Let be $g(x)=f(x)-x . \mathrm{g}(\mathrm{x})$ is a continous function in R and never get the value zero.From the Bolzano teorem, we can affirm that $\mathrm{g}(\mathrm{x})$ is always positive or always negative. Let suppose $\mathrm{g}(\mathrm{x})>0$. Then $\mathrm{f}(\mathrm{x})>\mathrm{x} \forall x \in \mathbb{R}$. (1)

Let suppose that $a \in \mathbb{R}$ is a solution of $\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$. Let see that it can't be possible.
From (1), $f(f(a))>f(a)$, but $f(a)>a$ from (1) again, so $f(f(a))>f(a)>a$ and $f(f(a)) \neq f(a)$
If we had supposed $g(x)$ were negative, we would get the same result.

