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Abstract. David maps are generalizations of classical planar quasiconformal maps for
which the dilatation is allowed to tend to infinity in a controlled fashion. In this note we
examine how these maps distort Hausdorff dimension. We show

• Given α and β in [0, 2], there exists a David map ϕ : C → C and a compact set Λ such
that dimH Λ = α and dimH ϕ(Λ) = β.

• There exists a David map ϕ : C → C such that the Jordan curve Γ = ϕ(S1) satisfies
dimH Γ = 2.

One should contrast the first statement with the fact that quasiconformal maps preserve
sets of Hausdorff dimension 0 and 2. The second statement provides an example of a Jordan
curve with Hausdorff dimension 2 which is (quasi)conformally removable.
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1. Introduction

An orientation-preserving homeomorphism ϕ : U → V between planar domains is called
quasiconformal if it belongs to the Sobolev class W 1,1

loc (U) (i.e., has locally integrable distri-

butional partial derivatives in U) and its complex dilatation µϕ := ∂ϕ/∂ϕ satisfies

‖µϕ‖∞ < 1.

In terms of the real dilatation defined by

Kϕ :=
1 + |µϕ|
1− |µϕ|

=
|∂ϕ|+ |∂ϕ|
|∂ϕ| − |∂ϕ|

,

the latter condition can be expressed as

‖Kϕ‖∞ < +∞.

The quantity ‖Kϕ‖∞ is called themaximal dilatation of ϕ. We say that ϕ isK-quasiconformal
if its maximal dilatation does not exceed K.

For later comparison with the properties of David maps defined below, we recall some
basic properties of quasiconformal maps (see [A] or [LV]):

• If ϕ is K-quasiconformal for some K ≥ 1, so is the inverse map ϕ−1.

• A K-quasiconformal map ϕ : U → V is locally Hölder continuous of exponent 1/K.
In other words, for every compact set E ⊂ U and every z, w ∈ E,

|ϕ(z)− ϕ(w)| ≤ C |z − w| 1
K

where C > 0 only depends on E and K.
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• A quasiconformal map ϕ : U → V is absolutely continuous; in fact, the Jacobian
Jϕ = |∂ϕ|2 − |∂ϕ|2 is locally integrable in U and

(1.1) areaϕ(E) =

∫

E

Jϕ dx dy,

for every measurable E ⊂ U .

• More precisely, the Jacobian Jϕ of a quasiconformal map ϕ : U → V is in Lploc(U) for
some p > 1. If we define

(1.2) p(K) := sup{p : Jϕ ∈ Lploc(U) for every K-quasiconformal map ϕ in U},
then p(K) is independent of the domain U and

(1.3) p(K) =
K

K − 1
.

This was conjectured by Gehring and Väisälä in 1971 [GV] and was proved by Astala
in 1994 [As].

• Let {ϕn} be a sequence ofK-quasiconformal maps in a planar domain U which fix two
given points of U . Then {ϕn} has a subsequence which converges locally uniformly
to a K-quasiconformal map in U .

The measurable Riemann mapping theorem of Morrey-Ahlfors-Bers [AB] asserts that any
measurable function µ in a domain U which satisfies ‖µ‖∞ < 1 is the complex dilatation of
some quasiconformal map ϕ in U , which means ϕ satisfies the Beltrami equation ∂ϕ = µ ·∂ϕ
almost everywhere in U . Recent progress in conformal geometry and holomorphic dynamics
has made it abundantly clear that one must also study this equation in the case ‖µ‖∞ = 1.
With some restrictions on the asymptotic growth of |µ|, the solvability of the Beltrami
equation can still be guaranteed. One such condition is given by David in [D]. Let σ denote

the spherical area in Ĉ and µ be a measurable function in U which satisfies

(1.4) σ{z ∈ U : |µ(z)| > 1− ε} ≤ C exp
(
−α
ε

)
for all ε < ε0

for some positive constants C, α, ε0. Then David showed that the Beltrami equation ∂ϕ =
µ · ∂ϕ has a homeomorphic solution ϕ ∈ W 1,1

loc (U) which is unique up to postcomposition
with a conformal map. Motivated by this result, we call a homeomorphism ϕ : U → V a
David map if ϕ ∈ W 1,1

loc (U) and the complex dilatation µϕ satisfies a condition of the form
(1.4). Equivalently, ϕ is a David map if there are positive constants C, α,K0 such that its
real dilatation satisfies

(1.5) σ{z ∈ U : Kϕ(z) > K} ≤ Ce−αK for all K > K0.

