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Abstract. We prove Combinatorial rigidity for infinitely renormalizable unicrit-
ical polynomials, fc : z 7→ zd + c, with a priori bounds and some ”combinatorial
condition”. Combining with [KL2], this implies local connectivity of the connect-
edness locus (the ”Mandelbrot set” when d = 2) at the corresponding parameter
values.
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1. Introduction

The Multibrot set Md or the connectedness locus is the set of parameter values c
in C for which the Julia set of fc : z 7→ zd + c is connected. M2 is the well-known
Mandelbrot set.

There is a way of defining graded partitions of Multibrot set into pieces such
that dynamics of maps fc in each piece has some special combinatorial property.
Maps in the same piece of partition of a certain level will be called combinatorially
equivalent up to that level. Conjecturally, combinatorially equivalent (up to all
levels) non-hyperbolic maps in this family are conformally equivalent. As stated in
[DH1] for d = 2, this Rigidity Conjecture is equivalent to the local connectivity of
the Mandelbrot set and it naturally extends to degree d unicritical maps. In the
case of quadratic family, this conjecture is formulated as MLC by A. Douady and
J.H. Hubbard. They also proved there that MLC implies Density of hyperbolic maps
among quadratic maps. These discussions had been extended to degree d unicritical
maps by D. Schleicher in [Sch].

In 1990’s, Yoccoz proved MLC at all non-hyperbolic parameter values which are
at most finitely renormalizable. He also proved local connectivity of Julia set for
these parameters, See [H]. Degree 2 assumption was essential in his proof.

In [L1], M. Lyubich proved combinatorial rigidity for a class of infinitely renor-
malizable quadratic polynomials. These are degree two polynomials satisfying Sec-
ondary limbs condition, SL, with sufficiently high returns. Proof in this case also
depends on degree 2. Local connectivity of Julia sets for unicritical degree d poly-
nomials which are at most finitely renormalizable has been shown in [KL1] which
is done by ”controlling” geometry of Modified principal nest. The same controlling
technique is used to settle the rigidity problem for these parameters in [AKLS]. In
more recent works the a priori bounds (for renormalization levels) established for
more parameters. In [K2] it is proved for primitive infinitely renormalizable maps of



bounded type, in [KL2] it is proved for all parameters in Decorations and in [KL3]
for Molecules. Here we prove that a priori bounds imply combinatorial rigidity
for infinitely renormalizable maps in SL, which includes all parameters for which a
priori bounds are known to us.

Theorem 1.0.1 (Rigidity Theorem). Let fc, for c ∈ Md, be an infinitely renor-
malizable degree d unicritical polynomial with a priori bounds in SL. Then fc is
combinatorially rigid.

The proof of rigidity in [L1], stated for quadratic maps under general assumption
of the a priori bounds and SL but it also goes through for degree d unicritical
polynomials. The main difference between our proof and the one in [L1] is that the
construction of Thurston conjugacy in [L1] was done along all the principal nest but
the modified principal nest introduced in [KL1] and the beautiful idea in the proof
of rigidity for non-renormalizable maps in [AKLS] helps us to pass over principal
nest much easier which makes the whole construction simpler.

Combining the above theorem with [K2] and [KL2] we have the following:

Corollary 1.0.2. Let f and f̃ be two infinitely renormalizable unicritical degree d
polynomial-like maps satisfying molecule condition. If f and f̃ are combinatorially
equivalent then they are hybrid equivalent.

The following infinitely renormalizable parameter values are known to enjoy the
a priori bounds: real infinitely renormalizable unicritical polynomials (see [LV] and
[LY]), for decorations and for molecules which includes infinitely primitive renormal-
izable parameter values of bounded type. We will see that these parameters are in
SL, so combining with the theorem mentioned above, this will imply combinatorial
rigidity for these parameter values.

The structure of the paper is as follows. In §2 we introduce some background in
holomorphic dynamics required for our work. In §3, Yoccoz puzzle pieces are defined,
the modified principal nest is constructed and finally combinatorics of unicritical
polynomials is discussed. In §4, we reduce the rigidity problem to existence of a
Thurston conjugacy and construct it.

1.1. Acknowledgment. I am indebted to M. Lyubich because this paper would
have never been finished without his great patience and he also suggested the prob-
lem. Further thanks is due to R.Pérez for our very useful discussions on the combi-
natorics of the Mandelbrot set.

2. Polynomials and Multibrot sets

2.1. External rays and Equipotentials. The general references for the following
material are [M1] and [B].

Let f : C → C be a monic polynomial of degree d, f(z) = zd +a1z
d−1 + ...+ad,∞

is a super attracting fixed point of f and its basin of attraction is defined as
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Df (∞) = {z ∈ C : fn(z) → ∞}

Its complement is called the filled Julia set : K(f) = C \ Df (∞). The Julia
set, J(f), is the common boundary of K(f) and Df (∞). It is well-known that the
Julia set and the filled Julia set are connected if and only if all critical points stay
bounded under iteration of f .

With f as above, there exists a conformal change of coordinate, Böttcher co-
ordinate, Bf which conjugates f to the dth power map z 7→ zd throughout some
neighborhood of infinity Uf , that is,

Bf : Uf → {z : |z| > rf ≥ 1}

such that Bf (f(z)) = (Bf (z))
d and Bf (z) ∼ z as z → ∞.

In particular, if the filled Julia set is connected, Bf coincides with the Riemann
mapping of the whole basin Df of infinity onto the complement of the closed unit
disk.

The External rays Rθ = Rθ
f of angel θ and equipotentials E(r) = Er

f of radius

r are defined as the Bf -preimages of the straight rays {reiθ : rf < r < ∞} and
the round circles {reiθ : 0 ≤ θ ≤ 2π}. It follows from equivariance relation that
f(Rθ) = Rdθ.

A ray Rθ is called periodic ray of period p if fp(Rθ) = Rθ. It is easy to see that a
ray is fixed (p = 1) if and only if θ is a rational number of the form 2jπ/(d− 1). By
definition, a ray Rθ lands at a well defined point z of J(f) if the limiting value of
the ray Rθ exists and equals to z. Such a point z ∈ J(f) is called the landing point
of the ray. The following theorem characterizes the landing points of the periodic
rays. See [DH1] for further discussions.

Theorem 2.1.1. Let f be a polynomial of degree d ≥ 2 with connected Julia set.
Every periodic ray lands at a well defined periodic point which is either repelling or
parabolic. Vice versa, every repelling or parabolic periodic point is the landing point
of at least one and at most finitely many periodic rays with the same ray period.

In particular, this theorem implies that the external rays landing at a periodic
point a are organized in several cycles. Suppose a = {ak}

p−1
k=0 is a repelling or

parabolic cycle of f and denote by ℜ(ak) the union of closed external rays landing
at ak. The configuration

ℜ(a) =

p−1⋃

k=0

(ℜ(ak))

with the rays labeled by their external angels, is called the periodic point portrait of
f associated to the cycle a.

2.2. Unicritical family. Any degree d polynomial with only one critical point is
affinely conjugate to Pc(z) = zd + c for some complex number c.
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A case of especial interest is the following fixed point portrait. The d − 1 fixed
rays R2πj/(d−1) land at d− 1 fixed points called βj and moreover these are the only
rays landing at βj’s. These fixed points are non-dividing which means K(F ) \ βj is
connected for any j. If the other fixed point called α is also repelling, then there
are at least 2 rays landing at it, so it is dividing and by above result these rays
are permuted under dynamics. The following statement has been shown in [M2] for
quadratic polynomials. The same ideas apply to show it for degree d polynomials.

Proposition 2.2.1. If at least 2 rays land at one of the fixed points α of f , we have

• The component of C \ ℜ(α) containing the critical value is a sector bounded
by two external rays.

• The component of C \ f−1(ℜ(α)) containing the critical point is a region
bounded by 2d external rays landing in pairs at the points e2πk/dα for k =
0, 1, . . . , d− 1.

The Multibrot set Md of degree d is defined as the set of parameters c in C for
which J(Pc) is connected or equivalently the critical point does not escape to infinity
under iteration of Pc. In particular, M2 is the well-known Mandelbrot set, See figure
1 and 2. A well-known result due to Douady and Hubbard, see [DH1], shows that the
Multibrot set, Md, is connected. The proof is by constructing an explicit conformal
isomorphism

BMd
: C \Md → {z : |z| > 1}

which is given by BMd
(c) = Bc(c), where Bc is the Böttcher coordinate for Pc.

Figure 1. The Mandelbrot set
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Figure 2. Figure on the left shows the Multibrot set M3. The figure
on the right is an enlargement of the 1/2 limb in M3. The dark regions
show some of the secondary limbs

By means of this conformal isomorphism, BMd
, the parameter external rays and

equipotentials are defined as the BMd
-preimages of the straight rays going to infinity

and round circles around 0. This provides us with two orthogonal foliations of the
complement of the Multibrot set.

A polynomial Pc (and the corresponding parameter c) is called hyperbolic if Pc has
an attracting periodic point. The set of hyperbolic parameters in Md is the union
of some components of intMd which are called hyperbolic components.

The main hyperbolic component is defined as the set of parameter values c for
which Pc has an attracting fixed point. Outside of the closure of this set all the
fixed points become repelling. Now, consider a hyperbolic component H ⊂ int Md

and suppose bc is the corresponding attracting cycle of period k. On the boundary of
H this cycle becomes neutral and there are d−1 points bi where Pbi

has a parabolic
orbit. The one, d ∈ ∂H, which divides the Multibrot set into two piece is called
the root of H, (See [DH1] for degree 2 case). Indeed, any hyperbolic component has
one root and d − 2 co-roots. The root is the landing point of two parameter rays,
while every co-root is the landing point of a single parameter ray, See figure 3. More
details for combinatorics of degree d unicritical maps can be found in [Sch].
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If c is in a hyperbolic component H which is not the main component of the
Multibrot set, the basin of attraction, Ac , is defined as the set of points z such that
Pc(z) converges to the cycle bc. The boundary of its component containing bc, Dc,
is a Jordan curve and moreover P k

c on Dc is topologically conjugate to θ to dθ on
the unit circle, so there are d − 1 fixed points of P k

c which are repelling periodic
points (of Pc) of period dividing period of bc (its period can be strictly less than
period of bc). Among all the rays landing at these periodic points, let θ1 and θ2 be
the angels of the external rays bounding the sector containing the critical value of
Pc. The following theorem makes connection between external rays Rθ1 , Rθ2 and the
corresponding parameter external rays Rθ1

, Rθ2
. See [DH1] or [Sch] for the proof.

(a) dynamical space (b) parameter space

Figure 3. The picture on the left shows a primitive renormalizable
Julia set and the external rays Rθ1 and Rθ2 landing at the corre-
sponding periodic point. The figure on the right is the corresponding
primitive little multibrot copy. It also shows the parameter external
rays Rθ1

and Rθ2
landing at the root point.

