Problem:

There are three colleges in a town. Each college has n students. Any student of any college knows n+1 students of the other two colleges. Prove that it is possible to choose a student from each of the three colleges so that all three students would know each other.

Solution:

First note that we can reformulate the problem as follows; consider a tri-partite graph of 3-n nodes \(G_n := K_{n,n,n} \) where each node has degree n+1. We want to show that this graph contains a \(K_3 \) subgraph (3-cycle). Next we note that each node \(v \in G_n \) has edges connecting it to one of two partite regions of \(G_n \); we define a function \(f(v) \) that maps each node \(v \in G_n \) to the lesser of the two numbers of edges connecting \(v \) to a partite region (e.g. if \(v \) has i edges connected to nodes in region A and j edges connected to nodes in region B then \(f(v) = \min\{i,j\} \)). We also define the function \(\sigma(G_n) \) which maps the graph \(G_n \) to the integer \(\min\{f(v) \mid v \in G_n\} \).

Notice that \(\sigma(G_n) > 0 \) since each node has degree n+1 and each region contains n nodes; therefore each node must contain at least one node in each partite region (e.g. \(f(v) > 0 \forall v \in G_n \)). Now suppose that \(\sigma(G_n) = k \) and choose a node \(v1 \) in the partite region A such that \(f(v1) = k \). Let \(v2 \) be one of the k nodes in the partite region B that share an edge with \(v1 \). We know that \(v1 \) must share an edge with n-k+1 nodes in region C and that \(v2 \) must share an edge with at least k nodes in region C. But \((n-k+1)+k = n+1 \) and there are only n nodes in region C, therefore there must be some node \(v3 \) in region C that shares an edge with both \(v1 \) and \(v2 \) so that \(\{v1,v2,v3\} \) form a 3-cycle. \(\Box \)