To emphasize the values of these constants, sometimes we say that ϕ is a (C, α,K0)-David
map. Note that when U is a bounded domain in C, the spherical metric in (1.4) or (1.5) can
be replaced with the Euclidean area.

David maps enjoy some of the useful properties of quasiconformal maps, but the two classes
differ in many respects. As indications of their similarity, let us mention the following two
facts:

• Every David map is absolutely continuous; the Jacobian formula (1.1) still holds.
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• Tukia’s Theorem [T]. “Let C, α,K0 be positive and suppose {ϕn} is a sequence of
(C, α,K0)-David maps in a domain U which fix two given points of U . Then {ϕn}
has a subsequence which converges locally uniformly to a David map in U .” It is
rather easy to show that some subsequence of {ϕn} converges locally uniformly to a
homeomorphism, but that this homeomorphism must be David is quite non-trivial.
We remark that the parameters of the limit map may a priori be different from
C, α,K0.

Here are further properties of David maps which indicate their difference with quasicon-
formal maps:

• The inverse of a David map may not be David.

• A David map may not be locally Hölder.

• The Jacobian of a David map may not be in Lploc(U) for any p > 1.

As an example, the homeomorphism ϕ : D(0, e−1)→ D defined by

ϕ(reiθ) := − 1

log r
eiθ

is a David map but ϕ−1 is not. Moreover, ϕ is not Hölder in any neighborhood of 0, and
Jϕ /∈ Lploc for p > 1.

The main goal of this note is to show how David maps differ from quasiconformal maps
in the way they change Hausdorff dimension of sets. Recall that the Hausdorff s-measure of
E ⊂ C is defined by

Hs(E) := lim
ε→0

inf
U

∑

i

(diamUi)
s,

where the infimum is taken over all countable covers U = {Ui} of E by sets of Euclidean
diameter at most ε. The Hausdorff dimension of E is defined by

dimHE := inf{s : Hs(E) = 0}.
Quasiconformal maps can change Hausdorff dimension of sets only by a bounded factor
depending on their maximal dilatation. This was first proved by Gehring and Väisälä [GV]
who showed that if ϕ : U → V isK-quasiconformal, E ⊂ U , dimHE = α and dimH ϕ(E) = β,
then

2(p(K)− 1)α

2p(K)− α
≤ β ≤ 2p(K)α

2(p(K)− 1) + α
.

Here p(K) > 1 is the constant defined in (1.2). By Astala’s result (1.3), one obtains

2α

2K − (K − 1)α
≤ β ≤ 2Kα

2 + (K − 1)α

which can be put in the symmetric form

(1.6)
1

K

(
1

α
− 1

2

)
≤ 1

β
− 1

2
≤ K

(
1

α
− 1

2

)
.

It follows in particular that quasiconformal maps preserve sets of Hausdorff dimension 0 and
2.

By contrast, we prove

Theorem A. Given any two numbers α and β in [0, 2], there exists a David map ϕ : C → C



4 S. ZAKERI

and a compact set Λ ⊂ C such that dimH Λ = α and dimH ϕ(Λ) = β.

The proof shows that the parameters of ϕ can be taken independent of α and β.
In the special case of a K-quasicircle, i.e., the image Γ of the round circle under a K-

quasiconformal map, the estimate (1.6) gives

1 ≤ dimH Γ ≤ 2K

K + 1

(the lower bound comes from topological considerations). It is well-known that dimH Γ can
in fact take all values in [1, 2). We show that the upper bound 2 is attained by a David
image of the round circle. Let us call a Jordan curve Γ ⊂ C a David circle if there exists a
David map ϕ : C → C such that Γ = ϕ(S1), where S1 is the unit circle {z ∈ C : |z| = 1}.
Theorem B. There exist David circles of Hausdorff dimension 2.

One corollary of this result is that there are Jordan curves of Hausdorff dimension 2 that are
(quasi)conformally removable (see §4).

Both results are bad (or exciting?) news for applications in holomorphic dynamics, where
one often wants to estimate the Hausdorff dimension of invariant sets by computing the
dimension in a conjugate dynamical system. The dichotomy of having dimension < 2 or
= 2 for such invariant sets, which is respected by quasiconformal conjugacies, is no longer
preserved by David conjugacies. For example, by performing quasiconformal surgery on a
Blaschke product, Petersen proved that the Julia set of the quadratic polynomial Qθ : z 7→
e2πiθz+ z2 is locally-connected and has measure zero whenever θ is an irrational of bounded
type [P]. In this case, the boundary of the Siegel disk of Qθ is a quasicircle whose Hausdorff
dimension is strictly between 1 and 2 (compare [GJ]). On the other hand, by performing a
trans-quasiconformal surgery and using David’s theorem, Petersen and the author extended
the above result to almost every θ [PZ]. It follows that there exists a full-measure set of
rotation numbers θ for which the boundary of the Siegel disk of Qθ is a David circle but not
a quasicircle. Thus, Theorem B opens the possibility that this boundary alone might have
dimension 2, which would be a rather curious phenomenon.

