �� �
as in 	�
�� above� Thus the initial term �tn� is the dominant one� and subsequent terms
alternate in sign� decreasing by a factor of t� or more at each step since ni	� � ni � � �

Remark ���� More precisely� this ordering can be described as follows� For Fibonacci
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sums m with di
erent dominant terms� the order of the ym is determined by the rules�

y�	��� � y�	��� � y�	��� � y��	��� � � � � � � � � � � � y��	��� � y��	��� � y�	��� � y�	��� �

Here� in each case� the dots in the subscript stand for higher terms� which may be zero�
for an arbitrary Fibonacci sum� For two Fibonacci sums which have the same leading
summands u	n�� � � � �� u	nk� but di
er at the 	k � �� 
st summand� the relative order
is determined as follows� Setting s � u	n�� � � � �� u	nk� � we have

jysj � � � � � jys	u�nk	��	���j � jys	u�nk	��	���j � jys	u�nk	��	���j � jys	u�nk	��	���j
if k is odd� and the same but with all inequalities reversed if k � � is even� Here all of
these points ys	��� have the same sign� depending only on the leading summand n� � as
described above�

We claim that the resulting ordering of the ym is precisely the required ordering of
the points xm in the critical orbit� More precisely� we will prove the following�

Lemma ���� The correspondence ym �� ym	� is unimodal� that is� it is

monotone increasing on the set of ym for which ym � � � but monotone

decreasing for ym 
 � � Furthermore� this correspondence is uniformly continu�

ous� Thus� if we extend linearly over each gap between the ym � then we obtain

a continuous unimodal map F from the interval �y� � y�� to itself� satisfying the

Fibonacci condition that

y� � y�� � y�� � y� � y� � y��� � � � � � � �

where ym � Fm	�� � 	Here� as in x	� we use the notation y �� y� for the

orientation reversing involution of the subinterval �y�� � y�� which satis�es the

condition that F 	y�� � F 	y� ��

Proof� It is convenient to divide the various ym into intervals An � n � � � which
are ordered according to the following pattern�

A� � A
 � A�� � � � � � A� � A� � A� 
 A� � A� � A� � � � � � A�� � A� � A� �

	Here the two sequences fA�ng and fA�n	�g converge towards the two pre
images of
zero� Compare ����� Let A� � �y� � �� be the closed interval containing all yu�n�	��� with
n � � � � 	mod �� � n � � � and also containing the limit point zero� Here� as above� the no

tation u	n��� � � stands for an arbitrary Fibonacci sum with leading term u	n� � Similarly�
let A� � �� � y�� be the interval containing all yu�n�	��� with n � � � � 	mod �� � n � � �
together with the limit point zero� For n � � even� let An be the smallest interval
containing all ym with m of the form u	���u	��� � � ��u	n����	higher terms� � where
the higher terms if any must start with u	n � �� or higher� Using the identity 	�
��� it
follows easily that An is equal to the closed interval spanned by the two points yu�n���
and yu�n�	u�n	���� � Here the relative order of these two endpoints depends on whether n
is congruent to � or � modulo �� Similarly� for n � � odd� we de�ne An to be the smallest
interval containing all ym with m of the form u	�� � u	�� � � � �� u	n � �� � 	higher� �
where again the higher summands if any must start with u	n��� or higher� Again using
the identity 	�
��� we see that this interval An is again spanned by the points yu�n���
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and yu�n�	u�n	���� � where the relative order of the two end points depends on whether
n is congruent to � or � modulo ��

It is not di�cult to show that every ym with m � � belongs to exactly one of these
intervals� and that these points are ordered according to the pattern described above� For
ym 
 An a brief computation shows that the map ym �� ym	� is linear with slope
	���n�� � In particular� it is either order preserving or order reversing according as
An � ��� y�� or An � �y� � �� � If we extend this map to be linear in the gap between
An and An	� � then computation shows that the slope in this gap takes the value

�F 	x�

�x
� 	���n�� tn � tn	� � tn	�

tn	� � tn	� � tn	�

for n � � � This is independent of n except for sign� For n � � it takes a di
erent value�
but still with the appropriate 	negative� sign� As an example� for t � �

� this gap slope
is equal to ���

� for n � � � and is �

� for n � � � In this way� we obtain the required

explicit unimodal map F which realizes the given kneading data� This ���� and completes
the alternate proof of ���� tu

Lemma ���� If the Fibonacci map f has no 
homtervals� within the interval

�x� � x�� � that is� if the pre�critical points are everywhere dense� then f restricted

to this interval is topologically conjugate to this model map F �

The proof is straightforward� tu
Remark� By de�nition� a homterval is a subinterval of I which is mapped homeomor


phically by all iterates of f � A wandering interval is a homterval which is not contained in
the basin of attraction for any periodic orbit� According to Guckenheimer �G��� a unimodal
map has no wandering intervals within �x� � x�� provided that it has negative Schwarzian�
with non
�at critical point� According to de Melo and van Strien �MS�� it has no wander

ing intervals provided that it is su�ciently smooth� with non
�at critical point� 	See also
Blokh and Lyubich �L�� �BL����

Lemma ���� More generally� if a Fibonacci map has no wandering intervals�

then its critical orbit closure O is a Cantor set� homeomorphic to the corre�

sponding critical orbit closure for the model map F � In particular� this Cantor

set is canonically homeomorphic to the set of all �nite or in�nite Fibonacci sums�

suitably topologized�

Proof of ���� The appropriate topology for the set of all �nite or in�nite
Fibonacci sums can be described as follows� Let � be the �Fibonacci shift�� consisting of
all sequences 	a� � a� � � � �� of zeros and ones with no two consecutive ones� In other words�

� is a one
sided subshift of �nite type corresponding to the matrix T �

�
� �
� �

�
� 	The

name is suggested since the number of cylinders in � of length n is equal to u	n� �� ��
This set � is topologized as a subset of the in�nite Cartesian product f�� �g�f�� �g�� � � �
Each sequence fang 
 � determines an associated Fibonacci sum � �

P
anu	n� � and

we give the set consisting of all Fibonacci sums the corresponding compact topology� It is
easy to check that the correspondence m �� xm � where m ranges over positive integers

�



expressed as �nite Fibonacci sums� extends uniquely to a homeomorphism � �� x� 
 O �
where now � ranges over �nite or in�nite Fibonacci sums� Further details of the proof
are straightforward� tu

Remark ���� It is sometimes convenient to partially order the Cantor set � using
lexicographical order from the right� Thus two sequences of zeros and ones� with no two
consecutive ones� are comparable whenever they are eventually equal� or in other words
have the same tail� In terms of this ordering� the map from � to itself which corresponds
to the map f jO can be described as the immediate successor function� which carries each
such sequence to the next largest sequence with the same tail 	such a transformation is
called an adic shift� compare �V��� However� there are two exceptional sequences which are
maximal� and hence have no successor� immediate or otherwise� namely the two sequences
	�� �� �� �� � � �� and 	�� �� �� �� � � �� corresponding to the Fibonacci sums � � � � � � � � �
and �� �� ��� � � � respectively� These both map to the zero sequence� 	Compare 	�
��
in x���

