Polynomial skew products with wandering Fatou-disks Joint with Liz Raguel Vivas (Ohio State)

Han Peters University of Amsterdam

August 26, 2014 Gyeong-Ju, South Korea

A 1

Describe the Fatou set for rational maps in two complex variables.

- Classify and describe the periodic Fatou components.
- Investigate the existence of wandering Fatou components.

Special interest: Hénon maps.

4 6 1 1 4

E 5 4

Describe the Fatou set for rational maps in two complex variables.

Classify and describe the periodic Fatou components.

Investigate the existence of wandering Fatou components.

Special interest: Hénon maps.

A (10) A (10)

Describe the Fatou set for rational maps in two complex variables.

- Classify and describe the periodic Fatou components.
- Investigate the existence of wandering Fatou components.

Special interest: Hénon maps.

4 6 1 1 4

Describe the Fatou set for rational maps in two complex variables.

- Classify and describe the periodic Fatou components.
- Investigate the existence of wandering Fatou components.

Special interest: Hénon maps.

There is always the escaping region.

Bedford-Smillie, '91

The only other Fatou components of **hyperbolic** Hénon maps are *basins of attracting cycles*.

Bedford-Smillie, '91

The only other Fatou components of **volume preserving** Hénon maps are *Siegel domains*.

(Siegel domain: There exist (n_i) so that $f^{n_i} \rightarrow \text{Id.}$)

There is always the escaping region.

Bedford-Smillie, '91

The only other Fatou components of **hyperbolic** Hénon maps are *basins of attracting cycles*.

Bedford-Smillie, '91

The only other Fatou components of **volume preserving** Hénon maps are *Siegel domains*.

(Siegel domain: There exist (n_i) so that $f^{n_i} \rightarrow \text{Id.}$)

There is always the escaping region.

Bedford-Smillie, '91

The only other Fatou components of **hyperbolic** Hénon maps are *basins of attracting cycles*.

Bedford-Smillie, '91

The only other Fatou components of **volume preserving** Hénon maps are *Siegel domains*.

(Siegel domain: There exist (n_j) so that $f^{n_j} \to \mathrm{Id.}$)

< ロ > < 同 > < 回 > < 回 >

There is always the escaping region.

Bedford-Smillie, '91

The only other Fatou components of **hyperbolic** Hénon maps are *basins of attracting cycles*.

Bedford-Smillie, '91

The only other Fatou components of **volume preserving** Hénon maps are *Siegel domains*.

(Siegel domain: There exist (n_i) so that $f^{n_j} \to \text{Id.}$)

Bedford-Smillie '91, Lyubich-P. '14

- Ω is the basin of an attracting fixed point.
- ② Ω is the basin of an invariant closed Riemann surface Σ ⊂ Ω. Σ is an embedded disk or annulus (??), and *f* acts on Σ as an irrational rotation.
- (1) Ω is the basin of a semi-parabolic fixed point.

Bedford-Smillie '91, Lyubich-P. '14

- Ω is the basin of an attracting fixed point.
- ② Ω is the basin of an invariant closed Riemann surface Σ ⊂ Ω. Σ is an embedded disk or annulus (??), and *f* acts on Σ as an irrational rotation.
- (1) Ω is the basin of a semi-parabolic fixed point.

Bedford-Smillie '91, Lyubich-P. '14

- Ω is the basin of an attracting fixed point.
- ② Ω is the basin of an invariant closed Riemann surface Σ ⊂ Ω. Σ is an embedded disk or annulus (??), and *f* acts on Σ as an irrational rotation.
- (1) Ω is the basin of a semi-parabolic fixed point.

Bedford-Smillie '91, Lyubich-P. '14

- Ω is the basin of an attracting fixed point.
- ② Ω is the basin of an invariant closed Riemann surface Σ ⊂ Ω. Σ is an embedded disk or annulus (??), and *f* acts on Σ as an irrational rotation.
- \bigcirc Ω is the basin of a semi-parabolic fixed point.

