1 Problem

Solve the following equation:

$$
\cos ^{n}(x)-\sin ^{n}(x)=1
$$

where $n \in \mathbb{Z}^{+}$and $x \in \mathbb{R}$.

2 Solution

Let $f(x)=\cos ^{n}(x)-\sin ^{n}(x)$. Note that it is enough to only consider the values of x in $[0,2 \pi)$.

2.1 Case 1: $n=1$

When $n=1$, we have

$$
f^{\prime}(x)=-\sin (x)-\cos (x) .
$$

So $f^{\prime}(x)=0$ when $\sin (x)=-\cos (x)$. We see $\cos (x)=0$ isn't a case. Then we have

$$
\begin{aligned}
\sin (x) & =-\cos (x) \\
\tan (x) & =-1
\end{aligned}
$$

So $f^{\prime}(x)=0$ when $x=\frac{3}{4} \pi, \frac{7}{4} \pi$. From this, we see $f(x)$ has local maximum at $x=\frac{7}{4} \pi$ with $f(x)>1$ and local minimum at $x=\frac{3}{4}$ with $f(x)<1$. Since $f(x)$ and $f^{\prime}(x)$ are both continuous, there are two values for x in $[0,2 \pi)$ where $f(x)=1$. In particular, $f(x)=1$ only when $x=0$ or $\frac{3}{2} \pi$.

2.2 Case 2: $n \geq 2, n$ is even

We have

$$
\begin{aligned}
f^{\prime}(x) & =-n \cos ^{n-1}(x) \sin (x)-n \sin ^{n-1}(x) \cos (x) \\
& =-n \cos (x) \sin (x)\left(\cos ^{n-2}(x)+\sin ^{n-2}(x)\right)
\end{aligned}
$$

Since $\cos ^{n-2}(x)+\sin ^{n-2}(x)>0, f^{\prime}(x)=0$ only when $\cos (x)=0$ or $\sin (x)=0$. From this, we see $f(x)$ has local maxima at $x=0, \pi$ and local minima at $x=\frac{1}{2} \pi, \frac{3}{2} \pi$. However, all local maxima are equal to 1 in this case. So $f(x)=1$ only when $x=0$ or π.

2.3 Case 3: $n \geq 2, n$ is odd

From the previous part, we have

$$
f^{\prime}(x)=-n \cos (x) \sin (x)\left(\cos ^{n-2}(x)+\sin ^{n-2}(x)\right)
$$

In this case, $f^{\prime}(x)=0$ only when $\cos (x)=0$ or $\sin (x)=0$ or $\sin (x)=-\cos (x)$. From this, we see $f(x)$ has local maxima at $x=0, \frac{3}{4} \pi, \frac{3}{2} \pi$ and local minima at $x=\frac{1}{2} \pi, \pi, \frac{7}{4} \pi$. Since $f(x)<0$ when $x=\frac{3}{4} \pi$ and $f(x)=1$ when $x=0$ or $\frac{3}{2} \pi$, we see $f(x)=1$ only when $x=0$ or $\frac{3}{2} \pi$.

2.4 Conclusion

Generalizing the results above, we have the following:

- When n is odd, $\cos ^{n}(x)-\sin ^{n}(x)=1$ for $x=0+2 k \pi$ and $x=\frac{3}{2} \pi+2 k \pi$ where $k \in \mathbb{Z}$.
- When n is even, $\cos ^{n}(x)-\sin ^{n}(x)=1$ for $x=k \pi$ where $k \in \mathbb{Z}$.

