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Abstract. In this paper we sum up our results on one-dimensional measurable dynamics
reducing them to the S-unimodal case (compare Appendix 2). Let f be an S-unimodal map of the
interval having no limit cycles. Then f is ergodic with respect to the Lebesgue measure, and has a
unique attractor A in the sense of Milnor. This attractor coincides with the conservative kernel of
f. There are no strongly wandering sets of positive measure. If f has a finite a.c.i. (absolutely
continuous invariant) measure W, then it has positive entropy: hy (f) > 0. This result is closely
related to the following: the measure of Feigenbaum-like attractors is equal to zero. Some extra
topological properties of Cantor attractors are studied.
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§ 1. Introduction.

Let f:[0, 1] = [0, 1] be a map of the interval satisfying the following conditions:
S1. f isa C3-smooth map with a negative Schwarzian derivative:

fIII 3 f" 2
Sf=——§(f—’) <0;

S2. f has a unique critical point c € (0, 1); this point is non-degenerate: £” (c) #0; so ¢ is
the extremum.
In addition to these main properties we introduce at once the convenient normalization (the
possibility of such a normalization is explained, for example, in [CE]):
§3. f:c+* 1+ 0 (in particular, ¢ is the maximum point).

The class of maps satisfying S1-S3 we denote by S, (the index "1" means the number of
extrema). Throughout the paper we will assume (unless otherwise stated) that fe S, and call
such maps S-unimodal.

S-unimodal maps are very interesting from the dynamical viewpoint and have been studied
intensively since the 70's (see [CE]). However, many essential problems are still unsolved. In the
present paper the measurable dynamics of such transformations (i.e., the asymptotic behaviour of
a.a. (almost all) trajectories with respect to the Lebesgue measure) is studied.

In what follows f™ will denote the nth iterate of f. The set orb(x) = {t"x}:;o is called
the trajectory (or the orbit) of x € [0, 1]. The limit set of orb(x) is denoted by w(x). The further
general concepts related to the measurable dynamics of endomorphisms (invariant and wandering
sets, ergodicity, conservativity and dissipativity, etc.) can be found in Appendix 1.

Now let us introduce the important concept of the measure-theoretical attractor in the sense
of Milnor [M]. Let A be a closed invariant set, and 1l(A) = (x: o(x) € A} be its "realm of
attraction." The set A is called a measure-theoretical attractor if

G A@(A)>0 (ie., A attracts "many" orbits);

(i) AI(ANI(AY)) >0 for any closed invariant proper subset A’ c A (so the realm of
attraction of A’ is essentially less than that of A).

As a rule, we will call measure-theoretical attractors simply attractors (unlike topological
attractors defined in §2).

In order to present the results of this paper we need to formulate the authors' earlier results.
The terminology used in the following theorem (a limit cycle, a solenoid, a transitive interval) will
be explained in detail in §2.



The Theorem on the Attractor [BL1,2,3]. Amap fe S, has a unique measure-
theoretical attractor A and @(x) =A for a.a. x € [0, 1]. The attractor A has the structure of
one of the following four types:

Al: A isalimitcycle;
A2: A isasolenoid (or a Feigenbaum-like attractor);
A3. A isacycle of transitive intervals;

A4. A isa "strange" attractor, i.e., a Cantor set contained in the cycle of transitive intervals.
Moreover, in case A4, A contains the critical point ¢ and A = w(c).

These cases will be called cyclic, solenoidal, interval, and "strange," respectively.

The Main Problem (¢f. [M]). Are there fe S, having "strange” attractors?

The authors regard the results of the present paper as steps toward solving this problem.

The Theorem on Ergodicity [BL1,3,4,6]. In the non-cyclic case the map f € S, is
ergodic with respect to the Lebesgue measure A.

The following concepts of a strongly wandering set and the conservative kernel C(f) (or
the conservative part) of f are defined in Appendix 1.

The Theorem on Strongly Wandering Sets. In the non-cyclic case the map f € §,

has no measurable strongly wandering sets of positive measure.

The Theorem on the Conservative Kernel. The conservative kernel C(f) of the
map fe S, coincides (mod 0) with the attractor A. Moreover, f is purely dissipative in the

cyclic and solenoidal cases, and asymptotically conservative in the standard transitive case.

Remark 1.1. The dissipativeness in the solenoidal case means that solenoids have zero
measure (see the Theorem on solenoids' measure in §8.) So, in this case we have the amusing
example of a purely dissipative endomorphism without strongly wandering sets of positive
measure.

Remark 1.2. From the viewpoint of the Theorem on the Conservative Kernel, the Main
Problem can be reformulated in the following way:

Is it true that f is conservative on the cycle of transitive intervals?



Remark 1.3. The exponential map z+* e? of the complex plane gives an example of a
topologically transitive but purely dissipative and non-ergodic endomorphism [L1], [R] (on a non-
compact phase space, though).

Let us pass now to the problem of a.c.i. measure. The properties of a.c.i. measures of
positive entropy are well known in the one-dimensional case [Le]: they possess strong statistical
properties of exactness, weak Bernoullity and exponential decreasing of correlations. The
following result, concluding this paper, shows that actually every finite a.c.i. measure of fe §;

has positive entropy (and hence possesses all the above properties).

The Theorem on Entropy. Let p be a finite a.c.i. measure of fe& S,. Then h,(f) >

0. In such a case the attractor A is the cycle of transitive intervals (case A3).

This theorem and the Theorem on solenoid's measure will be proved from a common
viewpoint in §12.

Let us also mention some additional properties of "strange" attractors A, making them
similar to solenoidal attractors (see §11): f1 A is topologically minimal (i.e., o(x) =A forall
x € A) and the topological entropy h(f| A) is equal to zero.

The structure of the present paper is clear from the Table of Contents. In order to make the
picture complete, we present the proofs of the Theorems on the Attractor and Ergodicity. These
proofs have some advantages over those published earlier [BL1-6] due to the adaptation of them to
the S-unimodal case as well as to the systematical use of the Koebe Principle instead of the
Minimum Principle.

We would also like to draw the reader’s attention to a number of technical results collected
in this paper: the Expanding, the Distortion and the Density Lemmas. The most non-trivial ones
are Lemmas 4.4 and 9.1.

Most of the results the authors can prove in a more general situation (polymodal and
smooth). The survey of these generalizations will be given in Appendix 2.

The results of the present paper are announced in [BL1] and [BLS].

Acknowledgement. The preparation of the manuscript was completed during the visit
of one of the authors to Vienna (November, 1989). It is a pleasure for him to thank Professor
Schuster for the hospitality and help which made it possible. We are also grateful to D. Sullivan
for useful discussion of the results and to J. Milnor, G. Swiatek and K. Brucks for reading the
manuscript and making useful remarks.



Some notations and conventions.
N ={1,2,..} is the set of natural numbers;

cIX =X is the closure of the set X;

intX=X" is the interior of the set X;

X¢=[0, 1]\ X is the complement of X;

D(, 1) ={xe [0,1]]||x—a]<r1};

[a, b] is the (closed) interval ended at a and b (without assuming that a<b),

C = fkc where c is the extremum; note that ¢, =1, ¢, =0 by the normalization S3.

Note: Recently we received G. Keller's preprint, which is closely related to the present paper.

§ 2. Topological picture of the dynamics.