Theorem 2.2.2. The parameter external rays Rθ1
and Rθ2

land at the root d of H
and these are the only rays that land at d.

Two parameter external rays Rθ1
and Rθ2

cut the plane into two components. The
one containing the component H, with the root point d attached to it is called the
wake Wd. So a wake is an open set with a root point attached to its boundary. For a
wake Wd and an equipotential of radius η, E(η), the truncated wake W (η) = Wd(η)
is the bounded component of Wd \E(η). Part of the Multibrot set contained in the
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wake Wd with the root point d attached to it is called Limb Ld of the Multibrot set
originated at H. By definition, every Limb is a closed set.

The wakes attached to the main cardioid are called primary wakes and a limb
associated to such a primary wake will be called primary limb. If H is a hyperbolic
component attached to the main cardioid, all the wakes attached to such a compo-
nent H are called secondary wakes and similarly, a limb associated to a secondary
wake will be called secondary limb. A truncated limb is obtained from a limb by
removing a neighborhood of its root. Some secondary limbs are shown on figure 2.

Given a parameter c in H, we have the attracting cycle bc as above and the
associated repelling cycle ac which contains the landing point of the external rays
Rθ1 and Rθ2 . The following result gives the dynamical meaning of the parameter
values in the wake Wd (See [Sch] for the proof).

Theorem 2.2.3. For parameter c in Wd, the repelling cycle ac stays repelling and
the isotopic type of rays portrait ℜ(ac) is fixed throughout Wd .

2.3. Polynomial-like maps. A holomorphic branched covering f : U ′ → U such
that U ′ is compactly contained in U is called a polynomial-like map. Reader can con-
sult [DH2] for the following material about polynomial-like maps. Every polynomial
can be viewed as a polynomial-like map after restricting it onto an appropriate neigh-
borhood of the filled Julia set. In what follows we will only consider polynomial-like
maps with one branched point of degree d (which is assumed to be at zero after
normalization) and refer to them as unicritical polynomial-like maps.

The filled Julia set K(f) is naturally defined as

K(f) = {z : fn(z) ∈ U ′, n = 0, 1, 2, ...}.

The Julia set J(f) is defined as the boundary of K(f). They are connected if and
only if K(f) contains the critical point.

Given a polynomial-like map f : U ′ → U , we can consider the fundamental
annulus A = U \ U ′. It is not canonic because any choice of V ′ ⋐ V such that
f : V ′ → V is a polynomial-like map with the same Julia set will give a different
annulus but we can associate a real number, modulus of f , to any polynomial-like
map f as follows:

mod(f) = sup mod(A)

where the sup is taken over all possible fundamental annuli A of f .
Two polynomial-like maps f and g are called topologically (quasi-conformally,

conformally, affinely) conjugate if there is a choice of domains f : U ′ → U and
g : V ′ → V and a homeomorphism h : (U,U ′) → (V, V ′) (quasi conformal, conformal
or affine isomorphism correspondingly) such that h ◦ f |U ′ = g ◦ h|U ′.

Two polynomial like maps f and g are hybrid or internally equivalent if there
is a qc conjugacy (quasi-conformal conjugacy for short) h between f and g such
that ∂h = 0 on K(f). The following theorem due to Douady and Hubbard makes
the connection between polynomial-like maps and polynomials (See [DH2] for more
details).
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Theorem 2.3.1 (Straightening Theorem). Every polynomial-like map f is hybrid
equivalent to (suitable restriction of) a polynomial P of the same degree. Moreover,
P is unique up to affine conjugacy when K(f) is connected.

In particular, any unicritical polynomial-like map with connected Julia set corre-
sponds to a unique (up to affine conjugacy) unicritical polynomial z 7→ zd + c with
c in the Multibrot set Md. Note that zd + c and zd + c/λ are conjugate via z 7→ λz
for every d− 1th root of unity λ.

The Teichmüller distance between two hybrid equivalent polynomial-like maps f
and g is defined as

distT (f, g) = inf logDil(h)

where h runs over all hybrid conjugacies between f and g, and Dil(h) denotes the
qc dilatation of the map h .

It can be seen from the construction of the straightening that the Teichmüller
distance between f and the corresponding polynomial Pc(f) : z 7→ zd +c is controlled
by modulus of f .

Proposition 2.3.2. If mod(f) ≥ µ > 0 then distT (f, Pc(f)) ≤ C where C only
depends on µ and moreover C(µ) → 0 as µ→ ∞.

3. Modified principal nest

3.1. Yoccoz puzzle pieces. Recall that for a parameter c ∈Md outside of the main
component of the Multibrot set, f = Pc has a unique dividing fixed point αc. The
q ≥ 2 external rays ℜ(αc) landing at this fixed point together with an equipotential
E, cut the domain inside E into q closed topological disks Y 0

j , j = 0, 1, . . . , q − 1,

called puzzle pieces of level zero. The main property of this partition is that Pc(∂Y
0
j )

does not intersect interior of any piece Y 0
i .

Now the puzzle pieces Y n
j of level or depth n are defined as the closures of the

connected components of f−n(int(Y 0
j )). They partition the neighborhood of the

filled Julia set bounded by the equipotential f−n(E) into finite number of closed
disks and moreover, they are bounded by piecewise analytic curves. The label of
each puzzle piece is the set of the angels of external rays bounding that puzzle piece.
If the critical point does not land on the fixed point αc there is a unique puzzle piece
Y (n) = Y n

0 of level n containing the critical point.
Let Yf denote the family of all puzzle pieces of f of all levels. It has the following

Markov property :

• Puzzle pieces are disjoint or nested. In the latter case, the puzzle piece of
higher level is contain in the puzzle piece of lower level.

• The image of any puzzle piece of level n > 1 is a puzzle piece of level n− 1
and in addition, f : Y n

j → Y n−1
k is d-to-1 branched covering or univalent

depending on whether Y n
j contains the critical point or not.

On the first level there are d(q− 1) + 1 puzzle pieces. One critical piece Y 1
0 , q− 1

ones, Y 1
i , attached to the fixed point αc, and the (d − 1)(q − 1) symmetric ones
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Z1
i attached to ωαc where ω’s are dth roots of unity (except for ω = 1). Moreover

f |Y 1
0 d-to-1 covers Y 1

1 , f |Y 1
i univalently covers Y 1

i+1, i = 1, ..., q − 2 and f |Y 1
q−1

univalently covers, Y 1
0 ∪

⋃(d−1)(q−1)
i=1 Z1

i . So f q(Y 0
1 ) truncated by f−1(E) is the union

of Y 1
1 and Z1

i ’s.
We will assume after this that fn(0) 6= α-fixed point for all n, So that the critical

puzzle pieces of all levels are well defined. As it will be apparent in a moment, this
condition is always the case for renormalizable maps.

3.2. The complex bounds in the favorite nest and renormalization. For
a puzzle piece V ∋ 0, let RV : DomRV ⊆ V → V denote the first return map
to V . It is defined for the points z in V for which there exists a positive t such
that P t

c (z) ∈ intV . Markov property of puzzle pieces implies that any component
of DomRV is contained in V and the restriction of this map (P t

c , for some t) to
each component U of DomRV is d-to-1 or 1-to-1 proper map onto V depending on
whether U contains the critical point or not. In the former case U is called central
component of RV . If the image of critical point under the first return map belongs
to the central component, the return is called central return.

The first landing map LV to a puzzle piece V ∋ 0 is also well defined and it
univalently maps each component of Dom LV onto V (LV is the identity on the
component V ).

Consider a puzzle piece Q ∋ 0. The central component P ⊂ Q of RQ is the
pullback of Q by P p

c along the orbit of the critical point, where p is the first moment
when critical orbit enters int Q. This puzzple piece P is called the first child of Q.
Recall that P p

c : P → Q is a proper map of degree d.
The favorite child Q′ of Q is constructed as follows, Let p > 0 be the first moment

when Rp
Q(0) ∈ int (Q\P ) and q > 0 be the first moment when Rp+q(0) ∈ intP (p+q

is the moment of the first return back to P after the first escape of the critical point
from P under iterates of RQ). Now Q′ is defined as the pullback of Q under Rp+q

Q

containing the critical point. Markov property implies that the map P k
c = Rp+q

Q (
with an appropriate k > 0) from Q′ to Q is proper of degree d. The main property
of the favorite child is that the image of critical point under the map P k

c : Q′ → Q
is in the first child P .

A map f = Pc is called immediately renormalizable (or satellite renormalizable)
if

f lq(0) ∈ Y 1
0 , l = 0, 1, 2, . . . .

By slight ”thickening” of the domain of this map (see [M3]) it can be turned into a
unicritical polynomial-like map. Note that above condition implies that the critical
point does not scape the domain, so the corresponding little Julia set is connected.

If f is not immediately renormalizable then there is a first moment k such that
fkq(0) belongs to some Z1

i . Define Q1 as the pullback of Z1
i under fkq. By the above

construction we form the first child P 1 and the favorite child Q2 of Q1. Repeating
the above process we get a nest of puzzle pieces
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Q1 ⊃ P 1 ⊃ Q2 ⊃ P 2 ⊃ .... ⊃ Qn ⊃ P n(1)

where P i is the first child of Qi, and Qi+1 is the favorite child of Qi. The above
process stops if and only if one of the following happens:

• The map f is combinatorially non-recurrent, that is, the critical point does
not return to some critical puzzle piece; or

• The critical point does not escape the first child P n under iterates of RQn

for some n, or equivalently, returns to all critical puzzle pieces of level bigger
than n are central and we get an infinite cascade of central returns.

In the latter case, RQn = P k
c : P n → Qn (for an appropriate k) is a unicritical

polynomial-like map, and the map P is called primitively renormalizable. Note that
the corresponding little Julia set is connected because all the returns of critical point
to Qn are central by definition (critical point does not escape).

A map Pc : C → C is called renormalizable if it is immediately or primitively
renormalizable.

Combinatorial rigidity in the critically non-recurrent case has been taken care of
in [M3]. To deal with the non-renormalizable polynomials, the following a priori
bounds have been proved in [AKLS] which is a slightly modified version of a priori
bounds that appeared in [KL1] for the first time.

Theorem 3.2.1. There exists δ > 0 such that for every ε > 0 there exists n0 > 0
with the following property. For the nest of puzzle pieces

Q1 ⊃ P 1 ⊃ Q2 ⊃ P 2 ⊃ .... ⊃ Qm ⊇ Pm

as above, if mod(Q0 \ P 0) > ε and n0 < n < m then mod(Qn \ P n) > δ.

