Problem of the Month

September 2005
Solution by Roman Kogan
rkogan@ic.webmail.sunysb.edu
Theorem: Let $F(n)$ denote the number of ways 2^{n} can be represented as a sum of squares of four integers, where $n>0$. Then

$$
F(n)= \begin{cases}2, & \text { if } 2 \mid n \\ 1, & \text { if } 2 \nmid n\end{cases}
$$

Proof: Constructive proof.
Let $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=2^{n}$ for some integers $a_{1} . . a_{4}, n$ where $n>0$.
Let us consider all possible parities of $a_{1} . . a_{4}$.
Only an even number of integers among $a_{1} . . a_{4}$ can be odd, otherwise the sum of their squares will be odd as well. Therefore, we only need to consider the following three cases:

1. exactly two numbers among $a_{1} . . a_{4}$ are odd;

2 . all of the numbers $a_{1} . . a_{4}$ are odd;
3. none of the numers $a_{1} . . a_{4}$ is odd.

Since different permutations do not consitute different representations, it is up to our choice to pick which a_{i} are odd and which are even.

Case 1: WLOG, let a_{1}, a_{2} be odd, and let a_{3}, a_{4} be even.
Then $a_{1}=\left(2 k_{1}+1\right), a_{2}=\left(2 k_{2}+1\right), a_{3}=\left(2 k_{3}\right), a_{4}=\left(2 k_{4}\right)$ for some $k_{1} . . k_{4} \in \mathbb{Z}^{+}$. Hence,

$$
\begin{aligned}
2^{n} & =\left(2 k_{1}+1\right)^{2}+\left(2 k_{2}+1\right)^{2}+\left(2 k_{3}\right)^{2}+\left(2 k_{4}\right)^{2} ; \\
2^{n} & =4 k_{1}^{2}+4 k_{2}^{2}+4 k_{3}^{2}+4 k_{4}^{2}+2 ; \\
2^{n-1} & =2\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}+k_{4}^{2}\right)+1,
\end{aligned}
$$

which implies that 2^{n-1} is odd. This is only possible in the case when $n=1$ so that $2^{n-1}=2^{0}=1$ (in this case we have $2^{1}=0^{2}+0^{2}+1^{2}+1^{2}$). Consequently, for $n>1,2^{n}$ cannot be represented as a sum of squares of two numbers, exactly two of which are odd.

Case 2: Let $a_{1} . . a_{4}$ be all odd.
Then $a_{i}=\left(2 k_{i}+1\right), 1 \leq i \leq 4$ for some $k_{1} . . k_{4} \in \mathbb{Z}^{+}$. Hence,

$$
\begin{aligned}
2^{n} & =\sum_{i=1}^{4}\left(2 k_{i}+1\right)^{2} \\
2^{n} & =\sum_{i=1}^{4} 4 k_{i}^{2}+4 k_{i}+1 \\
2^{n} & =\left[4 \sum_{i=1}^{4} k_{i}\left(k_{i}+1\right)\right]+4 \\
2^{n-2} & =\left[\sum_{i=1}^{4} k_{i}\left(k_{i}+1\right)\right]+1
\end{aligned}
$$

Now, $\forall k \in \mathbb{Z}^{+}: 2 \mid k$ or $2|(k+1) \Rightarrow 2| k(k+1) \Rightarrow 2 \mid \sum_{i=1}^{4} k_{i}\left(k_{i}+1\right)$. Hence, 2^{n-2} is odd, which is only possible in the case when $n=2$ so that $2^{n-2}=2^{0}=1$. Then we have $2^{2}=1^{2}+1^{2}+1^{2}+1^{2}$; otherwise, for $n>2,2^{n}$ cannot be repesented as a sum of squares of four odd numbers. Therefore, we have proven that

For $n>2,2^{n}$ can only be represented as a sum of sqaures of four even numbers.

Case 3: Let $a_{1} . . a_{4}$ be all even.
Then $a_{i}=2 k_{i}, 1 \leq i \leq 4$ for some $k_{1} . . k_{4} \in \mathbb{Z}^{+}$. Hence,

$$
2^{n}=\sum_{i=1}^{4}\left(2 k_{i}\right)^{2}=4 \sum_{i=1}^{4} k_{i}^{2} \Rightarrow 2^{n-2}=\sum_{i=1}^{4} k_{i}^{2}
$$

Thus, any representation of 2^{n} as a sum of squares of four even integers corresponds to some representation of 2^{n-2} as a sum of squares of four integers. Combining this with (I) and noting that the converse is also true (i.e. any representation of 2^{n-2} as a sum of four squares yields a representation of 2^{n} as a sum of four squares), we set a one-to-one correspondence between representations of 2^{n} and 2^{n-2} as a sum of four integers. Therefore, $\forall n>2$, $F(n)=F(n-2)$. After finding empirically that $F(1)=1$ where

$$
2=0+0+1+1
$$

and $F(2)=2$, with

$$
\begin{aligned}
& 4=1+1+1+1 \\
& 4=0+0+0+4
\end{aligned}
$$

we establish

$$
\begin{aligned}
& 1=F(1)=F(3)=F(5)=F(7)=\ldots=F(2 k+1), \forall k>0 \\
& 2=F(2)=F(4)=F(6)=F(8)=\ldots=F(2 k), \forall k>0
\end{aligned}
$$

thus proving the theorem.
Note: we could have attained the same result by considering $a_{1} . . a_{4} \bmod 8$; however, the proof presented above was chosen because it does not employ any number theory beyond divisibility by 2 (and is therefore simpler).

