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Abstract

We explore the project of finding complex manifolds that can
carry (pseudo)-automorphisms which have interesting dynamical
behavior. We will discuss possible meanings of “interesting”.



Rational surfaces

A compact, complex algebraic surface X is said to be rational if it is
birationally equivalent to CP

2. We start by giving the classical
example of the Cremona Involution, which on C2 is given by
(x, y) 7→ (1/x, 1/y), and on projective space we write it as a mapping
of degree 2:

J : [x0 : x1 : x2] 7→ [1/x0 : 1/x1 : 1/x2] = [x1x2 : x0x2 : x0x1]

This acts as an inversion in the coordinate triangle:

indeterminate point e0 = [1 : 0 : 0] ↔ Σ0 = {x0 = 0} exceptional curve

Figure: Inversion in coordinate triangle



Blow up e0

The blowup of the point e0 = [1 : 0 : 0] is a new manifold X with local
coordinates (ξ1, ξ2) and projection

π : X → P
2, π(ξ1, ξ2) = [1 : ξ1 : ξ1ξ2] = [x0 : x1 : x2]

Figure: Indeterminate point e0 replaced by exceptional curve E0. There are
still 2 indeterminate points and two exceptional curves, but for the induced
JX : E0 ↔ Σ0, Σ0 is no longer exceptional.



Blow up e0, e1, e2, and J becomes an automorphism

Figure: All indeterminate points e0, e1, and e2 are replaced by exceptional
curves E0, E1, and E2. The map is now an automorphism, and it
interchanges Ej ↔ Σj .



Dynamical complexity measured by dynamical degree

If X is a manifold of dimension k, and if 1 ≤ ℓ ≤ k, then the
dynamical degree in codimension ℓ is the exponential rate of growth
of the induced map f∗ on Hℓ,ℓ(X):

δℓ(f) := lim
n→∞

||fn∗ : Hℓ,ℓ(X) → Hℓ,ℓ(X)||1/n

This is independent of the choice of norm on Hℓ,ℓ. For an
automorphism, we have (fn)∗ = (f∗)n, so δℓ is the same as the
spectral radius of f∗ acting on Hℓ,ℓ(X).

This definition also works if f is merely rational.

Theorem (J-L Lin, Favre & Wulcan)
Let fA(x) = xA be a monomial map. Then for each ℓ ≥ 1, δℓ(fA) is
the spectral radius of the ℓ-th exterior power ∧ℓA of A.

This is nontrivial.

Problem: Determine δℓ(f) for ℓ > 1 for other nontrivial f .



Heuristic: Dynamical complexity vs
degree complexity (dynamical degree)

in dimension 1

If f : P1 → P1 is rational, then degree(f) = δ(f) = degtop(f). If
δ(f) > 1 (and thus f is not invertible), then for almost all starting
points z0 there is a limiting distribution of point masses over the
preimages of z0:

µf := lim
n→∞

1

dn

∑

{a:fn(a)=z0}

δa

This measure is balanced, which means that, locally, f∗µf = d · µf .
Thus, as we consider backward iteration, the different branches of f−1

give µf (Sj) = µf (S)/d. The effect is like Bernoulli trials:

Figure: Choosing preimages of a point is like flipping a d-sided coin.



Stable manifolds

Theorem (Stable Manifold)
If x0 is a saddle fixed point, the stable set

W s(x0) := {x : lim
n→∞

dist(fnx, x0) = 0}

is a manifold.

W s(x0) is “almost never” proper, in which case the current of
integration [W s(x0)] is not well-defined. Stable/unstable manifolds for
the Horseshoe Map fc,a(x, y) = (c+ ay− x2,−x) with c = 6.0, a = 0.8



Dynamics of the Horseshoe Map

◮ All points outside W s(x0) ∪Wu(x0) escape to infinity.

◮ W s(x0) ∩Wu(x0) ∼= Cantor set × Cantor set

◮ Saddle (periodic) points are dense in Cantor set × Cantor set

◮ Dynamics on Cantor set × Cantor set is conjugate to {0, 1}Z

◮ The closure W s(z0) is the same for all saddles z0.