If a map f is combinatorially recurrent, the critical point does not land at α-fixed
point, then puzzle pieces of all levels are well defined. The combinatorics of f up to
level n is the set of labels of puzzle pieces of level n. Equivalently, the combinatorics
up to level n + t determines the puzzle piece Y n

j of level n containing the critical
value f t(0). Two non-renormalizable maps are called combinatorially equivalent if
they have the same combinatorics up to an arbitrary level n. Combinatorics of a
renormalizable map will be defined in section 3.3.

Two unicritical polynomials f and f̃ with the same combinatorics up to level
n are called pseudo-conjugate (up to level n) if there is an orientation preserving

homeomorphism H : (C, 0) → (C, 0), such that H(Y 0
j ) = Ỹ 0

j for all j and H ◦ f =

f̃ ◦H outside of the critical puzzle piece Y n
0 . A pseudo-conjugacy H, is said to match

the Böttcher marking if near infinity it becomes identity in the Böttcher coordinates
for f and f̃ , so it is identity outside of ∪jY

n
j by its equivariance property.

Recall that a holomorphic motion of a given subset X of C, parameterized by a
complex manifold M, is a map Φ : M×X → M×C of the form (c, z) → (c, φc(z)),
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which is holomorphic on each slice M × {z}, injective on each slice {c} × X and
satisfies φc0(z) ≡ z for some c0 ∈ M.

Let qm and pm be respectively the levels of puzzle pieces Qm and Pm, that is,
Qm = Y qm and Pm = Y pm . The following is the main technical result of [AKLS]
which will be used frequently in our construction.

Theorem 3.2.2. Assume that a nest of puzzle pieces as in (1) is obtained for f .

If f̃ is combinatorially equivalent to f , then there exists a K-qc pseudo-conjugacy H
(up to level qm) between f and f̃ which matches the Böttcher marking and moreover

K = K(f, f̃) depends only on the hyperbolic distance between c and c̃ in the primary
wake truncated by some equipotential of radius η.

A brief sketch of the proof : Combinatorial equivalence of f and f̃ up to level zero
implies that the corresponding parameters c and c̃ are in the same truncate wake
W (η).

Inside W (η) the q external rays ℜ(α) and the equipotential of height E(h)(for
every h > η) move holomorphically in C \ 0, that is, there exists a holomorphic
motion Φ of ℜ(α) ∪ E(h) parameterized by W (η) such that φ(c̃,ℜ(α) ∪ E(h)) =

(c̃, ℜ̃(α) ∪ Ẽ(h)) This is given by B−1
c̃ ◦Bc.

Outside equipotential E(h) this holomorphic motion extends to a motion holo-
morphic in both variables (c, z) which is coming from the Böttcher coordinate near
∞. By [BR] the map φ(c̃, .) ◦ φ(c, .)−1 extends to a K0 qc map H0 : (C, 0) → (C, 0),
where K0 only depends on the hyperbolic distance between c and c̃ inside the trun-
cated wake W (η). This gives a qc map H0 : (C, 0) → (C, 0) which is a conjugacy
outside union of puzzle pieces of level zero.

By adjusting the qc map H0 inside equipotential E(h) such that it send c to c̃
we get a qc map (not necessarily with the same dilatation) H ′

0. By pulling back H ′

0

via f and f̃ we get a new qc map H1. Repeating this process for i = 1, 2, ..., n, by
adjusting qc map Hi inside the union of puzzle pieces of level i+ 1 so that it sends
c to c̃ (still qc but not with the same K) and pulling it back we get a qc map Hi+1

which is a conjugacy outside union of puzzle pieces of level i+1. At the end we will
have a qc map Hn which is a conjugacy outside of the equipotential E(h/dn).

The nest of puzzle pieces Q̃1 ⊃ P̃ 1 ⊃ Q̃2 ⊃ P̃ 2 ⊃ .... ⊃ Q̃m ⊇ P̃m are defined
as the image of the nest of puzzle pieces Q1 ⊃ P 1 ⊃ Q2 ⊃ P 2 ⊃ .... ⊃ Qm ⊇ Pm

under the map Hn. Combinatorial equivalence of f and f̃ implies that this new nest
has the properties required by Theorem 3.2.1, then it also has the a priori bounds
property. By properties of this nest, one constructs a K-qc map H from the critical

puzzle piece Qn to the corresponding one Q̃n where K only depends on the a priori
bounds δ and the hyperbolic distance of the parameters c and c̃ in the parabolic
wake truncated by some equipotential Er. The pseudo-conjugacy Hn is obtained by
univalent pullbacks of H onto other puzzle pieces.
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Remark 3.2.3. If f is combinatorially recurrent and non renormalizable, the above
process repeats to construct an infinite nest of puzzle pieces P i, Qi and pseudo-
conjugacies Hi. The a priori bounds property 3.2.1 of the nest implies that the
critical puzzle pieces shrink to the critical point. Now the qc conjugacy between f
and f̃ follows from precompactness of K-qc maps Hi from C to C normalized on the
postcritical set.

But if f is renormalizable, the process of constructing modified principal nest
stops at some level χ and returns to the critical puzzle pieces are central after level
χ. This implies that the critical puzzle pieces do not shrink to 0. In the following
section we will deal with this problem under some combinatorial and a priori bounds
type conditions.

3.3. Combinatorics of a map. If f : z 7→ zd + c0, c0 ∈ Md, is renormalizable
then there is a homeomorphic copy M0

d ∋ c0 of the Multibrot set with the following
properties (see[DH2]): for c ∈ (M0

d \ the root point) the polynomial Pc : z 7→ zd +
c is renormalizable and there is a holomorphic motion of the fixed point αc and
the rays landing at it on a neighborhood of (M0

d \ the root point) such that the
renormalization of Pc is associated to this fixed point and external rays. The copies
corresponding to satellite renormalizations are attached to the main component of
the Multibrot set.

We will see below that among all renormalizations there is the first one denoted
by Rf which corresponds to a maximal (not included in any other copy except Md

itself) copy of the Multibrot set inside the Multibrot set. Let Md denote the family
of all maximal Multibrot copies.

If Rf is also renormalizable, its renormalization will be denoted by R2f and f will
be called twice renormalizable. So there will be a canonical finite or infinite sequence
f,Rf,R2f, ... associated to f and accordingly, f is classified as at most finitely or
infinitely renormalizable. Equivalently, there will be a finite or infinite sequence τ =
{M1

d ,M
2
d , ...} of maximal Multibrot copies associated to f such that Mn

d corresponds
to the renormalization Rnf of Rn−1f . In the case of infinite renormalizable, τ is
called combinatorics of f .

Two infinitely renormalizable maps are called combinatorially equivalent if they
have the same combinatorics. Two at most finitely renormalizable maps are combi-
natorially equivalent if they are the same number of times renormalizable with the
same sequence of Multibrot copies and their last renormalizations are combinatori-
ally equivalent in the sense of definition following Theorem 3.2.1.

An infinitely renormalizable map f satisfies the secondary limbs condition if all the
Multibrot copies in the combinatorics, τ , of f belong to finite number of truncated
secondary limbs. Let SL stand for the class of unicritical polynomial like maps
satisfying the secondary limbs condition.

All these combinatorial notions extend to unicritical polynomial-like maps by
means of straightening.

12



An infinitely renormalizable map f is said to have a priori bounds if there is an
ε > 0 such that mod(Rmf) ≥ ε > 0 for all renormalizations.

4. The pullback argument

In this section we begin to prove the rigidity theorem stated in the introduction.

4.1. Reductions.

Theorem 4.1.1 (Rigidity theorem). Let f and f̃ be two infinitely renormalizable

unicritical polynomial-like maps in SL with a priori bounds. If f and f̃ are combi-
natorially equivalent, then they are hybrid equivalent.

Remark 4.1.2. If two maps f and f̃ in the above theorem are polynomials, then hy-
brid equivalence becomes conformal equivalence. This is because Böttcher coordinate
conformally conjugates them on the complement of the Julia sets. See Proposition 6
in [DH2]

The proof is divided into following three steps:

• f and f̃ are topologically equivalent
• f and f̃ are qc equivalent
• f and f̃ are hybrid equivalent

It has been shown in [J] that any unbranched infinitely renormalizable map with
a priori bounds has locally connected Julia set. Here unbranched condition follows
from our combinatorial condition and a priori bounds (see [L1] lemma 9.3). Then the
first step (topological equivalence of two combinatorially equivalent maps ) follows
from the local connectivity of the Julia sets by the Carathéodory theory. See [M1].

The last step follows from McMullen’s Rigidity Theorem [McM1]. He has shown
that an infinitely renormalizable degree 2 polynomial-like map with a priori bounds
(the same proof works for degree d unicritical polynomial-like maps) does not have
any nontrivial invariant line field on its Julia set. It follows that any qc conjugacy
h between f and f̃ satisfies ∂h = 0 almost everywhere on the Julia set, so h is a
hybrid conjugacy between f and f̃ .

If all infinitely renormalizable unicritical maps in a given combinatorial class sat-
isfy a priori bounds condition (with a uniform ε for all of them), it is easier to show
that qc-conjugacy implies hybrid conjugacy for that class rather than showing that
there is no nontrivial invariant line field on the Julia set. Since we are finally going
to apply our theorem to combinatorial classes for which a priori bounds have been
established, we will show this in proposition 4.5.5

So assume f and f̃ are topologically conjugate. We want to show the following:

Theorem 4.1.3. If two infinitely renormalizable unicritical polynomial-like maps
f and f̃ with a priori bounds in SL are topologically conjugate then they are qc
conjugate.

13



4.2. Thurston equivalence. The proof uses the following notion of Thurston con-

jugacy. Suppose two unicritical polynomial-like maps f : U ′ → U and f̃ : Ũ ′ → Ũ

are topologically conjugate. A qc map h : (U,U ′,O(0)) → (Ũ , Ũ ′, Õ(0)) which

is homotopic to a topological conjugacy ψ : (U,U ′,O(0)) → (Ũ , Ũ ′, Õ(0)) relative
∂U ∪ ∂U ′ ∪ O(0) is called Thurston conjugacy where O(0) denotes the postcritical
set

O(0) = ∪∞

i=1P
i(0)

in other words the post critical set is the closure of the orbit of critical point. Two
maps f and f̃ are called Thurston equivalent if there is such a h for an appropriate

choices of domains U,U ′, Ũ , Ũ ′.
The following result is due to Thurston and Sullivan (see [S]) which originates the

”pull-back method” in holomorphic Dynamics.

Lemma 4.2.1. If two unicritical polynomial-like maps are Thurston equivalent then,
they are qc equivalent.

Proof. Assume h1 : (U1, U2,O(0)) → (Ũ1, Ũ2, Õ(0)) is a Thurston conjugacy ho-

motopic to the topological conjugacy Ψ : (U1, U2,O(0)) → (Ũ1, Ũ2, Õ(0)) relative
∂U1 ∪ ∂U2 ∪ O(0).

