
REMARKS ON ITERATED CUBIC MAPS

John Milnor

This note will discuss the dynamics of iterated cubic maps from the real or complex

line to itself� and will describe the geography of the parameter space for such maps� It

is a rough survey with few precise statements or proofs� and depends strongly on work

by Douady� Hubbard� Branner and Rees�

�� The parameter space for cubic maps�

Following Branner and Hubbard� any cubic polynomial map from the complex num�
bers C to C is conjugate� under a complex a�ne change of variable� to a map of the
form

z �� f�z� � z� � �a�z � b � �����

with critical points �a 	 �Compare Appendix A	� This normal form is unique up to the
involution which carries ��	�� to the map z �� �f��z� � z�� �a�z� b � changing the sign
of b 	 Thus the two numbers

A � a� � B � b� ���
�

form a complete set of coordinates for the moduli space� consisting of complex cubic maps
up to a�ne conjugation	 The invariant A can be thought of as a kind of discriminant�
which vanishes if and only if the two critical points coincide� while B is a measure of
asymmetry� which vanishes if and only if f is an odd function	

Now consider a cubic map x �� g�x� with real coe�cients	 If we reduce to normal
form by a complex change of coordinates� as above� then we obtain a complete set of
invariants �A� B� which turn out to be real	 However� if we allow only a real change of
coordinates� then there is one additional invariant� namely the sign

� � sgn�g���� �����

of the leading coe�cient	 It is not di�cult to check that � coincides with the sign sgn�B�
whenever B �� � 	 However� this additional invariant � is essential when B � � � for in
this case there are two essentially di
erent real polynomial maps

x �� x� � �Ax and x �� �x� � �Ax

which are conjugate over the complex numbers� but not over the real numbers	 Thus the

moduli space of real a�ne conjugacy classes of real cubic maps can be described as the

disjoint union of two closed half�planes� namely the half�plane A � R � B � � � � � ��
and the half�plane A � R � B � � � � � �� � Any real cubic map is real a�nely conjugate
to one and only one map in the normal form

x �� �x� � �Ax�
p
jBj � �����

�When B �� � � we can use the alternate normal form � �� B�� � �A� � � 	� In the two
quadrants where �A � � � note that the associated real cubic map has real critical points�
while in the remaining two quadrants� �A � � � it has complex conjugate critical points	
Further details may be found in Appendix A	
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�� Real cubic maps as real dynamical systems�

Let us try to describe the behavior of the iterates of a cubic map f � R� R� considered
as a real dynamical system	 It is convenient to introduce the notation KR � KR�f� for
the compact set consisting of all points x � R for which the orbit fx� f�x�� f�f�x��� � � �g
is bounded	 This set KR can be described as the real part of the ��lled Julia set� of f 	
�Compare x�	�
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Figure 1. Representative graphs for the four different classes of real cubic polynomials. The case

f ��� � � is illustrated; but corresponding examples with f ��� � � can be obtained by looking at

this figure in a mirror.

We �rst introduce a very rough partition of each parameter half�plane for real cubics
into four regions R�� R�� R� and R� 	 More generally� we divide real polynomial maps
f of degree d � 
 into d � � distinct classes R� � R� � � � � � Rd � as follows	 We will say
that f belongs to the trivial class R� if KR�f� consists of at most a single point	 �More
precisely� KR will consist of one �xed point when the degree is odd� and will be vacuous
when the degree is even	�

If f does not belong to this trivial class� then there must be at least two distinct
points in KR�f� 	 Let I be the smallest closed interval which contains KR�f� � Thus
every orbit which starts outside of I must escape to in�nity� but the two end points of I
must have bounded orbits	 In fact� it follows by continuity that each endpoint of I must
map to an endpoint of I 	

De�nition	 For f �� R� � we will say that f belongs to the class Rn if the graph
of f intersected with I � I has n distinct components	 �Figure �	� In other words� f
belongs to Rn if the interval I can be partitioned into n closed subintervals which map
into I �some of these intervals may be degenerate when d � � �� together with n � �
separating open intervals which map strictly outside of I 	 Note that n � d � since each of
these open intervals must contain a critical point of f 	

As an example� for degree d � 
 the quadratic map x �� x� � c belongs to

R� if c � �
 �
R� if � 
 � c � ��� � and

R� if ��� � c �






For any degree d � note that f belongs to the class R� if and only if the compact set
KR is a non�trivial interval �coinciding with I �� or in other words if and only if this
interval I maps into itself� with all orbits outside of I escaping to in�nity	 For f in
Rn with n � 
 at least n � � of the critical orbits� that is the orbits of the critical
points� must be real and must escape to in�nity	 The case n � d is of particular interest	
If f � Rd � then all of the critical orbits escape to in�nity� Furthermore� the interval
I contains d disjoint subintervals� each of which is mapped di
eomorphically onto the
entire interval I 	 A rather delicate argument� following �Guckenheimer� xx
	�� �	��� then
shows that the set KR is a Cantor set of measure zero� Furthermore� the restriction f jKR
is homeomorphic to a one�sided shift on d symbols	 The degree d polynomials in Rd have
maximal topological entropy� equal to log�d� 	 �Compare x
	�	� They have the property
that their complex periodic points are all distinct and contained in the real interval I 	
It follows that their �complex� Julia set coincides with the Cantor set KR 	 R 	

We now specialize to the cubic case d � � 	 In order to separate the four classes of
real cubic maps� we introduce four curves in the parameter plane� as follows �Figure 
�	
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Figure 2. The four regions in the �A�B��parameter plane, and the curves which separate them.

De�nition� Let Perp��� consist of all parameter pairs �A� B� for which the associated
cubic map f has a periodic orbit of period p with multiplier �f�p�� equal to � 	 In
particular� the curve

Per����� � B � ��A� �
� �

�

consists of all parameter pairs for which the graph of f is tangent to the diagonal� while

Per����� � B � ��A� �
� �

�
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gives maps for which the graph of f 
f is tangent to the diagonal	 Such points of tangency
are called saddle nodes of period � or 
 respectively	

Similarly� let Preper�t�p be the curve of parameter pairs for which one critical point�

say �a � is preperiodic� with f�t�a� lying on a periodic orbit of period p � � 	 Here we
assume that t is minimal and strictly positive	 Thus the curve

Preper���� � B � �A�A� ���

gives maps such that one critical point maps to a �xed point of f � while

Preper���� � B � �� � � �
A� ��
p�A �� �

in the quadrant A� B � � � gives maps such that one critical point maps to an orbit of
period 
	 For further details� see Appendix A	