In this section we have collected the well-known facts on the topological dynamics of S-
unimodal maps, which will be systematically used (limit cycles, homtervals, spectral
decomposition). We begin with some remarks about limit cycles of f.

Let A= {f“a}g;(} be the cycle of a periodic point a. Itis saidtobea limit cycle if 11° (A)
#@. For maps with negative Schwarzian derivative it is equivalent for A to be attractive (i.e., the
modulus of the multiplier v = (fP)’(a) is less than 1) or neutral (i.e., | v|=1) (see [CE]).

The role of the negative Schwarzian derivative condition was shown for the first time by
D. Singer in 1978 by the following result which is the real analogue of the classical Fatou-Julia
Theorem (1918-1920).

Theorem A (on the Limit Cycle) [Si]. Let A be a limit cycle of the map fe ;. Then ¢
e 11°(A). Hence, f has at most one limit cycle.

Notice that if the multiplier v of the limit cycle A isn'tequalto 1 then A c1l’(A). If

v =1 thenfor fe S, we havethat A C d(rl(A)). Moreover, rl(A) =1l°(A) L O f" A and
n=0

rl(A) contains some semi-neighborhood of A.

Let us pass now to Guckenheimer's important result on the absence of wandering intervals
(1978). By wandering intervals we will always mean strongly wandering intervals, i.e., such that
mINnfMm)J=2 (n>m=20).

An interval J is called a homterval if all iterates f* are monotone on J. In other words,
int(fJ)#c for n20.



It is easy to understand the connection between wandering intervals and homtervals. If J
is a wandering interval then f"J is a homterval for some n € N. If J is a homterval then either
its orbit converges to a limit cycle, or J is wandering (perhaps, both).

Thus, the existence of wandering intervals is equivalent to the existence of homtervals.

Theorem B (on Wandering Intervals) [G1]. Suppose fe€ S, hasa wandering interval
J. Then f has alimitcycle A and f"J - A as n > eo.

n-1
Fora point x ¢ {0, 1} U \U f*c denote by H =H_(x) the maximal interval on which
k=0
f is monotone. Set M, =M (x) =" H (). The intervals H_ end at points {0,1} L

n-1

\U f%c, and the intervals M, end at points {c,}f, (recall that ¢, =1, c, =0). It follows
k=0

from the Theorem on Wandering Intervals that if orb(x) doesn't converge to a limit cycle, then
AMH (x) >0 (n—>o0). 2.1)

Let us pass now to the description of the spectral decomposition of f e 5 ;- To this end

we need a few concepts.
An interval I c [0, 1] will be called periodic with period p if inf(f<) N int(fl) = &
p-1
(0<k<p-1) and fPIc L Insuchacasetheset O = U {4 is called a cycle of intervals.
k=0
An invariant compact set K will be called transitive if f1K is topologically transitive,
i.e., it has a dense orbit. The map f|K is called topologically exact if for any relative
neighbourhood U c K there exists an ne N such that f'U =K.

A periodic interval 1 of period p will be called transitive (exact) if the restriction fPI1 is
topologically transitive (exact). Clearly, in such a case c € int O, where O is the cycle of the

interval I.

An invariant set S is called a solenoid (or a solenoidal attractor or a Feigenbaum-like
attractor) of type {p,} = if it has the following structure:

o Pnl
S =N VU I

n=1 k=0 n

-

where p, — > and where each I isa periodic interval of period p,, with I; DL, ---. It easily
follows from the Theorem on Wandering Intervals that int(S) =@ (i.e., S is a Cantor set) and
f1S is topologically conjugate to a shift on a compact group (see [CE], [B1])).



Remark also that ¢ € S and hence S = w(c). Besides, it is easy to see that if w(x) > S
then w(x)=S. So, S is a minimal ®-limit set.

If a set X isn't a set of first Baire category (i.e., a countable union of nowhere dense sets)
then X is said to be of 2nd category. Saying "almost all (a.a.) in the sense of Baire" we mean “on
a set of 2nd category."

A closed invariant set T < [0, 1] will be called a topological attractor of f if
@ rl(T) is a set of second category;

(ii) for any proper closed invariant subset T'c T, the set rl(T\I(T’) is of 2nd category as

well. (Compare with the concept of measure-theoretical attractor in §1.)

Denote by Per(f) the set of periodic points of f.

Let us state now the principal result on the topological dynamics of one-dimensional maps
fe S,. Itis essentially based upon the Theorem on Wandering Intervals.

Theorem C (on the Spectral Decomposition) [JR]. There is the following decomposition:
Per(f) = TUU R,
i

where T is the unique topological attractor of f, and the R; are invariant transitive Cantor sets.

Moreover, T has the structure of one of the following three types:
T1. T={fa},, isalimit cycle;

oo pn_l
T2. T=M U f_ is asolenoid;
n=1 n=1
p-1
T3. T=\ 4 isacycle of exact intervals.
k=0

In cases T1 and T3 there are only a finite number of repellers R,, while in case T2 there are

countably many of them. Any two sets of the decomposition have at most finitely many points in
common. For any point x € [0, 1] either 0(x) =T or f'’x € R, for some n, j.

Remark. The restrictions fR; are topologically conjugate to One-Sided Topological
Markov Chains.

Cases T2 and T3 sometimes are called finitely and infinitely renormalizable
correspondingly. We usually will refer to case T2 as solenoidal. (The terminology agrees with
that introduced in §1.)



§3 Distortion lemmas.

In this section we collect the principal analytical tools for studying the measurable dynamics
of one-dimensional maps. Within it X will denote a measurable set and I will denote some
interval. Set

dens(XII) = AX N D/A®D).

Let us introduce at once all notation and terms related to the density notion that we will use
throughout the paper. For a point a € [0, 1] set

dens(Xla) = éin% i dens(Xl[a—¢€,a +€])
_.)

if this limit exists. If dens(Xla) =1 then a is called a density point of X. In such a case we say
also that "X is A-dense at a" ("A" is used in order to avoid the confusion with topological
density). The Lebesgue Theorem on Density Points states that any measurable set X is A-dense at
a.a. its points. The expressions "X is A-dense at a from the left" or "from the right" as well as

the notations dens (Xla) and dens (Xla) for upper and lower density are clear without extra

explanations.
Finally, let us introduce one non-standard notation. For an interval I=[a, b] set

Dens,(XII) = Dens(Xl[a,b]) = 32{) Dens(XI[a,y]).

Note that Dens(XlI[a,b]) # Dens(XI[b,a]).

Lemma 3.1 (the First Distortion Lemma) [BL6,8]. Let f: [0,1] = [0,1] be a Cl-smooth

map for which
C,lx—cl’ < If(x) <Cylx—cl¥

in neighbourhoods of critical points (where v depends on c). If Ic[0,1] and dens(XII) £1/4
then
dens(fXIfT) < A dens(XII)



where the constant A is independentof I, X. m

The following result establishes the main analytical property of functions with negative
Schwarzian derivative. It is called the Koebe Principle because it is the exact analogue of the
classical Koebe Theorem in geometric function theory.

Up to the end of this section @ :I— J will denote a diffeomorphism of open intervals
with negative Schwarzian derivative.