As f : (U2\{0}) → (U1\{f(0)}) and f̃ : (Ũ2\{0}) → (Ũ1\{f̃(0)}) are covering

maps, h1 : (U1\{f(0)}) → (Ũ1\{f̃(0)}) can be lifted to a homeomorphism h2 :

(U2\{0}) → (Ũ2\{0}) and since h1 satisfies the equivariance relation, h1 ◦f = f̃ ◦h1,
on the boundary of U2, h2 can be extended to U1\U2 by h1. It also extends to the

critical point by sending it to the critical point of f̃ . Let us denote this new map h2.
For the same reason, every homotopy ht from Ψ to h1 can be lifted to a homotopy
from Ψ to h2. As f and f̃ are holomorphic maps, h2 has the same dilatation as
dilatation of h1. This implies that the new map h2 is also a Thurston conjugacy
with the same dilatation.

By definition, The new map h2 satisfies the equivariance relation on the annulus
U2\(f

−1(U2)).

This process can be continued to make a sequence of K-qc maps hn from U1 to Ũ1

which satisfies equivariance relation on the annulus U2 \ f
−n(U2). Compactness of

the family of K-qc maps normalized at two points (normalized on O(0) in this case)
implies that there is a subsequence hnj

which converges to some K-qc map H. For
every z outside of the Julia set, the sequence hnj

(z) stabilizes and by construction
eventually hnj

◦ f(z) = f ◦ hnj
(z). Taking limit will imply that H ◦ f(z) = f ◦H(z)

for every such a z. Equivariance for an arbitrary z on the Julia set follows from
continuity as the filled Julia set of an infinitely renormalizable unicritical map does
not have interior .

�

By the a priori bounds assumption in the theorem, there are topological disks
0 ∈ Vn,0 ⋐ Un,0 such that Rnf : Vn,0 → Un,0 is a unicritical degree d polynomial-like
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map and the moduli of the annuli Un,0 \ Vn,0 are at least some positive ε. By slight
shrinking the domains we may assume that these domains have smooth boundaries.

We will use the following notations throughout the construction:

f : V0 → U0, K0,0 = K(f),
Rf = f t1 : V1,0 → U1,0, K1,0 = K(Rf)
R2f = f t2 : V2,0 → U2,0, K2,0 = K(R2f)
...
Rnf = f tn : Vn,0 → Un,0, Kn,0 = K(Rnf)
...

Define Vn,i as the pullback of Vn,0 by f−i containing the little Julia set Jn,i =
f tn−i(Jn,0) and Un,i the component of f−i(Un,0) containing Vn,i, for i = 1, 2, ..., tn−1.
Wn,i will denote the pre-image of Vn,i under the map f tn : Vn,i → Un,i.

Accordingly, Kn,i is defined as the component of f−i(Kn,0) inside Vn,i. Note that
Rnf : Vn,i → Un,i is a polynomial-like map with the filled Julia set Kn,i which is
conjugate to Rnf : Vn,0 → Un,0 by conformal isomorphism f i : Un,i → Un,0. It has
been proved in [L1] (Lemma 9.2) that there is always definite space in between Julia
sets in the primitive case for parameters under our assumption. Compare the proof
of Prop 4.4.2. It has been shown in [McM2] that definite space between little Julia
sets implies that there exist choice of domains Un,i which are disjoint for different
i’s and moreover the annuli Un,i \ Vn,i have definite moduli. So we will assume that
on the primitive levels, the domains Vn,i are disjoint for different i’s.

In all of the above notation, the first lower subscripts denote the level of renor-
malization and the second lower subscripts run over little filled Julia sets, Julia sets
and their neighborhoods accordingly. In what follows all corresponding objects for f̃
will be marked with a tilde and any notation introduced for f will be automatically
transferred to f̃ .

To construct a Thurston conjugacy, first we will construct multiply connected

domains Ωn(k),i (and Ω̃n(k),i) in C for an appropriate subsequence n(k) of the renor-
malization levels and a sequence of K-qc maps

hn(k),i : Ωn(k),i → Ω̃n(k),i

for k = 0, 1, 2, ... and i = 0, 1, 2, ..., tn(k) − 1 where tn(k) is the period of the renor-
malization of level n(k). The domains will satisfy the following properties:

• Each Ωn(k),j is a topological disk minus some topological disks Dn(k),i.
• Each Ωn(k+1),i is well inside the topological disk Dn(k),i, that is, the modulus

of the annulus obtained from Dn(k),i \ Ωn(k+1),i is at least ζ > 0 which only
depends on a priori bounds ε.

• Each set Jn,k ∩ O(0) is well inside the topological disk Dn,k.
• Every Dn,i is the pullback of Dn,0 by f−i containing Jn,i ∩ O(0) and every

Ωn(k+1),i is the component of f−i(Ωn(k+1),0) inside Dn(k),i.
15



Finally, the Thurston conjugacy will be constructed by an appropriate gluing of
these maps on the complement of all these multiply connected domains (which is
the union of annuli). See figure 4.

Figure 4. The multiply connected domains and the buffers

4.3. Construction of Ωn,j and hn,j. Suppose we are on level n − 1 of the con-
struction. Because of the difference in type of renormalizations, we will consider the
following three cases:

(I) Rn−1f is primitively renormalizable.
(II) Rn−1f is immediately renormalizable and Rnf is primitively renormalizable.

(III) Rn−1f is immediately renormalizable and Rnf is also immediately renormal-
izable.

This will cover all renormalization levels for infinitely renormalizable maps.

Case (I) :
By applying the Straightening Theorem to the polynomial-like map

Rn−1f : Vn−1,0 → Un−1,0

we get a K1(ε)-qc map and a unicritical polynomial fcn−1

Sn−1 : (Un−1,0, Vn−1,0, 0) → (Υ0
n−1,Υ

1
n−1, 0)(2)

such that Sn−1 ◦R
n−1f = fcn−1

◦ Sn−1

(See Figure 5).
To make the notations easier to follow, we will drop the second subscript whenever

it is zero and it does not create confusion. Also, all the objects on the dynamical
planes of fcn−1

and fc̃n−1
(the ones after straightening) will be denoted by the bold

versions of the notations used for the objects on the dynamical planes of f and f̃ .
16



We need the following lemma to show that there are equipotentials of sufficiently

large radii η(ε) inside Sn−1(Wn−1,0) and S̃n−1(W̃n−1,0) in the dynamical planes for
the two maps fcn−1

and fc̃n−1
.

hn−1,0

hn−1,0

Sn−1

Rn−2f

Rn−1f

Υ1

n−1,0

Υ0

n−1,0

fc
n−1

Un−1,0

Rn−1f̃

Rn−2f̃

S̃n−1

Ũn−1,0

fc̃
n−1

Q̃1

n−1

Q1

n−1,0

Figure 5. Primitive case

Lemma 4.3.1. Let Pc : U ′ → U be a unicritical polynomial with connected Julia set
such that mod(U \U ′) ≥ ε. Then U ′ contains equipotentials of radius less than η(ε).

Proof. The map Pc on the complement of K(Pc) is conjugate to P0 on the com-
plement of the closed unit disk by Bc (Böttcher coordinate). Since radii of the
equipotentials are preserved and modulus is conformal invariant, it is enough to
prove the statement for P0 : U ′ → U . As P0 : P−1

0 (U \ U ′) → (U \ U ′) is a covering
of degree d, modulus of the annulus P−1

0 (U \U ′) is ε/d which implies that modulus
of U ′ \ D ≥ ε/d. Combining this with Grötzsch Problem in [Ah]( see section A in
chapter III) we conclude the lemma.

�

Now, we are in the position to apply the Theorem 3.2.2 to fcn−1
and fc̃n−1

. Consider
the equipotentials of radius η(ε) (obtained in the previous lemma) and the external
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rays landing at the dividing fixed points αn−1 and α̃n−1 for the two maps fcn−1
,

fc̃n−1
, and form the favorite nest of puzzle pieces (1) introduced in section 3.2. The

hyperbolic distance between cn−1 and c̃n−1 in the truncated wake, W (η), is bounded
by someM(ε) which only depends on ε. This is because parameters belong to finitely
many limbs which is a compact subset of the wake, so dilatation of the pseudo-
conjugacy from Theorem 3.2.2 is bounded by some constant K2(ε) independent of
n.

Consider the last critical puzzle pieces Y
qχn

n,0 = Qχn

n,0 and P χn

n,0 obtained in the nest
of puzzle pieces (1) and the corresponding K2(ε) pseudo-conjugacy hn−1 = hn−1,0.
Denote components of f−i

cn−1
(Qχn

n,0) and f−i
cn−1

(P χn

n,0 ) containing the little Julia sets Jn,i

by Qχn

n,i and P χn

n,i for i = 0, 1, 2, ..., tn/tn−1 −1 (recall that tn/tn−1 is the period of the
first renormalization of fcn−1

).
Two polynomials fcn−1

and fc̃n−1
also satisfy our combinatorial and a priori bounds

assumptions, so there is a topological conjugacy between them which we denote it
by ψn−1 = ψn−1,0.

Denote the closure of the annulus Qχn
n \ P χn

n by A0
n and the component of its

pullback by f
−ktn/tn−1

cn−1
around Jn,0 by Ak

n for k = 0, 1, 2, .... . Lifting hn−1 by f
tn/tn−1

cn−1

and f
tn/tn−1

c̃n−1
we obtain a K2-qc map g from A0

n to Ã0
n which is homotopic to ψn−1

relative boundaries of A0
n. This is because by the external rays connecting ∂P χn

n to
∂Qχn

n , the annulus A0
n is partitioned into some topological disks and the equivariance

relation implies that the two maps coincide on the boundaries of these topological
disks.

As f
ktn/tn−1

cn−1
: Ak

n → A0
n and f

ktn/tn−1

c̃n−1
: Ãk

n → Ã0
n are holomorphic unbranched

coverings, g can be lifted to aK2-qc map on Ak
n. All these lifted maps are the identity

in the Böttcher coordinate on the boundaries of annuli so they match together to

give a K2-qc conjugacy from Qχn
n \ Jn to Q̃χn

n \ J̃n.
The following lemma guaranties to extend g over the little Julia set Jn.
For a given Polynomial Pc with connected Julia set J , we can define a rotation

of angle θ, ρθ, on the complement of the Julia set as the rotation of angle θ in the
Bötcher coordinate, that is B−1

c (eiθ.Bc). By means of straightening one can define
rotations of angle θ on the complement of the Julia set of polynomial-like maps.
It is not canonic as it depends on the choice of straightening but it’s effect on the
landing points of the external rays is canonic.

Proposition 4.3.2. Let f : V2 → V1 be a polynomial-like map with connected Julia
set J . If φ is a homeomorphism from V1 \ J to V1 \ J which commutes with f , then
there exists a rotation of angle 2jπ/(d − 1), ρj, such that ρj ◦ φ extends onto the
Julia set J and this extension is the identity map on the Julia set.