Bedford-Smillie '91, Lyubich-P. '14

- Ω is the basin of an attracting fixed point.
- 2 Ω is the basin of an invariant closed Riemann surface Σ ⊂ Ω. Σ is an embedded disk or annulus (??), and *f* acts on Σ as an irrational rotation.
- **(3)** Ω is the basin of a semi-parabolic fixed point.

2

イロト イヨト イヨト イヨト

Note that a crossbreed between parabolic and Siegel

cannot exist. (for Hénon maps)

H	lan	Pe	ters

Main open question

Can non-hyperbolic dissipative Hénon maps have wandering Fatou components?

We will consider polynomial maps of the form

 $F:(t,z)\mapsto (p(t),q(t,z)).$

Question

Can such maps have wandering Fatou components?

Note: if (t, z) lies in the Fatou set of *F*, then *t* lies in the Fatou set of *p*. The "dissipative case": *t* in the basin of an attracting periodic point.

 lon		to	-
an	Le	ele	15

< 回 ト < 三 ト < 三

We will consider polynomial maps of the form

$$F:(t,z)\mapsto (p(t),q(t,z)).$$

Question

Can such maps have wandering Fatou components?

Note: if (t, z) lies in the Fatou set of *F*, then *t* lies in the Fatou set of *p*. The "dissipative case": *t* in the basin of an attracting periodic point.

We will consider polynomial maps of the form

 $F:(t,z)\mapsto (p(t),q(t,z)).$

Question

Can such maps have wandering Fatou components?

Note: if (t, z) lies in the Fatou set of *F*, then *t* lies in the Fatou set of *p*. The "dissipative case": *t* in the basin of an attracting periodic point.

A (10) A (10) A (10)

We will consider polynomial maps of the form

 $F:(t,z)\mapsto (p(t),q(t,z)).$

Question

Can such maps have wandering Fatou components?

Note: if (t, z) lies in the Fatou set of *F*, then *t* lies in the Fatou set of *p*. The "dissipative case": *t* in the basin of an attracting periodic point.

< 回 > < 三 > < 三 >

Dissipative skew products

$$F:(t,z)\mapsto(p(t),q(t,z)),$$
 with $p(0)=0$ and $|p'(0)|<1.$

Question

Can *F* have wandering Fatou components near $\{t = 0\}$?

Dissipative skew products

$$F:(t,z)\mapsto(p(t),q(t,z)),$$

with p(0) = 0 and |p'(0)| < 1.

Question

Can *F* have wandering Fatou components near $\{t = 0\}$?

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$F:(t,z)\mapsto (p(t),q(t,z)),$

with p(0) = 0 and p'(0) = 0. Assume that the degree of $q(t, \cdot)$ is locally constant.

Lilov, '04

There are no wandering Fatou components near $\{t = 0\}$.

不同 トイモトイモ

$F:(t,z)\mapsto (p(t),q(t,z)),$

with p(0) = 0 and p'(0) = 0. Assume that the degree of $q(t, \cdot)$ is locally constant.

Lilov, '04

There are no wandering Fatou components near $\{t = 0\}$.

不同 トイモトイモ

$$F:(t,z)\mapsto(p(t),q(t,z)),$$

with p(0) = 0 and p'(0) = 0. Assume that the degree of $q(t, \cdot)$ is locally constant.

Lilov, '04

There are no wandering Fatou components near $\{t = 0\}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$F:(t,z)\mapsto(p(t),q(t,z)),$$

with p(0) = 0 and p'(0) = 0. Assume that the degree of $q(t, \cdot)$ is locally constant.

Lilov, '04

There are no wandering Fatou components near $\{t = 0\}$.

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stronger results of Lilov

Bulging Fatou components

Let *F* a polynomial skew product with an attracting invariant fiber $\{t = 0\}$, and let $U \subset \{t = 0\}$ be a Fatou component of $q(0, \cdot)$. Then there exist a Fatou component *V* of *F* with

$$V \cap \{t = 0\} = U.$$

Near super-attracting fibers

The forward orbit of every vertical disk will intersect a bulging Fatou component.