2. Preliminary constructions

For two positive numbers a and b, we write

a 4 b

if there is a universal constant C > 0 such that a ≤ Cb. We write

a ³ b

if a 4 b and b 4 a, i.e., if there is a universal constant C > 0 such that C−1b ≤ a ≤ Cb. In
this case, we say that a and b are comparable.

A family of Cantor sets. Given a strictly decreasing sequence d = {dn}n≥0 of positive
numbers with d0 = 1, we construct a Cantor set Λ(d) as the intersection of a nested sequence
{Λn}n≥0 of compact sets in the unit square Λ0 := [−1

2
, 1

2
] × [−1

2
, 1

2
] defined inductively as

follows. Set a1 := 2−2(d0− d1) and define Λ1 as the disjoint union of the four closed squares
of side-length 2−1d1 in Λ0 which have distance a1 to the boundary of Λ0 (see Fig. 1). Suppose
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Figure 1. First two steps in the construction of Λ(d).

Λn−1 is constructed for some n ≥ 2 so that it is the disjoint union of 4n−1 closed squares of
side-length 2−(n−1)dn−1. Define

(2.1) an := 2−(n+1)(dn−1 − dn).

For any square S in Λn−1, consider the disjoint union of the four closed squares in S of side-
length 2−ndn which have distance an to the boundary of S. The union of all these squares
for all such S will then be called Λn. Clearly Λn is the disjoint union of 4n closed squares of
side-length 2−ndn, and the inductive definition is complete.

The Cantor set Λ(d) is defined as
⋂
n≥0 Λn. We have

areaΛ(d) = lim
n→∞

areaΛn = lim
n→∞

d2
n.

Lemma 2.1. The Hausdorff dimension of the Cantor set Λ = Λ(d) satisfies

(2.2) 2− lim sup
n→∞

−2 log dn+1

− log dn + n log 2
≤ dimH Λ ≤ 2− lim inf

n→∞

−2 log dn
− log dn + n log 2

.

Proof. For each n ≥ 0, there are 4n squares of diameter 2
1
2
−ndn covering Λ. Hence the

Hausdorff s-measure of Λ is bounded above by

lim inf
n→∞

4n(2
1
2
−ndn)

s = 2
s
2 lim inf

n→∞
2n(2−s)dsn,

which is zero if s > 2 − lim infn→∞(−2 log dn)/(− log dn + n log 2). This proves the upper
bound in (2.2).

The lower bound follows from a standard mass distribution argument: Construct a prob-
ability measure µ on Λ which gives equal mass 4−n to each square in Λn, so that

µ(S) =
area(S)

d2
n

if S is a square in Λn.

Let x ∈ Λ and ε > 0, and choose n so that 2−ndn < ε ≤ 2−(n−1)dn−1. The disk D(x, ε)
intersects at most πε2/(4−nd2

n) squares in Λn each having µ-mass of 4−n. It follows that

µ(D(x, ε)) 4
ε2

d2
n

= εs
ε2−s

d2
n

4 εs
2−n(2−s)d2−s

n−1

d2
n

.
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If s < 2 − lim supn→∞(−2 log dn+1)/(− log dn + n log 2), the term 2−n(2−s)d2−s
n−1/d

2
n will tend

to zero as n→∞, so that
µ(D(x, ε)) 4 εs.

It follows from Frostman’s Lemma (see for example [M]) that dimH Λ ≥ s. This gives the
lower bound in (2.2). ¤

Standard homeomorphisms between Cantor sets. We construct standard homeomor-
phisms with controlled dilatation between Cantor sets of the form Λ(d) defined above. The
construction will depend on the following lemma:

Lemma 2.2. Fix 0 < a ≤ b < 1
2
. Let Aa be the closed annulus bounded by the squares

{
(x, y) ∈ R2 : max{|x|, |y|} = 1

2

}
and

{
(x, y) ∈ R2 : max{|x|, |y|} = 1

2
− a

}
,

and similarly define Ab. Let ϕ : ∂Aa → ∂Ab be a homeomorphism which is the identity on
the outer boundary component and acts affinely on the inner boundary component, mapping
1
2
− a to 1

2
− b. Then ϕ can be extended to a K-quasiconformal homeomorphism Aa → Ab,

with

(2.3) K ³ b (1− 2a)

a (1− 2b)
.