Corollary ���� The mapping f from the Cantor set O onto itself is one�to�

one except that the point zero has two di�erent pre�images� corresponding to the

in�nite Fibonacci sums u	�� � u	�� � u	�� � � � � and u	�� � u	�� � u	�� � � � � �
The proof is straightforward� tu

Here is a more explicit description of this Cantor set as a subset of the real line� For
each n � � let In � R be the smallest closed interval containing all of the points xu�q�
with q � n � Thus In is a closed neighborhood of the origin� One end point of this
interval is xu�n� and the other end point is either xu�n	�� or xu�n	�� according as n is
odd or even� Note that the map f folds In over onto the closed interval �x� � xu�n�	�� �
which in turn maps onto the closed interval �xu�n�	� � x�� provided that n � � � For each

k � � � we will use the notation Ink for the image fk	In� � According to x�� this image Ink
is disjoint from the origin for � 
 k � u	n� �� � but contains the origin for k � u	n� �� �
However� Inu�n��� contains a smaller interval In	�u�n��� which again is disjoint from the

origin� It will be convenient to use the notation

Jn � In	�u�n��� � and more generally Jnk � fk	Jn� � In	�k	u�n��� �

Note in particular that Jnu�n��� � In	�u�n� �

De�nition� Let Mn be the u	n� 
fold union

Mn �
�

��k�u�n���
Ink �

�
��k�u�n���

Jnk �

For example 	listing the subintervals from left to right��

M� � �x� � x��

M� � �x� � x�� � �x� � x��
M� � �x� � x�� � �x� � x�� � �x� � x��
M� � �x� � x
� � �x�� � x�� � �x� � x��� � �x�� � x�� � �x� � x��

��



and so on�

Lemma ���� The u	n� closed intervals

In� � In� � � � � � Inu�n����� and Jn� � � � � � Jnu�n�����

are pairwise disjoint� Denoting their union by Mn as above� the Mn form a

nested sequence of closed sets M� � M� � M� � � � � with intersection equal to

the Cantor set O �

Proof� We will show by induction on n that the u	n� subintervals of Mn are
pairwise disjoint� that the Mn are nested� and that each Mn contains the critical orbit
closure� The idea of the proof is to show that� as we pass from Mn to Mn	� � each of
the u	n� �� intervals Ink �Mn will be replaced by two subintervals In	�k and Jn	�k in
Mn	� � while each of the u	n� �� intervals Jnk � In	�k	u�n��� remains unchanged�

To start the induction� it is trivially true that M� � �x� � x�� contains the critical
orbit closure� The �rst step in the induction is to note that each In contains In	� and
Jn	� as disjoint subsets� For example if n � � 	mod �� then these two subinterval of

In � �xu�n	�� � xu�n��

are situated as follows�

x
u(n+1)

x
u(n+2)

0 x
u(n+3)

x
u(n)+u(n+2)

x
u(n)

I
n+1

J
n+1

Figure �� The interval In in the case n � � 	mod �� �

The picture for n � � 	mod �� is a mirror image� and the pictures for n � � � � 	mod ��
are quite similar� Note that the map fu�n� folds the subinterval In	� � In	� over
onto Jn	� � while the map fu�n��� carries Jn	� back onto a neighborhood of the
origin� spanned by the two points xu�n	�� and xu�n	�� � In the case n � � 	mod ��

as illustrated� In	� is the interval �xu�n	�� � xu�n	��� � while the image f�u�n���	Jn	��
� �xu�n	�� � xu�n	��� coincides with the interval In	� �

It follows easily from ��� and ��� that the two subintervals

In	� � Jn	� � In

are indeed disjoint� and together contain all of the points of O�In � For � 
 k � u	n��� �
a similar argument shows that the two subintervals

In	�k � Jn	�k � Ink

��



are disjoint� and together contain all of the points of O�Ink � This completes the induction�
and shows that

M� �M� �M� � � � � � O �

Since each endpoint of each subinterval of Mn belongs to the orbit O � using the hypothesis
that there are no wandering intervals we see easily that

T
Mn is equal to O � tu

Using the sets Mn one can give another description of the above correspondence
between O and � 	see ����� Given x 
 O � let Mn	x� be an interval of the set Mn

containing x � Then set an � � if Mn	x� � Ink � and an � � if Mn	x� � In	�k 	for
appropriate k �s�� One can check that fang 
 � is the sequence corresponding to x 
 O �

In what follows we will use the notation Mn
a����an

for the interval of Mn corresponding
to the cylinder �a����an� � � �

Lemma ��	� Still assuming that there are no wandering intervals� the points

xi � i � � are the endpoints of the complementary intervals for the critical

orbit closure O � R � More explicitly� the Cantor set O can be obtained from

the closed interval �x� � x�� by removing a dense collection of disjoint open sub�

intervals 	xp � xq� as follows� If one of p � q is a Fibonacci sum of the form

u	n�� � � � � � u	nk��� � u	nk� � u	nk � ��

with k � � � then the other is equal to

u	n�� � � � � � u	nk��� � u	nk � �� �

On the other hand� if one is u	n� � u	n � �� � then the other is either

u	n� �� or u	n� �� according as n is even or odd�

As an example� the �rst seven open subintervals to be removed are as follows� in their
natural order�

	x� � x��� � 	x
 � x��� � 	x� � x�� � 	x�� � x�� � 	x�� � x��� � 	x� � x�� � 	x�� � x��� �

In other words� the Cantor set O is contained in the disjoint union

�x� � x�� � �x�� � x
� � �x�� � x�� � �x� � x��� � �x� � x��� � �x�� � x�� � �x� � x��� � �x�� � x��
	which coincides with the closed set M� �� The proof of this statement is a straightforward
consequence of the ordering of the points in the critical orbit� as described above� tu

We can obtain a di
erent model for this critical orbit closure as follows� Let


 � 	��
p
���� � ������� � � � �

so that 
 � 
� � � � To each �nite or in�nite Fibonacci sum � � u	n�� � u	n�� � � � � �
let us assign the real number �	x�� � 
 	
n� � 
n� � � � � � modulo one�

Lemma ��
� The resulting map � from the critical orbit closure O onto the cir�

cle R�Z is one�to�one except at the countably many iterated pre�images of zero�

It semi�conjugates the map f jO onto the golden rotation t �� t� 
 	mod �� �

Proof� It is easy to check that � is well de�ned and continuous� Note that the
identity u	n����u	n� � u	n��� corresponds to the identity 
n���
n � 
n	� � Using

��



this fact� it is not di�cult to check the required identity

�	f	x��� � �	x�	�� � �	x�� � 
 	mod �� �

Thus the image is a compact subset of the circle� invariant under the golden rotation� and
hence is equal to the entire circle� Now consider any Fibonacci sum with leading term
u	n� � A brief computation shows that the corresponding image