The Koebe Principle ([VS], [G2]). Let re (0,1). Then there exists a constant C,
independent of @ such that for any points x,, x, € I for which dist(¢(x;), o)) 2 rA(J) the
following estimate holds:

(P’(xl)
9'(xy)

<C. =

Lemma 3.4 (The Second Distortion Lemma) [BL6). Divide the interval I into two
intervals L UR with a common endpoint a. Then

Dens (X |L) <39

D X|oL) < y8,K
MOLY/M(QR) sx} = Densy) @X | oL) < Y3.K)

where the function ¥(3, K) is independent of ¢ and Y(8,K) -0 as 6 — 0 for any fixed K.
In other words, if the set X is thin in the interval L and the interval L isn't too long
compared with @R, then ¢X is thinin QL.

Proof. Suppose that for some interval N =[a,b] c L we have: dens(¢X | pN) 2 €.
Consider the point oo € N for which

| o) = o(b) | = 3 M@N).
Then
dens(¢X | [p(c0), 9@]) 2 7.

Now apply the Koebe Principle to the map ¢ | [a, a]. We obtain a constant C = C(g,K)
such that for any x,, x, € [0, a] the following estimate is satisfied:
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(P’(xl)
(P’(xz)

Consequently,
2 < dens(9X | [¢(c), 9(@)]) < Cdens(X | [, a]) < CB

(here we use just the estimate for Dens,, not for dens). It follows that € > 0 as 6§ = 0, and

the lemma is proved. ®

§ 4. Expanding Lemmas.

The first three purely topological lemmas of this section are less well known than they
deserve. In spite of their simplicity, they work very efficiently. The fourth lemma is much more
complicated, but up to now we've been applying it only in the solenoidal case.

Lemma 4.1 (On Non-contractability). Let J be an interval whose orbit doesn't
converge to a limit cycle. Then

Illig}k(f“J) > 0.

Proof. Since f has no wandering intervals, fPINJ = @ for some p € N. Hence,

the set I= \J ] is an fP-invariant (perhaps, non-closed) interval. If I contains two fP-fixed

n=0

points o, B then fP*J > [a, B] for all sufficiently large n which implies the required inequality.
The simple analysis of the case when I contains only one fixed point we leave to the reader. ®

Now let us consider the involution T : x+* x” where f(x) = f(x") (itis well-defined on the
interval [0, c;]). The points x and x’=1(x) will be called t-symmetric. A set X is called
1-symmetric if ©(X) =X and locally T-symmetric if it is 1-symmetric in a neighbourhood of c.

Say that a point y lies t-nearerto ¢ than x if ye (x, x).

The following lemma is, in fact, contained in the paper by Guckenheimer [G1]. In an

explicit form, it was stated in [BL3,4]. In this lemma the main specificity of the unimodal case is
concentrated.



Lemma 4.2 (the First Expanding Lemma). Let 1=[a, a’] be a t-symmetric interval, let
xe (0, 1)\ CJ f%c be a point whose orbit passes through I°, and let n be the first moment for
k=0

which f'x € I°. Then provided A(I) is sufficiently small, we have
@) M (x) DI in the finitely renormalizable case;
(i) M, (x) DI in the solenoidal case, where IV is that half-interval [a,c] or [c,a] which

contains f°x.

Proof. (i) We must show that neither of the intervals Ngf is contained in 1. Fix o €
{£1}.
If A(I) is sufficiently small then n is large enough, and by (2.1) the interval H_ (x)

n
doesn't end at the points c, 0, 1. Hence, it ends at some points of the set U f~ ke.
k=1
Consequently, there is a p € [1,n—1] such that MJ = fP[f*Px, c].

Let us consider the T-symmetric interval K = [f*Px, ©(f*Px)]. By the definition of n we
have that KoL If MScI then PIcfPK=M]c], so I is fP-invariant. But as we consider
the transitive case, I is contained in an exact periodic interval, which is, of course, impossible.

(ii) By the same argument as above one can be convinced that otherwise there isa p such
that IV c IV and fPIIV is monotone. Butthen IV contains a limit cycle, which contradicts the

assumption. H

Lemma 4.3 (the Second Expanding Lemma). Suppose c is non-periodic. Let I <
[0, 1] be an arbitrary interval of sufficiently small length such that the orbit of ¢, passes through
its interior. Let n be the first moment for which fc; € I°. Then M (c;) O L

Proof. The endpoints of the interval M, (c;) belong to the set {c,},Z, . By assumption,
they lie outsideof 1. =

Remark now that by non-degenerateness of the extremum c, the involution T is smooth
and 7'(c) =-1. Hence, in a sufficiently small neighbourhood [c -1, c+mn] of the extremum, the
involution < is Lipschitz with the constant 2.

Further, under the circumstances of Lemma 4.2 let M} be the component of M, \ {f"x}
which contains ¢, and M be the other component. Unlike the previous results of this section,
the following lemma is of an analytical nature and uses the negative Schwarzian derivative
condition in an essential manner.

11
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Lemma 4.4 (the Third Expanding Lemma). Let amap fe S, have no limit cycles.
Then under the assumptions of Lemma 4.2 there exists a constant K >0 such that
@ MMY 2 K MD;
(i) for x =c;, AM;) 2 K1 A®D).

Part (ii) of the lemma was proved in [BL7] and was applied there for proving that AS)=0
for solenoidal attractors S (see §8). We think that this lemma could be useful in plenty of other
problems.

Here we confine ourselves to the proof of Part (i). Remark at once that in the finitely

renormalizable case the statement trivially follows from Lemma 4.2(i) and the Lipschitz property of
1. Thus, Lemma 4.4(j) is actually concerned with the solenoidal case only. '

Proof of Lemma 4.4(i). Recall that I = [a, a"]. Denote x; = fkx. Let, for
definiteness, x_ € (a,c). By Lemma 42 M;> [x,cl. If M: D [x,, a'] then as we have
already noted the statement is trivial. So, from now on we assume that

M c [x,a)cT. 4.1)

If A(I) is sufficiently small then M} = f*~5[x, c] for some s € [0, n — 1]. By
assumption, X lies outside I°. Let us show that it lies T-nearer to ¢ than all points x; (I=s+1,
.., n— 1). Otherwise denote by X, that point x,x for which x, & (X, ©). Note that ¢, lies
on the same side of ¢ as x, (since f* is monotone on [x,¢;, ] = f1H).

Now consider two cases:

a) If ¢ € [xcl then the map 5 monotonically transforms the interval [§s, c]
inside itself — on the interval [x, c,_]. In such a case f would have a limit cycle, which
contradicts our assumption.

b) If x, € [c_, x]] then by (4.1)

I'oM} = ol (I [ Xn—(i-s)’
despite n being the first moment for which f'xe I'.
Thus, the points X, ;, ..., X, ; lie T-farther from ¢ than x, while x, lies T-nearer.
Let now is denote that one of the points x, x; that lies on the same side of ¢ as x . It

is shown in the papers [Mi], [G1] that under such circumstances there exists an interval (o, B) 3
X, such that

fisg = a, 5B =P = 1(P).
Moreover,
™Y1 2y>0 4.2)
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forall y e [a, B] where ¥ does not depend on x, n.