The non-existence of wandering Fatou components follows.

< ロ > < 同 > < 回 > < 回 >

Stronger results of Lilov

Bulging Fatou components

Let *F* a polynomial skew product with an attracting invariant fiber $\{t = 0\}$, and let $U \subset \{t = 0\}$ be a Fatou component of $q(0, \cdot)$. Then there exist a Fatou component *V* of *F* with

$$V \cap \{t = 0\} = U.$$

Near super-attracting fibers

The forward orbit of every vertical disk will intersect a bulging Fatou component.

The non-existence of wandering Fatou components follows.

Han	Pe	tei	2
1 ICUI			

< 回 > < 三 > < 三 >

Stronger results of Lilov

Bulging Fatou components

Let *F* a polynomial skew product with an attracting invariant fiber $\{t = 0\}$, and let $U \subset \{t = 0\}$ be a Fatou component of $q(0, \cdot)$. Then there exist a Fatou component *V* of *F* with

$$V \cap \{t = 0\} = U.$$

Near super-attracting fibers

The forward orbit of every vertical disk will intersect a bulging Fatou component.

The non-existence of wandering Fatou components follows.

★ ∃ > < ∃ >

A lemma

Two ingredients: a geometric description of the bulging Fatou components, and this:

Shrinking rate of vertical disks

Let *D* be a vertical disk of radius *r*, lying sufficiently close to the invariant fiber $\{t = 0\}$. Then F(D) contains a disk of radius $C \cdot r^d$.

It should be possible to obtain much better estimates. Disks that converge to the Julia sets will typically expand, not shrink!

< 回 > < 三 > < 三 >

A lemma

Two ingredients: a geometric description of the bulging Fatou components, and this:

Shrinking rate of vertical disks

Let *D* be a vertical disk of radius *r*, lying sufficiently close to the invariant fiber $\{t = 0\}$. Then F(D) contains a disk of radius $C \cdot r^d$.

It should be possible to obtain much better estimates. Disks that converge to the Julia sets will typically expand, not shrink!

A (10) A (10)

A lemma

Two ingredients: a geometric description of the bulging Fatou components, and this:

Shrinking rate of vertical disks

Let *D* be a vertical disk of radius *r*, lying sufficiently close to the invariant fiber $\{t = 0\}$. Then F(D) contains a disk of radius $C \cdot r^d$.

It should be possible to obtain much better estimates. Disks that converge to the Julia sets will typically expand, not shrink!

(B)

Geometrically attracting skew products

Can we generalize Lilov's stronger results to the attracting case? No.

Vivas-P.

There exist polynomial skew products with attracting invariant fibers and nearby vertical disks whose forward orbits avoid the bulging Fatou components.

We call these disks *wandering* Fatou disks.

< 6 b

4 3 5 4 3

Geometrically attracting skew products

Can we generalize Lilov's stronger results to the attracting case? No.

Vivas-P.

There exist polynomial skew products with attracting invariant fibers and nearby vertical disks whose forward orbits avoid the bulging Fatou components.

We call these disks *wandering* Fatou disks.

4 **A** N A **B** N A **B** N
Geometrically attracting skew products

Can we generalize Lilov's stronger results to the attracting case? No.

Vivas-P.

There exist polynomial skew products with attracting invariant fibers and nearby vertical disks whose forward orbits avoid the bulging Fatou components.

We call these disks wandering Fatou disks.

Why call them wandering?

Remark: If *U* is a (pre-)periodic Fatou component and $f^{n_j} \rightarrow h$ on *U*, then h(U) is periodic.

For the disks we construct, the ω -limit sets contain non-periodic points. Hence if such a disk intersects the Fatou set, we must have found a *wandering* Fatou component.

< 回 > < 三 > < 三 >

Why call them wandering?

Remark: If *U* is a (pre-)periodic Fatou component and $f^{n_j} \rightarrow h$ on *U*, then h(U) is periodic.

For the disks we construct, the ω -limit sets contain non-periodic points. Hence if such a disk intersects the Fatou set, we must have found a *wandering* Fatou component.

