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Goal
Describe the Fatou set for rational maps in two complex variables.

1 Classify and describe the periodic Fatou components.
2 Investigate the existence of wandering Fatou components.

Special interest: Hénon maps.
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Han Peters Wandering Fatou-disks August 26 2014 2 / 30



Goal
Describe the Fatou set for rational maps in two complex variables.

1 Classify and describe the periodic Fatou components.
2 Investigate the existence of wandering Fatou components.

Special interest: Hénon maps.
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Fatou components for Hénon maps

There is always the escaping region.

Bedford-Smillie, ’91
The only other Fatou components of hyperbolic Hénon maps are
basins of attracting cycles.

Bedford-Smillie, ’91
The only other Fatou components of volume preserving Hénon maps
are Siegel domains.

(Siegel domain: There exist (nj) so that f nj → Id.)

Han Peters Wandering Fatou-disks August 26 2014 3 / 30



Fatou components for Hénon maps
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Dissipative Hénon maps

Bedford-Smillie ’91, Lyubich-P. ’14
Let Ω be an invariant Fatou component with bounded forward orbits,
and assume that |Jac(f )| < 1

d2 . Then either
1 Ω is the basin of an attracting fixed point.
2 Ω is the basin of an invariant closed Riemann surface Σ ⊂ Ω. Σ is

an embedded disk or annulus (??), and f acts on Σ as an
irrational rotation.

3 Ω is the basin of a semi-parabolic fixed point.
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Dissipative Hénon maps
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Dissipative Hénon maps

Note that a crossbreed between parabolic and Siegel

cannot exist. (for Hénon maps)
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Main open question

Can non-hyperbolic dissipative Hénon maps have wandering Fatou
components?

Han Peters Wandering Fatou-disks August 26 2014 7 / 30



Skew-products

We will consider polynomial maps of the form

F : (t , z) 7→ (p(t),q(t , z)).

Question
Can such maps have wandering Fatou components?

Note: if (t , z) lies in the Fatou set of F , then t lies in the Fatou set of p.
The “dissipative case”: t in the basin of an attracting periodic point.
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Dissipative skew products

F : (t , z) 7→ (p(t),q(t , z)),

with p(0) = 0 and |p′(0)| < 1.

Question
Can F have wandering Fatou components near {t = 0}?
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The super-attracting case

F : (t , z) 7→ (p(t),q(t , z)),

with p(0) = 0 and p′(0) = 0. Assume that the degree of q(t , ·) is locally
constant.

Lilov, ’04
There are no wandering Fatou components near {t = 0}.
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Stronger results of Lilov

Bulging Fatou components
Let F a polynomial skew product with an attracting invariant fiber
{t = 0}, and let U ⊂ {t = 0} be a Fatou component of q(0, ·). Then
there exist a Fatou component V of F with

V ∩ {t = 0} = U.

Near super-attracting fibers
The forward orbit of every vertical disk will intersect a bulging Fatou
component.

The non-existence of wandering Fatou components follows.
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A lemma

Two ingredients: a geometric description of the bulging Fatou
components, and this:

Shrinking rate of vertical disks
Let D be a vertical disk of radius r , lying sufficiently close to the
invariant fiber {t = 0}. Then F (D) contains a disk of radius C · rd .

It should be possible to obtain much better estimates. Disks that
converge to the Julia sets will typically expand, not shrink!
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The super-attracting picture
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Geometrically attracting skew products

Can we generalize Lilov’s stronger results to the attracting case? No.

Vivas-P.
There exist polynomial skew products with attracting invariant fibers
and nearby vertical disks whose forward orbits avoid the bulging Fatou
components.

We call these disks wandering Fatou disks.
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Why call them wandering?

Remark: If U is a (pre-)periodic Fatou component and f nj → h on U,
then h(U) is periodic.

For the disks we construct, the ω-limit sets contain non-periodic points.
Hence if such a disk intersects the Fatou set, we must have found a
wandering Fatou component.
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Fatou disks in the Julia set

Theorem
The wandering Fatou disks we construct lie in the Julia set.