We can pass between the Cases R�� R�� R� and R� only by crossing over at least one
of these curves	 In fact we need only the curves Per���� and Preper���� in the half�plane
� � � � B � � � as can be veri�ed by study of Figure �	 Similarly� we need only the curves
Per���� and Preper���� in the half�plane � � �� � B � � 	 Graphs of these four curves
and the corresponding division of each parameter half�plane into four regions are shown in
Figure 
� with irrelevant segments of the curves removed	

�A similar description of the Case boundaries can be given for the �d� ���parameter
family consisting of suitably normalized polynomials of degree d 	 There are analogous
hypersurfaces Perdp��� and Preperd�t�p which separate the d� � regions Ri 	 For d odd
the description is very much like that in the cubic case� while for d even we need just
three hypersurfaces� namely Perd����� and Preperd���� in all cases� and also Preperd����
when d � � 	�

In the regions R� and R� of the cubic parameter plane there are many possibilities
for complex behavior	 Some of the di
erent kinds of behavior are distinguished in Figure
�	 In the region R� we know that at least one of the two critical orbits must escape to
in�nity� but the other critical orbit may either escape �indicated by white in the �gure�� or
remain bounded �indicated by light grey�	 Similarly in Case R� the two critical orbits may
both behave chaotically �dark grey�� or one or both may converge to attracting periodic
orbits �lighter shades�	 The regions R� and R� are colored white in this Figure� since they
correspond to relatively dull dynamical behavior	 For a discussion of the methods used to
make such �gures� as well as their limitations� see Appendix C	

Remark� For many purposes it is more natural to work in the �A� b��parameter
plane� where b � �pB 	 The corresponding bifurcation diagram is shown in Figure �	 Of
course this �gure incorporates only real cubics with positive leading coe�cient	 For an
analogous parametrization of cubics with negative leading coe�cient we must work in the
�A� b���plane� where b� � �p�B so that B � ��b��� � � 	 �See Figure �	� Figure � can
be described roughly as the �double� of the upper half�plane in Figure �� and Figure � as
the double of the lower half�plane	

Inspection of magni�ed portions of Figure �� � or � shows that several characteristic
patterns are repeated many times on di
erent scales	 Noteworthy are �swallow� shaped
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Figure 3. Picture of the �A�B��parameter plane. The boundaries between qualitatively different

kinds of dynamic behavior have been indicated. In the dark region, both critical orbits behave

chaotically, while white indicates that both critical orbits escape to infinity, and intermediate

shades indicate various intermediate forms of behavior. (The illustrated region is the rectangle

����
� ��
�� ������� ���� .)

Figure 4. Corresponding picture in the �A�
p
B�-plane. (Region: ����� ����� ���� �� .)
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Figure 5. Corresponding picture in the �A�
p�B�-plane. (Region: ������ ���� ������ ���� .)

regions �Figure ��� �arch� shaped regions �Figure ���� and �product��like regions �Figure
���	 We can partially explain these regions in terms of the dynamics of the associated
maps f as follows	

De�nition� A smooth map f � R� R with one or more critical points is said to be
renormalizable if there exists a neighborhood U of the set of critical points so that�

��� each component of U contains at least one critical point�

�
� the �rst return map �f from U to itself is de�ned and smooth� and
��� the union U � f�U� � f���U� � � � � has at least two distinct components	

�Here condition �
� says that for each x � U there exists an integer n � � with
f�n�x� � U � and that the smallest such integer n � n�x� is constant on each connected
component of U 	 Condition ��� says that we exclude the trivial case where U is connected
and maps into itself	�

More explicitly� a real cubic map f with �not necessarily distinct� real critical points
is renormalizable if and only if it �ts into one of the following four classes	 �See Figure �	�

Case A� Adjacent Critical Points� There is an open interval U containing both
critical points and an integer p � 
 so that the intervals U � f�U� � � � � � f�p���U� are
pairwise disjoint� but f�p�U� 	 U 	

Case B� Bitransitive� There exist disjoint intervals U� and U� about the two
critical points so that the �rst return map from the union U � U� �U� to itself is de�ned
and smooth� interchanging these two components	 In other words� f�p�U�� 	 U� and
f�q�U�� 	 U� for some p � � and q � � 	 We will see that a universal model for this
behavior occurs in a �biquadratic� map� that is� the composition of two quadratic maps	

Case C� Capture� There are neighborhoods U� and U� as above� but the �rst
return map carries both U� and U� into U� 	 Thus the orbit of U� is �captured� by the
periodic orbit of U� 	 �Compare �Wittner�	�

Case D� Disjoint Periodic Sinks� Again there are disjoint neighborhoods U� and
U� � but in this case the �rst return map carries each Ui into itself� say f�p�U�� 	 U� and
f�q�U�� 	 U� 	
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Figure 6. Schematic diagrams for maps representing the centers of the four distinct classes of

hyperbolic components. Each critical point is indicated by a heavy dot, and each arrow is

labeled by a corresponding number of iterations. (Compare x4 and Appendix B.)

In all four cases� the corresponding con�guration in the �A�B��parameter plane has a
unique well de�ned �center� point f� � characterized by the property that the �rst return
map �f� carries critical points to critical points	 �See x�	� Thus this center map f� has
the Thurston property of being post critically �nite	 In fact f� has the sharper property
that the orbits of both critical points are �nite� and eventually superattracting	 It follows
from Thurston�s theory that this center point f� is uniquely determined by its �kneading
invariants�� or in other words by the mutual ordering of the various points on the two
critical orbits	 �Compare �Douady�Hubbard� ����� as well as the analogous discussion for
quadratic maps in �Milnor�Thurston� x��	��	� Furthermore� any ordering which can occur
for a post critically �nite continuous map with two critical points can actually occur for a
cubic polynomial map	

Case A is exceptional� and occurs only in one region� which has center point
�A�B� � ������ corresponding to the map f��z� � �� z� 	 In Cases B� C� D we will see

Figure 7. Detail of Figure 3 showing a “swallow configuration” centered at the point

�A�B� � �����������
��� . For the cubic map associated with this central point, the two

critical points �a satisfy f�f�a�� � �a � f�f��a�� � a . Hence both lie on a common orbit

of period 4. (Region: ����������� ���������� .)
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that the corresponding point of the real �A�B��parameter plane is associated respectively
to a swallow con�guration� to an arch con�guration� or to a product con�guration	 �Compare
Figures �� ��� ��	� There are two quali�cations� If this con�guration is immediately
adjacent and subordinated to another larger con�guration� then it will be highly deformed	
Furthermore� along the A�axis the pictures in the �A�B��plane are rather strange� and
one should rather work with the �A� b� or �A� b���plane� as in Figures �� �	

In each of these cases B� C� D � the �rst return map from U� � U� to itself can
be approximated by a map which is quadratic on each component	 Hence we can
construct a simpli�ed prototypical model for this kind of behavior by replacing each
interval Uk by a copy k � R of the entire real line� and by replacing the smooth map
�f � U��U� � U��U� � which has one critical point in each component� by a componentwise
quadratic map �k � x� �� ���k� � x� � ck� from the disjoint union f�� 
g �R 
 R tR to
itself	

Figure 8. The prototype swallow configuration in the �c�� c��-parameter plane, associated with

the family of biquadratic maps x �� �x� � c��
� � c� from the real line to itself. (Region:

��
��� ��� ��
��� �� .)