< 回 > < 三 > < 三 >

Why call them wandering?

- **Remark:** If *U* is a (pre-)periodic Fatou component and $f^{n_j} \rightarrow h$ on *U*, then h(U) is periodic.
- For the disks we construct, the ω -limit sets contain non-periodic points. Hence if such a disk intersects the Fatou set, we must have found a *wandering* Fatou component.

4 3 5 4 3 5 5

Fatou disks in the Julia set

Theorem

The wandering Fatou disks we construct lie in the Julia set.

Hence our results do not prove the existence of wandering Fatou components in the geometrically attracting setting.

・ 回 ト ・ ヨ ト ・ ヨ ト

Fatou disks in the Julia set

Theorem

The wandering Fatou disks we construct lie in the Julia set.

Hence our results do not prove the existence of wandering Fatou components in the geometrically attracting setting.

Proof by picture

$$F:(t,z)\mapsto (rac{t}{8},2(z+1)^4-2+t-rac{641}{4165}t^2).$$

Wandering Fatou disks

Typical nearby fiber

	D _a	4.00	
ыл	Pe	пe	rs.

Wandering Fatou-disks

August 26 2014 17 / 30

Sketch of the proof

2

イロト イヨト イヨト イヨト

Linearization in $\ensuremath{\mathbb{C}}$

Let $g: (\mathbb{C}, 0) \to (\mathbb{C}, 0)$, with $g'(0) = \lambda$ and $|\lambda| > 1$.

Koenigs, 1884

The functions $\varphi_n(w) := g^n(\lambda^{-n}(w))$ converge to a holomorphic function Φ satisfying

 $\Phi(\lambda w) = g(\Phi(w)).$

For a polynomial we obtain a global linearization:

 $\Phi:\mathbb{C}\to\mathbb{C}\setminus\mathcal{E}$

イロト イポト イラト イラ

Linearization in $\ensuremath{\mathbb{C}}$

Let $g: (\mathbb{C}, 0) \to (\mathbb{C}, 0)$, with $g'(0) = \lambda$ and $|\lambda| > 1$.

Koenigs, 1884

The functions $\varphi_n(w) := g^n(\lambda^{-n}(w))$ converge to a holomorphic function Φ satisfying

 $\Phi(\lambda w) = g(\Phi(w)).$

For a polynomial we obtain a global linearization:

 $\Phi:\mathbb{C}\to\mathbb{C}\setminus\mathcal{E}$

Linearization in $\ensuremath{\mathbb{C}}$

Let $g: (\mathbb{C}, 0) \to (\mathbb{C}, 0)$, with $g'(0) = \lambda$ and $|\lambda| > 1$.

Koenigs, 1884

The functions $\varphi_n(w) := g^n(\lambda^{-n}(w))$ converge to a holomorphic function Φ satisfying

 $\Phi(\lambda w) = g(\Phi(w)).$

For a polynomial we obtain a global linearization:

$$\Phi: \mathbb{C} \to \mathbb{C} \setminus \mathcal{E}$$

Let $F:(\mathbb{C}^2,0)
ightarrow (\mathbb{C}^2,0),$ with

$$DF(0) = egin{pmatrix} \mu & 0 \ 0 & \lambda \end{pmatrix},$$

where $|\mu| < 1$ and $|\lambda| > 1$. Locally $W_F^u(0)$ is a graph over $\{z = 0\}$. Denote the projection

$$\pi:\{z=0\}\to W^u_F(0),$$

and define

$$\varphi_n(\mathbf{W}) = \mathbf{F}^n \circ \pi(\lambda^{-n} \mathbf{W}).$$

The maps φ_n converge to a (local) linearization Φ of the unstable manifold, satisfying the same functional equation.