�	xu�n�	���� � 
n	� � � � �
lies somewhere between


n	� � 
n	� � 
n	� � � � � � 
n	��	�� 
�� � �
n

and


n	� � 
n	� � 
n	
 � � � � � 
n	� � 
n	� � �
n	� �
Thus� depending on the leading summand� the image �	x�� lies in one of the non

overlapping intervals

��
���
��� ��
���

�� ��

��
���� � ��f�g� � � �� ��
���
��� ��
���
��� ��
���
� �
having total length �
 � 	�
�� � � � Hence the value �	x�� 
 R�Z determines the
leading summand u	n� uniquely� except in countably many cases which can be explicitly
described� For two Fibonacci sums with the same leading term� a similar argument shows
that the value �	x�� determines the second term uniquely� again with the exception of
countably many cases which can be explicitly described� and a similar argument applies
to higher terms� tu

Corollary ����� With hypotheses as above� the map f jO is minimal� that is

every orbit is dense� and has topological entropy zero� Furthermore this map is

uniquely ergodic� that is it has one and only one invariant probabiltity measure�

Proof� This follows easily from the corresponding assertion for an irrational rotation
of the circle� tu

Combining ��������� this evidently completes the proof of Theorem ���� tu

x�� A priori bounds�

In the following two sections we assume that f � ���� �� � ���� �� is a C� 
smooth
unimodal map with non
degenerate minimum point �� and normalized by the condition
f	��� � f	�� � � 	which does not restrict the generality�� Denote this class of maps by
U � and let us discuss topology on this space�

We will mainly be interested in the subspace U� � U consisting of those f for which
f is an even function� f	�x� � f	x� � We will �rst discuss the di
erentiability conditions

��



and topology on this subspace� and then generalize to the full space U � If f is even� then
we can write it uniquely as

f	x� � Ax� � g �Q
where Q is the squaring map � �� �� � g is some orientation preserving di
eomorphism of
��� �� � and Ax� is the orientation preserving a�ne map which carries ��� �� onto �x�� �� �
where x� � f	�� is the critical value�

Now the Ck 
topology on U� � k 
 � � comes from the Ck 
topology on the space of
di
eomorphisms g � together with the line topology on the range of the parameter x� � Let
kfk denote the maximum of the C�� norms for g� g�� which is a continuous functional
in C� 
topology on our space�

To obtain a corresponding topology of the full space U we need one extra step� Let
x �� x� be the orientation reversing di
eomorphism of T which satis�es f	x� � f	x�� �
This involution is certainly C� 
smooth� Consider a map B � x �� 	x� x���� � Evidently
f can be expressed as a function of 	x � x����� � so that we have a presentation f	x� �
Ax� � g �Q �B instead of the above one� Now we must incorporate the Ck topology on
the involution as part of our topology� In practice� it is easiest simply to carry out this
symmetrizing change of coordinate x �� 	x � x���� in the beginning� and thereafter to
deal only with even maps f � Moreover� we can also assume without loss of generality that
f is purely quadratic x �� x� � c near � 	since any f 
 U is C� 
conjugate to such one��

Denote by F the subspace of Fibonacci maps f 
 U �
The following notations will be kept throughout the paper�

dn � jxu	n�j � �n � dn�dn�� �

The goal of this section is to obtain some a priori estimates for the �n 	compare �G���
�L�� �MMSS�� �BL��� �M�� �S������� The proofs are based upon the Schwarz lemma and the
Koebe Principle stated in the Appendix�

First let us introduce a convenient terminology and notations� A family of inter

vals G � fGigni
� is called a chain of intervals if Gi is a component of f��Gi	� for
i � �� �� ���� n� � � The chain is called monotone if all maps f � Gi � Gi	� are homeo

morphisms�

For a given interval G and a point x such that fnx 
 G one can construct a chain
G�� G�� ���� Gn � G pulling G back along the n 
orbit of x � This construction is an e�cient
tool in one dimensional dynamics because it is often possible to estimate the distortion of
fn along chains of intervals 	see �L� � �S� ��

For a family of intervals G � fGig denote by jGj � P jGij the total length of
intervals Gi and by multG the maximal intersection multiplicity of intervals Gi � that is
the maximum number of Gi having non
vacuous intersection�

Let us consider now the pull
back

Hn	� � fHn	�
m gu�n���m
� � Hn	�

� � Hn	� � In	�� 	�� ��
of the interval Tn�� along the orbit ffmIn	�� gu�n���m
� � The following two topological
lemmas easily follow from the above combinatorics�

��



Lemma ���� The chain Hn	� is monotone 	so that fn monotonously maps
Hn	� onto Tn�� ��

Let us consider any interval I � I lk � l 
 fn� n� �g � of the family Mn di
erent from
In� � I

n
� � I

n
� � De�ne an interval F � Fn	I� � I as follows

	i� If I 	� Jn then F is the convex hull of two neighbors of I in the family Mn �
	ii� If I � Jn then F is the half of the interval Tn�� containing I �

Now consider the pull
back G � fGigki
� of F � Gk along the k 
orbit of I l� �

Lemma ��� Under the above circumstances
�� fGigki
� is a monotone chain of intervals�
�� G� � T l�� �

Lemma ���� The intersection multiplicities of the above chains G and Hn	�

are uniformly bounded�

multG 
 � and multHn	� 
 ��

Proof� If t intervals of the chain fGigki
� have a common point� then there is an
interval Gi among them containing at least 	t� ���� intervals Ns of the 	k � �� 
orbit
of I l�� Since fk�ijGi is monotone� f

k�iNs belongs to the 	u	l������ 
orbit of I l� � But
Gk contains at most three intervals of this orbit� Hence t 
 � �

The argument for H is similar� and we omit it�tu
Now we have enough topological information for getting a priori bounds�

Lemma ���� supn �n�n	� � ��

Proof� Choose the smallest interval I among ��� xu�n�� and I lk 
 Mn with k � � �
It is easy to analyse the cases I � ��� xu�n�� or I � Ink for k � �� �� So� we restrict
ourselves to other cases� and then the interval F is well
de�ned� Moreover� the Poincar�e
length �I � F � does not exceed log � �

It follows from Lemmas ������ ��� and the Schwarz lemma that the Poincar�e length
�I l� � G�� is uniformly bounded 	by a constant depending on k f k �� Since f is quadratic
	and hence quasi
symmetric� near the critical point� the ratio

jG�j
jG�rT lj

can be estimated through �I l� � G�� � and hence the ratio jT lj�jG�j is bounded away from ��
By Lemma ������ G� � T l�� � so �l 
 jT lj�jG�j � It remains to mention that �l is

equal to either �n or �n	� �tu

Lemma ���� �
����

n��



�
�	�n�n��
���n�n��

��
	� �O	jHn	�j���

Proof� Applying the Schwarz lemma to the monotone map

fu�n��� � 	Hn	�� In	�� �� 	Tn��� In� �

��



we get

�In	�� � Hn	�� 
 �Tn � Tn��� �O	jHn	�j� � � log
� � �n�n��
�� �n�n��

�O	jHn	�j�� 	�� ��

Let G be the component of f��Hn	� containing �� � � jTn	�j�jGj� The calculation for
the quadratic map shows that

log
�

�� ��

 �In	�� � Hn	��� 	�� ��

Furthermore� since fu�n� is not unimodal on Tn � G � Tn� Hence �n	� 
 �� The last
estimate together with 	�
�� and 	�
�� yield the required� tu