In—-s M +

A n
X I :,/””:””%”’,'r”’”: 1 .
S L 1 J Figure 1.
Consider the point u € [x , B] for which f**u=c. By (4.2)
Ix,—cl 2 ylx,—ul. (4.3)
Remark now that
[x,, ¢, = Mf D [x,,u]; 4.4)

for otherwise the function f** would monotonically transform the interval [c, u’] into itself

(despite the absence of limit cycles). Now consider two cases:
a) |u-c|2 -;- | a—=c|. Then by (4.4) and the 2-Lipschitz property of T, we have
’ 1 1 1
MM 2 [c-u'| 2 Elc—ul 2 zla—cl 235 A(D).
b) Jlu—-cl|< %I a—c|. Inparticular, u € (a, c). Then by (4.3) and (4.4) we get
MM 2 |x,—c| 2 yla—u| 2F|a—c| 2F AD.
The lemma is proved. ®
§5. The Measure-Theoretical Attractor.

Here we will prove the Theorem on the Attractor stated in the Introduction. We are starting
with the well-known lemma whose proof gives the simplest illustration of the self-similarity idea
(passing from small scales to large ones controlling the distortion).
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Lemma 5.1 [G1] Let K be an invariant compact set which does not contain the
extremum ¢ and (in the case when f has a limit cycle o) does not intersect ri°(ct)*. Then AK)
=0.

Proof. Let x be an arbitrary point of K distinct from the endpoints 0, 1 and preimages
of the neutral cycle o (if there is suchan ). As KNi1l’(a) =@, these assumptions exclude at

most countably many points.

Since orb(x) does not converge to a limit cycle, by (2.1) the intervals H for sufficiently
large n end at preimages of c, not at the endpoints 0, 1. Hence M, = f*¥ * [c, f** x] for some
k,e€ [0,n—1]. But

|c—fk*x | > dist(c,K) = §>0.

By Lemma 4.1, X(Nﬁ) >¢>0 (remark that € =¢(x) depends on x since x can be near to the
neutral cycle; the independence of € from n for fixed x is important).

Thus, for any ye (0, €] there is an interval HY 3 x which is monotonically transformed
by f* onto D(f"x, y).

Remark now that by the Theorem on Wandering Intervals the set K is nowhere dense (in
fact, it follows from the easier fact: The orbit of a hypothetical homterval would have to approach
the critical point, Schwartz, 1963). It follows from the compactness of K, thatforall y € K

dens(KID(y, )) < q(y) < L.

Applying to f*: HE — D(f"x, €) the Koebe Principle, we obtain
dens(KIH2) < p(e) < 1.

As A(H‘f) — 0 (n > o), dens(KIx) <1; so x is not a density point of K. Since x is an
arbitrary point of K excluding at most countably many points, we conclude AMK)=0. =

Remark. In [G1] a stronger statement is proved: if an invariant compact set K does not

contain critical points and limit cycles, then fIK is an expanding transformation, i.e., 3 C>0,

¥>1 such that
|M™'x)| 2 Cy, xeK, neN

* But it may happen that K > o where a is a neutral cycle.



However, we will not make use of this.
Corollary 5.1. If amap f has no limit cycles, then @(x) 3¢ fora.a. x € [0, 1].
Proof. Let us consider the following family of invariant compact sets:

K, = {x:|fx-c|2l m=0,1,.)}.
By the above lemma A(K,) =0. But [0, I1\U K, = {x: @(x)>c}. =
n=1

Call a set E nowhere A-dense if dens(Ell) <1 for any interval L

Lemma 5.2. If E is a nowhere A-dense invariant set of positive measure, then for a.a.
x € E we have w(x) = w(c) dc.

Remark. So, c is a recurrent point: ®(c) 3 C.

Proof. By Corollary 5.1, w(x) D> w(c) fora.a. x € E.

In order to prove the inverse inclusion, let us consider a density point x € E and show
that o(x) c w(c). Indeed, otherwise there is a sequence L N such that dist(f"x, orb(c)) 2 € >
0 forall ne L. Estimating the distortion of the map ™ Hn"2 — D(f"x, €/2) in the same way as
in the proof of Lemma 5.1, we will be convinced that dens(Elx) < 1, contradicting the
assumption.

So, @(x) = w(c) fora.a. xe E. As w(x) 3¢ foraa xe€ E, o(c) 3 ¢, and we are
done. m

Proof of the Theorem on the Attractor. Let us consider subsequently Cases T1-T3
of the Theorem on Spectral Decomposition (§2).

In case T1 the limitcycle T attracts the critical point ¢ (Theorem A). Hence, the invariant
compact set K =[0, 1]1\rl*(T) satisfies the assumptions of Lemma 5.1. We conclude that AK)
=0 and hence T is the unique measure-theoretical attractor.

In case T2 we have

cea)=T =M 0,
n=1

15
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where O, are the cycles of intervals of period p, — . By Corollary 5.1 @(x)3c fora.a. x€

[0, 1]. For such an x we have o(x) > @(c) =T and hence w(x) =T, since T is the minimal

w-limit set.
Let ut pass to the main case, T3, when there is the cycle O of transitive intervals. As

c e int @, by Corollary 5.1, a.a. orbits are absorbed by O. Hence, it is sufficient to consider the
restriction flO.

We intend to show that one of the following holds:
() ox)=0 foraa. xe O,

() ox)=w()dc foraa. xe O.

In the first case we obtain the standard transitive attractor (of type A3), in the second case
we obtain the standard or the "strange" attractor (A3 or A4) depending on w(c)=0 or o) #0.

So, let us consider a countable base of intervals J_ of the space O and construct for each

of them the following invariant compact set:

K, = {xe O:f"xeJ (m=0, 1,..)}.

Set K_= O K. Then O\K_={xe O0:0(x) =0 }. Hence,if MK =0 then case (i)
n=1 )

holds. So, assume in what follows that A(K_) >0 and hence MK ) >0 for some n.
All the sets K are nowhere dense. Indeed, if K contains an interval L then K O

C) ML =@ which is not the case. Consequently, we can apply Lemma 5.2: @(x) = ®(c) 3¢

m=0
foraa. xe K. Since K is nowhere dense, ®(c) is nowhere dense as well.
Thus, A =®(c) is the unique measure-theoretical attractor for the set K, possessing all

the properties enumerated in the theorem.
It remains to show that A(O\K_) =0. To this end remark that O\K_=K is nowhere

A-dense. Indeed, otherwise there is an interval I € O such that dens(KSI) = 1. As knJ k1= 0
k=1

for some n € N, dens(K¢IO) = 1. Hence, AM(K_) = 0, contradicting the assumption.

Consequently, by Lemma 5.2 o(x) = w() fora.a. xe€ O\K_. Butas we know, @(x)=0 for

all x e K_, while a(c)# O. This contradiction completes the proof. ®m



§6. Ergodicity.

In this section we will prove the Theorem on Ergodicity. It is based upon the following
technical lemma which will be used throughout the paper.

Lemma 6.1. (On A-density at the extremum). Suppose f has no limit cycles. Let X
be a measurable invariant locally T-symmetric set of positive measure. Then dens(Xlc) = 1.

Remark-term. Hence, any invariant set X of positive measure (perhaps, non-t-
symmetric) is A-dense at ¢, (n=1,2,..) on that side of ¢, which is the f"-image of a
neighbourhood of c. Such a side of ¢ will be called good. '

Proof. Consider a T-symmetric neighbourhood I = [a, a”] of ¢ in which the involution .