	202			-
Пс	111	ге	lei	15

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $F: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$, with

$$DF(0) = egin{pmatrix} \mu & 0 \ 0 & \lambda \end{pmatrix},$$

where $|\mu| < 1$ and $|\lambda| > 1$. Locally $W_F^u(0)$ is a graph over $\{z = 0\}$. Denote the projection

$$\pi:\{z=0\}\to W^u_F(0),$$

and define

$$\varphi_n(\mathbf{W}) = \mathbf{F}^n \circ \pi(\lambda^{-n} \mathbf{W}).$$

The maps φ_n converge to a (local) linearization Φ of the unstable manifold, satisfying the same functional equation.

	202			-
Пс	111	ге	lei	15

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $F:(\mathbb{C}^2,0)
ightarrow (\mathbb{C}^2,0),$ with

$$DF(0) = egin{pmatrix} \mu & 0 \ 0 & \lambda \end{pmatrix},$$

where $|\mu| < 1$ and $|\lambda| > 1$. Locally $W_F^u(0)$ is a graph over $\{z = 0\}$. Denote the projection

$$\pi: \{z=0\} \rightarrow W^u_F(0),$$

and define

$$\varphi_n(\mathbf{w}) = \mathbf{F}^n \circ \pi(\lambda^{-n}\mathbf{w}).$$

The maps φ_n converge to a (local) linearization Φ of the unstable manifold, satisfying the same functional equation.

Han Pelers			4.0	-				11
	5	er s	ιe	е	Р	11	Ia	п

3

4 D K 4 B K 4 B K 4 B K

Let $F:(\mathbb{C}^2,0)
ightarrow (\mathbb{C}^2,0),$ with

$$DF(0) = egin{pmatrix} \mu & 0 \ 0 & \lambda \end{pmatrix},$$

where $|\mu| < 1$ and $|\lambda| > 1$. Locally $W_F^u(0)$ is a graph over $\{z = 0\}$. Denote the projection

$$\pi: \{z=0\} \rightarrow W^u_F(0),$$

and define

$$\varphi_n(\mathbf{w}) = \mathbf{F}^n \circ \pi(\lambda^{-n}\mathbf{w}).$$

The maps φ_n converge to a (local) linearization Φ of the unstable manifold, satisfying the same functional equation.

Han Pelers			4.0	-				11
	5	er s	ιe	е	Р	11	Ia	п

3

4 D K 4 B K 4 B K 4 B K

Since locally orbits converge towards the unstable manifold, we can do without the projection π .

Since locally orbits converge towards the unstable manifold, we can do without the projection π .

In fact, we can work with any other complex line transverse to the attracting direction and obtain (a multiple of) the same linearization map.

Rate of convergence

Now consider resonant germs,

$$DF(0) = egin{pmatrix} \lambda^{-1} & 0 \ 0 & \lambda \end{pmatrix}, \ |\lambda| > 1$$

Typically one has

 $|\varphi_n(w) - \Phi(w)| \sim \lambda^{-n}.$

But for some "degenerate" maps one has

 $|\phi_n(w) - \Phi(w)| \sim \lambda^{-2n}$

э

4 D N 4 B N 4 B N 4 B N

Rate of convergence

Now consider resonant germs,

$$DF(0) = egin{pmatrix} \lambda^{-1} & 0 \ 0 & \lambda \end{pmatrix}, \ |\lambda| > 1$$

Typically one has

$$|\varphi_n(w) - \Phi(w)| \sim \lambda^{-n}.$$

But for some "degenerate" maps one has

 $|\phi_n(w) - \Phi(w)| \sim \lambda^{-2n}$

э

< ロ > < 同 > < 回 > < 回 >

Rate of convergence

Now consider resonant germs,

$$DF(0) = egin{pmatrix} \lambda^{-1} & 0 \ 0 & \lambda \end{pmatrix}, \ |\lambda| > 1$$

Typically one has

$$|\varphi_n(w) - \Phi(w)| \sim \lambda^{-n}.$$

But for some "degenerate" maps one has

$$|\phi_n(w) - \Phi(w)| \sim \lambda^{-2n}$$

4 A N

Applying linearization to skew products

$$F(t,z) = (\mu t, \lambda z + at + h.o.t.),$$

with $|\mu| < 1$, $|\lambda| > 1$ and $a \neq 0$.