First consider the case of a swallow con�guration� as illustrated in Figure �	 The
prototypical model in this case is obtained by replacing these two intervals by disjoint
copies of the real line� with parameters x and y respectively� and by replacing the �rst
return map by the quadratic map

x �� y � x� � c� � y �� x � y� � c� � �
���

which interchanges the two components of the disjoint union RtR 	 Here c� and c� are
real parameters	 Thus we obtain a universal swallow con�guration in the �c�� c���parameter
plane� as illustrated in Figure �	 �Compare Ringland and Schell	� The central tear drop
shaped body of this swallow corresponds to the connectedness locus for this family� consist�
ing of those biquadratic maps for which both critical orbits remain bounded	 �Compare
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x�	� On the other hand� the wings and tails correspond to maps for which only one critical
orbit is bounded	

Remark� It is interesting to note that this same swallow con�guration seems to occur
in a quite di
erent context� where there are no critical points at all	 Consider the two�
parameter family of H�enon maps	 These are quadratic di
eomorphisms of the plane which
can be written for example as

�x� y� �� �y � y� � 	� 
x� �
�
�

with constant Jacobian determinant 
 	 A picture of those parameter pairs �	� 
� for
which there exists an attracting periodic orbit typically exhibits quite similar swallow
shaped con�gurations	 � Compare �El Hamouly and Mira�	� For example such a region is
shown in Figure �� corresponding to an attracting orbit of period �	 This phenomenon can
be explained intuitively as follows	 If j
j is small� then the dynamics of the two�dimensional
H�enon map is quite similar to the dynamics of the one�dimensional map y �� y� � 	 	 In
particular� the H�enon map can be closely approximated locally by a linear map� except at
points near the axis y � � � where the second derivative plays an essential role	 Similarly�
the dynamics of a composition of two H�enon maps with small determinant resembles the
dynamics of a composition of two one�dimensional quadratic maps	 Now consider a periodic
orbit for some H�enon map	 If this orbit is to be attracting� then it must contain at least
one point which is close to the axis y � � 	 If exactly two points of the orbit are close
to y � � � then the dynamics will resemble that for a composition of two quadratic maps	
Hence� in this case� as we vary the parameters we obtain a swallow shaped con�guration
within the H�enon parameter plane	

Figure 9. A swallow configuration in the Hénon parameter plane. A location �	� 
� is colored

white if a random search of initial conditions found an attracting orbit of low period for the quadratic

diffeomorphism �x� y� �� �y � y� � 	 � 
x� ; and grey indicates that only high periods or

chaotic behavior were found. In the black area to the lower right, no bounded orbits were found.

The graininess in the picture is presumably due to the random nature of the algorithm used. (Region:

����� ����� ����� ���� .)
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Caution� The swallow con�guration of Figures �� �� � should not be confused with
the somewhat similar con�guration shown in Figure �� which can perhaps be described
as a �pointed swallow�	 This pointed con�guration also plays a role in many dynamical
systems	 Here is a well known example	 �I am indebted to communications from S	 Ushiki
and T	 Matsumoto	� Consider the two�parameter family of circle maps

t �� t� c� k sin�
�t� �mod �� � �
���

These are di
eomorphisms for j
�kj � � � but have two critical points for larger values of
jkj 	 The corresponding picture in the �c� k��parameter plane� shown in Figure ��� contains
one immersed copy of the con�guration of Figure � corresponding to each rational rotation
number	 �Compare �Chavoya�Aceves et al	�	� Each of these con�gurations terminate in
a �tongue� which reaches down to the corresponding rational point on the k � � axis	
These are known as Arnold tongues	

Figure 10. Arnold tongues ending in “pointed-swallow” configurations for the family of circle maps

t �� t� c� k sin�
�t� . (Region: ����� ���� ��� ���� in the �c� k�-parameter plane.)

Next let us consider the �arch con�guration�� as illustrated in Figure ��	 Recall that
a point of the cubic parameter plane belongs to an arch con�guration if there are disjoint
neighborhoods U� and U� as above so that some iterate of f maps U� into U� � and
some iterate maps U� into itself� but so that every forward image of U� or U� is disjoint
from U� 	 In this case� the universal con�guration� as illustrated in Figure �
� is obtained
by studying a quadratic map from RtR to itself depending on two parameters c and �x
as follows	 We map a point � in the �rst copy of R to the point x � ��� � �x in the
second copy� so that the critical point maps to �x � and we map the second copy of R to

��



Figure 11. Detail of Figure 3 showing an arch configuration. For the cubic map corresponding

to the center point �A�B� � ������� ��
��� , the two critical points �a satisfy

f�f�a�� � f�f��a�� � �a . (Region: ������ ������ ����� ���� .)

Figure 12. The prototype arch configuration in the �c� �x�-plane. Here we consider the orbit of the

point �x under the map x �� x� � c . Dark grey indicates that both �x and � have chaotic

orbits, while white means that both escape to infinity. (Region: ��
��� ���� ��
�
� 
�
� .)
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Figure 13. Detail of Figure 3 showing a product configuration. For the map corresponding to the

center point ������� ������ , there are two superattracting periodic orbits with periods 3 and 4

respectively. (Region: ������ ������ ������� ������ .)