1 is 2-Lipschitz and the set X is T-symmetric. By Corollary 5.1 (x) 3¢ fora.a. x € X. Let
us consider a density point x € X with this property. Let n be the first moment when fixe I
Assume for definiteness that x_=f"x € (a, ). By the First and Third Expanding Lemmas

M, O [a,x), and AM)) 2 K1lla-x_|

Consequently, there exist intervals R , L, with the common endpoint x for which

PR, = [ax], PL, =M

and f* has no critical points inside L_, R, . Applying the Second Distortion Lemma, we obtain
dens(X° ! [a, x 1) <5, K) 6.1)

where 3 =Dens (X°IR).
If the interval I is short, then by Lemma 4.1 the interval R is short as well. As x isa

density point of X, & is small and hence ¥, K) is small as well. Hence, by (6.1) the set X is
thick in the interval [a, x ].

By the Lipschitz property of T, X is thick also in the symmetric interval [)g" ,a’]. Setting
I, =[x, x], we obtain

dens(XII\I,) > 1-¢

17
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for some small €>0. Replacing I=1I; by I;, we obtain
dens(XI[;\L)) 2 1-¢

where L, = [X, ) Xyl and n(1) is the first moment for which f(Vx € Ij. Continuing the
process, we obtain the nested sequence of intervals I, shrinking to ¢ and such that

dens(X I L\L,) 2 1-¢, k=0,1,...

Hence, dens(XII) > 1—¢. Since € > 0 as A(I) - 0, the lemma is proved. =

Proof of the Theorem on Ergodicity. Let [0, 1] =X, U X, where X, are
completely invariant sets of positive measure, X; N X, =@. As (X)) c f‘l(in) =X, the sets
X; are locally symmetric. By Lemma 6.1, dens(Xjlc) = 1 which is impossible.

§7. Absence of Strongly Wandering Sets.

Here we are proving the Theorem on Strongly Wandering Sets stated in the Introduction.
It can be regarded as the strengthening of the Theorem on Wandering Intervals. It is also some
sort of "conservativity" of f.

Let us note that the absence of strongly wandering sets X for which f*| X is monotone
for ne N (c¢f. [S]) immediately follows from the ergodicity. Indeed, if Y is an arbitrary non-

trivial measurable subset of X, then CJ f( O fmY) is a non-trivial measurable completely
n=0 m=0

invariant subset of [0, 1].

Proof of the Theorem on Strongly Wandering Sets. Let X be a set of a positive

measure, and X =f"X. Take a density point x € X\ O fic such that ®(x) 3 ¢ and consider
j=0

the moments n(1) < n(2) < ... of the T-nearest approaches of orb(x) to the extremum ¢ (this
means that Xn(k) = fn®)x lies T-nearer to ¢ than all points x; (0</< n(k)). Moreover, let us
start from the moment n(1) for which Xn(1) iscloseto c. Let

u,_; be that one of the points X (k1) x'n(k_l) which lies on the same side of ¢ as Xn(k) *

Vi1 be thatone of X, ), x;l(k +1) Which lies on the same side of ¢ as X,y and

xﬁ(k) be that one of X, x;l ) which lies to the left of c.



By the First Expanding Lemma
M2 [ Vi
Denote by L, and R, the semi-neighbourhoods of x which are monotonically mapped by f2(®
onto [x 4 V1] and [xn(k),uk_l] correspondingly.

Fix € > 0. Proving Lemma 6.1, we have shown that X ., is thick in the interval
(v, xn(,)] for all sufficiently large I:

Applying f once more, we get, by the First Distortion Lemma,

On the other hand, as

(= ~]

Z 1 xtg — ey | <o, there exist arbitrary large k for which I &y — Xl <
k=1

| — x¥.qy|- Then by the 2-Lipschitz property of © we get

| Xngey = Viern | < 41 %09 = W | (7.2)

Applying to f2®) | L, U R, the second Distortion Lemma and taking into account (7.2), we

conclude

where 8, =Dens (X®IL,). As x isa density point of X, ¥3,, 4) < ¢ for sufficiently large k.
By the First Distortion Lemma we obtain

dens ot | Kngotr Xngernyes]) 21— AYG 4) 2 1- Ae. (7.3)

For /=k+ 1 and sufficiently small € >0 the estimates (7.1), (7.3) yield X 4,1y N Xn(k)+1 #
@. The theorem is proved.
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§8. The Solenoidal Case: Pure Dissipativeness.

In §§8-10 we will classify maps fe S, from the viewpoint of the Hopf decomposition.
In this section we dwell on the solenoidal case which gives an amusing example of a purely
dissipative endomorphism having no wandering sets of positive measure.”

Let us start from the simple remark: the conservative kernel C(f) (see Appendix 1) is
contained in the attractor A. Indeed, otherwise there is a set Y < C(f) of positive measure such

that dist(Y, A) >0. Then the orbits of a.a. points y € Y must return to Y infinitely many times.
But this is impossible since f'y — A fora.a. y.
Thus, if M(A) =0 then f is purely dissipative (in §10 the converse will be proved).

Clearly, it is held in the cyclic case. The next theorem shows that solenoidal maps are purely
dissipative as well. It was proved in [G2] for dyadic solenoids (i.e., p, = 2" and in [BL7],

[MMSS] for unimodal solenoids of any type.

Theorem on Solenoid's Measure. Let a transformation f € S; have a solenoidal
attractor A of type {p )y . Then

O MA)=0;

(i) If A isa solenoid of finite type (i.e., p,,,/P, <€), then dim A <1.

o Pn-1
Sketch of the proof. (i) By definition, A= U Iin) , where Iin) are periodic

n=1 k=0
intervals of period p,, and f: I‘(:l) - 11(21’ Ig') 3 c. Evidently, Cp is the T-nearest point to ¢
n
of the orbit {ck}i‘;l. Setting Kt = Mf, _3(c;) ** we find from the Second and Third (ii)
n

Expanding Lemmas:

K} o [e, cp'n 1=1, MKy 2K1AQ)). (8.1)

* In [He) a special construction of a strongly wandering set X for any purely dissipative endomorphism is given.

But the meaning of this result is unclear as X can have zero measure.
** It is easy to see that in the solenoidal case c; € (0,1} \UJ k¢ and hence, the intervals Mi(c;) are well-
k=

defined. This holds in the transitive case as well if we exclude the well-known Ulam-Neumann map (when c5=0).



Let R and L be the semi-neighbourhoods of c¢; which are mapped by £ n> onto K-
and J_ correspondingly. It easily follows from the absence of limit cycles that J lies on the

"good" side of . (see the Remark in §6). Hence, L, lies on the "good" side of c,. If A(A) >

0, then by Lemma 6.1 the attractor A is A-dense on this side. Consequently, for sufficiently
large n the set A isthickin L, ie., Densca(A IL)=1-3, iscloseto 1.

Applying the Second Distortion Lemma to the function £ a3 R, UL, and taking into

account (8.1), we get
dens(A1J) 2 1-v8,K) 2 1-¢

for sufficiently large n. Then dens(tA |J )21 - 4€, and hence A(A N tA) > 0. This

contradicts the injectivity of flA.
Gi) In [G2], [BL7], [MMSS] more is proved: dens(Q™DI[™) < q<1 where Q™ =
Pn-1

U I®, and q is independent of n, k. This easily implies dimA <1. m
k=0

§9. Density Lemmas.
By the relative length of an interval J in an interval I we mean dens(J 1 D).
Lemma 9.1 (The Main Density Lemma). Suppose f has no limit cycles. Let X be an
invariant set of a positive measure. Then V €>0 38>0 with the following property:
If I is any shortinterval (A(I) < 8) intersecting A, then there is an open interval J I\A

(perhaps empty) such that dens(X |L) > 1~ ¢ for any component L of I\J.