From Lemmas ��� and ��� we get immediately an a priori bound of �n �

Lemma ����

sup
n

�n � ��

Lemma ���� Let Ln be the gap between Tn and Jn � Then

sup
n

jLnj
jxu�n�j � ��

Proof� Because of Lemma ���� it is enough to show that the gap L is not too small
as compared with Jn � Let N be a monotonicity interval of fu�n��� adjacent to Jn on
its outer side� Consider the map fu�n���jL � Jn �N and apply to it the Schwarz lemma
taking into account Lemmas ��� and ����tu

Now we can prove that the Lebesgue measure of Mn and Hn go down exponen

tially fast 	compare �G��� �BL��� �MMSS��� Let ��� � 
�� denote the smallest closed interval
containing both � and 
 	similarly� 		� � 
�� will denote the smallest open interval
containing � and 
 ��

Lemma ��	� There exist constants C � � and q � � such that

jHnj 
 Cqn and jMnj 
 Cqn�

Hence� the Lebesgue measure of �	�� is equal to zero�

Remark� The last statement is a corollary of more general results �BL��� �M��
Proof� By Lemma ���� density of Mn	� in In� is bounded away from �� Consider

now an interval Inl 
Mn� l � �� It follows from Lemmas ��� and ��� that the map

fu�n����l � Inl � ��xu�n���� xu�n	����

has bounded distortion� But this map carries Mn	� � Inl into In	�� �Jn� By Lemma ����
density of the latter set in ��xu�n���� xu�n	���� is bounded away from �� Hence density of
Mn	� in Inl is bounded away from � as well� So� there is a q � � such that

�	Mn	�� 
 q�	�u�n�����l
� Inl � � �	�u�n���l
u�n���I
n	�
l ��

��



Applying this estimate twice we get

�	Mn	�� 
 q�	Mn��

and we are done with Mn �

Now consider a pair Hn	� � Hn	� and apply fu�n���� Then Hn	� is mapped onto
Tn��� while Hn	� is mapped into Tn�� 	since fu�n��� is monotone on its image�� By
Lemma ��� and the Schwarz lemma� the density of fmHn	� in fmHn	� is bouded away
from � for m � �� ���� u	n�� �� Furthermore�

fu�n�	mHn	� � In��m � m � �� ���� u	n� ���
Cosequently� for some q� � � we have

jHn	�j 
 q�jHn	�j� jMn��j� jMn��j�
and the required follows� tu

Lemma ��
� 	i�� There is a q � � such that ��n	� � O	�n�n�� � qn��

	 ii�� ��n	� � O
�

jJnj
jTn��j

�
�

Proof� The point 	i� follows from Lemmas ��� and ���� To prove 	ii�� consider
fu�n��� � In	� � Jn and apply the Schwarz lemma�tu

Remark ����� All constants in the above estimates depend only on k f k � Moreover�
they are uniform over the maps with negative Schwarzian derivative 	since the Schwarz
lemma and the Koebe Principle are uniform over this class�� Finally� all estimates are
asymptotically uniform over the whole class U 	�beau estimates�� see Sullivan �S��� For
example� Lemma ��� can be improved in such a way�

lim sup
n��

�n 
 C � �

for an absolute constant C �

x� Scaling� characteristic exponent and Hausdor
 dimension�

In this section we will prove Theorem ��� assuming that there is a good enough a
priori bound of �n � It follows that the Theorem holds for an open set of Fibonacci maps
invariant under quasi
symmetrical conjugacy�

Let q � � be the constant from Lemma ��� � �n � maxn���i�n	�	�i� �i	�� �

Lemma ���� For any x 
 In	��

dn
d�n	�

	� � O	�n � qn���� 
 j	fu�n�����	x�j 
 dn
d�n	�

	� � O	�n � qn���

Proof� Let us apply the Koebe Principle to the map

fu�n��� � 	Hn	�� In	��� 	Tn��� Tn�

��



taking into account Lemma ����

j	fu�n�����	x�j
j	fu�n�����	y�j � � �O	�n�n�� � qn�� x� y 
 In	�� �

Besides�
dn
d�n	�


 jInj
jIn	�� j 
 	� � �n	��n	��

dn
d�n	�

�

and the Lemma follows�tu
Lemma ���� There is a � � �	k f k� and L � L	k f k� 
 N such that
if �l � � for some l � L then �n exponentially decrease� For maps with
non
positive Schwarzian derivative one can choose L � � and uniform � �

Proof� Let n be so large that f	x� is a quadratic map in the neighborhood Tn�� �
Then by the chain rule�

j	fu�n�����	x��j � j	fu�n�������	x��j � �dn��j	fu�n�������	xu�n���	��j� 	�� ��
By Lemma ����

dn��
d�n

� �dn�� dn��
d�n��


 dn
d�n	�

	� � O	�n�� � �n�� � �n � qn��� 	�� ��

It follows from Lemma ��� that �k keep to be small for k � n� �� ���� n� � � once �n��
becomes small for big enough n � Hence� by 	�
��

��n	� 
 
�n�n�� 	�� ��
for some 
 � � � Setting  n � max	�n� �n���� we get from 	�
�� that

 n	� 
 p

 n� 	�� ��

So� once �n become small� they start exponentially decrease� It follows that they expo

nentially decrease forever�

The �nal remark� since the constants in the Schwarz Lemma and the Koebe Principle
depend only on k f k � the constants � and L depend only on this data as well �
Moreover� all estimates are uniform in the case of negative Schwarzian derivative� tu

Recall that a one dimensional homeomorphism h is called quasi�symmetric if any two
adjacent commensurable intervals I and J are mapped into commensurable ones�

jIj
jJ j 
 K � jfIj

jfJ j 
 
	K��

Denote by F� the set of Fibonacci maps for which inf �n � � �

Lemma ����
�� The set F� is invariant under quasi
symmetrical conjugacy�

�� The set F� is C�� open in the C� 
balls B	r� of the space F �
Proof� The �rst point is clear from the de�nitions � The second one follows from the

fact that the constants in the previous lemma are uniform over B	r� �tu

��



Let us write �n � 
n if j log 	�n�
n�j exponentially decrease� and �n � 
n if it is
bounded�

The next lemma gives the asymptotical formula of Theorem ����� for the subclass F�

	compare Tangerman and Veerman �TV���

Lemma ���� For any f 
 F� the following asymptotical formulas hold�

�� �n	� � �n�
�
p
��

�� �n � a��n���
�� dn � 	����n

��
	�n	�

for some constants a � �� 
 and 
 � Moreover

j log	a����j 
 R	k f k� �
and the constant R is uniform over maps with negative Schwarzian derivative�

Proof� Since �n exponentially decrease� Lemma ��� yields for x 
 In	��

j	fu�n�����	x�j � dn�d
�
n	�� 	�� ��

Substituting this into the recurrent equation 	�
��� we get

��n	� � �

�
�n�n��� 	�� ��

Setting sn � log	�n��n��� � we have from the last formula

sn	� � ��
�
sn � �

�
log � � O	qn�

with q � � � It yields

sn � ��
�
log � �O	�n� 	�� ��

with � � max	���� q� which proves the �rst point of the lemma�

Setting now c � �
� log �� �n � log �n � cn we get from 	�
��

�n	� � �n �O	�n��

So� there is a limit

lim �n � log a � �� � O	���

with exponential convergence and the constant depending only on k f k and uniform over
maps with negative Schwarzian� Equivalently

a � lim�ne
nc � ���

It proves the second point together with the last remark� The reader can easily derive the
third point from the second one� tu

Let us estimate now the ratio of any two intervals Mn
s����sn

�Mn��
s����sn��

� The previous

lemma gives the asymptotics for the ratio �n � jMn
�����j�jMn��

����� j � Besides� Mn
s������ �

Mn��
s�����

� Other cases are covered by the following lemma�

��



Lemma ���� For f 
 F� the following scaling laws hold�

jMn
������j

jMn��
����� j

� jJnj
jIn��j �

a�

���n	����
�

If �s����sn��� 	� ������� then

jMn
s����sn���j

jMn��
s����sn�� j

� a�

���n�����
�

and
jMn

s����sn���j
jMn��

s����sn��j
� a�

���n�����

where a is the constant from Lemma ���� All asymptotics are uniformly expo

nential�

Proof� Let us consider a chain of two maps

	In��� Jn� � 	In��� � Jn� � � 	In��� In��
f fu�n�����

Note that by Lemma ��� jInj � jxu�n�j � Setting rn � jJnj�jIn��j we get
jfJnj
jfIn��j � �� 	�� rn�

� � �rn�

On the other hand� fu�n����� has an exponentially small distortion on In��� � and hence

�rn � jInj
jIn��j � �n�n�� � a�

���n�����
�

and the �rst asymptotical formula is proved�

In order to get the others� consider the map

fk � Mn��
s����sn��

� In��

for an appropriate k � It carries Mn
s����sn��� into Jn�� and Mn

s����sn��� into In with
exponentially small distortion� It yields the required� tu

Now we can prove the next piece of Theorem ��� for f 
 F�

Lemma ���� For f 
 F� the critical orbit closure O has Hausdor
 dimension ��

Proof� Let us consider covering of O by the intervals Mn
s����sn � By the above two lem


mas� the lengths of these intervals decrease uniformly superexponential
	O	qn� for any q 
 	�� �� �� while their number increases exponentially 	
 �n �� Let

 � � log �� log q� l� be the Hausdor
 measure on O of exponent 
 � Then

l�	O� 
 C�nqn� 
 C�

Hence� dimO 
 
 � and 
 is arbitrary small positive number� tu
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Now we are going to show that the geometry of the set O is completely determined
by only one parameter a from Lemma ���� Let f and g be two Fibonacci maps�

� � O	f�� O	g�
be the natural topological conjugacy� Let us say that � is smooth if for any x 
 O there
exist

lim
j�	x�� �	y�j

jx� yj 	� �

as y � x along O	f� � and this limit depends continuously on x �

Lemma ���� If two Fibonacci maps f and g in F� have the same parameter
a then the conjugacy � is smooth on O	f� �
Proof� Indeed� it follows from Lemmas ��� and ��� that for any Fibonacci sequence

s � s�s���� there is a limit

lim
n��

jMn
s����sn	f�j

jMn
s����sn

	g�j
depending continuously on s �tu

Lemma ��	� Let f 
 F�� n � �s����sk� be the Fibonacci expantion of n �
Then

j	fn��	x��j � �
�
�

P
msm	�

P
sm	�

for some constants 
 and � �

Proof� Let mi be the places where smi
� � � Decompose n 
orbit of x� into the

parts of length u	mi� � By 	�
�� it gives the factorization of the derivative into factors of
order � ����mi	�

� Now Lemma ��� implies the required asymptotics�tu
Clearly� it follows from the last lemma that the growth of the n 
fold derivative at x�

is subexponential� The maximal growth of order exp�	logn�� 	which is faster than any
power n� � is attained at noments u	m��� � However� at the next moments n � u	m� the

derivative drops to n� with 
 � � log ��� log	
p
�	�
� � � �� These oscillations are balanced

in a �convergent way� �

Lemma ��
� The series �X
n
�

�

j	fn��	x��j�
is convergent for any � � � �

Proof� By the last lemma � this series has a majorant of the following form�

X
sm�f�	�g

��
P

k

m��
�am	b�sm �

�Y
m
�

	� �
�

�am	b
� ���

tu
This Lemma and the Nowicki
van Strien Theorem �NvS� imply the existence of an

absolutely continuous invariant measure for f 
 F� � So� Theorem ��� is proved for the
subclass F� �

��



x�� Real renormalizations�

Now we need another class of maps on which we can de�ne a renormalization in such
a way that the Fibonacci maps can be exactly characterized as in�nitely renormalizable�
Let

J � �a� b� � T � ��� 
� � where � � � a � b � � � 
 � � � Dom	f� � J � T �

and let f � Dom	f�� ���� �� be a C� 
smooth map such that 	see Figure �� �
	i� f jJ is a di
eomorphism from J onto ���� �� � which may be either orientation pre


serving or orientation reversing�
	ii� f jT is a unimodal map from T into ���� �� with non
degenerate minimum point�

and with f	�T � � � �
Let us denote the space of all such maps by A � Since we don�t specify whether f jJ
preserves or reverses orientation� A can be decomposed into the union of two connected
components A	 and A� � where ��� corresponds to the case of orientation preserving
f jJ �

TJ

Figure �� Graph of a function in A	
� �

Now suppose that some map f 
 A � with critical point x� 
 T � satis�es the con

ditions that the critical value x� � f	x�� lies in J � and the its image x� � f	x�� lies
back in T � Then we will be interested in two segments of the �rst return map from T
to itself� as follows� There is an interval T� around the critcal point which is mapped
unimodally by f� into T � with both endpoints of T� mapping to one endpoint of T �
Further� there is a disjoint interval J� � T which maps di
eomorphically onto T under
the map f itself� Here we choose J� to the left of T� if f jJ preserves orientation� or to
the right of T� if f jJ reverses orientation 	so that J� lies on the same side of � as x� ��
The resulting map V f � J� �T� � T � a�nely conjugated 	rescaled� so that T is replaced
by the original interval ���� �� � is the required renormalization Rf 	there is choice of two
rescalings � select that one which makes the critical point to be minimum point �� This
renormalization interchanges the two spaces A	 and A� � If f is n 
fold renormalizable
then Rnf comes as rescaling of a map V nf � fn � the restriction of appropriate iterates
of f to the union of two appropriate intervals� Tn and Jn �

Let T	 and T� be the semi
intervals on which � divides T � The kneading sequence

��



of f 
 A is the sequence of symbols Un 
 fT	� T�� Jg such that xn � fn� 
 Un � Two
maps f 
 A	 	or A� � without limit cycles are topologically conjugate if and only if they
have the same kneading sequence 	compare �MT���

In terms of kneading sequences the above renormalization can be described in the
following way� The renormalizable kneading sequences start with JTs� s 
 f���g � To
write its renormalization do the following operations moving along the sequence�
	 i�� When you see J � cross it�
	 ii�� When you see TsJ� s 
 f���g � change Ts for Tks provided f 
 Ak� k 


f���g �
	 iii�� When you see TsTr � change the �rst Ts for J �
Let us say that a map f 
 A	 is a Fibonacci map if it has the following kneading

sequence�
fib	 � J jT�jT	jJT	jJT�T�jJT�T	JT�j���

	In order to write the block from u	n��� to u	n��� repeat the beginning of the sequence
till the moment u	n � �� � and then change the last symbol Ts for the �opposite� one�
T�s �� Denote this class of maps by F	 � Similarly� the kneading sequence of a map
f 
 F� is produced by the same rule but with di
erent initial�

fib� � J jT	jT	jJT�jJT	T�jJT	T	JT	j���
A class F of Fibonacci maps is de�ned as F	 � F� � One can also describe this class
by the following properties� x� 
 J� and fu�n��� is well
de�ned and monotonous on the
interval ���� xu�n��� � and

fu�n���		�� xu�n��� � 		xu�n���� xu�n	���� � �� 	�� ��
If we want to emphasize that f 
 A then we say that f has type 	����� In the

unimodal case we say that f is of type 	�� 	see the next section for more general discus

sion�� As in the unimodal case� we will use the notations Tn and Jn for the intervals
��xu�n�� x

�
u�n��� and ��xu�n���� xu�n���	u�n	���� correspondingly 	don�t confuse with Tn and

Jn introduced above��

Lemma ���� A map f 
 A is in�nitely renormalizable if and only if it is a
Fibonacci map � f 
 F � In this case the following inclusions hold�

Tn	� � Tn � Tn	� 	�� ��
Jn	� � Jn� 	�� ��

Proof� Let f 
 A be in�nitely renormalizable� Then one can check by induction
that

fnjTn � fu�n	�� and fnjJn � fu�n�� 	�� ��
Since fn�� is renormalizable�

xu�n� � fn��	�� 
 Jn�� and xu�n	�� � fn	�� 
 Tn���

Hence� xu�n	�� lies closer to � than xu�n�� n � �� �� ���

��



Let us study now the combinatorics of several �rst iterates of �� Since f is renormal

izable�

T � � ��x�� x
�
��� � T � �x�� x

�
�� � T �� 	�� ��

Furthemore� x� � f�	�� 
 T� � hence x� � fx� 
 J� So�

J� � �x�� x�� � J� 	�� ��
Consider now the following map � � N � N of the set of natural numbers� if

m �
P

u	li� is the Fibonacci expantion of m then �	m� �
P

u	li��� 	 � is induced by
the shift on the space of Fibonacci expantions�� Then we have the following rule�

	fn�
m	�� � x
n�m�� 	�� ��

So� if we have a combinatorial property of several points xm then repalcing f by fn we
immediately get the same property of points x
nm 	provided f is in�nitely renormaliz

able�� In particular we can replace ponts x�� x�� x� in 	�
�� and 	�
�� by
xu�n	��� xu�n	��� xu�n	��	u�n	�� � Then we obtain the required properties 	�
�� and 	�

���

Let us show now that x� and x� lie on the same side of � for f 
 A	 � and they lie
on the opposite sides of � for f 
 A� � Indeed� otherwise consider f j�x�� x�� and conclude
that x� lies farther from � than x� �

Changing f for f� we get the same statement for the points x� and x� � Since the
renormalization interchanges A	 and A� � we conclude that 		x�� x��� � � � Replacing
f by fn�� we get 	�
���

Finally� since x� 
 T� f j��� x�� is well
de�ned and monotone� Replacing it again
by fn�� we conclude that fu�n���j��� xu�n�� is well
de�ned and monotone� So� f is a
Fibonacci map�

Vice versa� let fibsn� s 
 f���g be the initial parts of length u	n� of the kneading
sequences fibs � Then one can easily check by induction that the renormalization turns
fibsn into fib�sn�� � So� it interchanges fibs and fib�s which certainly implies that both
sequences are in�nitely renormalizable� tu

Now let us brie�y discuss topology on the space A 	compare x��� We can restrict
ouselves to the subspace A� � A consisting of those f for which f jT is an even function�
f	�x� � f	x� � Then we can write f jT uniquely as

f	x� � Ax� � fT �Q �AT

where AT is the orientation preserving linear map which carries T onto ���� �� � Q is
the squaring map � �� �� � fT is some orientation preserving di
eomorphism of ��� �� �
and Ax� is the orientation preserving a�ne map which carries ��� �� onto �x�� �� � where
x� � f	�� is the critical value� Similarly� we can write f jJ as fJ �AJ where AJ is the
orientation preserving a�ne map from J onto ���� �� � and where fJ is a di
eomorphism
of ���� �� �

Now we suppose that both fJ and fT are C� 
smooth� The Ck 
topology on
A�� k 
 �� comes from the Ck 
topology on the space of di
eomorphisms fT and
fJ � together with the Euclidian topology on the �nite dimensional space of parameters

��



a� b� �� 
� x� � Let kfk denote the maximum of the C�� norms for fJ � f
��
J and fT � f

��
T

which is a continuous functional on our space�
We can assume without loss of generality that the original map f is quadratic near

� 	though this property is not preserved under renormalization�� Let us remark also that
clearly all estimates of xx��� hold not only for unimodal maps but in the class A as well�

Lemma ���� The norms kRnfk are uniformly bounded�
Proof� By 	�
��� fnjTn � fu�n	�� which can be decomposed as a quadratic map and

the di
eomorphism
fu�n	���� � Hn	� � Tn�� 	�� ��

	see Lemma ����� On the other hand�

fu�n	����	fTn� � fnTn � Tn�� � Tn 	�� ��
	the last inclusion is by 	�
���� It follows from 	�
��� 	�
�� and a priori bounds proven in
x� that fu�n	����jfTn has bounded distortion� By rescaling we get

log

���� 	Rnf��T 	x�
	Rnf��T 	y�

���� � O	jx� yj�

for any x� y 
 ��� ��� This implies ���� 	Rnf���T
	Rnf��T

���� � O	���

Because of bounded distortion� the derivative 	Rnf��T is uniformly bounded from
below and above� and the boundedness property for the second derivaty 	Rnf���T follows�
The same argument applies to 	Rnf�J and to the inverse maps�tu

Corollary� If inf �n � � then there is a C� 
convergent sequence of renormalizations
Rni � g 
 A �

Proof� It follows from the assumtion and inclusions 	�
�� that the ratio jTnj � jTn��j
is bounded away from �� Moreover� Lemma ��� and 	�
�� imply the same for the ratio
jJnj � jTn��j � Now one can play the �distortion game� in manner of x� to check that three
complementary gaps 	that is� components of Tn��r	Tn � Jn� � are also commensurable
with Tn�� � After rescaling we conclude that the domains Dom	Rnf� don�t degenerate�
so we can select a convergent sequence Dom	Rnif� � Then by the last lemma� families
of di
eomorp�sms f	Rnif�Tg and f	Rnif�Jg are C� 
precompact� and we can extract
from them convergent subsequences as well� tu

For an interval I � R denote by P 	I� the plane slitted along two rays�

P 	I� � Cr	RrI��

Let us introduce now a subspace E � A consisting of maps f � T � J � ���� �� with
the following property� The map f��T � ��� �� � ��� �� can be analytically continued to a
map P ��� �� � P ��� �� � and f�� � ���� �� � J can be analytically continued to a map
P ���� ��� P 	J� �

Lemma ���� Let Rnif � g in C� 
topology� Then the limiting function g
belongs to the class E �

��



Proof� The map 	Rnf���T can be written as long compositions of type h� � q� �
��� � hk � qk where hi are di
eomorphisms between apropriate intervals with a small total
distortion while qi are square root maps 	we reserve this term for a�ne conjugates to the
standard square root�� Such a map can be rewritten as Hn �Qn where the distortion of
Hn does not exceed the total distortion of hi� i � �� ���� n � and Qn is the composition of
Qi renormalized by appropriate M!obius maps 	see �S� � �Sw���� The maps Qn analytically
map P ���� �� into itself� and hence form a normal family� So� we can select a convergent
sequence Qn � Q with Q to be a self
map of P ���� �� � On the other hand� Hn � id in
C� 
topology� So� 	gT �

�� � Q � In the same way we can treat gJ � tu
Correspondence between Fibonacci maps of classes U and A� � We are

going to describe an easy surgery interchanging these classes without touching the critical
orbit� It will follow that any result about the critical orbit established in one of the classes
immediately yields the same statement in the other class�

Let f 
 U be a unimodal Fibonacci map� Let us restrict it onto the union of two
disjoint intervals

I� � J� � �x�� x�� � �x�� x��� 	�� ��
Then let us embed these intervals into disjoint intervals T and J correspondingly� and
continue f to a map of class A� de�ned on T � J �

Vice versa� given a Fibonacci map g 
 A� � we can also restrict it onto the union
	�
��� and then continue to a unimodal map of class U � This is possible since g	x�� �
x
 � x� � g	x�� �

Since orb 	�� � I� � J� � the above surgeries keep the critical orbit untouched�

x�� Polynomial�like maps�

Now we are going to show that all polynomial
like maps f 
 A� 	or A	 � are quasi

symmetrically conjugate� It is convenient to introduce more general terminology�

Consider k � � topological disks Ui and V bounded by piecewise smooth curves�
and such that clUi are disjoint and contained in V � Let us say that

f � �Ui � V

is a polynomial�like map of type 	n�� ���� nk� if f jUi is a branched covering of degree ni �
d �

P
ni is called the degree of f � Note that polynomial
like maps of type 	d� are

exactly polynomial
 like maps in the sense of Douady and Hubbard �DH��

Lemma ���� Any polynomial
like map f � U� �U� � V of type 	�� �� is quasi

conformally conjugate to a cubic polynomial with at least one escaping critical
point�

Proof� Consider an �eight
like� neighborhood N of U��U� and smoothly continue f
there so that f becomes a double covering on the annulus around U� and a di
eomorphism
on the annulus around U� � and both annuli are mapped on the same annulus around V �
see Figure ��

Then continue f to a slightly bigger domain so that it turns into a three sheeted
smooth covering of a topological disk over a bigger disk� Now use the Douady
Hubbard
surgery �DH� in order to quasi
conformally conjugate this map to a cubic polynomial�tu
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V

U1 U2

Figure ��

Lemma ���� Any polynomial
like map f 
 A� is quasi
symmetrically conjugate
to a real cubic polynomial with one escaping critical point�

Proof� For f 
 A� one can carry out the above construction in an R 
symmetrical
way� tu

Lemma ���� All Fibonacci real cubic polynomials are quasi
symmetrically con

jugate�

Proof� Consider a locus F	 of real cubic polynomials z �� z� � �a�z � b for which
the critical point a is a preimage of the left �xed point 	it is equivalent to b � �a� � �a �
and a � ��� � By Branner and Douady �BD� � there is a natural one
to
one correspondence
between F	 and the �"�
locus of quadratic polynomials z �� z��c with �� 
 c � �����
Hence� in F	 there is only one Fibonacci map 	Theorem ��� �� On the other hand�
conjugacy classes of cubic maps with escaping critical point a 	 which means b � �a���a �
are in one
to
one correspondence with F� as well� go toward the curve b � �a� � �a
along external rays 	this argument is due to Douady��tu

From the last two lemmas we have immediate
Corollary �� All polynomial
like Fibonacci maps f 
 F� are quasi
symmetrically

conjugate�

Corollary �� Either all polynomial
like Fibonacci maps belong to the set F� or to
its complement�

Proof� For maps f 
 F� it follows from the last Corollary and Lemma ���� For
maps f 
 F	 just observe that it belongs to F� or its complement together with the
renormalization�tu

Now we will give an example of a polynomial
like map belongning to F� which will
yield that all Fibonacci polynomial
like maps belong to F� �

Example� Consider disjoint union of two intervals I � ���� �� and J � ��c��c�q���
with positive c� q� � � c is big� � is small� Let f jI be a quadratic map x �� qx� � c �
while f jJ be linear x �� �x� b�
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Let us adjust parameters �� b� c� q� � in such a way that

� �� �c� �� �� � �� �c� q�� �� v 
 ��� ���
It yield the relations

q � c� � � c� � �
� � v

	c� ����
� �

c��
� b � �c� � � �

��
	����

It remains three free parameters c� � and v � Let us show that for c��� � � this map is
cubic
like� To this end consider a disk D � fz � jzj � �g � On its boundary �D our map
acts as

f	z� � c	z� � �� � �z� � c	z� � ���
Hence�

�c � jf	z�j � �c for z 
 �D 	�����

Consider a disk V � fz � jzj � �cg and its inverse image U� 	under the quadratic map��
By 	����� U� � D and f � U� � V is a quadratic
like map� Moreover� U� � ���� �� since
f ���� �� � ��c� �� � V�

Furthermore� consider the preimage U� of V under the linear map z � �z � b � It
is a disk containing J of radius

�c�� � �c��� � �

	by 	������ Hence� for big enough c the closure of this disk is contained in V and does
not intersect clU� � So� f � U� � U� � V is a polynomial
like map�

Now one can adjust v to get a Fibonacci map� Since f has non
positive Schwarzian
derivative� it belongs to F� provided � is su�ciently small 	Lemma ����� tu