Proof. Let us first make a simple observation: If z and w are points in the upper half-plane
and L : R2 → R2 is the affine map such that L(0) = 0, L(1) = 1 and L(z) = w (see Fig. 2),
then the real dilatation of L is given by

(2.4) KL =
|z − w|+ |z − w|
|z − w| − |z − w| .

To prove the lemma, take the triangulations of Aa and Ab shown in Fig. 2 and extend ϕ
affinely to each triangle. After appropriate rescaling, it follows from (2.4) that on a triangle
of type I in the figure, the dilatation of ϕ is comparable to b/a, while on a triangle of type II,
the dilatation of ϕ is comparable to b(1− 2a)/(a(1− 2b)). Since b(1− 2a)/(a(1− 2b)) ≥ b/a,
we obtain (2.3). ¤

Now take a decreasing sequence d = {dn} of positive numbers with d0 = 1, let {an} be
defined as in (2.1), and consider the Cantor set Λ(d) =

⋂
Λn. Take another such sequence

d
′ = {d′n} and let a′n,Λ

′
n,Λ(d

′) denote the corresponding data. We construct a homeomor-
phism ϕ : C → C which maps the Cantor set Λ = Λ(d) to Λ′ = Λ(d′). This ϕ is the
uniform limit of a sequence of quasiconformal maps ϕn : C → C with ϕn(Λn) = Λ′n, defined
inductively as follows. Let ϕ0 be the identity map on C. Suppose ϕn−1 is constructed for
some n ≥ 1 and that it maps each square in Λn−1 affinely to the corresponding square in
Λ′n−1. Define ϕn = ϕn−1 on C r Λn−1 and let ϕn map each square in Λn affinely to the
corresponding square in Λ′n. The remaining set Λn−1 r Λn is the union of 4n annuli on the
boundary of which ϕn can be defined affinely. By rescaling each annulus in Λn−1 r Λn and
the corresponding annulus in Λ′n−1 r Λ′n, we are in the situation of Lemma 2.2, so we can
extend ϕn in a piecewise affine fashion to each such annulus. This defines ϕn everywhere,
and the inductive definition is complete.

To estimate the maximal dilatation of ϕn, note that by the above construction ϕn is
conformal in Λn and has the same dilatation as ϕn−1 on C rΛn−1. On each of the 4n annuli



DAVID MAPS AND HAUSDORFF DIMENSION 7

b

I
II

ϕ

z

0 1 0

w

1

1

1−2

1

1−2a

L

Aa Ab

Figure 2

in Λn−1 r Λn, the dilatation of ϕn can be estimated using (2.3) in Lemma 2.2. In fact,
rescaling each such annulus by a factor 2n/dn−1 and the corresponding annulus in Λ′n−1 rΛ′n
by a factor 2n/d′n−1, it follows from (2.3) that the dilatation of ϕn on each such annulus is
comparable to

max





a′n
2−nd′n−1

(1− 2 an

2−ndn−1
)

an

2−ndn−1
(1− 2 a′n

2−nd′n−1
)
,

an

2−ndn−1
(1− 2 a′n

2−nd′n−1
)

a′n
2−nd′n−1

(1− 2 an

2−ndn−1
)





=max

{
a′n(dn−1 − 2n+1an)

an(d′n−1 − 2n+1a′n)
,
an(d

′
n−1 − 2n+1a′n)

a′n(dn−1 − 2n+1an)

}

=max

{
a′ndn
and′n

,
and

′
n

a′ndn

}
.

To sum up, the construction gives a sequence {ϕn} with the following properties:

(i) ϕn = ϕn−1 on C r Λn−1.

(ii) ϕn maps each square in Λn affinely to the corresponding square in Λ′n.

(iii) ϕn is Kn-quasiconformal, where

(2.5) Kn ³ max

{
Kn−1,

a′ndn
and′n

,
and

′
n

a′ndn

}

and K0 = 1.