At the end of the section we will dwell in more detail on the case A(A) >0. And now let
us formulate one corollary. The notation used for it has the same meaning as in the above lemma.

Corollary 9.1. Under the assumptions of Lemma 9.1, for any point a € A the
following holds:
max{dens(X | [a—¢€, a]), dens(X | [a,a+€])} = 1 (€—>0).

Hence dens(Xa) 2

N =
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Proof. Let ©,_: x " 2a—x denote the usual central symmetry with respect to a. For b
€ R set b=0,(b).

Given € >0, finda 6 >0 by Lemma 9.1. Let I = [b, b] be an arbitrary interval
symmetric with respect to a with A(I) < 5. We want to show that X is thick either in [b, a] or

in [a, b].

J

i Y222

C F——e—F4——]
¢ £ 4P g

Figure 2.

To this end consider an interval J = (&,B) < I with the properties described in Lemma

9.1. Let, for definiteness, J  [a, b] and « lies nearer to a than . By‘Lemma 9.1,
dens(X | [b, &]) > 1 — € and, hence, dens(X| [b, a]) > 1 —2€. This proves the corollary. =

Remark. If a=c then instead 6f the intervals [a—¢, a] and [a, a+€] we can consider

[b, a] and [a, T(b)] correspondingly. So, dens(X | A) can be understood in the sense of
T-symmetric intervals.

Proof of the Main Density Lemma.
Let first A = © be a cycle of intervals (case A3) and w(c) # O. Then X = A mod 0.

Indeed, otherwise X is nowhere A-dense (due to exactness) and by Lemma 52 ox)=w()#A
fora.a. x € X —a contradiction. So, dens(X |I)=1 for any interval I C A.

Now, let A = w(c). Consider an arbitrary interval I=[a,b] suchthat ' N A # @. Then
orb(c;) passes through I' infinitely many times. Consider, as usual, the first moment n for
which ¢, =f"c; € I'. Letus show that there is an interval V c1 containing ¢, and havinga

common endpoint with I, in which X is thick:
dens(X1V) 2 1—-¢ if M <d = 6().
By the Second Expanding Lemma, M, (c;) D I. Consequently, there exist intervals L and

R ending with c; which are diffeomorphically mapped by f* onto [a,c 3] and [c .3, D]
correspondingly.



Suppose for definiteness that L lies on the "good" side of c;. By Lemma 4.1, L isa
short interval if A(I) <& is sufficiently small. Hence by Lemma 6.1, the set X is thickin L:
ns Denscs(X" L) is small.

Fix now a constant K > 2/e and consider two cases:

(@ |a—c_,|<K|c_,,—Db| Thenby the Second Distortion Lemma we have

n+3 n+3

dens(X® 1 [a, ¢ 3]) < (N, K).

For sufficiently small 1| we have ¥(n, K) <& and, hence, we can set V = [a, c .3l
®) la-c 31>Klc 53— b|. Then let us consider the point d € (a, ¢, 3) such that
|d—cn+3|=K|Cn+3—b|.

L
| oa— T ¥

&4 G

Figure 3.

Let us show that one can set V = [d, b]. Indeed, in the same way as in (a) we get for sufficiently
small n:

dens(X°1[d, c,3]) < Y, K) < €/2.
Consequently,

AMXen[d,c 3D +c 3~ bl
|d-b|

dens(X°1[d, b]) =

ol e, 1
ld—b| 2 K+1

< dens(X°I[d, c 3D + < €.

So, the existence of an interval V with the required properties is proved. Now consider
the interval I, =I\V. If I; "A#@ then we make the above construction again replacing I by

I,. More precisely, we consider the first moment n(1) >n when f“(l)c3 € I{ and find the
interval V, cI; containing ¢ y.3 and having a common endpoint with I,, such that
dens(X1V,) 2 1-¢.

Continuing in such a manner, we will construct a sequence (finite or infinite) of intervals V
=V, Vi, ... with disjoint interiors, and a decreasing sequence of intervals I=I;D1, O... such
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m
that .k{) V, =I\I,;; dens(X|V)2 1-&. Moreover, V;3Cp,3 Where n(i) is the first
1=
moment for which f™c; € L.
Let us consider the interval J =N L. Then the set I\J is covered by the intervals V..

Hence, for any component L of this set we have
dens(XIL) 2 1-¢. 9.1)

It remains to show that J° N A = @. Indeed, if the process above was finite, then it was
stopped at the moment m for which I, NA =2.

Suppose the process was infinite. If J* N A # @, we can consider the first moment [ for
which f’c3 € J. As Co(m) € J°, l#n(m) for m=0,1,... Find an m such that nm)<I<

n(m+1). Then L ,DJ 3¢ contradicting the choice of n(m + 1) as the first moment k for
which f¥c, € I ,;. The lemma is proved. m

m+1*
For an interval 1< [0, 1], components of I\ A will be called gaps in 1. Gaps in [0,1]
will be called simply "gaps."
The statement of Lemma 9.1 can be made more accurate in the case A(A) > 0.

Lemma 9.2. Under the conditions of Lemma 9.1 suppose also that A(A) > 0. Then one
of the following holds:

(i) all gapsin I have the relative length <&g; in such acase dens(X11I)> 1-2¢;

(i) thereis a unique gap J in I of the relative length 2 €; in such a case dens(X L) >
1 —¢ for any component L of I\J.

Proof. By ergodicity, A(A N X)>0. So, replacing X by X N A, we can assume
X c A. Then, clearly, the interval J in Lemma 9.1 can be chosen as a gap in L

As dens(X1I\J)>1—¢, J canbe the only gap in I of relative length > €. If J is such
a gap, case (ii) holds, otherwise we have case @G). m

Corollary 9.2. Under the conditions of Lemma 9.2 we have
(@) If a is a boundary point of some gap, then dens(X|a) = % ,i.e., X is A-dense at a

on the A-side.

(i) If a is not a boundary point of any gap, then dens(X|a) = 1.



Proof. (i) is the immediate consequence of Corollary 9.1 and the convention X A
(which, as we have remarked, can be adopted without loss of generality).

(i) Letus consider any short interval 1= [b,b] symmetric with respect to a. We want
to show that X is thick in some symmetric interval K c I. In case (i) of Lemma 9.2 we can set

K =1. In case (ii) let us consider the maximal gap J = [a, B] (see Figure 2) and note that o # a,
as a is not a boundary point of any gap. Set T =[c,p]. Then T"NA>a and, thus, we can
apply Lemma 9.2 to T. It gives dens(X|[@,a]) 2 1 —¢, and we are done. ®

§10. The Conservative Kernel.

The Theorem on the Conservative Kernel has been stated in the Introduction. It has been
explained in §8 that the Conservative Kernel C(f) is contained in the attractor A. The solenoidal
case has been studied there as well. The following result completes the proof of the Theorem.

Theorem on Conservativity. Let A(A) > 0. Then f| A is conservative.

Proof. Let X C A be an invariant set of positive measure. We have to show that X =A
mod 0 (see Appendix 1). By Corollary 9.1 dens(X1a) 2% for any point a € A. So, the set

A\X has no density points and hence MA\X)=0.