Proof. Consider an external ray R landing at the non-dividing fixed point β0 of f . As
this ray is invariant under f and φ commutes with f , we have f ◦φ(R) = φ◦f(R) =
φ(R) which means φ(R) is also invariant under f . By Theorem 2.1.1 this ray will
land at a non-dividing fixed point βj of f . Now choose ρj such that ρj(φ(R)) lands
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at β0. Denote ρj ◦ φ by ψ and ρj(φ(R)) by R′. Obviously ψ commutes with f and
R′ is invariant under f .

The external ray, R, cuts the annulus V1 \V2 into a quadrilateral I0,1. f -preimage
of this quadrilateral produces d quadrilaterals denoted by I1,1, I1,2, . . . , I1,d ordered
clockwise starting from R and similarly the fn-preimages of the quadrilateral I0,1

produces dn quadrilateral In,1, In,2, . . . , In,dn (ordered clockwise). In the same way,
the external rayR′ produces quadrilaterals denoted by I ′n,j ordered clockwise starting
from R′. First we will show that the Euclidean diameter of every quadrilateral In,j

(similarly I ′n,j) goes to zero when n goes to infinity.

Define Vi+1 as f−i(V1) and denote by di+1 the hyperbolic distance on this annulus.
As In,j ⊆ Vn−1 and the intersection of the topological disks Vn is J , the quadrilaterals
In,j get close to the boundary of the set V1 \ J by making n large enough. In order
to show that the Euclidean diameter of each quadrilateral goes to zero it is enough
to show that their hyperbolic diameters are bounded with respect to the metric
d1 on the annulus V1 \ J . The map fn−2 : (Vn−1 \ J, dn−1) → (V1 \ J, d1) is an
unbranched covering of degree dn−2 so it is an isometry and also the inclusion map
from (Vn \ J, dn) to (V1 \ J, d1) is a contraction. Since image of In,j under fn−2 is a
compact subset of V1 \ J we conclude that In,j has bounded hyperbolic diameter in
(V1 \ J, d1).

As the map ψ satisfies the equivariance relation, it sends the quadrilateral In,j

to the quadrilateral I ′n,j. The same argument as the above one implies that the
hyperbolic distance between In,j and I ′n,j inside V1 \ J is uniformly bounded.

To conclude the lemma we need to show that ψ(w) converges to w when w con-
verges to J . As w and ψ(w) will belong to In,j and I ′n,j for large n’s, the above
argument implies that the Euclidean distance between them goes to zero. �

Note that no rotation is needed if d = 2, that is, every homeomorphism which
commutes with f extends on to the Julia set as the identity map.

Applying the above lemma to ψ−1
n−1 ◦ g by choosing Qχn

n , P χn
n and an external ray

connecting the boundary of Qχn
n to the little Julia set inside it we conclude that g can

be extended onto the little Julia set Jn,0 and this extension equals to ψn−1 on Jn,0.
Proof of the above lemma also implies that g and ψn−1 are homotopic relative Jn

and boundary of Qχn
n . This is because the boundaries of the annuli and the curves

obtained in the above lemma cut the puzzle piece Qχn
n into (infinite) topological

disks such that g and ψn−1 are equal on their boundaries.
In the same way, the map hn−1 can be extended onto the other puzzle pieces Qχn

n,i

and moreover, the map hn−1 is homotopic to ψn−1 on Qχn

n,i relative Jn,i and boundary
of Qχn

n,i. We will denote the map obtained by gluing hn−1 and the extensions by the
same notation as hn−1.

Lemma 4.3.3. The map hn−1 can be adjusted on a neighborhood of the little Julia set

Jn,0 such that it sends Vn,i = Sn−1(Vn,i) quasi conformally onto Ṽn,i = S̃n−1(Ṽn,i).
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Proof. First we will show this for i = 0. Choose a topological disk X̃ containing Ṽn =

Ṽn,0 and disjoint from other domains Ṽn,i (i 6= 0) such that the annuli X̃\hn−1(Vn)

and X̃ \ Ṽn have moduli bounded from below and above (only depending on ε).

Bounded from below is because S̃n−1(Ũn \ Ṽn) and image of Un \ Vn under the qc

map hn−1 ◦Sn−1 gives some definite space around Ṽn,i’s and hn−1(Vn,i)’s. Bounded

from above is easily done by making X̃ small enough. Denote h−1
n−1(X̃) by X.

Consider a qc homeomorphism Σ from X̃ \ Jn onto D4 \ D1 such that image of
∂(hn−1(Vn)) under the map Σ is ∂D3. Build a family of diffeomorphisms φt of
D4 \ D1 for t ∈ [0, 1] such that φ0 is identity on D4 \ D1 and φ1 is identity on the
boundaries of D4 \ D1 and it maps the circle of radius 3 to a circle of radius r for
some small r > 1 which will be determined later. Such an example can be made by
sliding the points along rays passing from origin.

The composition map gt = Σ−1 ◦ φt ◦ Σ ◦ hn−1 is a continuous family of homeo-

morphisms from X \ Jn to X̃ \ J̃n which is an isotopy relative ∂X and moreover g1

sends ∂Vn to a closed curve close to J̃n. If r in the construction is small enough

depending only on ε, the image of this curve will be definitely contained in Ṽn. A

lower bound for r can be found in terms of mod(X̃ \ hn−1(Vn)) which we made it
bounded from above and below earlier.

Now consider a qc map Ξ from X̃\Jn onto D4\D1 such that the image of ∂(Ṽn) is
∂D3 and image of ∂(g1(Vn)) is the circle of radius r. Now concatenating the family
gt with the family Ξ−1 ◦ φ2−t ◦Ξ ◦ g1 for t ∈ [1, 2] gives a deformation of hn−1 which

maps Vn to Ṽn. Denote the time 2 map by h′

n−1. Upper and lower bounds in the
previous paragraph and construction of φt implies that this map is K3-qc where K3

only depends on the a priori bounds ε.
By pulling back the above construction with f−k

cn−1
for k = 1, 2, 3, ..., tn/tn−1 we

adjust hn−1 such that it maps Vn,i to Ṽn,i. �

Remark 4.3.4. In the above Lemma, it would be easier to show that such a map
exists but we will later use the property that this new map is homotopic to hn−1,0

relative little Julia set Jn,0.

Now, let ∆n−1,0 be Sn−1-preimage of the domain bounded by the equipotential of

height η(ε) and let hn−1,0 be S̃−1
n−1 ◦ h′

n−1 ◦ Sn−1.
Let Ωn−1,0 be ∆n−1,0 minus topological disks Vn,itn−1

, for i = 0, 1, ..., tn/tn−1. It

is clear that hn−1,0(Ωn−1,0) = Ω̃n−1,0 and it is K3-qc where K = max {K1, K3}.
Pulling back ∆n−1,0 by f−i for i = 1, 2, ..., tn−1 along the orbit of critical point we

get ∆n−1,i’s. The map hn−1,i from ∆n−1,i to ∆̃n−1,i is defined as f̃−i ◦ hn−1,0 ◦ f
i.

Notation Ωn−1,i is self explanatory.
Finally, the annulus Vn−1,0 \Wn−1,0 which has definite modulus (depending only

on ε) is around Ωn−1,0 and contained in the disk Vn−1,0. Moreover, preimages of
this annulus by conformal maps f−i give definite annuli around Ωn−1,i which are
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contained in the disks Vn−1,i . This proves that the domains Ωn−1,i are well inside
the disks Vn−1,i.

Case (II) :
Given a polynomial-like map Rn−1f : Vn−1,0 → Un−1,0, there is a k1(ε)-qc map

Sn−1 satisfying equation (2).

Figure 6. Figure of an infinitely renormalizable Julia set. The first
renormalization is of satellite type and the second one is of primitive
type. The puzzle piece at the center , Qχ1

n , is the first puzzle piece in
the favorite nest.

In this case, fcn−1
is immediately renormalizable and its second renormalization

is of primitive type. Consider an equipotential of radius η(ε) (see lemma 4.3.1), the
external rays landing at the αn−1 fixed point and the external rays landing at the
fcn−1

-orbit of the fixed point αn of the renormalization of fcn−1
(See figure 6). These

rays and the equipotential move holomorphically inside the secondary wake W (η)
containing the secondary limb.

Now we need to introduce some new notations for puzzle pieces. Let us denote

f
tn/tn−1

cn−1
by g (through this case), and let Y 0

0 as before, denote the puzzle piece
containing the critical point which is bounded by the equipotential E(η), the external
rays landing at αn−1 and its fcn−1

-preimages (ωiαn−1 where ω is a dth root of unity).
External rays landing at αn and their g-preimages cut the puzzle piece Y 0

0 into some
pieces. Let us denote the critical one by B0

0 , the non-critical ones which have a
boundary ray landing at αn fixed point by C0

i and the rest of them by A0
j (these are

the ones which have a boundary external ray landing at ωiαn).
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Consider the critical puzzle piece Y 0
0 , g-preimage of this set along the postcriti-

cal set is inside itself and since all processes of making modified principal nest and
pseudo-conjugacy are obtained by pullback arguments, the same ideas will be ap-
plicable except that we do not have equipotentials for the second renormalization.
As we will see in a moment, external rays and part of the equipotential bounding
Y 0

0 will play the role of a equipotential for the second renormalization of fcn−1
.

As fcn−1
is immediately renormalizable, every gn(0) belongs to Y 0

0 and since the
second renormalization of fcn−1

is of primitive type, there is a first moment t such
that gt(0) is in A0

1 (rearrange the indices if required). Pulling back A0
1 by g−t along

the critical orbit, we get a critical puzzle piece Qχ1

n which is strictly inside B0
0 . This

is because B0
0 is bounded by the external rays landing at αn and its g-preimages, so

if Qχ1

n intersects boundary of B0
0 , orbit of this intersection under gk for k ≥ 2 will

stay on the rays landing at αn which implies that image of Qχ1

n can never be A0
1.

Obviously they can not intersect at equipotentials. Now, consider the first moment
m > t when gm(0) returns back to Qχ1

n and pullback Qχ1

n by g−m along the critical
orbit to get P χ1

n . The rest of the process to form the favorite nest is the same as in
section 3.2

The Dilatation of the K1-qc map obtained in the Theorem 3.2.2 depends on the
hyperbolic distance between cn−1 and c̃n−1 inside one of the secondary wakes under
our consideration, W (η), which only depends on the a priori bounds ε and the
combinatorial condition. So we obtain a K2-qc map hn−1 = hn−1,0 from Y 0

0 to

Ỹ 0
0 . Lifting this map by fcn−1

we have a K2-qc pseudo-conjugacy from the interior

of equipotential E(η) to the interior of equipotential Ẽ(η). In other words, it is
obtained by lifting hn−1 on the domain of LY 0

0
(first landing map on Y 0

0 ) and taking
the Böttcher coordinate on the complement of Julia set. As the residual set is
hyperbolic, this map extends to a qc map with the same dilatation as dilatation of
K2.