Evidently, ϕ := limn→∞ ϕn is a homeomorphism which agrees with ϕn on C rΛn for every n
and satisfies ϕ(Λ) = Λ′. We call this ϕ the standard homeomorphism from Λ to Λ′. Observe
that by the construction, the inverse map ϕ−1 is the standard homeomorphism from Λ′ to
Λ.
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3. Proof of Theorem A

We are now ready to prove Theorem A cited in §1.
Proof of Theorem A. If 0 < α, β < 2, it is well-known that there is a K-quasiconformal map
ϕ : C → C mapping a set of dimension α to a set of dimension β (see for example [GV]).
Moreover, by (1.6), the minimum K this would require is

max

{
1
β
− 1

2

1
α
− 1

2

,
1
α
− 1

2
1
β
− 1

2

}
.

In what follows we consider the remaining cases where α and β are distinct and at least one
of them is 0 or 2.

Consider the sequences d = {dn}, d
′ = {d′n} and d

′′ = {d′′n} defined by

dn := 2−
n

log n , d′n := 2−νn, d′′n := 2−n logn,

where ν > 0, and construct the Cantor sets Λ = Λ(d), Λ′ = Λ(d′) and Λ′′ = Λ(d′′) as in §2.
By Lemma 2.1,

dimH(Λ) = 2, dimH(Λ
′) =

2

ν + 1
, dimH(Λ

′′) = 0.

We prove that the standard homeomorphisms between these three Cantor sets and their
inverses are all David maps; this will prove the theorem. In view of Tukia’s Theorem quoted
in §1, it suffices to check that the sequence of approximating homeomorphisms are David
maps with uniform parameters (C, α,K0). In fact, the estimates below show that we can
always take C = α = 1.

• Case 1. Mapping Λ to Λ′. Suppose {ϕn} is the sequence of quasiconformal maps which
approximates the standard homeomorphism ϕ from Λ to Λ′. To estimate the dilatation of
ϕn, note that

(3.1) an = 2−(n+1)(dn−1 − dn) ³ 2−n(2−
n−1

log(n−1) − 2−
n

log n ) ³ 2−n−
n

log n

log n

and

(3.2) a′n = 2−(n+1)(d′n−1 − d′n) ³ 2−n(2−ν(n−1) − 2−νn) ³ 2−(ν+1)n.

Hence
a′n dn
an d′n

³ 2−(ν+1)n · 2− n
log n

2
−n− n

log n

logn
· 2−νn

³ log n.

It follows from (2.5) that there is a sequence 1 < K1 < K2 < · · · < Kn < · · · with Kn ³ log n
such that ϕn is Kn-quasiconformal. Fix the index n and a number K > 1. Choose j so that
Kj ≤ K < Kj+1. Then

area{z : Kϕn
(z) > K} ≤ area{z : Kϕn

(z) > Kj}
≤ area(Λj) = d2

j = 4−
j

log j .

Since K ³ Kj ³ log j, we obtain

area{z : Kϕn
(z) > K} ≤ e−K ,
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provided that K is bigger than some K0 independent of n. It follows that the ϕn are all
(1, 1, K0)-David maps.

The inverse maps ψn := ϕ−1
n are also Kn-quasiconformal with the same dilatation Kn ³

log n and they converge uniformly to ψ := ϕ−1. Moreover, if Kj ≤ K < Kj+1, then

area{z : Kψn
(z) > K} ≤ area{z : Kψn

(z) > Kj}
≤ area(Λ′j) = (d′j)

2 = 4−ν j

≤ e−K ,

provided that K is bigger than some K0 independent of n. It follows that the ψn are all
(1, 1, K0)-David maps.

• Case 2. Mapping Λ′ to Λ′′. The argument here is quite similar to the previous case. We
have

(3.3) a′′n = 2−(n+1)(d′′n−1 − d′′n) ³ 2−n(2−(n−1) log(n−1) − 2−n logn) ³ 2−n−n logn+logn

Hence, using (3.2) and (3.3), we obtain

a′′n d
′
n

a′n d
′′
n

³ 2−n−n logn+logn · 2−νn
2−(ν+1)n · 2−n logn

³ 2log n.

Let {ϕn} be the sequence of quasiconformal maps which approximates the standard home-
omorphism ϕ from Λ′ to Λ′′. It follows from (2.5) that there is a sequence 1 < K1 < K2 <
· · · < Kn < · · · with Kn ³ 2logn such that ϕn is Kn-quasiconformal. Fix the index n and a
number K > 1, and choose j so that Kj ≤ K < Kj+1. Then K ³ Kj ³ 2log j and

area{z : Kϕn
(z) > K} ≤ area{z : Kϕn

(z) > Kj}
≤ area(Λ′j) = (d′j)

2 = 4−νj

≤ e−K ,

provided that K is bigger than some K0 independent of n.
The inverse maps ψn := ϕ−1

n are Kn-quasiconformal with Kn ³ 2logn and they converge
uniformly to ψ := ϕ−1. Moreover, if Kj ≤ K < Kj+1, then

area{z : Kψn
(z) > K} ≤ area{z : Kψn

(z) > Kj}
≤ area(Λ′′j ) = (d′′j )

2 = 4−j log j

≤ e−K ,

provided that K is bigger than some K0 independent of n.