Corollary

The functions $\phi_n(w) := F^n(\lambda^{-n}w, 0)$ converge to a map Φ satisfying $\Phi(\lambda^{-1}w) = F(\Phi(w)).$

Note that $a \neq 0$ guarantees that the horizontal axis is transverse to the attracting direction.

A (10) A (10) A (10)

Applying linearization to skew products

$$F(t,z) = (\mu t, \lambda z + at + h.o.t.),$$

with $|\mu| < 1$, $|\lambda| > 1$ and $a \neq 0$.

Corollary

The functions $\phi_n(w) := F^n(\lambda^{-n}w, 0)$ converge to a map Φ satisfying $\Phi(\lambda^{-1}w) = F(\Phi(w)).$

Note that $a \neq 0$ guarantees that the horizontal axis is transverse to the attracting direction.

3

A (10) A (10)

Applying linearization to skew products

$$F(t,z) = (\mu t, \lambda z + at + h.o.t.),$$

with $|\mu| < 1$, $|\lambda| > 1$ and $a \neq 0$.

Corollary

The functions $\phi_n(w) := F^n(\lambda^{-n}w, 0)$ converge to a map Φ satisfying

$$\Phi(\lambda^{-1}w) = F(\Phi(w)).$$

Note that $a \neq 0$ guarantees that the horizontal axis is transverse to the attracting direction.

3

A (10) A (10)

$F: (t,z) \mapsto (\frac{t}{8}, 2(z+1)^4 - 2 + t - \frac{641}{4165}t^2)$

2

Let F(t, z) = (p(t), g(z) + h(t)), with (0, 0) a hyperbolic fixed point.

- Let -1 be a critical point of g, with $g^2(-1) = 0$.
- 2 Define $p(t) = \lambda^{-1}t$. (resonance!)
- Let *w* be such that $Φ(λ^{-2}w) = -1$. (We can do this because $-1 \notin \mathcal{E}$.)

Conclusion:

$$F^n(\lambda^{-n}w,-1)\sim (\lambda^{-2n}w,-1).$$

By choosing h(t) "degenerate" we can achieve

$$\left|F^n(\lambda^{-n}w,-1)-(0,-1)\right|\sim\lambda^{2n}.$$

-

A (10) A (10)

Let F(t, z) = (p(t), g(z) + h(t)), with (0, 0) a hyperbolic fixed point.

- Let -1 be a critical point of g, with $g^2(-1) = 0$.
- ② Define $p(t) = \lambda^{-1}t$. (resonance!)
- ③ Let *w* be such that $\Phi(\lambda^{-2}w) = -1$. (We can do this because $-1 \notin \mathcal{E}$.)

Conclusion:

$$F^n(\lambda^{-n}W,-1)\sim (\lambda^{-2n}W,-1).$$

By choosing h(t) "degenerate" we can achieve

$$\left|F^{n}(\lambda^{-n}w,-1)-(0,-1)\right|\sim\lambda^{2n}.$$

-

A (10) A (10)

Let F(t, z) = (p(t), g(z) + h(t)), with (0, 0) a hyperbolic fixed point.

- Let -1 be a critical point of g, with $g^2(-1) = 0$.
- 2 Define $p(t) = \lambda^{-1}t$. (resonance!)
- 3 Let *w* be such that $\Phi(\lambda^{-2}w) = -1$. (We can do this because $-1 \notin \mathcal{E}$.)

Conclusion:

$$F^n(\lambda^{-n}W,-1)\sim (\lambda^{-2n}W,-1).$$

By choosing h(t) "degenerate" we can achieve

$$\left|F^{n}(\lambda^{-n}w,-1)-(0,-1)\right|\sim\lambda^{2n}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let F(t, z) = (p(t), g(z) + h(t)), with (0, 0) a hyperbolic fixed point.

- Let -1 be a critical point of g, with $g^2(-1) = 0$.
- 2 Define $p(t) = \lambda^{-1}t$. (resonance!)
- Solution Let w be such that $\Phi(\lambda^{-2}w) = -1$. (We can do this because $-1 \notin \mathcal{E}$.)