Now, we use the same method as Case (I) to adjust this map to get a new K3-qc

map h′

n−1,0 which sends Sn−1(Vn,itn−1
) to S̃n−1(Ṽn,itn−1

) for i = 0, 1, 2, ..., tn/tn−1 − 1.
Now, ∆n−1,0 is defined as Sn−1-pullback of the domain inside the equipotential E(η)

and hn−1,0 is defined as the lift of h′

n−1,0 by Sn−1 and S̃n−1. The domain Ωn−1,0

is ∆n−1,0 minus topological disks Vn−1,itn−1
for i = 0, 1, 2, ..., tn/tn−1 − 1. The sets

∆n−1,i, Ωn−1,i and the maps hn−1,i for i = 1, 2, 3, ...tn−1 are defined as pullbacks and
lifts of ∆n−1,0, Ωn−1,0 and hn−1,0 by f−i. By taking K = max{K1, K3}, hn,i’s are
K3-qc. The same reason as the one in Case (I) shows that Ωn−1,i are well inside the
disks Vn−1,i.

Case (III) :
Consider the K1-qc straightening (2) for the polynomial-like map Rn−1f :

Vn−1,0 → Un−1,0 and the corresponding polynomial fcn−1
which is twice immedi-

ately renormalizable in this case. The argument in this case relies more on the
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compactness of the parameters under consideration rather than a dynamical con-
struction.

Figure 7. A twice satellite renormalizable map. It also shows the
domains Ln−1,0 and L′

n−1,0.

Little Julia sets of the first renormalization of fcn−1
are joined at the α fixed

point of fcn−1
. Note that this fixed point is one of the β fixed points of each little

Julia set. Lets call the union of this little Julia sets Julia bouquet and denote it by
B1,0. Similarly the little Julia sets J2,i, i = 0, 1, 2, ..., (tn+1/tn−1) − 1 of the second
renormalization of fcn−1

are organized in pairwise disjoint bouquets, B2,j, of Julia
sets touching at the same periodic point, that is, each B2,j consists of tn+1/tn little
Julia sets J2,i touching at one of their β fixed points (as usual B2,0 denotes the one
containing the critical point).

By an equipotential of radius η depending on ε obtained in lemma 4.3.1 and the
external rays landing at the α fixed point of fcn−1

we have the puzzle pieces of level
zero. Recall that Y 0

0 denotes the critical one. Now we want to show that the annulus
Y 0

0 \ B2,0 has definite Modulus once we restrict the parameter to the finite number
of truncated primary limbs.

The Hausdorff distance, dH(A,B), between two compact subsets A and B of the
complex plane C endowed with the Euclidean metric d is the infimum of all the ε
such that the ε neighborhood (with metric d) of A covers B and vise versa. A set
valued map c 7→ Ac is said to be upper semi-continuous if cn → c implies that the
Hausdorff limit of Acn

is contained in Ac.
Let us say that a family of simply connected domains Uλ depends continuously

on λ if there exits a continuous choice of uniformizations, ψλ, of the domains Uλ.
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Lemma 4.3.5. Let (Pλ : Uλ → Vλ, λ ∈ Λ) be a continuous family of polynomial
like maps with connected filled Julia sets Kλ. The map λ 7→ Kλ is upper semi-
continuous.

Proof. Let λn 7→ λ and assume Kn = Kλn
and Kλ denote the filled Julia sets of

Pn = Pλn
and Pλ respectively . To prove K = limKn is contained in Kλ it is enough

to show that for every ε > 0, Kn ⊆ Bε(Kλ) for sufficiently large n’s. That is because
by definition of the Hausdorff limit, for a given t ∈ K there exists a sequence of
tn ∈ Kn which converges to t. If Kn ⊆ Bε(Kλ) for arbitrary ε > 0 and large n’s as
Kλ is compact we conclude that t ∈ Kλ.

To see that Kn ⊆ Bε(Kλ) for large n’s, assume x is not in Bε(Kλ) then there
exists a finite time s such that P s

λ(x) ∈ Vλ \ Uλ. As Pλn
converges to Pλ and the

simply connected domains depend continuously on λ, P s
n(x) or P s+1

n (x) belongs to
Uλn

\ Vλn
which implies that x is not in Kn. �

Actually one can show that the above map is continuous at the parameters c such
that Kc = Jc but we don’t need this statement here.

For the satellite renormalizable parameter cn−1 in a truncated primary limb, the
equipotential of radius η moves continuously (indeed holomorphically) and one can
easily construct a continuous ”thickening” of the domains to obtain a continuous
family of polynomial like maps. As the Julia Bouquet is compactly contained in the
interior of Y 0

0 for any such a parameter and the set of parameters in our assumption
in the Theorem 4.1.1 is compact, applying the above lemma implies that there is a
definite space around B2,j inside Y 0

0 .
From the above argument we conclude that there are simply connected domains

L′

n−1 ⊆ Ln−1 (and the tilde objects) such that the annuli Y 0
0 \ Ln−1, Ln−1 \ L′

n−1,
L′

n−1 \ B2,0 (and the corresponding tilde objects) have definite (depending only on
ε) and bounded above moduli. This implies that there exits a K-qc map hn−1 from

Y 0
0 \Ln−1 to Ỹ 0

0 \ L̃n−1 which matches the Böttcher marking on the boundary of Y 0
0 .

Now by lifting hn−1 via f−l
cn−1

and f−l
c̃n−1

we obtain K-qc maps from f−l
cn−1

(Y 0
0 \Ln−1)

to f̃−l
cn−1

(Ỹ 0
0 \ L̃n−1) for l = 1, 2, ..., tn/tn−1 − 1. The domain of each such a map

is a puzzle piece Y 0
j ( j = tn/tn−1 − l) cut off by the equipotential of radius η/dl,

minus f−l
cn−1

-preimage of Ln−1. As all these maps match the Böttcher marking on the
boundaries of their domains, they glue together to give a well defined K-qc map.
Finally one can extend this map by Böttcher coordinates on the spaces between
equipotential of radius η and equipotentials of radius η/dl which will be denoted
with the same notation hn−1.

Like in the previous Cases, ∆n−1,0 is defined as Sn−1 pullback of the domain inside
equipotential E(η) and Ωn−1,0 is defined as ∆n−1,0 minus Ln−1,l = S−1

n−1(f
−l
cn−1

(Ln−1))
for l = 0, 1, ..., tn/tn−1 − 1. The map hn−1,0 is defined as lift of hn−1 on this set. The
same argument shows that Ωn−1,i are well inside the disks Vn−1,i. This completes
the construction in case (III).
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For a given infinitely renormalizable map fc, the renormalization on each level
is of primitive or satellite type, so we may associate a word P . . . PS . . . SP . . . =
P l1Sl2P l3 . . . (lj’s are non negative integers) where a P or S on the i’s place means
that the i’s renormalization of fc is of primitive or satellite type. Corresponding to
any such a word, there is a word of cases (I)m1(II)m2(III)m3 . . . (for non negative
mj’s) which is constructed as follows. For a given word of S and P , starting from
left, a P will be replaced by (I), SP by (II) and SS by (III)S. By repeating this
process, we obtain a word of cases which will be our guide to build the domains.

To finish building the multiply connected domains Ωn(k),i (and Ω̃n(k),i) and the

K-qc maps hn(k),i : Ωn(k),i → Ω̃n(k),i we follow the latter word constructed above. In
cases (I) and (II) we have adjusted the map hn−1 such that it sends boundary of
Vn−1,0 to the boundary of Ṽn−1,0 therefore if any of the three cases of construction
is following Case (I) or (II), we consider Rnf : Wn,0 → Vn,0 where Wn,0 is the
component of f−tn(Vn,0) inside Vn,0 and straighten it for these choices of the domains
(instead of Rnf : Vn,0 → Un,0). If a case of construction on level n is following the
case (III) the set ∆n,0 constructed on level n (any of the three cases) will be replaced
by ∆n,0 ∩ Sn(L′

n−1) and hn,0 will be restricted to this set and adjusted so that it

sends Sn(L′

n−1,i) to S̃n(L̃′

n−1,i). The annulus Ln−1 \ L
′

n−1 will provide the definite
space between Ωn,0 and Ln−1,0.

In the following two sections, we will denote the holes of the domains Ωn,i by
Vn+1,j, that is, Vn+1,j is Vn+1,j, if n belongs to the Case (I) or (II) in the construction
or Vn+1,j is S−1

n (Ln) if n belongs to the Case (III).

4.4. Gluing the maps hn,i. In this section we will construct K ′(ε)-qc maps gi
n(k)

from the annuli Vn(k),i \ ∆n(k+1),i to the corresponding ones for the tilde objects.
Any gi

n(k) has to be identical with hn(k),i on the boundary of Vn(k),i and identical

with hn(k+1),i on the boundary of ∆n(k),i (which is outer boundary of Ωn(k),i). Then
gluing all these maps gi

n(k) and hn(k),i will give a qc map, H, with dilatation bounded

by maximum of K(ε)3 and K ′(ε). In what follows, we will use the index n instead
of n(k) and assume n runs over subsequence n(k), so for all n, means for all n(k)’s.

Like constructions in the previous sections, it is enough to construct g0
n for all

n and pull them back by f−i to obtain gi
n. Construction of the maps hn,i and the

domains Vn,i and Ωn,i implies that these maps glue together on the boundaries of
their domain’s of definition. For simplicity, let us denote the map g0

n by gn. To build
a qc map from an annulus to another annulus with given boundary conditions, there
is a choice of the number of ”twists” one may consider. Moreover, to have a uniform
bound on the dilatation of such a map, the two annuli must have proportional moduli
and the number of twists has to be uniformly bounded. The number of twists which
is an integer number effects on the homotopy class of the Thurston conjugacy H.

In this section, we will show that the corresponding annuli Vn,0\∆n,0 and Ṽn,0\∆̃n,0

(for all n) have proportional moduli with a constant only depending on the a priori
bounds ε and also we will define the twist and its relation with the dilatation of the
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maps gn. In the next section we will specify the number of twists needed for the
isotopy class of the Thurston map.

Lemma 4.4.1. Let U ′ ⊂ U and Ũ be three annuli whose inner boundaries are the
unit circle such that mod(U \ U ′) ≥ ε and mod(U) is bounded from above by some

constant M . Let ψ be a K-qc map from U onto Ũ . For any r with Dr contained in

U ′ and ψ(U ′), the moduli of the annuli U \Dr and Ũ \Dr are proportional with a
constant depending only on M , K and ε.

Proof. By properties of qc maps we have
ε ≤ mod(U \Dr) ≤M and

ε/K ≤ mod(Ũ \Dr) ≤ KM
which implies the lemma.

