
OCTOBER 2005 PROBLEM OF THE MONTH

JERRY MCMAHAN JR.

1. Introduction

This is a solution for the October 2005 problem of the month by
Jerry McMahan Jr. (jerry@ensomnya.net).

The problem defines a sequence, a0, a1, . . . as

a0 = 1, a1 = 1, an = 3an−1 − an−2∀n ≥ 2

The problem then asks to show that an

an−1
has a limit as n approaches

infinity, and to find the limit. It also asks to show that the above
sequence can be obtained from every other term in the Fibonacci se-
quence, defined as

f0 = 1, f1 = 1, fn = fn−1 + fn−2∀n ≥ 2

2. Convergence

To follow the algebra below, it is useful to keep in mind that an can
be represented three different ways using the definition of the sequence
above:

(1) an = 3an−1 − an−2

(2) an =
an+1 + an−1

3

(3) an = 3an+1 − an+2

Take an

an−1
and perform the following algebraic manipulations:
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an

an−1

=
(an−1 + an+1)

3an−1

=
1

3
+

an+1

3an−1

(4)

=
1

3
+

an+1

3an−1

+ (
5

3
− 5

3
) = 2 +

an+1 − 5an−1

3an−1

(5)

= 2 +
(3an − an−1)− 5an−1

3an−1

= 2 +
3an − 6an−1

3an−1

(6)

= 2 +
an − 2an−1

an−1

= 2 +
1

an−1

an − 2an−1

(7)

= 2 +
1

(1− 1) +
an−1

an − 2an−1

= 2 +
1

1 +
an−1 − an + 2an−1

an − 2an−1

(8)

= 2 +
1

1 +
3an−1 − an

an − 2an−1

= 2 +
1

1 +
an−2

an − 2an−1

(9)

= 2 +
1

1 +
1

an − 2an−1

an−2

= 2 +
1

1 +
1

an − 2an−1 + (an−1 − an−1)

an−2

(10)

= 2 +
1

1 +
1

(an − 3an−1) + an−1

an−2

= 2 +
1

1 +
1

(−an−2) + an−1

an−2

(11)

= 2 +
1

1 +
1

−1 +
an−1

an−2

= 2 +
1

1 +
1

(2− 2)− 1 +
an−1

an−2

(12)

= 2 +
1

1 +
1

1 +
an−1 − 2an−2

an−2

(13)

Compare the term an−1−2an−2

an−2
in equation (13) with the term an−2an−1

an−1

in the left part of equation (7). These two terms are of the same
form. Therefore, by repeating the same algebraic steps in equations
(7) through (13) for the term an−1−2an−2

an−2
will expand the fraction in

the same way. For any n ≥ 2, repeating this process until the term
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becomes a2−2a1

a1
= 0 yields the simple continued fraction for the term

an. It is clear that as n approaches infinity, this becomes the infinite
simple continued fraction:

(14) 2 +
1

1 +
1

1 +
1

1 + . . .

Since any infinite simple continued fraction is equal to some irra-
tional number, then the sequence of ratios of consecutive terms in the
sequence a0, a1, ... defined above converges to this number (to see the
proof that an infinite simple continued fraction converges to a value,
reference a number theory text such as [1]).

3. Value of the Limit

Since we know the limit exists, we can do the following:

lim
n→∞

an

an−1

= lim
n→∞

3an−1 − an−2

an−1

(15)

= lim
n→∞

3− an−2

an−1

(16)

Notice that an−2

an−1
is the inverse of the ratio whose limit we are looking

for. So as n approaches infinity, this should approach the inverse of the
desired limit. We can use this to set up an equation which will let us
solve for the limit’s value. Let x = limn→∞

an

an−1
. Then

(17) x = 3− 1

x
Multiplying through by x and arranging all terms on one side, we

get

(18) x2 − 3x + 1 = 0

Using the quadratic equation to solve for x yields:

(19) x =
3±

√
5

2
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The value 3−
√

5
2

can be eliminated by observing that a2 = 2 > a1 = 1,
and that if ak > ak−1 then

ak > ak−1

ak > 3ak − ak+1

so

(20) ak+1 > 2ak > ak

That 2ak > ak follows once we know that ak > 0. If this were not
true, since we know the sequence starts out positive, then there would
be some an, n < k that was the first negative element. This means

an = 3an−1 − an−2 < 0

which gives us

(21) 3an−1 < an−2

But since an is the first negative element, an−1 and an−2 are both
positive. Since we’ve assumed ak > ak−1 for all an up to ak, then
an−1 > an−2. This contradicts equation (21). By a similar argument,
ak cannot be 0. Thus the sequence is always positive, justifying the
inequality in equation (20), which in turn allows us to determine by
induction that the sequence is always increasing for an, n ≥ 2. Since
an > an−1,∀n ≥ 2, we have

(22)
an

an−1

> 1,∀n ≥ 2

However √
5 >

√
4 = 2

−
√

5 < −2

3−
√

5 < 3− 2

3−
√

5

2
<

1

2
< 1

Since the ratio in equation (22) is always greater than 1 and it is al-
ways increasing, and the value in question is less than 1, it is impossible
for the sequence to converge to this value. So the sequence converges
to

3 +
√

5

2
= 1 +

1 +
√

5

2
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4. Relationship to the Fibonacci Sequence

As mentioned in the problem statement the sequence we defined
can be obtained from the Fibonacci sequence. Note that equations
analogous to (1), (2), and (3) are used in the following manipulations.

fn = fn−1 + fn−2 = fn−1 + (fn−1 − fn−3)(23)

= 2fn−1 − fn−3 = 2(fn−2 + fn−3)− fn−3(24)

= 2fn−2 + fn−3 = 2fn−2 + (fn−2 − fn−4)(25)

= 3fn−2 − fn−4(26)

Notice now that equation (26) has the same recursive form as the
sequence we worked with earlier, only every other element is being
used rather than every element. The original sequence and the one
defined in (26) will equal one another only for fn with n even which
you can verify through substituting the first values in the equation. For
n odd, the sequences will not be the same. However, as n approaches
infinity, the sequence of fn for n odd will converge to the same value
as the sequence with n even. The reason for this is that the ratio

defined by fn

fn−1
converges to the value 1+

√
5

2
, which can be proved using

similar methods as the proof for the above sequence. In fact, given this
information, you could prove the first sequence converges like so:

lim
n→∞

f2n

f2n−2)

= lim
n→∞

f2n−1 + f2n−2

f2n−2

= lim
n→∞

1 +
f2n−1

f2n−2

This would equal the same value that the first sequence converged
to, or equivalently, the limit of the ratio of adjacent Fibonacci numbers
plus 1, which is

1 +
1 +

√
5

2

This number has some significance. 1+
√

5
2

is known as the golden
ratio. The ratio of two numbers, a and b, is the same as the golden
ratio if a+b

b
= a

b
. The ratio of every Fibonacci number to the Fibonacci

number previous to it converges to this value, and the first sequence
given converges to one plus this value. The number occurs frequently
in nature, an often-cited example being the proportions of the spiral
on a conch shell. The number was known to the Greeks and possibly
the Egyptians. It has been used at times by modern artists to arrange
elements in their work in what was considered to be an aesthetically
pleasing manner. [2]
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