Remark on the Hofbauer-Keller example [HK]. In this amusing example the
averages of the Lebesgue measure A converge to the Dirac measure on the repelling fixed point b:

LY - 8, (10.1)

We will show in the next section that in such a case, A is a standard transitive attractor (since
"strange" attractors don't contain periodic points). Consequently, here we have a conservative
map of the interval without finite a.c.i. measure.
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§11. Further Topological Properties of Cantor Attractors.

The present section is concerned with Cantor attractors, i.e., solenoidal and "strange”
attractors. Certainly, we do not get any new information about solenoids whose topological
structure is completely clear.

Lemma 11.1 (On Inverse Branches). Let A be a Cantor attractor. Then for any € >0
there exists an N such that for n >N there are no single-valued inverse branches f;" defined in
neighbourhoods D(a, €) of a€ A and such that f;"a € A.

The Equivalent Statement. Let r(x) be the distance from f2x to the nearest endpoint
of the interval M (x). Then

’S‘lGIR rx) >0 - o), (11.0)

Proof. Suppose it is not the case: let € >0, a, € A and suppose there are inverse
branches fi" defined on the intervals D(a, €) such that f™a =b € A. Then there are intervals
KE ended at b, and such that

f"KE = Di(a, 7)) = Df,

where Di(a, ) = {x: 0<+(x—2) <3 }.

Further, consider an invariant set X of positive measure satisfying the following property:
There is an 1 >0 such that for any interval I of length €/2 the inequality dens(X1I)<1-m is
valid. If A(A)>0 then we can set X = A. Otherwise take a small §>0 and set

X = {x:dist(f™x,A) <& (m=0,1,..)}.

Then dens(X®|1D%) 21 >0. Applying the Koebe Principle to f*: K — D we get
dens(X° 1KY = x >0, (11.1)

Cl<MKY) /MK < C (11.2)
Let o, :x+*2b —x be the symmetry with respect to b,. Suppose for definiteness that

MK 2 M(K}) and consider the interval o, K_ containing K}. Then (11.1) and (11.2) yield

dens(X¢1 6, K;) > dens(X° I KJ) %t% > Clk. (11.3)



The estimates (11.1) and (11.3) contradict Corollary 9.1. =

The Theorem on Cantor Attractors. If A is a Cantor attractor then

() The transformation f| A is minimal, i.e., @(x) = A for any point x € A (in
particular, A does not contain periodic points);

(i) The topological entropy h(flA) is equal to zero;

@iii) t(c) & A forany ne N (so, c, are boundary points of gaps).

Proof. (i) Let us show thatif ®(x) #c then r (x) 2€ >0 (which contradicts (10.0)).
Indeed, r(x) = mim AMME(x)). For sufficiently large n we have Mix) = e [c, £t x] where

0<k,<n-1 If w(x)?c then | tki x—c |28 >0 and the required condition follows from

Lemma 4.1.

(i) We will make use of some standard facts of the entropy theory of dynamical systems.
Suppose h(f | A) > 0. Then by the Variational Principle there is an invariant measure L ofa
positive entropy: hu(t) >0, with supp L C A.

Now make use of the Pesin-Ledrappier theory of unstable manifolds (see [L]). It yields
that for almost each point X = (X, X_j, X_y, ...) of the natural extension of (f, ) the series of the
inverse branches fi™ is well-defined in € = £(x)-neighbourhood of X, fi™ x =x_,. This
contradicts Lemma 11.1.

(iii) Suppose the opposite is valid: a_ =1(c, ) € A, m22. Set C, = (¢ )i—- Take an
€ > 0 such that there is the inverse branch f51 :D(c,,p8) > Lda and LNnC_,,=9. By
Lemma 4.1 thereisa 8> 0 such that for any component K ; of f™D(c,;, 0) we have

diam Kn’i < & (11.4)

Let us construct a chain of intervals in the following way: K, =D(c_,;, 8), Ky = 'K,
K_, - some component of f“lKo intersecting A and so on. Let i >0 be the first moment for
which K,NC_  , #9. Clearly K ;3¢ ;-

By (11.4), the branch f3' is well-definedon K ;. Set K ;)= f;! K, c K, and go on
with the construction. In such a manner we will get a chain of intervals {K_;};-, such that K_;
is a component of the inverse image f~ i K, and K_;n C =@. Hence, there exist inverse
branches fai : Ky = K_;, contradicting Lemma 11.1. m

Let us mention a corollary of the above theorem which will be used in the next section.
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Denote by L the family of gaps L for which TL N A #@ or, equivalently, {L NA #@.
Corollary 11.1. The family L is infinite.

Proof. If a gap L does not belong to L, then fL is a gap as well. So,if f"L ¢ L for
all ne N, then L is a homterval. As there are no homtervals, there isan ne N for which f"L
e L.

By the above theorem, the points ¢, lie on the boundary of some gaps L, (n€ N). If L
were finite, the extremum ¢ would be preperiodic, despite the property w(c) =A. =

§12. The Finite A.C.I. Measure Has a Positive Entropy.

This section is devoted to the proof of the Theorem on Entropy stated in the Introduction
and at the same time to the new proof of the Theorem on Solenoid's Measure (see §8).

Lemma 12.1 (Injective Scheme of Gluing). Let the attractor A contain an invariant set
X of positive measure such that f: X — X is an invertible map. Then

(i) The extremum c lies on the boundary of a gap;
@) If f(a) =f(b) for some a,be A, then a and b lie on the boundary of some gaps
L and M. Moreover, TIL "M =@. In particular, A is a Cantor attractor.

Proof. (i) By Corollary 9.2(ii), if ¢ is not a boundary point of any gap, then there exist
arbitrary short T-symmetric intervals I=[a, a"] for which dens(X1I)21-e¢. By the 2-Lipschitz
property of T near c, we get dens(tX|1I)21-2e. Consequently, X N 1tX # @, despite the
assumption.

(i) Suppose a is not a boundary point of any gap. Then by Corollary 9.2(ii) there is an

interval I1=[d, d] symmetric with respectto a and such that
densXII) > 1—-¢. (12.1)

By the Main Density Lemma there exists an interval K c 7l having a common endpoint
with I (say, o =1(d)), containing [0, b] and such that dens(X 1K) > 1-—¢. Hence

dens(tX 1 1K) = 1-L7%, (12.2)



where L is the Lipschitz constant of the involution T (on the whole interval [0, c;] where T is
defined).

o= Tl yerrsrsrsre s ggerrrzy | () .
ﬁ:"f’(ﬂ) Figure 4.

On the other hand, as TK D [d, a], (12.1) implies
dens(X11tK)2>1 - 2¢. (12.3)

It follows from (12.2) and (12.3) that X N tX # @ — a contradiction.
We have shown that a and b are endpoints of some gaps L and M. Suppose 1IL "M

# @. Consider then short semi-neighbourhoods U and V of a and b correspondingly such
that TU = V. By Corollary 9.2(i)

dens(X1U) 2 1-¢, densXIV) 2 1-=¢.

Using the Lipschitz property of T once more, we conclude tX N X #@. This contradiction
completes the proof. ®

Lemma 12.2. There are no attractors A possessing the Injective Gluing Scheme

described in Lemma 12.1.

Proof. Let L denote the family of gaps L for which TL N A # @ (as at the end of
§11). Foreach L e L find apoint x; € AN1L.