Figure 14. The prototype product configuration in the �c�� c��-parameter plane.

itself by x �� x� � c 	 The real connectedness locus in this prototypical case consists of all
pairs �c� �x� with �
 � c � ��� and 
j�xj � � �

p
�� �c 	

Finally consider the product con�guration of Figure ��	 We say that a point of the
cubic parameter plane belongs to a product con�guration if there are disjoint neighborhoods
U� and U� as above so that some iterate of f maps U� into itself and some iterate maps
U� into itself� but no forward image of either one of the Ui intersects the other	 In this case�
the universal model is obtained by taking two disjoint real lines� say with parameters x
and y respectively� and looking at independent quadratic maps x �� x��c� � y �� y��c� 	
The �real connectedness locus� for this two�parameter family� that is the set of parameter
pairs for which both critical points have bounded orbits� is evidently equal to the square
��
� ����� ��
� ���� in the �c� � c���plane� as illustrated in Figure ��	
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According to Jakobson� the set set of parameter pairs for which both critical orbits are
chaotic �indicated by dark grey in the �gure� has positive measure	 See also �Benedicks
and Carleson�� �Rychlik�	 A classical conjecture� not yet proved� asserts that this set is
totally disconnected	 Thus it seems natural to make the corresponding conjecture for the
cubic parameter plane of Figure �� that the set of parameter pairs for which both critical
orbits are chaotic is a totally disconnected set of positive measure	

Some further discussion of these shapes� and other related ones� will be given in x��
which discusses the corresponding four cases for complex cubic maps� and in Appendix B	

One useful tool for studying real polynomial mappings f of degree d is provided by
the topological entropy � � h�f� � log�d� of f considered as a map from the compact
interval ���� �� to itself	 According to Rothschild and �Misiurewicz and Szlenk�� this
can be computed as

h�f� � lim
k��

�
k
log���f�k�� �
���

where ��f�k� � � is the number of points along the real axis at which the derivative
x �� df�k�x��dx changes sign	 �Compare �Thurston and Milnor�	� In the cubic case�
a more practical algorithm for computing h has recently been described by �Block and
Keesling�	

The entropy h�f� varies continuously as f varies through polynomials of �xed degree	
Furthermore h takes a constant value� equal to the logarithm of an algebraic integer�
throughout each hyperbolic component	 �Compare x�	� In particular� in the cubic case�
the entropy of the map x �� x� � �Ax � b depends continuously on the two parameters
A and b � and similarly the entropy of x �� �x� � �Ax� b depends continuously on the
parameters A and b 	

It is often convenient to set h � log�s� � where the �growth number� s � eh varies over
the interval � � s � � in the cubic case	 Figures ��a� b show the �curves� s � constant
in the �A� b��plane� corresponding to the family of maps x �� x� � �Ax� b � and in the
�A� b���plane for x �� �x� � �Ax � b� 	 �Compare Figures �� �	� Both �gures show both
points inside the real connectedness locus and points outside of it	 At least part of the
boundary curve Preper���� �respectively Preper���� � for the connectedness locus is clearly
visible in these �gures as a locus where the curves s � constant change shape dramatically	
I have not tried to plot the boundary of the region s � � � although this would be a locus
of particular interest	 �Compare �MacKay and Tresser�	�

In the quadratic case� it is known that the topological entropy h �or equivalently the
growth number s � eh � for the map x �� x� � c is a monotone decreasing function of the
parameter c 	 �See for example �Milnor�Thurston�	� A corresponding conjecture for the
cubic case would be that� each level set s�A � b� � constant is a connected subset of the

�A� b��parameter plane� and in particular that the continuous function �A� b� �� s�A� b�
does not have any isolated local maxima or minima	 There is of course a completely
analogous conjecture for the �A� b���plane	

Note that these sets f�A� b� � s � constantg are not always curves	 They may well have
interior points	 For example this is the case for s � � � 
 � � and also for s � �� �

p
���
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Figure 15a. Curves of constant growth number s in the �A� b��parameter plane of Figure 4. Here

h � log s is the topological entropy of the map x �� x� � �Ax� b . The curves s � ���� ��� � � � � 
��

���� � � � � �� are plotted, using an algorithm due to Block and Keesling. (Illustrated region:

����� ������ ������ ���� , contour interval: �s � ��� .)

Figure 15b. Corresponding picture for the family of maps x �� �x� � �Ax � b� . (Compare Figure 5.)

Region: ������ � ���
�� ����� � ����� , contour interval: �s � ��� .
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Figure 16. Curves of constant s around an arch configuration in the �A�B�-plane. (Contour

interval: �s � ���
 . The illustrated region ������� ������� ������ ����� is exactly the same

as that shown in Figure 11.)

It is conjectured that there are interior points if and only if this locus contains hyperbolic
maps	 In particular� it is conjectured that this can happen only when s is an algebraic
integer	 �Compare Appendix B� as well as Figure ��	�

�� Complex Cubics� the Connectedness Locus�

In this section we consider the dynamics of a complex cubic map	 Following Douady
and Hubbard� for any complex polynomial map f � C � C of degree d � 
 we use the
notation K�f� for the �lled Julia set� consisting of all complex numbers z for which the
orbit of z under f is bounded	 This set K�f� is connected if and only if it contains all
of the critical points of f 	 On the other hand� if K�f� contains no critical points� then
it follows that f is a �degree d complex horseshoe� in the sense that there exists a disk
D � K�f� smoothly embedded in C so that f���D� consists of d disjoint subdisks� each
of which maps di
eomorphically onto D under f 	 In particular� f restricted to K�f� is
isomorphic to a one�sided shift on d symbols	 �Compare �Blanchard� Devaney and Keen�	�

Branner and Hubbard de�ne the connectedness locus for a parametrized family of
polynomial maps to be the set of all parameter values which correspond to polynomials
f for which K�f� contains all of the critical points� or equivalently is connected	 As an
example� the connectedness locus for the family of complex quadratic maps z �� z� � c
is also known as the �Mandelbrot set� �Figure ���	 This set has been extensively studied
by Douady and Hubbard� who show for example that it is connected� with connected
complement	 In the cubic case� Branner and Hubbard show that the connectedness locus
is again compact and connected� with connected complement	 In fact� more precisely� it
is �cellular�� that is it can be expressed as the intersection of a strictly nested sequence
of closed ��dimensional disks Di�� 	 Interior�Di� in the parameter space C� 	 �Compare
�Brown�	� The corresponding assertion for higher degrees has recently been proved by
Lavaurs	
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Figure ��	 The Mandelbrot set	

However� there seem to be at least three signi�cant di
erences between the quadratic
and cubic cases	 To discuss these� we will need the following de�nition	 Following Douady
and Hubbard� a component of the interior of a complex connected locus is called hyperbolic

if every critical orbit of any associated polynomial map converges towards an attracting
periodic orbit	 �Compare x�	�

��� The Mandelbrot set is replete with small copies of itself	 In fact� Douady and
Hubbard show that each hyperbolic component of the interior of the Mandelbrot set is
embedded as the central region of a small copy of the full Mandelbrot set	 However� in
the cubic case� there is is not just one kind of hyperbolic component� rather there are four
essentially distinct types� each associated with a characteristic local shape	