• Case 3. Mapping Λ to Λ′′. Using (3.1) and (3.3), we obtain

a′′n dn
an d′′n

³ 2−n−n logn+logn · 2− n
log n

2
−n− n

log n

logn
· 2−n logn

³ 2log n log n = nlog 2 log n.

Let {ϕn} be the sequence of quasiconformal maps which approximates the standard home-
omorphism ϕ from Λ to Λ′′. It follows then from (2.5) that there is a sequence 1 < K1 <
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K2 < · · · < Kn < · · · with Kn ³ nlog 2 log n such that ϕn is Kn-quasiconformal. Fix n, let
K be sufficiently large, and choose j so that Kj ≤ K < Kj+1. Then

area{z : Kϕn
(z) > K} ≤ area{z : Kϕn

(z) > Kj}
≤ area(Λj) = (dj)

2 = 4−
j

log j .

But K ³ Kj ³ jlog 2 log j, so

area{z : Kϕn
(z) > K} ≤ e−K ,

provided that K is bigger than some K0 independent of n.
The inverse maps ψn := ϕ−1

n are Kn-quasiconformal with Kn ³ nlog 2 log n and they
converge uniformly to ψ := ϕ−1. Moreover, if Kj ≤ K < Kj+1, then

area{z : Kψn
(z) > K} ≤ area{z : Kψn

(z) > Kj}
≤ area(Λ′′j ) = (d′′j )

2 = 4−j log j

≤ e−K ,

provided that K is bigger than some K0 independent of n. 2

4. Proof of Theorem B

The idea of the proof of Theorem B is to construct a David map ϕ : C → C which sends
a linear Cantor set Σ ⊂ [− 1

2
, 1

2
] to a Cantor set of the form Λ(d) with dimension 2. The

image ϕ([−1
2
, 1

2
]) will then be an embedded arc of dimension 2. Since the construction allows

ϕ = id outside the square [− 1
2
, 1

2
]× [−1

2
, 1

2
], we can easily complete this arc to a David circle.

A linear Cantor set. Consider the closed unit square Σ0 := [−1
2
, 1

2
]× [−1

2
, 1

2
] in the plane.

We construct a nested sequence {Σn}n≥0 of compact sets whose intersection is a linear Cantor
set. For 1 ≤ j ≤ 4, let fj : C → C be the affine contraction defined by

fj(z) =
1

8
z +

2j − 5

8
,

and set

Σn :=
⋃

j1,...,jn

fj1 ◦ · · · ◦ fjn(Σ0),

where the union is taken over all unordered n-tuples j1, . . . , jn chosen from {1, 2, 3, 4}. It is
easy to see that Σn is the disjoint union of 4n closed squares of side-length 8−n with centers
on [−1

2
, 1

2
] and sides parallel to the coordinate axes (compare Fig. 5 left). We define the

Cantor set Σ as the intersection
⋂∞
n=0 Σn. Evidently, Σ is a subset of [− 1

2
, 1

2
] which has

linear measure zero and Hausdorff dimension 2/3.

A quasiconformal twist. The proof of Theorem B depends on the following lemma which
is a triply-connected version of Lemma 2.2. For simplicity we denote by S(p, r) the open
square centered at p whose side-length is r.
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1
8

22
11

I

II
III

IV

III
IV

I

II

Figure 3. Cell decompositions of A and B.

Lemma 4.1. Fix 0 < a < 1/5 and let A and B be the closed triply-connected sets defined by

A :=

([
0,

1

2

]
×
[
−1

2
,
1

2

])
r

(
S

(
1

8
,
1

8

)
∪ S

(
3

8
,
1

8

))

B :=

([
0,

1

2

]
×
[
−1

2
,
1

2

])
r

(
S

(
1 + i

4
,
1

2
− 2a

)
∪ S

(
1− i

4
,
1

2
− 2a

))

(see Fig. 3). Let ϕ : ∂A → ∂B be a homeomorphism which is the identity on the outer
boundary component and acts affinely on the inner boundary components, mapping ∂S( 1

8
, 1

8
)

to ∂S(1+i
4
, 1

2
− 2a) and ∂S(3

8
, 1

8
) to ∂S(1−i

4
, 1

2
− 2a), respecting the horizontal and vertical

sides. Then ϕ can be extended to a K-quasiconformal map ϕ : A→ B, with

K ³ 1

a
.