Renormalization of a quadratic�like Fibonacci map� This procedure associate
to a quadratic
like Fibonacci map 	of type 	��� a cubic
like Fibonacci map 	of type 	������ It
will complete the proof of Theorem ��� for quadratic
like Fibonacci maps 	in particular� for
the quadratic polynomial�� We can restrict ourselves to the case of the quadratic Fibonacci
polynomial� Now let us consider the beginning of the Yoccoz partition construction 	see
�H� �� Draw a curve S consisting of two external rays through the �xed point � and an
equipotential level 
 � We will obtain two pieces of level �� W � 	containing �� and W �

�

	containing x� �� De�ne pieces of level n as n 
fold preimages of the pieces of level ��
Denote by Wn	x� the piece of level n containing x � set Wn �Wn	�� � Let us consider
the piece V � W � � T � satisfying the property that

clW � �W �� 	����

De�ne a piece U� � W � � T � as the pull
back of V of order �� and U� � J� as the
pull
back of V of order �� One can check that clU� and clU� are pairwise disjoint and
are contained in V 	it is a formal corollary from 	������ So� the map g de�ned as f�jU�

and f�jU� is polynomial
like of type 	�����tu
Remark� The above construction actually can be applied to any non
in�nitely renor


malizable �persistently recurrent� quadratic polynomial 	see �L����

��



Geometry of �	c� is not rigid� We would like to show that parameter a can
really be changed in class U � so the geometry of �	c� is not rigid� The above Example
provides us with a Fibonacci map of class A with arbitrary small �� � ��c � By Lemma
���� parameter a � �� is getting arbitrary small as well� Renormalizing f if necessary
we obtain a Fibonacci map of class A� with arbitrary small a � Now the surgery of x�
turns this map into a unimodal Fibonacci map with the same parameter a �

Remark� Actually� in order to vary parameter a in class A it is enough to observe
that the renormalization turns a into a� �

p
� �

x	� Polynomial�like property of analytic Fibonacci maps�

In this section we will prove that analytic Fibonacci maps f 
 E become polynomial

like after apropriate renormalization� Together with the results of the previous two sections
it will complete the proof of Theorem ����

For an interval I � R denote by by D	I� the Eucledian disk based upon I as the
diameter�

Lemma 	�� 	see �S��� Let � � P 	I�� P 	J� be an analytic map which maps I
di
eomorphically onto J � Then �D	I� � D	J��

Proof� The interval I is a Poincar�e geodesic in P 	I� � and the disk D	I� is its
Poincar�e neighborhood 	of radius independent of I �� Since � contracts the Poincar�e
metric� we have the required� tu

Lemma 	��� Let f 
 E be an analytic Fibonacci map� Given n � consider a
disk V � D	Tn� and its pull
backs U� � Tn	� and U� � Jn	� of order u	n���
and u	n� �� correspondingly� Then clUi are disjoint and are contained in V �

Proof� Let Tn � ��tn� t
�
n�� with tn being closer to xu�n	�� �

The branch � � V � U� of f�u�n	�� satis�es the asumptions of Lemma ���� and
hence U� � D	Jn	�� � By the same reason� fU� � D	Q� where Q � �b� a� � x� is the
monotone pull
back of Tn of order u	n� ��� � 	 b � x� is the preimage of tn ��

Now let Xn�� be the component of Tn��rTn adjacent to tn � Since
P jXnj � � �

we can select such an n that

jXnj � jXn��j 	�� ���
By Lemma ���� the map fu�n	���� has a monotone continuation beyond the point b to
the interval W which is mapped onto Xn�� � So� we have three interval map

fu�n	���� �W � �b� x�� � �x�� a�� Xn�� � ��tn� xu�n	���� � ��xu�n	��� t�n��� 	�� ��
Let q � jxu�n	��j � jtnj � Applying the Schwarz lemma to 	�
�� taking into account

	�
�� we get

log
a� b

a� x�

 log � � log

�

� � q
�

��



so that
x� � b

a� x�

 �� q

� � q
� 	�� ��

Now let us take the f 
preimage of D	Q� � Since f�� is just a square root
� � � �� p

� � x� on D	Q� � this preimage is contained in a domain based upon Tn	�
with atitude

h � jtn	�j
r

x� � b

a� x�

 jtn	�j

r
�� q

� � q

 jtn	�j�q � tn�

Moreover� this domain is contained in the disk centered at zero of radius
max	tn	�� h� � tn � So� clU� � V �

Let us show now that clU� � clU� � � � If a� x� � x� � b then �D	Q� � D	Tn	�� �
and the statement follows� Assume that x� � b � a � x� � Then one can check the
following elementary fact about the square root map� �D�b� a� is convex if and only if
x� � b 
 �	a � x�� � By 	�
��� the last estimate holds� so �D	Q� is convex� Hence�
�D	Q� �D	Jn	�� � � � and we are done� tu

Appendix� Schwarz Lemma and Koebe Principle�

We refer the reader to �Y�� �G��� �Sw�
��� �MS� and �S� for the following technical
background�

Let us consider four points a � b � c � d and two nested intervals L � �a� d� and
H � �b� c� � The Poincar�e length of H in L is the logarithm of an appropriate cross
ratio�

�H � L� � log
	d� b�	c� a�

	d� c�	b� a�
�

Let g � 	L�H�� 	L�� H �� be a C� di
eomorphism�

Sg �
g���

g�
� �

�

�
g��

g�

��

be its Schwarzian derivative�

Schwarz Lemma� If g has non
negative Schwarzian derivative then it contracts
Poincar�e length�

�H � � L�� 
 �H � L��

Koebe Principle� Let g has non
negative Schwarzian derivative� If �H � L� 
 �
then ����g�	x�g�	y�

���� 
 K	��

for any x� y 
 H � Moreover� K	�� � � � O	�� as �� � �

��



One can essentially extend the range of applications of these results combining the
Schwarzian derivative condition on some intervals with bounded non
linearity on others�
Let us consider a chain of 	closed� interval di
eomorphisms

I� � J� � ���� In � Jn

where gi � Ii � Ji have negative Schwarzian derivative while hi � Ji � Ii	� are just
C� smooth� Set F � hn � gn � ��� � h� � g� � Let Gi � intIi and Hi � intJi be closed
subintervals related by di
eomorphisms�

Denote by h the family of maps hi � by I the family of intervals Ii etc� Let
khik � max jh��	x��h�	x�j � khk � max khik be the maximal nonlinearity of h � jIj �P jIij be the total length of I �

Schwarz Lemma �smooth version�� Expantion of the Poincar�e length by the
map F is controlled by h in the following manner

�Hn � Jn� 
 �Gn � In� � O	jJj�
with the constant depending on khk �

Koebe Principle �smooth version�� Distortion of F jG� can be estimated as
follows� ����F �	x�

F �	y�

���� 
 K	�� jhj� jJj�

where K � � �O	�� jJj� as jJj� �� � with the constant depending on jhj �
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