�
� In the quadratic case� the hyperbolic components are organized in a one dimen�
sional tree�like manner	 To make this statement more precise� we could say that the
hyperbolic components of period � p� are connected to each other within the Mandelbrot
set like the vertices of a tree	 In the cubic case� there is certainly no such tree�like organi�
zation	 A corresponding conjecture might be that the hyperbolic components of bounded
type are organized as the vertices of an acyclic two�dimensional complex	

��� It is widely believed that the Mandelbrot set is locally connected	 �Yoccoz has
made important progress towards a proof in recent years	� However local connectivity
de�nitely fails for the cubic connectedness locus	 See �Lavaurs�� as well as the discussion
below	 In fact pictures such as Figure 
� suggest that the cubic connectedness locus may
not even be path�wise connected	

It is di�cult to visualize this complex cubic connectedness locus� which is an ex�
tremely complicated ��dimensional object with fractal boundary	 �Compare �Dewdney�	�
A more accessible situation arises if we consider the dynamics of cubic polynomial maps
f � C � C which have real coe�cients� and hence are e
ectively described by points in
the real �A�B��parameter plane	 In particular� we can intersect the Branner�Hubbard
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Figure 18. Complex connectedness locus intersected with the real �A�B�-plane.

(Region: ���� ��� ������ ���� .)

Figure 19. Detail in the lower right quadrant, showing lack of local connectivity.

(Region: ���
� ��
�� ������� ���� .)
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connectedness locus with the real �A�B��plane	 The resulting intersection is shown in
Figure ��	 Here� for parameter pairs in the outside white region� one or both critical
orbits escape to in�nity� while in the inside white regions both converge to periodic orbits	
Grey �or black� indicates that one �or both� critical orbits behave chaotically	 In the two
quadrants where AB � � � so that the critical points are real� the connectedness locus
coincides with the region R� � as described in x
� and is bounded by smooth curves	 For
parameter values in the regions R� and R� of x
� recall that at least one of the two
critical orbits necessarily escapes	 Hence this region is white in the �gure	 Within the two
quadrants where AB � � � the behavior of the iterates of f as a real dynamical system
e
ectively determines the behavior as a complex dynamical system	 However� in the two
quadrants where the critical points are complex� this real part of the connectedness locus
is a very complicated object with fractal boundary	 �In these complex quadrants� note
that both critical orbits must behave in the same way� since they are complex conjugates	�
The notations A�D in this �gure are explained in x
 �Figure ��� x�� or in Appendix B�
with the sign of AB as superscript	

Just as in the full complex case� this real part of the connectedness locus is compact
and cellular� as can be proved by the methods of Branner and Hubbard	 Alternatively�
using Smith theory� as described in �Bredon� p	 ����� since the real connectedness locus
in the �xed point set of an involution on the complex connectedness locus� which has the
�Cech cohomology of a point� it follows that the real connectedness locus also has the mod

 �Cech cohomology of a point	 In particular� it is connected� with connected complement	

The shape of this locus in the two complex quadrants AB � � seems quite reminis�
cent of Figure ��� and in fact we will see in x� that there are many small copies of the
Mandelbrot set embedded in these quadrants	 However� these embedded copies tend to
be discontinuously distorted at one particular point� namely the period one saddle node
point c � ��� � also known as the root point of the Mandelbrot set	 This phenomenon is
particularly evident in the lower right quadrant� which exhibits a very fat copy of the Man�
delbrot set with the root point stretched out to cover a substantial segment of the saddle
node curve Per���� 	 �Compare x
	� As a result of this stretching� the cubic connectedness
locus fails to be locally connected along this curve	 �Figure ��	� This behavior� which has
been studied by �Lavaurs�� is in drastic contrast to the situation for degree 
 maps	 In fact�
as noted above� it is widely believed although not yet proved that the Mandelbrot set is
locally connected	

�� Hyperbolic components�

We continue to study the two parameter family of a�ne conjugacy classes of cubic
maps	 Recall that a complex cubic map f � or the corresponding point �A� B� in complex
parameter space� belongs to the connectedness locus if the �forward� orbits of both critical
points under f are bounded� and is hyperbolic if both of these critical orbits converge
towards attracting periodic orbits	 Here� by de�nition� an orbit f�p�z�� � z� of period
p � � is called attracting if the multiplier df�p�z��dz �that is� the characteristic derivative
around the orbit� has absolute value less than one	 The set of all hyperbolic points in the
complex parameter plane forms an open set� which is conjectured to be precisely equal
to the interior of the connected locus� and to be everywhere dense in the connectedness
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locus	 Each connected component of this open set is called a hyperbolic component of the
connectedness locus	

These de�nitions make equally good sense for the real part of the connectedness locus	
Again� it is conjectured that the hyperbolic points are everywhere dense	 However it is
clearly not true that every interior point of the real connectedness locus is hyperbolic	

The discussion of hyperbolic components will be strongly in�uenced by the work of
Rees� who has studied the closely analogous problem of iterated rational maps of degree
two from the sphere C � � to itself	 I am indebted to Douady for the observation
that her methods and conclusions apply� with minor modi�cations� to our case of iterated
cubic polynomial maps	 In particular� her methods show that each hyperbolic component

contains a unique preferred point� characterized by the property that the forward orbit of

each of the two critical points under the associated map is �nite� and hence eventually

periodic� Following Douady and Hubbard� this preferred point is called the center of the
hyperbolic component	 If the hyperbolic component intersects the real �A� B��plane� note
that its center must be self�conjugate� and hence real	

These ideas will be developed further in a subsequent paper� which will study monic
and centered polynomial maps of any degree d � 
 over R or C � showing that every
hyperbolic component is a topological cell with a preferred center point	

In analogy with �Rees�� the di
erent hyperbolic components in the complex cubic con�
nectedness locus can be roughly classi�ed into four di
erent types� as follows	 �Compare x

and Figure �	� Fixing some hyperbolic cubic map f � let U 	 C be the open set consisting
of all complex numbers z whose forward orbit under f converges to an attracting periodic
orbit	 Note that f maps each component of U precisely onto a component of U 	

Case Ap � Adjacent Critical Points� Both critical points belong to the same
component U� of this attractive basin U 	 This component is necessarily periodic� in the
sense that f�p�U�� � U� for some integer p � � 	

Case Bp�q � Bitransitive� The two critical points belong to di
erent components
U� and U� of U � but there exist integers p� q � � so that f�p�U�� � U� and f�q�U�� �
U� 	 We assume that p and q are minimal� so that both U� and U� have period p� q 	