Proof. We consider the affine cell decompositions of A and B shown in Fig. 3 and require ϕ to
map each cell in A to its corresponding cell in B in a piecewise affine fashion. By symmetry,
it suffices to define ϕ piecewise affinely between the cells labeled I, II, III, and IV. We let ϕ
be affine between the triangular cells III. On the cells I and II we subdivide the trapezoids
into two triangular cells and define ϕ to be affine on each of them. An easy computation
based on (2.4) then shows that the dilatation of ϕ on I, II, and III is comparable to 1/a.

It remains to define ϕ between the cells IV and estimate its dilatation. Note that the cell
IV in A has bounded geometry, so there is a K1 ³ 1 and a piecewise affine K1-quasiconformal
map f1 from this cell to the square with vertices 0, 1, (1 + i)/2, (1 − i)/2 which maps the
horizontal edge of this cell to the segment from (1− i)/2 to 1 (see Fig. 4). The cell IV in B,
after a conformal change of coordinates T , becomes the 4-gon with vertices

0, 1, z := −1− 2a

4a
+
i

2
, z′ := 1− (1− 4a)i

4a
.



12 S. ZAKERI

BA

0 1

z

z

0 1

1+ i
2

1−i
2

0 1

1+i
2

1−i
2

ϕ

T

f2

f1

in in

id

IV

IV

Figure 4. Extending ϕ between cells of type IV.

Let f2 be the piecewise affine map on this 4-gon which maps the triangle ∆(0, 1, z) to
∆(0, 1, (1 + i)/2) and the triangle ∆(0, 1, z ′) to ∆(0, 1, (1 − i)/2) (see Fig. 4). Then a brief
calculation based on (2.4) shows that f2 is K2-quasiconformal, with K2 ³ 1/a. The map
ϕ can then be defined by T−1 ◦ f−1

2 ◦ f1, whose dilatation K1K2 is clearly comparable to
1/a. ¤

We are now ready to prove Theorem B cited in §1.
Proof of Theorem B. Consider the Cantor set Σ =

⋂∞
n=0 Σn constructed above and the Cantor

set Λ = Λ(d) =
⋂∞
n=0 Λn constructed in §2, where d = {dn} is defined by dn := 2−

√
n. It

follows from Lemma 2.1 that dimH(Λ) = 2.
We construct a David map ϕ : C → C, identity outside the square [− 1

2
, 1

2
] × [−1

2
, 1

2
],

with the property ϕ(Σ) = Λ. Then the embedded arc ϕ([− 1
2
, 1

2
]) contains Λ and hence has

dimension 2. By pre-composing ϕ with an appropriate quasiconformal map, we obtain a
David map sending the round circle to a Jordan curve of dimension 2.

The map ϕ will be the uniform limit of a sequence of quasiconformal maps ϕn : C → C
with ϕn(Σn) = Λn, defined inductively as follows. Let ϕ0 be the identity map on C. To
define ϕ1, set ϕ1 = ϕ0 on C r Σ0 and map each of the four squares in Σ1 affinely to the
“corresponding” square in Λ1. Here “corresponding” means that the squares in Σ0, from left
to right, map respectively to the north west, south west, north east and south east squares
in Λ1 (compare Fig. 5). The remaining set Σ0 r Σ1 is the union of two triply-connected
regions, on the boundary of which ϕ1 can be defined affinely, so we can extend ϕ1 to each
such region as in Lemma 4.1.

In general, suppose ϕn−1 is constructed for some n ≥ 2 and that it maps each square in
Σn−1 affinely to a square in Λn−1. Define ϕn = ϕn−1 on C r Σn−1 and let ϕn map each
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2

1

Λ

Λ

2

1Σ

Σ

Figure 5. First two steps in the construction of the map ϕ. The solid arcs

on the right are ϕn(R) for n = 1, 2.

square in Σn affinely to the “corresponding” square in Λn in the above sense. The remaining
set Σn−1 r Σn is the union of 22n−1 triply-connected regions on the boundary of which ϕn
can be defined affinely. By rescaling each such region in Σn−1 r Σn by a factor 8n−1 and
the corresponding region in Λn−1 r Λn by a factor 2n−1/dn−1, we are in the situation of
Lemma 4.1, so we can extend ϕn in a piecewise affine fashion as in that lemma, and the
dilatation of the resulting extension will be comparable to

dn−1

2n−1an
=

dn−1

2n−1 · 2−(n+1)(dn−1 − dn)

=
2−
√
n−1

2n−1 · 2−(n+1)(2−
√
n−1 − 2−

√
n)

³ √n.
The sequence {ϕn} obtained this way has the following properties:

(i) ϕn = ϕn−1 on C r Σn−1.

