Problem of the Month May 2006 Seongyoon Cheong 105133188

1 Problem

Solve the following equation:

$$\cos^n(x) - \sin^n(x) = 1$$

where $n \in \mathbb{Z}^+$ and $x \in \mathbb{R}$.

2 Solution

Let $f(x) = \cos^n(x) - \sin^n(x)$. Note that it is enough to only consider the values of x in $[0, 2\pi)$.

2.1 Case 1: n = 1

When n = 1, we have

$$f'(x) = -\sin(x) - \cos(x).$$

So f'(x) = 0 when $\sin(x) = -\cos(x)$. We see $\cos(x) = 0$ isn't a case. Then we have

$$\sin(x) = -\cos(x)$$

$$\tan(x) = -1$$

So f'(x) = 0 when $x = \frac{3}{4}\pi, \frac{7}{4}\pi$. From this, we see f(x) has local maximum at $x = \frac{7}{4}\pi$ with f(x) > 1 and local minimum at $x = \frac{3}{4}$ with f(x) < 1. Since f(x) and f'(x) are both continuous, there are two values for x in $[0, 2\pi)$ where f(x) = 1. In particular, f(x) = 1 only when x = 0 or $\frac{3}{2}\pi$.

2.2 Case 2: $n \ge 2$, n is even

We have

$$f'(x) = -n\cos^{n-1}(x)\sin(x) - n\sin^{n-1}(x)\cos(x) = -n\cos(x)\sin(x)(\cos^{n-2}(x) + \sin^{n-2}(x))$$

Since $\cos^{n-2}(x) + \sin^{n-2}(x) > 0$, f'(x) = 0 only when $\cos(x) = 0$ or $\sin(x) = 0$. From this, we see f(x) has local maxima at $x = 0, \pi$ and local minima at $x = \frac{1}{2}\pi, \frac{3}{2}\pi$. However, all local maxima are equal to 1 in this case. So f(x) = 1 only when x = 0 or π .

2.3 Case 3: $n \ge 2$, n is odd

From the previous part, we have

$$f'(x) = -n\cos(x)\sin(x)(\cos^{n-2}(x) + \sin^{n-2}(x))$$

In this case, f'(x) = 0 only when $\cos(x) = 0$ or $\sin(x) = 0$ or $\sin(x) = -\cos(x)$. From this, we see f(x) has local maxima at $x = 0, \frac{3}{4}\pi, \frac{3}{2}\pi$ and local minima at $x = \frac{1}{2}\pi, \pi, \frac{7}{4}\pi$. Since f(x) < 0 when $x = \frac{3}{4}\pi$ and f(x) = 1 when x = 0 or $\frac{3}{2}\pi$, we see f(x) = 1 only when x = 0 or $\frac{3}{2}\pi$.

2.4 Conclusion

Generalizing the results above, we have the following:

- When n is odd, $\cos^n(x) \sin^n(x) = 1$ for $x = 0 + 2k\pi$ and $x = \frac{3}{2}\pi + 2k\pi$ where $k \in \mathbb{Z}$.
- When n is even, $\cos^n(x) \sin^n(x) = 1$ for $x = k\pi$ where $k \in \mathbb{Z}$.