Heuristic: Dynamical complexity in terms
of stable current

in dimension 2

If f is an automorphism of a complex surface with δ1(f) > 1, then
there is an invariant current T s which satisfies f∗T s = δ1T

s. This is
constructed from the currents of integration [W s

loc] over the (local)
stable manifolds W s, and it is “measured” by a family of transversal
measures.

Figure: Mapping by f∗ acts on the family of transversal measures like
Bernoulli trials in 1-dimensional case.



Real example: illustrates connection between dynamical
degree and length growth

Example with δ = 1.17628, showing image of a line after 10 iterations.
Green curve is an invariant cubic. Red points are fixed, which
indicates some numerical instability. Numbered points are the orbits
of the orbit of the exceptional curve Σγ . The real points of the
manifold X make a covering of RP

2, and fibers (copies of P1) lie
above each labeled point.

Figure: f(x, y) =
y + a
x + b

, a = −0.499497, b = −0.415761



Some rational surface automorphisms with δ > 1.

The family of maps fa,b(x, y) = y + a
x+ b

may be conjugated to a map

L ◦ J : P2 → P2. The triangle of exceptional curves is mapped as:

Σβ → e2 99K Σ0 → e1 99K Σγ → Q

In this case, we may blow up e2 and e1 and obtain a new space Y
such that fY has one point exceptional curve Σγ and one point of
indeterminacy P . If the orbit of Q lands on P , then we may blow up
that orbit to obtain an automorphism.

Figure: If the orbit of Q (black) lands on P , we may blow up the points of
the orbit to obtain an automorphism.





What are the possible compact surfaces X which have
carry an f ∈ Aut(X) with δ1(f) > 1?

Theorem (Cantat)
If X is a compact complex surface of (complex) dimension 2, and if
there is an automorphism f of X with δ(f) > 1, then one of the
following holds:

◮ X is a torus, and f is a “standard” torus automorphism.

◮ X is a K3 surface, or a finite quotient

◮ X is a rational surface

The proof relies heavily on the Kodaira classification of surfaces.



Question: What are the possibilities for surfaces and
maps can actually occur for K3 or rational surfaces?

This question is quite open. The K3 surfaces or rational surfaces
which can carry nontrivial automorphisms are quite special and hard
to find. The set of all K3 surfaces has dimension 20, and the ones
that carry automorphisms would have smaller dimension. On the
other hand, rational surfaces with automorphisms with δ1 > 1 can
occur in families of arbitrarily large dimension.

Theorem (Nagata)
In the case of a rational surface, we may suppose that π : X → P

2 is
an (iterated) blowup of the projective plane.

For such an iterated blowup, we may represent the cohomology
H2 ∼= H1,1 with respect to convenient bases, and this is useful for
computing f∗.



Question: What happens in higher dimension?

Given that the case of blowups of P2 yield interesting automorphisms
in dimension 2, it makes sense to ask:

Question: Are there 3-folds X which are obtained as blowups of P3

and which carry automorphisms f with δ(f) > 1?

Theorem (T.T. Truong)
If X is obtained from P3 by blowing up points and curves satisfying a
certain condition, and if f is an automorphism of X, then
δ1(f) = δ2(f).

Theorem (Bayraktar, Cantat)
If X is obtained from Pk by blowing up points, then any
automorphism f of X satisfies δℓ(f) = 1 for all ℓ.



Back to the Cremona involution; now dimension 3.

The Cremona involution on P3 is the cubic map given by

J : [x0 : x1 : x2 : x3] 7→

[1/x0 : 1/x1 : 1/x2 : 1/x3] = [x1x2x3 : x0x2x3 : x0x1x3 : x0x1x2]

This acts as an involution on the coordinate tetrahedron ej ↔ Σj. We
now see a new phenomenon: the flip, which takes any point of an edge
of the tetrahedron and blows it up to the skew edge.

Figure: Cremona involution blows up any point of edge α to all of edge β.