�

Proposition 4.4.2. For the topological disks Vn,0 and ∆n,0 as above, the moduli of

the annuli Vn,0 \ ∆n,0 and Ṽn,0 \ ∆̃n,0 are proportional with a constant depending
only on ε.

Proof. If level n follows case (I) or (II) in the construction, Proof is applying the
above lemma to the images of the domains Vn,0, f

−tn(Vn,0) and ∆n,0 under the
map Bc(Rnf) ◦ Sn and the corresponding tilde objects, where Bc(Rnf) is the Böttcher
coordinate for the map Pcn

and Sn is the straightening of the map Rnf . Note that
∆n,0 is mapped to the disk of radius r. To have an upper bound M , it is enough to
go some levels lower than the fundamental annulus to have bounded modulus.

If level n follows case (III), by definition Vn,0 \ ∆n,0 is Ln \ L′

n and Ṽn,0 \ ∆̃n,0 is

L̃n \ L̃′

n which were chosen to be proportional.
�

When a primitive renormalization follows an immediately renormalization, the
little Julia sets of the primitive one can be arbitrarily close to the β fixed point of
the satellite renormalization and there would not be enough space for gluing. That
is why we had to consider these two Cases together.

For a given curve ℓ in an annulus U which is image of a continuous map f :
[a, b] → U such that f(a) is on the inner boundary of U (corresponding to the
bounded component of the complement of U) and f(b) is on the outer boundary
of U (corresponding to the unbounded one), define the wrapping number ω(ℓ) as
[θ(φ(f(b))) − θ(φ(f(a)))]/2π where φ is a uniformization of the annulus U by the
round annulus and θ is the polar angel function calculated continuously at the angel
2kπ. Basically, ω(ℓ) is the total turning of the curve ℓ in the uniformized coordinate.
Note that ω(ℓ) is invariant under the Automorphism group of the annulus, So it is
independent of the choice of uniformization and just like winding number, it is
constant over the homotopy class of curves with the same boundary points.

Let U(r) denote the round annulus bounded by circles of radii r and 1. We have:
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Lemma 4.4.3. Given constants K ≥ 1 and R > 1. For every K-qc map ψ :
V (R) → V (R′), the image of the horizontal line segment [1, R] under ψ is a curve
with wrapping number bounded by −N and N , where N depends only on K and R.

Proof. Consider the curve family L consisting of all ray segments in U(R) obtained
from rotating the segment [1, R] about origin, that is the radial lines in V (R).

Let us denote by Γ(F ) the extremal length of a given curve family F . We have
the inequality Γ(L)/K ≤ Γ(ψ(L)) ≤ KΓ(L). See [Ah] for more details on curve
families and extremal length properties.

It is easy to see that if the interval [1, R] is mapped to a curve with wrapping
number T then every curve in L will be mapped to a curve with wrapping number
between T + 1 and T − 1.

By definition of extremal length and choosing conformal metric ρ as the Euclidian
metric, we obtain

KΓ(L) ≥ Γ(ψ(L)) = sup
ρ

inf ℓρ(ψ(γ))2

Sρ

≥
4π(T − 1)2

R′2 − 1
.

and Γ(L) = logR/2π
By properties of qc maps we have R′ ≤ RK which implies

T ≤
1

π

√
K log(R)(R2K − 1)

8
+ 1

�

Let S(r, 0) denote the circle of radius r about origin, then

Lemma 4.4.4. Fix round annuli V (r), V (r′) such that mod(V (r′))/K1 ≤
mod(V (r)) ≤ K1mod(V (r′)) and integer number k ≤ N . If homeomorphisms
h1 : S(r, 0) → S(r′, 0) and h2 : S(1, 0) → S(1, 0) have K2-qc extension to some
neighborhood of these circles then there exists a K-qc map from V (r) to V (r′) which
matches with hi’s on the boundary circles and sends the segment [1, r] to a curve
with wrapping number (θ(h1(r)) − θ(h2(1))) + k. Moreover K only depends on K1,
K2 and N .

Proof. Proof is by constructing such maps for every k. More details left to the
reader. �

Applying the above lemma to the uniformization of the annuli Vn,0 \ ∆n,0 and

Ṽn,0\∆̃n,0, the induced maps from hn−1,0 and hn,0 on their boundaries and a number
kn will give the required K ′-qc maps gn. In the next section we will specify some
especial numbers kn (which are bounded by a constant only depending on ε) in
order to make the K-qc map H, obtained after gluing, homotopic to the topological
conjugacy relative the postcritical set. Note that in this Case all the constants K1,
K2 and N depend only on ε, so dilatation of the map H only depends on ε.
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Definite modulus in between the annuli Vn,i\∆n,i implies that the holes Vn,i shrink
to the postcritical set, so the postcritical set is removable and H can be extended
to a well defined K-qc map on the postcritical set. See [St] for more details on
removability of sets and extensions of quasi-conformal maps onto them.

4.5. Proof of isotopy. In this subsection we will use the same notations as we used
in the previous two subsections. Recall that Sn (and S̃n) is the straightening of the

renormalization Rnf (respectively Rnf̃). Let fcn
= fc(Rnf), fc̃n

= fc(Rnf̃) and denote

by ψn,0 the topological conjugacy between fcn
and fc̃n

. So, ψn,0 = S̃n
−1

◦ψn,0 ◦Sn is

a topological conjugacy between Rnf and Rnf̃ on a neighborhood of the little Julia
set Jn,0. Note that this neighborhood covers the domain Ωn,0. In the dynamic plane
for fcn

, let U(η) denote the domain inside the equipotential of radius η.

Lemma 4.5.1. If level n belongs to the case(I) or (II), the K-qc maps hn,i : ∆n,i →

∆̃n,i are homotopic to

ψn,i = f i
c̃n
◦ S̃−1

n,i ◦ψn,i ◦ Sn,i ◦ f
−i
cn

: ∆n,i → C

relative the little Julia sets Jn+1,j of level n+ 1 inside ∆n,i.

Note that ψn,i(∆n,i) is a neighborhood of the little Julia sets J̃n+1,i+tnj which are

contained in ∆̃n,i.

Proof. First assume level n follows a case (I) or (II). From the definition of the
domains ∆n,i, Vn,i and the K-qc maps hn,i, it is enough to prove the statement only
for i = 0 (pull the homotopies back by f i or construct them in the same way as for
i = 0).

As ∆n,0, ψn,0 and the K-qc map hn,0 are lifts of ∆n,0, ψn,0 and h′

n,0 by straighten-
ings, it is enough to make the homotopy on the dynamic planes for fcn

and fc̃n
and

then transfer it to the dynamic planes for Rnf and Rnf̃ . Recall that in our con-
struction, h′

n,0 was adjustment of hn,0 through some homotopy relative little Julia
sets, so proof of this lemma reduces to the homotopy of hn,0 and ψn,0 relative the
little Julia sets.

Assume we are in the first Case of the construction. The idea of the proof is to
divide the domain ∆n,0 (by means of rays and equipotential arcs) into some topo-
logical disks and one annulus such that ψn,0 and hn,0 are identical on the boundaries
of these domains.

Consider the puzzle piece Qχn

n,0 (Qχn

n,0 = Y
qχn

0 ). The equipotential f−χn(E(η)) and
the rays of the puzzles Qχn

n,i up to equipotential f−χn(E(η)) cut the domain ∆n,0 into
one annulus(∆n,0 \ f

−χn(U(η))) and some topological disks. The topological disks
(obtained above) which do not intersect the little Julia sets of level n, the puzzle
pieces Qχn

n,i and the remaining annulus, E(η)\f−χn(E(η)), are the required domains.
Construction in the Theorem 3.2.2 implies that the maps hn,0 and ψn,0 are identical
(in the Böttcher coordinate) on the boundaries of these domains. Indeed, the topo-
logical conjugacy ψn,0 between fcn

and fc̃n
is identity in the Böttcher coordinate and
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the pseudo-conjugacy hn,0 constructed in the Theorem 3.2.2 matches the Böttcher
marking. This proves the homotopy of the two maps outside of the puzzle pieces
Qχn

n,i. To show the homotopy inside puzzle pieces Qχn

n,0, recall that we started with
a qc map on Qχn

n,0 \ P
χn

n,0 which was homotopic to ψn,0 relative boundaries. So all

the pullbacks of this map on the annuli Ak \ Ak+1 are homotopic to ψn,0 relative
boundaries which implies that these two maps are homotopic and moreover, they
are identical on the little Julia sets. Proof for the second Case of construction is
applying above argument on every puzzle piece of level zero.

The same proof works if level n follows the case (III). The only difference is that
the domain of definition of the homeomorphisms are restricted to a smaller set. In
this case we may restrict the homotopy to that domain. �

Now, we will introduce the specific numbers kn required for the gluing maps gn

in the previous section. In the following, let V (r) denote the annulus bounded by
circles of radii r and one.

If level n belongs to case (I) or (II) and it follows a case (I) or (II) in our con-
struction, consider the uniformizations φ1 : V (s) → (Vn,0 \ Kn,0), φ2 : V (r) →

(∆n,0\Kn,0), φ̃1 : V (s̃) → (Ṽn,0\K̃n,0) and φ̃2 : V (r̃) → (∆̃n,0\K̃n,0) by round annuli.

The qc maps hn−1,0 and hn,0 will lift via φi and φ̃i to qc maps ĥn−1,0 : V (s) → V (s̃)

and ĥn,0 : V (r) → V (r̃) with the same dilatation. By composing the uniformizations
with rotations, we may assume that the point one is mapped to the point one by
these two maps. By lemma 4.4.3, the image of the segment [1, s] under the qc map

ĥn−1 has wrapping number ω1n bounded by some N and image of the segment [1, r]

under the qc map ĥn,0 has wrapping number ω2n bounded by N which depends only

on ε. Take our favorite wrapping number kn as ω1n − ω2n and note that gluing ĥn,0

and ĥn−1,0 in the lemma 4.4.4 by such a choice makes the image of the segment [1, s]

under the two maps gn and ĥn,0 glued together homotopic to image of the segment

[1, s] under the map ĥn−1,0 relative two boundary circles. This homotopy will lift to
a homotopy between hn−1,0 and the two maps gn and hn,0 glued together.

Before we define the numbers kn for the other cases, we need to show that the qc
map h′

n−1 constructed in the third case has qc extension over the topological disk
Ln−1.

Lemma 4.5.2. The K-qc map h′

n−1 constructed in the case (III) has a qc exten-
sion onto the topological disk Ln−1 with bounded dilatation depending only on ε and
moreover this extension is homotopic to the topological conjugacy ψn−1,0 relative the
Julia bouquet B2,0 inside Ln−1.