Case C�t�p�q � Capture� Again the critical points belong to di
erent components�
but only one of the two� say U� is periodic	 In this case� some forward image of U� must
coincide with U� 	 More precisely� there is a unique smallest integers t�p � t � � so that
f�t�U�� coincides with some forward image f�q�U�� � and so that f t�p�U�� � U� � where
U� has period p� q 	 In this case� the product tq is always two or more	 However p may
be zero� in which case we write simply C�t�q 	

Case Dp�q � Disjoint Periodic Sinks� The two critical points belong to di
erent
components U� and U� � where no forward image of U� is equal to U� and no forward
image of U� is equal to U� 	 In this case� each of the two components U� and U� must
be periodic� although their periods p and q may be di
erent	

In all four cases� if a component U� of U is periodic with f�p�U�� � U� � then the
map f�p restricted to U� has a unique �xed point and the orbit of every point in U�

under f�p converges towards this �xed point	
If f represents the �center� point of its hyperbolic component� then the orbits of the

two critical points under f can be described as follows	 In the Adjacent Case� the two
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critical points coincide �in other words the discriminant parameter A is zero�� and this
double critical point belongs to a periodic orbit	 In the Bitransitive Case the two critical
points belong to a common periodic orbit� in the Capture Case just one of them lies on
a periodic orbit while the orbit of the other eventually hits this periodic orbit� and in the
Disjoint Case they lie on disjoint periodic orbits	

Now let us look at hyperbolic components in the real �A� B��plane	 In the Adjacent
Case� there are only two real hyperbolic components	 These have periods one and two�
and are centered at the origin and the point ��� ��� respectively	 Both of these are very
special� and I will not try to discuss them	 In the Capture Case� we are necessarily in a
quadrant with AB � � � and we obtain an arch con�guration as in x
	

In the Bitransitive Case� if the center lies in a quadrant where AB � � � then we
obtain a swallow con�guration� as discussed in x
	 However� if the center lies in one of
the quadrants where AB � � � then we get a quite di
erent three pointed con�guration�
which I will call a �tricorn�	 � Figure 
�	� In this case� the two critical points c and  c are
conjugate complex� and the �rst return map from a neighborhood of c to a neighborhood
of  c is conjugate to the �rst return map in the other direction	 Thus we obtain a prototype
model for this behavior by replacing these two neighborhoods by two disjoint copies of the
complex numbers C � mapping the �rst to the second by a quadratic map z �� w � z��c �
and mapping back by the conjugate transformation w �� z � w� �  c 	 The resulting
connectedness locus in the c �parameter plane is shown in Figure 
�	 This con�guration
is compact and connected� and has an exact three�fold rotational symmetry	 Like the real
cubic connectedness locus� it contains embedded copies of the Mandelbrot set� where the
root point has been stretched out over a curve of saddle node points� so as to yield a non�
locally connected set	 �Figure 

	 Compare �Winters�	� Along the real axis� this prototype
tricorn coincides precisely with the Mandelbrot set	 However� as soon as we get o
 the
real axis the two di
er	 In particular� each hyperbolic component along the real axis of
the Mandelbrot set gives rise either to a small embedded Mandelbrot set in the tricorn or
to a small embedded tricorn� according as the period is even or odd	

If the center of a hyperbolic component lies precisely along the A�axis� then we obtain
a mixed con�guration	 In the Bitransitive Case� the part which lies in a quadrant with
AB � � looks like half of a swallow con�guration� and the other half looks like half of
a tricorn	 The Disjoint Case is quite similar	 If the center satis�es AB � � � then we
obtain a product con�guration� as discussed in x
	 If it satis�es AB � � � then we obtain
a copy of the Mandelbrot set� while if it lies exactly on the A�axis then we obtain a
mixed con�guration	 Such mixed con�gurations must be considered as an artifact of our
choice of parametrization	 They would not appear if we worked in the �A� b��plane or
the �A� ib��plane� as in Figures �� �	 However� such mixed con�gurations along the A�axis
of the �A�B��plane do help to make it clear that tricorn and swallow �or Mandelbrot set
and product con�guration� are just di
erent real slices through a common con�guration
in C� 	

In Figure ��� twenty of the hyperbolic components in the real cubic connectedness
locus have been labeled	 �Compare Appendix B	� It is noteworthy that several of the most
prominent hyperbolic components seem to be missing some of the basic features of their
prototypical examples	 In fact this seems to happen whenever the given component is
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Figure 20. Detail of the right center of Figure 19, showing a small “tricorn” shaped configuration.

For the center point ��
�
��� �������� , the third iterate of the cubic map carries each critical

point to its complex conjugate. (Region: ��
��� �
���� ������� ������ .)

Figure 21. The prototype tricorn, in the c-plane where z �� �z� � c�� �  c . (Region:

��
�
� ����� ������ ���� .)
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Figure 22. Detail of Figure 21, showing non local connectivity. (Region: ����� ���� ����� ���� .)

immediately contiguous and subordinated to a larger hyperbolic component	 In general�
we must ask the following question� Under what conditions will the con�guration around a

hyperbolic component in the real or complex cubic connectedness locus include a complete

copy of the connectedness locus for its prototype con�guration�

For quadratic polynomials� Douady and Hubbard have provided a full answer to the
analogous question in their theory of �modulation� or �tuning�	 In the quadratic case�
there is only one kind of hyperbolic component� and they show that every hyperbolic
component in the Mandelbrot set is embedded as the central region of a small copy of the
full Mandelbrot set	

Appendix A� Normal forms� and curves in parameter space�

By the barycenter of a polynomial map

x �� f�x� � cnx
n � cn��x

n�� � � � �� c�x� c� �A���

of degree n � 
 is meant the unique point �x � � �
n
cn���cn at which the �n � ���st

derivative vanishes	 In the complex case� this can be identi�ed with the average of the
n � � critical points f ��z� � � 	 If n � 
 it coincides with the average of the n �xed
points f�z� � z 	 Every polynomial map is conjugate by one and only one translation to
a map x �� g�x� � f�x� �x�� �x which is centered� in the sense that its barycenter is zero	
This is equivalent to the requirement that the coe�cient of xn�� in g �written as a sum
of monomials� should be zero	

If 
 is a solution to the equation 
n�� � cn � then the linearly conjugate polynomial
x �� 
g�x�
� is monic� that is has leading coe�cient �� 	 In the complex cubic case� note
that 
 is uniquely determined up to sign	 It follows easily that every complex cubic map







is a�nely conjugate to one of the form

z �� z� � �Az � b

with critical points �a � �pA � where the numbers A and B � b� are a�ne conjugacy
invariants	 If we start with a polynomial in the more general form �A	��� then computation
shows that