Conclusion:

$$F^n(\lambda^{-n}w,-1)\sim (\lambda^{-2n}w,-1).$$

By choosing h(t) "degenerate" we can achieve

$$\left|F^{n}(\lambda^{-n}w,-1)-(0,-1)\right|\sim\lambda^{2n}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let F(t, z) = (p(t), g(z) + h(t)), with (0, 0) a hyperbolic fixed point.

- Let -1 be a critical point of g, with $g^2(-1) = 0$.
- 2 Define $p(t) = \lambda^{-1}t$. (resonance!)
- Solution Let *w* be such that $\Phi(\lambda^{-2}w) = -1$. (We can do this because $-1 \notin \mathcal{E}$.)

Conclusion:

$$F^n(\lambda^{-n}w,-1)\sim (\lambda^{-2n}w,-1).$$

By choosing h(t) "degenerate" we can achieve

$$\left|F^{n}(\lambda^{-n}w,-1)-(0,-1)\right|\sim\lambda^{2n}.$$

Let F(t, z) = (p(t), g(z) + h(t)), with (0, 0) a hyperbolic fixed point.

- Let -1 be a critical point of g, with $g^2(-1) = 0$.
- 2 Define $p(t) = \lambda^{-1}t$. (resonance!)
- Solution Let *w* be such that $\Phi(\lambda^{-2}w) = -1$. (We can do this because $-1 \notin \mathcal{E}$.)

Conclusion:

$$F^n(\lambda^{-n}w,-1) \sim (\lambda^{-2n}w,-1).$$

By choosing h(t) "degenerate" we can achieve

$$\left|F^n(\lambda^{-n}w,-1)-(0,-1)\right|\sim\lambda^{2n}.$$

Let F(t, z) = (p(t), g(z) + h(t)), with (0, 0) a hyperbolic fixed point.

- Let -1 be a critical point of g, with $g^2(-1) = 0$.
- 2 Define $p(t) = \lambda^{-1}t$. (resonance!)
- Solution Let *w* be such that $\Phi(\lambda^{-2}w) = -1$. (We can do this because $-1 \notin \mathcal{E}$.)

Conclusion:

$$F^n(\lambda^{-n}w,-1) \sim (\lambda^{-2n}w,-1).$$

By choosing h(t) "degenerate" we can achieve

$$\left|F^{n}(\lambda^{-n}w,-1)-(0,-1)\right|\sim\lambda^{2n}.$$

$$F: (t,z) \mapsto \left(\frac{t}{8}, 2(z+1)^4 - 2 + t - \frac{641}{4165}t^2\right)$$

$$D_n = \left\{ (8^{-n}w, z) : |z - (-1)| < 8^{-\frac{3}{4}n} \right\}$$

Then $F(D_n)$ has radius $\sim 8^{-3n}$, so $F^n(D_n)$ has radius $\sim 8^{-2n} < 8^{-\frac{3}{4}2n}$. Hence for large *n*:

 $F^n(D_n)\subset D_{2n}.$

3

A D > A B > A B > A B >

$$F: (t,z) \mapsto \left(\frac{t}{8}, 2(z+1)^4 - 2 + t - \frac{641}{4165}t^2\right)$$

$$D_n = \left\{ (8^{-n}w, z) : |z - (-1)| < 8^{-\frac{3}{4}n} \right\}$$

Then $F(D_n)$ has radius ~ 8^{-3n} , so $F^n(D_n)$ has radius ~ $8^{-2n} < 8^{-\frac{3}{4}2n}$.

