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Theorem: Let F (n) denote the number of ways 2n can be represented as a sum of
squares of four integers, where n > 0. Then

F (n) =

{
2, if 2|n
1, if 2 - n

Proof: Constructive proof.
Let a2

1 + a2
2 + a2

3 + a2
4 = 2n for some integers a1..a4, n where n > 0.

Let us consider all possible parities of a1..a4.
Only an even number of integers among a1..a4 can be odd, otherwise the sum of their

squares will be odd as well. Therefore, we only need to consider the following three cases:

1. exactly two numbers among a1..a4 are odd;

2. all of the numbers a1..a4 are odd;

3. none of the numers a1..a4 is odd.

Since different permutations do not consitute different representations, it is up to our choice
to pick which ai are odd and which are even.

Case 1: WLOG, let a1, a2 be odd, and let a3, a4 be even.
Then a1 = (2k1 + 1), a2 = (2k2 + 1), a3 = (2k3), a4 = (2k4) for some k1..k4 ∈ Z+. Hence,

2n = (2k1 + 1)2 + (2k2 + 1)2 + (2k3)
2 + (2k4)

2;

2n = 4k2
1 + 4k2

2 + 4k2
3 + 4k2

4 + 2;

2n−1 = 2(k2
1 + k2

2 + k2
3 + k2

4) + 1,

which implies that 2n−1 is odd. This is only possible in the case when n = 1 so that
2n−1 = 20 = 1 (in this case we have 21 = 02 + 02 + 12 + 12). Consequently, for n > 1, 2n

cannot be represented as a sum of squares of two numbers, exactly two of which are odd.
Case 2: Let a1..a4 be all odd.
Then ai = (2ki + 1), 1 ≤ i ≤ 4 for some k1..k4 ∈ Z+. Hence,

2n =
4∑

i=1

(2ki + 1)2

2n =
4∑

i=1

4k2
i + 4ki + 1;

2n =

[
4

4∑
i=1

ki(ki + 1)

]
+ 4;

2n−2 =

[
4∑

i=1

ki(ki + 1)

]
+ 1.
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Now, ∀k ∈ Z+: 2|k or 2|(k + 1) ⇒ 2|k(k + 1) ⇒ 2|
∑4

i=1 ki(ki + 1). Hence, 2n−2 is odd,
which is only possible in the case when n = 2 so that 2n−2 = 20 = 1. Then we have
22 = 12 + 12 + 12 + 12; otherwise, for n > 2, 2n cannot be repesented as a sum of squares of
four odd numbers. Therefore, we have proven that

For n > 2, 2n can only be represented as a sum of sqaures of four even numbers. (I)

Case 3: Let a1..a4 be all even.
Then ai = 2ki, 1 ≤ i ≤ 4 for some k1..k4 ∈ Z+. Hence,

2n =
4∑

i=1

(2ki)
2 = 4

4∑
i=1

k2
i ⇒ 2n−2 =

4∑
i=1

k2
i .

Thus, any representation of 2n as a sum of squares of four even integers corresponds to some
representation of 2n−2 as a sum of squares of four integers. Combining this with (I) and
noting that the converse is also true (i.e. any representation of 2n−2 as a sum of four squares
yields a representation of 2n as a sum of four squares), we set a one-to-one correspondence
between representations of 2n and 2n−2 as a sum of four integers. Therefore, ∀n > 2,
F (n) = F (n− 2). After finding empirically that F (1) = 1 where

2 = 0 + 0 + 1 + 1

and F (2) = 2, with

4 = 1 + 1 + 1 + 1

4 = 0 + 0 + 0 + 4

we establish

1 = F (1) = F (3) = F (5) = F (7) = ... = F (2k + 1),∀k > 0;

2 = F (2) = F (4) = F (6) = F (8) = ... = F (2k),∀k > 0,

thus proving the theorem. �

Note: we could have attained the same result by considering a1..a4 mod 8; however, the
proof presented above was chosen because it does not employ any number theory beyond
divisibility by 2 (and is therefore simpler).
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