A � �f ���z��� � �c�� � �c�c����c� � �A�
�

where �z � ��
�c��c� � and that b � ��f��z�� �z�

p
c� or

B � �f��z�� �z��c� � �A���

In the real cubic case� note that �z and the invariants A � a� and B � b� are real�
although a and or b may be pure imaginary	

The locus Per���� � By de�nition� the pair �A�B� belongs to this locus if and only
if the corresponding cubic map f has a �xed point at which the derivative f � equals � 	
If f�x� � x� � �Ax � b � and if the �xed point is x � � � then we can equally well work
with the translation�conjugate polynomial g�x� � f�x � �� � � which has its preferred
�xed point at the origin� and hence has the form

g�x� � x� � ��x� � �x �

Using �A	
� and �A	��� we see that A � �� � ��� and b � ��
�� � �� �� � It is then
easy to solve for B � b� as a function of A 	 Noteworthy cases are

B � ��A� �
��

� �Figure 
�Per���� �

B � �A�A� �
� �

�Per���� �

B � ��A� �
���A� �

� �
� �Per����� �

Here the saddle node curve Per���� forms part of the upper boundary of the principal
region� which is labeled A� in Figure ��� and the bifurcation locus Per����� � where attract�
ing period one orbits bifurcate into attracting period two orbits� forms the lower boundary
of this region	 Both of these curves also form part of the boundary of regions labeled
C����� � D�

��� and D��� in the left hand part of this �gure	 The curve Per���� consists of

all parameter pairs with a superattracting �xed point	 Thus it passes through the centers
of the components labeled C����� � D�

��� � D��� and A� 	 The curve

Per��
� � B � ��A� �
� ��A� �

� �
�

is also of interest� but for a surprising reason which needs some explanation	 An arbitrary
cubic map has three �not necessarily distinct� complex �xed points f�zi� � zi 	 Let
�i � f ��zi� be the corresponding derivatives	 Evidently any symmetric function of the
�i is an invariant of our cubic map� and hence can be expressed as a function of the
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two fundamental invariants A and B 	 In fact it is most convenient to work with the
elementary symmetric functions of the �i � � 	 With a little work� one �nds the following
explicit formulas	

�
�

X
��i � �� � A� �

� �A���
X

i�j
��i � ����j � �� � � �A���

�
�	

Y
��i � �� � B � ��A� �

�
�� �A���

If �� � �� �� 
 � then we can solve �A	�� for

�� � 
 �
�� ����

�� � �� � 


as a function of �� and �� 	 �In fact if �� �� �� then the curves Per����� and Per�����
intersect transversally at a single point� which also belongs to Per����� 	� If we exclude
the indeterminate case �� � �� � � � then it follows from this formula that �� � 
 if and
only if ���� � � 	

Now suppose that a real cubic map has two complex conjugate �xed points which are
indi�erent� in the sense that the corresponding derivatives �� �  �� lie on the unit circle	
Then ���� � � � hence �� � 
 � and the corresponding parameter pair �A�B� lies on
the curve Per��
� 	 In fact� if �� � ei� � then we can compute A � �

��cos��� � 
� from
�A	��	 Thus the curve in the real �A�B��plane corresponding to cubics with two complex

conjugate indi�erent �xed points is precisely the segment � �
� � A � ��

� of the curve

Per��
� � This curve segment forms the upper boundary of the region D��� in Figure ��	
Note that the endpoints of this curve segment are just the uniquely de�ned intersection
points Per����� � Per��
� and Per���� � Per��
� 	

To study the curve Per���� � it is convenient to translate coordinates of our monic
polynomial so that the period two orbit takes the form f����g � with midpoint at the
origin	 It is then easy to compute the coe�cients� and hence the invariants A� B � as
functions of �� 	 In the case � � � � there is a substantial simpli�cation	 In fact� as �� �
the curve Per���� tends towards a reducible curve� which is the union of two irreducible
constituents	 One of these is the the bifurcation locus Per����� � which we do not consider
to be part of Per���� since the period two orbit has degenerated to a �xed point� and the
other is the required curve

Per���� � B � ��A� �
��

� �

where A � �
� �
�

���� 	 Even on this later curve� note that the period two orbit degenerates
to a period one orbit at the special point A � �

� � B � �������� � � �
�
	�� where the

two irreducible components come together	 �See the discussion below	 Figure �� is very
distorted around this point	�

Remark� A generic cubic map has three period two orbits	 If �� � �� � �� are the
derivatives around these three orbits� then the elementary symmetric functions �i of the
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�i can be expressed as polynomial functions of A and B 	 More explicitly

�� � ���� �A�

�� � ����� �A� ��A� � �
A� � 
B � �AB�

�� � �� � �� � � � ��
�
B � ��A� �

�
��
��
B � �A� �

�
��A� �

�
��
�
�

The critically preperiodic locus Preper���p � To study this locus� we must look at

maps f�z� � z���a�z�b such that the critical value f�a� belongs to an orbit of period p �
but the critical point a does not belong to this orbit	 Note that the equation f�a�� � f�a�
has just one solution a� �� a � namely the cocritical point a� � �
a 	 Thus this periodic

orbit must contain both the cocritical point �
a and the critical value f�a� � b� 
a� �
In the case p � � we must have �
a � f�a� � or in other words b � 
a� � 
a 	

Squaring both sides� we obtain the formula

Preper���� � B � �A�A� ��� �

as given in x
	 Note that the derivative � � f ���
a� at the �xed critical value is equal
to �a� � �A 	 We can distinguish the segment jAj � �

� of this curve� which lies within
the �principal hyperbolic component� A� � from the segment A � �

� which forms much
of the upper boundary of the real connectedness locus� and the segment A � ��

� which
separates the region labeled C���� from A� 	

In the case p � 
 � the periodic orbit must consist of the two points f�a� and �
a 	
Setting � � b � 
a� � 
a � so that f�a� � � � 
a � we can write the required equation
f�f�a�� � �
a as a cubic equation in � with roots � � � and � � �a�p�� � or in other
words b � 
a� � a � i 	 If this equation is satis�ed� note that the periodic orbit consists
of �
a and f�a� � a � i 	 Multiplying the equation by �i and squaring both sides� we
obtain the formula