Hence for large *n*:

 $F^n(D_n) \subset D_{2n}.$

イロト 不得 トイヨト イヨト 二日

$$F: (t,z) \mapsto \left(\frac{t}{8}, 2(z+1)^4 - 2 + t - \frac{641}{4165}t^2\right)$$

$$D_n = \left\{ (8^{-n}w, z) : |z - (-1)| < 8^{-\frac{3}{4}n} \right\}$$

Then $F(D_n)$ has radius $\sim 8^{-3n}$, so $F^n(D_n)$ has radius $\sim 8^{-2n} < 8^{-\frac{3}{4}2n}$. Hence for large *n*:

Han Peters

<ロト < 同ト < 回ト < 回ト = 三日

$$F: (t,z) \mapsto \left(\frac{t}{8}, 2(z+1)^4 - 2 + t - \frac{641}{4165}t^2\right)$$

$$D_n = \left\{ (8^{-n}w, z) : |z - (-1)| < 8^{-\frac{3}{4}n} \right\}$$

Then $F(D_n)$ has radius $\sim 8^{-3n}$, so $F^n(D_n)$ has radius $\sim 8^{-2n} < 8^{-\frac{3}{4}2n}$. Hence for large *n*:

 $F^n(D_n) \subset D_{2n}$.

イロト 不得 トイヨト イヨト 二日
$$F: (t,z) \mapsto \left(\frac{t}{8}, 2(z+1)^4 - 2 + t - \frac{641}{4165}t^2\right)$$

Definition

$$D_n = \left\{ (8^{-n}w, z) : |z - (-1)| < 8^{-\frac{3}{4}n} \right\}$$

Then $F(D_n)$ has radius $\sim 8^{-3n}$, so $F^n(D_n)$ has radius $\sim 8^{-2n} < 8^{-\frac{3}{4}2n}$. Hence for large *n*:

 $F^n(D_n) \subset D_{2n}$.

イロト 不得 トイヨト イヨト 二日

$F: (t,z) \mapsto (\frac{t}{8}, 2(z+1)^4 - 2 + t - \frac{641}{4165}t^2).$

A fiber $t = 8^{-n}w$

A nearby fiber

A D > A B > A B > A B >

э

$F: (t,z) \mapsto (\frac{t}{8}, 2(z+1)^4 - 2 + t - \frac{641}{4165}t^2).$

A fiber $t = 8^{-n}w$

A nearby fiber

< 日 > < 同 > < 回 > < 回 > < □ > <

э

Nearby fibers

Recall $g: z \mapsto 2(z-1)^4 - 2$, and recall the linearization map $\Phi: \mathbb{C} \to \mathbb{C} \setminus \mathcal{E}$.

The filled Julia set of g has no interior, hence for w generic, $\Phi(w)$ lies in the basin of infinity.

Consequence: In generic vertical fibers the filled Julia set has no interior.

A (10) A (10) A (10)

Nearby fibers

Recall $g: z \mapsto 2(z-1)^4 - 2$, and recall the linearization map $\Phi: \mathbb{C} \to \mathbb{C} \setminus \mathcal{E}$.

The filled Julia set of *g* has no interior, hence for *w* generic, $\Phi(w)$ lies in the basin of infinity.

Consequence: In generic vertical fibers the filled Julia set has no interior.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nearby fibers

Recall $g: z \mapsto 2(z-1)^4 - 2$, and recall the linearization map $\Phi: \mathbb{C} \to \mathbb{C} \setminus \mathcal{E}$.

The filled Julia set of *g* has no interior, hence for *w* generic, $\Phi(w)$ lies in the basin of infinity.

Consequence: In generic vertical fibers the filled Julia set has no interior.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

There exist (resonant and degenerate) polynomial skew products with *wandering vertical Fatou disks*. However, for the maps *we constructed*, there exist no wandering Fatou components.

Question

As we move further and further away from one-dimensional rational functions, we can expect wandering Fatou components to arise at some point. Will they already arise for skew-products? Will they arive for Hénon maps?

< 回 > < 三 > < 三 >

Conclusion

There exist (resonant and degenerate) polynomial skew products with *wandering vertical Fatou disks*. However, for the maps *we constructed*, there exist no wandering Fatou components.

Question

As we move further and further away from one-dimensional rational functions, we can expect wandering Fatou components to arise at some point. Will they already arise for skew-products? Will they arive for Hénon maps?

(B)