(ii) ϕn maps each square in Σn affinely to the corresponding square in Λn.

(iii) ϕn is Kn-quasiconformal, with Kn ³
√
n.
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Evidently, ϕ := limn→∞ ϕn is a homeomorphism which agrees with ϕn on C r Σn for every
n and satisfies ϕ(Σ) = Λ.

To check that ϕ is a David map, choose a sequence 1 < K1 < K2 < · · · < Kn < · · · with
Kn ³

√
n such that ϕn is Kn-quasiconformal. Fix some n, let K > 1, and choose j such

that Kj ≤ K < Kj+1. Then

area{z : Kϕn
(z) > K} ≤ area{z : Kϕn

(z) > Kj}
≤ area(Σj) = 2−4j.

Since K ³ Kj ³
√
j, we have

area{z : Kϕn
(z) > K} ≤ e−K ,

provided that K is bigger than some K0 independent of n. It follows that the ϕn are all
(1, 1, K0)-David maps. By Tukia’s Theorem in §1, we conclude that ϕ = limn→∞ ϕn is a
David map. 2

Removability of David circles. A compact set Γ ⊂ C is called (quasi)conformally remov-
able if every homeomorphism ϕ : C → C which is (quasi)conformal off Γ is (quasi)conformal
in C. It is well-known that conformal and quasiconformal removability are identical notions.

Every set of σ-finite 1-dimensional Hausdorff measure, such as a rectifiable curve, is re-
movable. Quasiarcs and quasicircles provide examples of removable sets which can have any
dimension in the interval [1, 2). One can even construct removable sets of dimension 2: the
Cartesian product of two linear Cantor sets with zero length and dimension 1 is such a set.

At the other extreme, sets of positive area are never removable, as can be seen by an easy
application of the measurable Riemann mapping theorem. Also, there exist non-removable
sets of Hausdorff dimension 1 (see for example [K]).

To add an item to the above list of examples, we show that David circles are removable,
which, combined with Theorem B, proves that there exist removable Jordan curves of Haus-
dorff dimension 2. First we need the following simple lemma on David maps (compare [PZ])
whose analogue in the quasiconformal case is standard.

Lemma 4.2. Suppose ϕ : C → C is a homeomorphism whose restrictions to D and C r D
are David. Then ϕ itself is a David map.

Proof. The complex dilatation µ = µϕ is defined almost everywhere in C and satisfies an

exponential condition of the form (1.4) in D and in C r D (by making C bigger and t and ε0

smaller if necessary, we can assume that the same constants (C, t, ε0) work for both D and
C r D). So to prove the lemma, we need only show that ϕ ∈ W 1,1

loc (C).

On every compact subset of CrS1, the ordinary partial derivatives ∂ϕ and ∂ϕ exist almost
everywhere, are integrable, and coincide with the distributional partial derivatives of ϕ. We
check that ∂ϕ, and hence ∂ϕ = µ · ∂ϕ, is locally integrable near the unit circle S1.

Let D be any small disk centered on S1. We have

|∂ϕ|2 =
Jϕ

1− |µ|2 ≤
Jϕ

1− |µ| ,

so that

(4.1) |∂ϕ| ≤ (Jϕ)
1
2 · (1− |µ|)− 1

2 .
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Now Jϕ ∈ L1(D) since
∫
D
Jϕ ≤ area(ϕ(D)) < +∞, and (1 − |µ|)−1 ∈ L1(D) because

of the exponential condition (1.4). It follows from Hölder inequality applied to (4.1) that
∂ϕ ∈ L1(D). ¤

Theorem 4.3. David circles are (quasi)conformally removable.

Proof. Let ϕ : C → C be a David map and Γ = ϕ(S1). Let f : C → C be a homeomorphism
which is conformal in CrΓ. Then the homeomorphism f ◦ϕ is David in D and in CrD. By
Lemma 4.2, f ◦ ϕ : C → C is a David map. Since µf◦ϕ = µϕ almost everywhere, it follows
from the uniqueness part of David’s theorem [D] that f must be conformal in C. ¤
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