Public Key Cryptography

Traditional:
• Person A decides how they code the message.
• Person B needs to know how person A encoded the message.
 "code book".
• Person C can easily intercept this code book = read the message.

Want: a way to encode a message that doesn’t need a code book.
Idea: * B is going to provide in a very public way information (2 numbers).
* This information is enough for A to encode her message.
* B is going to withhold a critical piece of information that will allow B to decode.

Person C: all they can see is the public information - not enough to decode.
Steps:

B: 1) Pick two very large prime numbers, p and q.

2) Calculate:
 \[n := p \times q \]
 \[b := (p-1) \times (q-1) \]

3) Pick a big number “a” that has no common factors with b.
 No numbers that divide both a and b (except 1).

4) Publish \((n, a)\).

A: 1) Convert your message into a string of numbers.

2) Split string of numbers into blocks of numbers which have less digits than digits of \(n\).
3) \(x = \) block of numbers.
 Calculate \(x^a \).

4) Divide \(x^a \) by \(n \).
 \[x^a = kn + r \]
 remainder \(0 \leq r < n \).

5) Send to B: \(r \).
Example

B: 1) \(p = 3 \quad q = 41 \).

2) \(n = p \times q = 3 \times 41 = 123 \)
\[
b = (p - 1) \times (q - 1) = 2 \times 40 = 80.
\]

3) Pick a number \(a \) with no common factors with \(b = 80 \).
\[
a = 27 = 3^3.
\]

Publish: \((n, a) = (123, 27)\).
Information that we've hidden: p and q.

A: \(x = 05 \) block that we want to encode.

Calculate \(x^2 = 5^{27} \)

divide by \(n = 123 \), \(r = 20 \).

Message that we send:

\(r = 20 \).

Q: How do we decode ??
Claim: Let a, b be two numbers with no common factors. Then there exists two integers s and t such that:

$$as + bt = 1.$$

Check: $b = 80$, $a = 27$.

Want: $27s + 80t = 1$

Idea: Let's divide 80 by 27.

$$80 = 2 \times 27 + 26 \quad \Rightarrow \quad 26 = 80 + (-2) \times 27$$

$$27 = 1 \times 26 + 1$$

$$27 + (-1) \times 26 = 1$$
\[27 + (-1)(80 + (-2) \times 27) = 1 \]
\[27 + (-1) \times 80 + 2 \times 27 = 1 \]
\[3 \times 27 + (-1) \times 80 = 1 \]

Want: \(27s + 80t = 1 \)

\[s = 3 \quad \text{and} \quad t = -1 \]

Euclidean Algorithm \(\quad a < b \)

1. \(b = q_1 a + r_1 \quad 0 < r_1 < a \)
2. \(a = q_2 r_1 + r_2 \quad 0 < r_2 < r_1 \)
 \[r_1 = q_3 r_2 + r_3 \quad 0 < r_3 < r_2 \]

If the remainder becomes 0, then \(\Rightarrow a \) and \(b \) have a common factor.
nth step \[r_{n-2} = r_n r_{n-1} + 1 \]

* Work backwards until we get expression
 \[1 = a \cdot s + b \cdot t. \]

In our example: \(a = 27, \ b = 80. \)

Claim: \(s = \) key to enable us to decode the message.

\(\Rightarrow r^s \) divide by \(n \) take remainder remainder \(= x. \)
Example: $x = 05$ message before encryption.

$(n, a) = (123, 27)$.

Encrypt: $x^a = 5^{27}$

$\text{divide by }123=n$, and we got $r = 20$.

$r^s = r^3 = 20^3 = 8000$

$\text{divide by }n=123: \quad = 65 \times 123 + 5$

remainder $= 5$.

Why can’t Person C calculate the number s?
Key point: needed to know both
\[a = 27 \text{ and } b = 80 = (p-1)(q-1) \]

\[\Rightarrow b \text{ was hidden.} \]

\((n, a)\) know: \(n\) is the product of \(p\) and \(q\).

Q: How do we find the prime \(p\) and \(q\)?

Very hard to factorise large numbers.

Largest publicly known factored \# was
250 digits long
(829 bits)

\(n\) less than 300 bits \(\leq 80\) digits
- you can factor w/ a personal computer.
(n=pq, a) a is relatively prime to b.

Q: x^a divided by n \Rightarrow Γ.
 Γ^s divided by n \Rightarrow X.

\[
x^a = k\Gamma + \Gamma
\]
\[
\Gamma = x^a - k\Gamma
\]
\[\Gamma^s = (x^a - k\Gamma)(x^a - k\Gamma) \ldots (x^a - k\Gamma)
\]
\[= (x^a)^s + n(\text{bunch of stuff})
\]
\[= x^{as}
\]

as + bt = 1 from Euclidean Algorithm.

as = 1 - bt

as
\[x^b = q^n + 1 \text{ for some } q. \]

Why is this true?

\[x^b = x \cdot (p-1)(q-1) = q^n + 1. \]

Thm (Euler's Thm): let \(n \) be any number.

Then \(a^{\varphi(n)} = q^n + 1 \)

\(\varphi(n) \) Euler's totient function \(\varphi(n) \) counts all the integers from 1 that are coprime with \(n \).
\(\varphi(n) \) counts all the numbers from 1 up to \(n \) that have no common factors with \(n \). (Includes 1).

E.g.: \(\varphi(5) = \#\{1, 2, 3, 4\} = 4 \)
\(\varphi(7) = \#\{1, 2, \ldots, 6\} = 6 \)
\(\varphi(p) = p - 1 \).

Challenge: \(\varphi(pq) = (p - 1)(q - 1) \) (check!).

\[x^b - x^{(p-1)(q-1)} = qn + 1 \]
by above

\[(x^b)^{-b} = (1 + qn)^{-b} \]
\[= 1 + \sum_{\text{div by } n} \]

\[= x \cdot x^{-b} + n \left(\text{bunch of stuff} \right) . \]
\[= x \left(1 + n\left(\ldots \right) \right) + n \left(\text{div by } n \right) \]
\[= x + n\left(\ldots \right) \]
\[= \text{just going to } x . \]