Preper���� � �B � �
p�A�
A� �� � ��� �

as given in x
	
Points in the �A�B��parameter plane where two of these curves intersect may be of

particular interest	 For example� the bifurcation locus Per����� � which forms the lower
part of the boundary of the principal region A� in Figure ��� grazes the saddle node curve
Per���� tangentially at the point A � 
�� � B � �
����
� where four di
erent hyperbolic
components A� � A� � D���� and B��� come together	 �In fact� in the complex �A�B��
plane� there are six di
erent hyperbolic components which touch at this point	� The saddle
node curve Per���� grazes the critically preperiodic curve Preper���� tangentially at the
point A � ��� � B � 
����
� � which lies on the boundary between the regions R� and
R� 	 �Compare Figure 
	� Similarly� the curves Per���� and Preper���� meet tangentially
at A � ����� � B � ����
������� �or a � i�� � b � �
�i���� �	

The top boundary of the region D��� in Figure �� forms part of the curve Per��
� �
characterized by the property that there are two mutually conjugate indi
erent �xed points	
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This curve intersects the saddle node curve Per���� transversally at the corner point
A � �
�� � B � ���
� of this region	 �Presumably there are two similar transverse
intersections of the saddle node curve Per���� with the lower right boundary curve of
the region of the hyperbolic component which is labeled D���� in Figure ��� and also a
transverse intersection with the tiny D��� on the right	 One of these intersection points is
shown rather poorly in Figure ��	�

The largest value of the invariant B within the real connectedness locus occurs at
the point A � ��� � B � ���
� � ���
�� � � � � and the smallest value occurs at A � ���� �
B � ��� �p
�
��� � ������� � � � � both on the boundary between regions R� and R� 	
The largest and smallest values of A occur at the points A � �� � B � � � where both
critical points are preperiodic� and where the topological entropy takes its largest value of
log��� 	

Appendix B� Centers of some hyperbolic components�

The table below lists the centers of twenty of the hyperbolic components in the real
�A� B��parameter plane� as shown in Figure ��� including all those for which both critical
points have period 
 or less	 They are listed in order of increasing A � �rst for the upper
half�plane B � � � then for B � � � and then for the lower half�plane B � � 	 Here the
notations A�D in the third column are explained in x� or in x
 �Figure ��	 Thus we write�

Ap for a component with adjacent critical points� where the attracting orbit has period
p 	 These are exactly the hyperbolic components whose center point lies on the line
A � � � where the two critical points coincide	

Bp�q for a bitransitive component with attracting orbit of period p � q � where the p�th
iterate carries the �rst critical point to the immediate basin of the second and the q�th
iterate carries the second back to the immediate basin of the �rst	 Such a component
lies at the center of a swallow shaped con�guration in the real �A�B��plane when
AB � � � or a tricorn con�guration when AB � � 	

C�t�p�q for a capture component �or arch shaped con�guration�� at whose center point the
t�fold iterate carries one critical point to an orbit of period p�q containing the other
critical point� and where the �t� p��th image of the �rst critical point is equal to the
second	 In the special case p � � � we write this brie�y as C�t�q 	 Such a component
necessarily lies in one of the quadrants AB � � � where the critical points are real
and distinct	

Dp�q for a component with two disjoint attracting orbits with periods p and q � yielding a
product con�guration when AB � � or a Mandelbrot con�guration when AB � � 	

However� the superscript � has been added whenever AB � � so that the critical points
are real and distinct� and the superscript � has been added whenever AB � � so that
the critical points are complex conjugate and distinct	 In the fourth column� the notation
fc� c�g is used for the set of critical points� and

n�� for the n�th iterate of the cubic map	

For example c
��� c� means that the third iterate carries the �rst critical point to the second	

The last column gives the topological entropy of the real mapping� when AB � � 	
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A � B � Type �Description	 Topological Entropy
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Remark� When B � �� note that there is a hyperbolic component centered at �A� ��
if and only if there is a hyperbolic component centered at ��A� ��	 This follows from
the observation that for an odd mapping� such as f�z� � �z� � �Az� the second iterate
f�f�z�� is equal to �f��f�z��� so that f and �f have quite similar dynamical properties	
For example� they have the same topological entropy in the real case� or the same Julia set
in the complex case� and one is hyperbolic if and only if the other is hyperbolic	 However�
it may happen that one of these two belongs to a bitransitive component �Type B � while
the other has disjoint attracting orbits �Type D �	

Further information about these twenty hyperbolic components can be read from
Figure 
�� which shows the corresponding Hubbard trees	 �Compare �Douady�Hubbard�
��������	� Each Hubbard tree is a simpli�ed picture which shows how the points of the
two critical orbits are joined to each other within the �lled Julia set K�f� 	 Since our
polynomials have real coe�cients� all of these Hubbard trees are symmetric about the real
axis	 Note that only those on the second line� which correspond to odd mappings with
B � � � are also symmetric about a vertical axis	
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Figure 23. Hubbard trees for the centers of twenty hyperbolic components, as listed in

Appendix B. (In the last two diagrams, vertex 0 maps to 1, to 2, � � � .)

Appendix C� Comments on the Figures�

The basic algorithm used in making pictures in the �A�B� �plane� and in other related
parameter planes can be described as follows	 Starting with the two critical points z�� �
�a � which may be either real or conjugate complex� we compute the successive iterates
z�n�� � f�z�n � and also the partial derivatives of z�n with respect to A and B for n
up to a few hundred� or until either jz�n j becomes large or one of the partial derivatives
becomes very large	 The given point in parameter space is considered to be in a hyperbolic
component if all of these numbers remain relatively small	 If jz�n j becomes large� then
the distance of the given point in parameter space from the locus where the orbit of
the given critical point remains bounded is estimated� using the �rst partial derivatives	
�Compare �Milnor� ���� x�	�� or �Fisher�	� If this distance is less than the pixel size� then
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the given parameter point is considered to be a boundary point	 This method enables the
pictures to show very �ne �laments� which may have measure close to zero	 Similarly� if the
orbit remains bounded but some �rst derivative becomes large� then we have a boundary
point	 In many of the Figures� an additional step has been taken to locate boundaries
between hyperbolic components	 Namely� after many iteration� the orbits are checked for
approximate periodicity with small period� and if both critical orbits have the same period
then these two periodic orbits are compared	 Pixels at which this periodicity structure
changes are indicated in black	

The main defect of this procedure is that it is ine
ective when the convergence to a
periodic orbit is extremely slow	 This tends to happen near the curves Perp���� where
there is a parabolic orbit� and particularly near points where three or more hyperbolic com�
ponents come together	 Hence the �gures are highly distorted near such points	 �Compare
Appendix A	�
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