Proof. Consider the fundamental annuli Sn−1(Un,0 \ Vn,0) and S̃n−1(Ũn,0 \ Ṽn,0) for
the first renormalizations of fcn−1

and fc̃n−1
. Let

gn : Sn−1(Un,0 \ Vn,0) → S̃n−1(Ũn,0 \ Ṽn,0)
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be a qc map which satisfies the equivariance relation on the boundaries of these
annuli. By lifting the map gn on the preimages of these annuli we obtain a qc map
gn from complement of the little Julia set J1,0 to the complement of the little Julia set

J̃1,0 on the dynamic planes of fcn−1
and fc̃n−1

. By lemma 4.3.2, gn (or some rotation of
it) can be extended on to the the Julia set J1,0 as ψn−1,0. Moreover these two maps
are homotopic relative this little Julia set. Now we can adjust the map gn so that

it sends L′

n−1 to L̃
′

n−1. We have three annuli Y 0
0 \Ln−1, Ln−1 \L′

n−1 and L′

n−1 \B2,0

and the corresponding tilde objects. The map hn−1 is from the first annulus to the
corresponding tilde one and the map gn is from the last annulus to the corresponding
tilde one. To glue these two maps on the middle annulus we use the above argument
to find the right number of twists on this annulus. Consider a curve γ connecting
a point, a, on the bouquet B2,0 to a point, d, on the boundary of Y 0

0 such that it
intersects the boundaries of the domains L′

n−1 and Ln−1 only at one point denoted
by b and c. Lets denote by γab, γbc and γcd each segment of this curve between these
four points. Consider the integer number ω(ψ(γ))−ω(hn−1(γbd))−ω(gn(γab)) which
is bounded by lemma 4.4.3 depending only on ε. Now if we glue these two maps by
such a number of twists (see lemma 4.4.4), the resulting map will be homotopic to
the homeomorphism ψn−1 relative the Julia bouquet B2,0 and the boundary of Y 0

0 .
Note that the two maps h′

n−1 and ψn−1 are identical on the boundary of Y 0
0 . In the

same way one can extend this map over the other topological disks Ln−1,i. We will
denote the final qc map map by h′

n−1. �

If a case (III) follows a case (I) or (II) the number of twists, kn, is similar to the
one introduced above and if level n−1 is in case (III) and level n is any of the three
cases we use the uniformization of the annuli Vn,0 \ Bn,0 and ∆n,0 \ Bn,0 and the
corresponding tilde ones instead of the above annuli to define the right number of
twists.

We will use the following easy lemma in the proof of isotopy. Proof is left to the
reader.

Lemma 4.5.3. Let U and Ũ be two closed annuli with boundary curves respectively
γi and γ̃i for i = 1, 2. Let ht

i : γi → γ̃i for t ∈ [0, 1] be two continuous family
of homeomorphisms and G0 be a continuous interpolation of h0

1 and h0
2 on U , then

G0 can be extended to a continuous family of interpolations between ht
1 and ht

2 for
t ∈ [0, 1].

Proposition 4.5.4. The K-qc map H obtained from gluing gi
n’s and hn,k’s is ho-

motopic to the topological conjugacy Ψ relative the postcritical set O(0).

Proof. Let Hn denote the map obtained from gluing n qc maps h1,0, h2,i, ..., hn,j and
g0
1,g

k, . . . , gl
n−1 for all possible indexes i, j, k and l’s. First we will show that H1 is

homotopic to the topological conjugacy Ψ between fc and fc̃ relative the little Julia
sets J1,i and each Hn−1 is homotopic to Hn relative the little Julia sets of level n+1.
The map H1 is just h1,1 which is homotopic to ψ1,0 by lemma 4.5.1 and this map
is homotopic to Ψ by lemma 4.3.2. The two maps Hn−1 and Hn are equal outside
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of the domains Vn,j by construction. Inside ∆n,0, Hn−1 and Hn are hn−1,0 and hn,0

respectively.
The domain Vn,0 is divided into annulus Vn,0 \ ∆n,0 and the topological disk

∆n,0. On ∆n,0, hn,0 and hn−1,0 are homotopic to ψn,0 relative Jn+1,i by lemma 4.5.1
and 4.5.2. Then there is a homotopy ht

n for t in [0, 1] which starts with hn,0 and

ends with hn−1,0 and moreover it sends boundary of ∆n,0 to the boundary of ∆̃n,0

for all t in [0, 1]. At time zero consider the map hn,0 on the inner boundary of
this annulus, hn−1,0 on the outer boundary of this annulus and the interpolation
Gn = g0

n between them. Applying above lemma to the fixed homeomorphism hn−1,0

on the outer boundary and ht
n on the inner boundary we get a continuous family

of interpolations Gt
n between them. The map G1

n is a homeomorphism from the
annulus to itself which is an interpolation of hn−1,0 on the boundaries, but this
interpolation has to be homotopic to hn−1,0 on the annulus. Indeed these two maps
send a curve joining the two different boundaries to two curves (clearly joining the
two boundaries) which are homotopic relative end points. This comes from our
choices of wrapping numbers for gluing the maps.

Let t0 = 0 < t1 < t2, ... < 1 be an increasing sequence of times in [0, 1]. Assume
H t for t in [t0, t1] be the homotopy obtained above between Ψ and H1 relative the
Julia set and H t for t in [tn, tn+1] be the homotopy between Hn and Hn+1 relative
the little Julia sets of level n+ 2 for n=1, 2, 3, ... .

It is clear from our construction that H t(z) for a fixed z eventually stabilizes and
equals to H(z), indeed, a priori bounds implies that the diameter of the topological
disks Vn,i goes to zero (by n 7→ ∞ ), so the uniform distance between H t and H
is going to zero (by t 7→ 1 ). We conclude that H t for t in [0, 1] is the homotopy
between the topological conjugacy Ψ and the Thurston conjugacy H relative the
postcritical set. �

Proposition 4.5.5. Suppose all infinitely renormalizable unicritical polynomials in
a given combinatorial class τ = {M1,M2,M3....} in SL enjoy a priori bound. Then
qc conjugacy implies hybrid conjugacy in this class.

Proof. If this is not true, there are two polynomials P1 and P2 which are qc equivalent
but not hybrid equivalent. Form the set

Ω = {c ∈ C| Pc is qc equivalent to P1} = {c ∈ C| Pc is qc equivalent to P2}.

We will show that Ω is both open and closed subset of C which is not possible.
Theorem 4.1.1 implies that qc conjugacy is equivalent to combinatorial conjugacy

for this class and since the combinatorial class τ is intersection of closed sets, Ω is
closed.

Consider a point P in Ω, P is not hybrid equivalent to both of P1 and P2 by
assumption. Let us assume it is not hybrid equivalent to P1 (for the other Case
just change P1 to P2). Let φ1 : C → C be a K-qc conjugacy, φ1 ◦ P = P1 ◦ φ1 and
let µ0 denote the standard complex structure on C. By pulling back this complex
structure via φ1 we get a complex structure µ on C with dilatation K−1

K+1
. Consider
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the complex structures µλ = λµ for λ in the disk of radius K+1
K−1

around origin. By
applying measurable Riemann mapping Theorem (see [Ah]), There are qc maps φλ

which map complex structure µλ to µ0 and fix the origin and infinity (post compose
with a möbius map if required). Pλ = φ−1

λ ◦ P1 ◦ φλ are holomorphic maps of the
same degree as degree of P1 and sends infinity to infinity with the same degree as the
degree of P1, so they are polynomials. For λ = 1 we will get the polynomial P and
for λ = 0 we get P1 and By analytic dependence of the solution of the measurable
Riemann mapping theorem on complex structure, Pλ will cover a neighborhood of
P in Ω. This shows that P is an interior point in Ω and as P was an arbitrary point
of Ω, we conclude that Ω is open.

�

It has been shown in [KL1] that infinitely renormalizable parameter values sat-
isfying decorations enjoy a priori bounds. The dynamical meaning of a parameter
c satisfying this condition is that there exists an integer M such that for all renor-
malizations fn = Rn(Pc) there exists t, q < M such that fkq

n (0) ∈ Y 1
0 for k < t and

f tq(0) /∈ Y 1
0 .

An infinitely renormalizable parameter is said to be of bounded type if the rela-
tive return times tn+1/tn of renormalizations , Rn(f) = f tn , are bounded By some
constant M for all renormalization levels. Clearly, the decoration condition includes
infinitely primitive renormalizable parameters of bounded type.

To a given infinitely renormalizable unicritical polynomial-like map f , we associ-
ated a sequence of maximal Multibrot copies τ(f) = {M1,M2, ....} in section 3.3.
Let πn(τ) = Mn for any τ and n ≥ 1. Define

τ(f, n) = {c ∈Md|πn(τ(f)) = πn(τ(Pc))}.

In other words, the Multibrot copy τ(f, n) is the set of at least n times renormalizable
parameters with the same combinatorics as of f up to level n.

For a given infinitely renormalizable map f as above and an increasing subse-
quence of renormalization levels {ni}, we define a sequence of relative Multibrot
copies of Md in Md as follows:

(τ̃(f), {ni}) = {M̃n1 , M̃n2 , . . . , M̃nk , . . .}

where M̃nk = τ(Rnk−1f, nk − nk−1).
One can see that there is a one to one correspondence between these two sequences

thus one may define the latter one to be the combinatorics of f .
Consider the main hyperbolic component of the Multibrot set Md. There are

infinitely many primary hyperbolic components attached to it. Similarly, there are
infinitely many hyperbolic components, secondary ones, attached to these compo-
nents and so on. Consider the set of all hyperbolic components obtained this way,
that is, the ones which can be connected to the main hyperbolic component by a
chain of hyperbolic components bifurcating one from another. Take the closure of
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this set and fill it in (i.e. adding the bounded components of its complement1). We
obtain a set which will be called the molecule Md of Md.

An infinitely renormalizable map f satisfies the molecule condition if there exists a
positive number η > 0 and an increasing subsequence {ni} of renormalization levels
such that Rnif is primitive renormalization of Rni−1f and the distance between the
Multibrot copy M̃ni

d and the molecule Md is at least η for all i. Note that for a map
satisfying this condition, there may be several satellite renormalizable maps once
in a while in the sequence {Rnf}. The condition requires that there are infinite
number of primitive levels with the corresponding Multibrot copies uniformly away
from the molecule. It is obvious that the parameters in decoration condition satisfy
the molecule condition.

For any given ε ≥ 0 and hyperbolic component of the Multibrot set, There are at
most finite number of limbs with diameter bigger that ε attached to this hyperbolic
component, (see [H]). This implies that all the secondary limbs except finite number
of them are included in the η neighborhood of the molecule for any η ≥ 0. This
implies that the parameters satisfying the molecule condition are in SL so we have
the following.

Corollary 4.5.6. Let f and f̃ be two infinitely renormalizable unicritical degree d
polynomial-like maps satisfying molecule condition. If f and f̃ are combinatorially
equivalent then they are hybrid equivalent.
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