By Corollary 11.1 the family L is infinite. Hence, we can extract a sequence L; € L
converging to some point a € A. Then x;. — 7(a). As points of A can approach ¢ only from

one side (the Injective Gluing Scheme), we have a #c.

Further, as a and t(a) lie on A, by the Injective Gluing Scheme, they are the endpoints
of some gaps L and M such that TL "M =@. Consequently, L; and L lie on the different
sides of a and, hence, 1L, M for sufficiently large i. This contradicts the property 1L, N A #

@. a
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Now we get an immediate corollary from the above lemmas:

Corollary 12.1. An attractor A contains no measurable invariant sets X of positive
measure for which f: X — X is invertible. =

The Second Proof of the Theorem on Solenoid's Measure (§8). The theorem
immediately follows from the above Corollary as f1 A is injective for a solenoidal A. ®

Proof of the Theorem on Entropy. Let W be an a.c.i. probability measure, with
supppu=A. If hu(f) =0 then (f, p) is invertible as the transformation with the invariant measure
[Ro]. In other words, there is a measurable invariant set X € A such that pX)=1 and f: X -
X is a one-to-one transformation. As W is absolutely continuous, A(X) > 0. So, we have
arrived at a contradiction with Corollary 12.1. m

Appendix 1. Measurable endomorphisms with a quasi-invariant measure.

Let X be a space with a finite measure v, and g:X — X be a measurable endo-
morphism. The measure v is called quasi-invariant if v(Y)=0 = v(g''Y) =0 for any
measurable set Y c X. Ifaswell v(Y)=0 = v(gY) =0, then the transformation g is called
non-singular. In what follows we will assume that g is non-singular.

They say that some property is valid mod 0 if it is valid outside some null-set.

A set Y is called invariant if gY €Y and completely invariant if also g'Y C Y.

A map g is called ergodic if one of the following equivalent properties holds:

El.  There are no partitions X =X, UX, of X into two invariant measurable sets of positive
measure.
E2.  There are no non-trivial completely invariant subsets Y < X (i.e., such that 0 <v(Y) <

v(X)).

A set X is called weakly wandering if fX "X =@ (n21) and strongly wandering if
X AfmX =@ (n>m=20). Of course, in the invertible case these notions are equivalent.

The transformation g is called conservative if it satisfies one of the following equivalent
conditions:

Cl. g has no weakly wandering sets of a positive measure.
C2. Any invariant measurable set Y is completely invariant mod 0, i.e., v(glY\Y)=0.



C3. The Poincaré Return Theorem holds: if v(Y) >0, then orbits of a.a. points y € Y return
to Y infinitely many times.
Further, the transformation g is ergodic and conservative simultaneously iff one of the
following properties is valid:
EC1. There are no non-trivial measurable invariant subsets Y < X (exactly this property is
useful for us).
EC2. Let Y c X be any set of positive measure. Then a.a. orbits pass through it infinitely
many times.
We call the endomorphism g asymptotically conservative if X = O g"C mod 0 where

n=0
C is an invariant set on which g is conservative.

A non-conservative map is called dissipative. It is called purely dissipative if there are no
invariant sets Y c X of positive measure on which g is conservative.

Theorem D (The Hopf Decomposition) Let g: X — X be a non-singular
transformation. Then there is the following decomposition:

X = AC(g) vD(g)

where AC and D are completely invariant sets such that gl AC is asymptotically conservative,

while g!|D is dissipative. Moreover, AC = O £ C where C=C(g) is the maximal invariant

n=0
subset on which g is conservative. We call it the Conservative Kernel of g. The sets AC, D
and C are uniquely defined mod 0.

Corollary. An ergodic endomorphism g is either asymptotically conservative or purely
dissipative.

Remark that if an invertible transformation g is purely dissipative then X = O oy

n=—o0

where Y is a strongly wandering set. This statement fails for non-invertible transformations as
consideration of solenoidal maps of the interval shows (see §8).

Appendix 2. Polymodal and Smooth Generalizations:
Survey of the Results.

Let us introduce some classes of transformations of the interval or the circle.
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Sa— C3-maps with a negative Schwarzian derivative and d non-flat critical points each
of which is an extremum.

A, — C2-maps with d non-flat critical points each of which is an extremurm.

%R, — C2-maps with d non-flat critical points.

s=Us, A=UA, %=U%R,
d=0 d=0 d=0

Remark. For C* maps non-flatness of critical points means that f®™(c) # 0 for some
ne N. For lower smoothness this term needs extra explanation of the sort: "| f'| is of a power
order near critical points" (see [BL9], [MMS]).

The widest reasonable class for which the results of the present paper should be valid is the
class R. At the present time the authors can prove all the results for fe S — and part of them in
wider classes. Let us present these generalizations in more detail (we are dwelling on all, not only
our own, results).

§2: Singer's Theorem on Limit Cycles is valid for arbitrary maps with negative
Schwarzian derivative [S]. Consequently, such maps with d critical points have at most d + 2
limit cycles. In the recent paper [MMS] it was proved that any map f e R has finitely many limit
cycles.

The Theorem on Wandering Intervals has been generalized subsequently to the
following classes: homeomorphisms of the circle of class R [Y]; class ’11 [MS]; class S [L2];
class A [BL9]; class R [MMS]. So by the present time it has been proved in the maximal sensible
generality. The analytical tools for smooth generalizations were developed in [Y], [MS], while the
principle step toward the polymodal case was made in [L2].

The Theorem on thé Spectral Decomposition is of a purely topological nature and
goes back to Sharkovskii's papers (1960's). The complete picture for arbitrary continuous maps
of the interval is described in [B1] and for maps of one-dimensional branched manifolds in [B2].
For piecewise monotone maps it was described as well by many other authors (Z. Nitecki,
F. Hofbauer, Preston...). F. Hofbauer treated also the discontinuous case.

§4. The Lemma on Non-Contractability is valid for arbitrary continuous maps
under the extra assumption that J is non-wandering.

In The First Expanding Lemma f can be non-smooth, but still unimodal. In the
polymodal case this lemma should be changed by the technique of unimodal decompositions [L2].

The Second Expanding Lemma clearly holds for arbitrary piecewise monotone maps.



For the Third Expanding Lemma the condition of unimodalness is essential. The
proof uses the condition Sf <0 as well, but probably it is extra.

§5. Lemma 5.1 was proven by Maiié [Ma] for arbitrary C2-maps.

The Theorem on Attractors was proven in [BL1,2,3] for arbitrary maps with Sf <0
and finitely many critical pooints (perhaps, flat). The authors also can prove it for f€ 4. For
this class the way should be another: one must start from the Decomposition into Ergodic
Components [BL6] and then construct the attractor for each ergodic component of positive
measure.

§6. In the polymodal case the Theorem on Ergodicity must be replaced by the
Decomposition into Ergodic Components. As we have just mentioned, it was realised in [BL6].

Note, however, that in the polymodal solenoidal case Lemma 6.1 is proven in a slightly
weaker form, since we have no exact polymodal version of Lemma 4.4.

§7. Using the technique of Unimodal Decompositions, the Theorem on Strongly
Wandering Sets can be proven for fe S.

§8. The Theorem on Solenoid's Measure is proven in [MMSS] for f € A, and in
[BLS8] — for the widest class R.

§89-11. The results of these sections are generalized to the class S without essential
changes. Actually, we can prove them for fe A.

§12. These results we can prove for fe S.
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