2 kinds
continuous (flows)
- flow of water in pipe
- billiards

* discrete, iterative dynamics.
- $x_{n+1} = f(x_n)$
- $x_n = f^n(x_0) = \underbrace{f \circ \cdots \circ f}_{n-\text{times}}(x_0)$

orbit of x_0, $(x_0, x_1, x_2, x_3, \ldots)$
\[f(x) = x^2 \quad f : \mathbb{R} \to \mathbb{R} \]

Population of Rabbits

Logistic

\[x_{n+1} = r \cdot x_n \cdot (1 - x_n) \]

\[y = r \cdot x \cdot (1 - x) \]

\[x = \% \text{ of carrying cap.} \]

\[g_r(x) = r \cdot x \cdot (1 - x) \]

\[= r \cdot x - r \cdot x^2 \]

\[g_r \text{ is conjugate to a quadratic of the form } f_c(x) = x + c \]

by a linear function.

There is a linear function

\[l_{a,b}(x) = ax + b \]

\[l_{0.5} \circ g_r \circ l_{0.5}^{-1} = f_c(r) \]

\[f^n_c = (l_{0.5} \circ g_r \circ l_{0.5}) \circ \ldots \circ (l_{0.5} \circ g_r \circ l_{0.5}) \]

\[= l_{0.5} \circ g_r^n \circ l_{0.5}^{-1} \]

Challenge: Try to conj. \(r \cdot x \cdot (1 - x) \)

to \(x^2 + c \), where \(c \) depends on \(r \).
Complex Dynamics

\[f_c : \mathbb{C} \to \mathbb{C}, \quad f_c(z) = z^2 + c. \]

\[f_0(z) = z^2 \]

\[(6i)^2 = 6^2 i^2 = -36 \]

\[(6i, -36, 6^2, 6^4, \ldots) \]

\[n \to \infty \]

\[f_b^n(6i) \to \infty \]

\[3 + 2i = r e^{i	heta} \]

\[(3 + 2i)^2 = r^2 e^{2i	heta} \]

if \(|z| > 1 \) then \(f_0^n(z) \to \infty \)

if \(|z| < 1 \), say \(z = \frac{1}{2} \) \(\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \ldots \right) \)

\[f_0^n \left(\frac{1}{2} \right) = \frac{1}{2}^{2^n} \to 0 \]

\[z^2 = 1 \]

\[f(1) = 1^2 = 1. \]

\[f(0) = 0^2 = 0 \]

0 is an attracting

\[\ldots \]
To be an attracting fixed point, nearby points must converge to the fixed point. $z = 1$ is a repelling fixed point.

- $z \mapsto z^2$

2 branches of the inverse are

- $z \mapsto \sqrt{z}$
- $z \mapsto -\sqrt{z}$

E.g. $\sqrt{(-1)^2} = \sqrt{1} = 1 \neq -1$
- $-\sqrt{(-1)^2} = -1$

Fatou set (or stable set)
- Small perturbations don’t matter
- Nearby points, stay close by

Julia set (or chaotic set)
- Complement of Fatou set
\[F(f) \cup J(f) = \mathbb{C} \]
- the smallest of perturbations can cause huge changes in orbit

\underline{Filled Julia set}

\[K(f) = \{ z \in \mathbb{C} \mid f^n(z) \not\to \infty \} \]

\[J(f) = \partial K(f) \]

What is \(M \)?

\[M = \{ c \in \mathbb{C} \mid f_c^n(0) \not\to \infty \} \]

equiv. = \{ c \in \mathbb{C} \mid K(f) \text{ is connected} \}

\underline{Thm For } \text{deg} \geq 2, \text{ } f(z) \text{ a polynomial,}

\[J(f) \neq \emptyset \]

\[\begin{align*}
0^2 - 1 &= -1 \\
(-1)^2 - 1 &= 1 - 1 = 0
\end{align*} \]
Thm: M is connected.

 Conj. M is locally connected.

Ex. not loc. conn.

[Diagram with points labeled 0, 1/4, 1/2, 1]