Hence our results do not prove the existence of wandering Fatou
components in the geometrically attracting setting.
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Proof by picture

F : (t , z) 7→ (
t
8
,2(z + 1)4 − 2 + t − 641

4165
t2).

Wandering Fatou disks Typical nearby fiber
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Sketch of the proof
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Linearization in C

Let g : (C,0)→ (C,0), with g′(0) = λ and |λ| > 1.

Koenigs, 1884
The functions ϕn(w) := gn(λ−n(w)) converge to a holomorphic
function Φ satisfying

Φ(λw) = g(Φ(w)).

For a polynomial we obtain a global linearization:

Φ : C→ C \ E
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Hyperbolic Linearization

Let F : (C2,0)→ (C2,0), with

DF (0) =

(
µ 0
0 λ

)
,

where |µ| < 1 and |λ| > 1. Locally W u
F (0) is a graph over {z = 0}.

Denote the projection

π : {z = 0} →W u
F (0),

and define
ϕn(w) = F n ◦ π(λ−nw).

The maps ϕn converge to a (local) linearization Φ of the unstable
manifold, satisfying the same functional equation.
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Hyperbolic Linearization

Since locally orbits converge towards the unstable manifold, we can do
without the projection π.
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Hyperbolic Linearization
In fact, we can work with any other complex line transverse to the
attracting direction and obtain (a multiple of) the same linearization
map.
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Rate of convergence

Now consider resonant germs,

DF (0) =

(
λ−1 0
0 λ

)
, |λ| > 1

Typically one has
|ϕn(w)− Φ(w)| ∼ λ−n.

But for some “degenerate” maps one has

|φn(w)− Φ(w)| ∼ λ−2n
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Applying linearization to skew products

F (t , z) = (µt , λz + at + h.o.t .),

with |µ| < 1, |λ| > 1 and a 6= 0.

Corollary
The functions φn(w) := F n(λ−nw ,0) converge to a map Φ satisfying

Φ(λ−1w) = F (Φ(w)).

Note that a 6= 0 guarantees that the horizontal axis is transverse to the
attracting direction.
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F : (t , z) 7→ ( t
8 ,2(z + 1)4 − 2 + t − 641

4165t2)
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Setting up the construction

Let F (t , z) = (p(t),g(z) + h(t)), with (0,0) a hyperbolic fixed point.

1 Let −1 be a critical point of g, with g2(−1) = 0.
2 Define p(t) = λ−1t . (resonance!)
3 Let w be such that Φ(λ−2w) = −1. (We can do this because
−1 /∈ E .)

Conclusion:
F n(λ−nw ,−1) ∼ (λ−2nw ,−1).

By choosing h(t) “degenerate” we can achieve∣∣F n(λ−nw ,−1)− (0,−1)
∣∣ ∼ λ2n.
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F : (t , z) 7→ ( t
8 ,2(z + 1)4 − 2 + t − 641

4165t2)

Definition

Dn =
{

(8−nw , z) : |z − (−1)| < 8−
3
4 n
}

Then F (Dn) has radius ∼ 8−3n, so F n(Dn) has radius ∼ 8−2n < 8−
3
4 2n.

Hence for large n:
F n(Dn) ⊂ D2n.

�
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Nearby fibers

Recall g : z 7→ 2(z − 1)4 − 2, and recall the linearization map
Φ : C→ C \ E .

The filled Julia set of g has no interior, hence for w generic, Φ(w) lies
in the basin of infinity.

Consequence: In generic vertical fibers the filled Julia set has no
interior.
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Conclusion

There exist (resonant and degenerate) polynomial skew products with
wandering vertical Fatou disks. However, for the maps we constructed,
there exist no wandering Fatou components.

Question
As we move further and further away from one-dimensional rational
functions, we can expect wandering Fatou components to arise at
some point. Will they already arise for skew-products? Will they arive
for Hénon maps?
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for Hénon maps?

Han Peters Wandering Fatou-disks August 26 2014 30 / 30


	Hénon maps
	Skew products
	Wandering Fatou disks
	Idea of the proof
	Linearization
	Constructing the map
	Julia set