Blow up vertex e0

Let π : X → P3 be the blowup at e0, and let JX : X → X be the
induced map. Then JX maps E0 ↔ Σ0 and “looks like” the 2D map J
mapping P2 to itself: the black triangle inside E0 is exceptional, and
the “old edges of the tetrahedron” (in green) are still indeterminate.

Figure: Cremona involution blows up any point of edge α to all of edge β.



Pseudo-automorphisms

The indeterminacy locus I(f) of any rational map f : X 99K Y has
codimension at least 2. Thus if H is any hyper surface, we may define
the image (proper transform) of H as the closure of f(H − I(f)). We
say that H is exceptional if the codimension of the proper transform
of H is ≥ 2. A birational f : X 99K X is a pseudo-automorphism if
neither f nor f−1 has an exceptional hyper surface.

In dimension 2, all pseudo-automorphisms are in fact automorphisms.

Pseudo-automorphisms behave very much in the spirit of
automorphisms, and we expand our search to include this richer
source of interesting maps.

Let π : X → P3 be the blowup of e0, e1, e2, e3. Then the induced map
JX is still indeterminate at the “old edges of the tetrahedron” but is
now a pseudo-automorphism.

We next explore the problem of finding pseudo-automorphisms of
blowups of P3. Motivated by the 2-dimensional case, we start by
looking at maps of the form L ◦ J (linear composed with Cremona
involution).



Strategy for finding pseudo-automorphisms

The exceptional locus consists of the hyperplanes Σj , which are
mapped:

f := L ◦ J : Σj → Lj

where Lj denotes the jth column of the matrix L. We will have a
pseudo-automorphism if

Lj 7→ f(Lj) 7→ · · · 7→ fmj(Lj) = eσj
, f ℓ(Lj) /∈

⋃

i

Σi

where σ is a permutation of {0, . . . , k}. Let π : X → Pk blow up the
orbits of the Lj. The induced map fX := π−1 ◦ f ◦ π will have no
exceptional locus.

Theorem (B-Kyounghee Kim)
The δ1(L ◦ J) = δ1(m1, . . . ,mk, σ) is given by an explicit formula
involving the orbit lengths mj and the permutation σ.

Since ℓ 7→ δℓ is concave in ℓ, it follows that δ1 = 1 if and only if δℓ = 1
for any (equivalently, all) 1 ≤ ℓ ≤ k.



Pseudo-automorphisms with invariant curves

As a practical matter, however, the strategy on the previous page is
not a feasible for giving existence because it involves solving equations
of very high degree in many variables. The relevant computations are
possible, however, if we assume that all the centers of blowup like in a
curve (which must be invariant). The existence of automorphisms of
blowups of P2 with invariant curves was studied by McMullen, Diller
and Uehara.

Let us consider a parametrized curve ψ : C → C ⊂ Pk. We say that C
satisfies a group law if the following holds: For each hyperplane
H ⊂ Pk, the solutions t1, . . . , td of ψ(ti) ∈ H satisfy

∑

ti = 0. There
are several cases of curves with group law; all the curves we work with
have degree k + 1. For instance:
t 7→ ψ(t) = [1 : t : t2 : · · · : tk−1 : tk+1] cusp at ∞
t 7→ ψ(t) = [1 : t : · · · : tk] ∪ [0 : · · · : 0 : (−1)k−1 : t] union of rational
normal curve and a tangent line.



The group law lets us find the points of blowup

If there is an invariant curve, then the points which will be blown up
are of the form ψ(tj). Thus this becomes a problem of determining
the points {ti} ⊂ C. Using the group law on the curve, we can obtain:

Theorem (B-Diller-Kyounghee Kim)
For most choices of orbit lengths (m0, . . . ,mk) and permutations σ,
there is a matrix L such that the space π : X → Pk obtained by blowing
up the orbits yields an induced pseudo-automorphism fX : X 99K X

See:
Pseudoautomorphisms with invariant elliptic curves, arXiv:1401.2386



Concrete existence of pseudo-automorphisms

The abstract existence of pseudo-automorphisms in the case where
the orbit lengths are (1, . . . , 1, n), and the permutation is
σ = (0 1 2 . . . k) had been given earlier by F. Perroni and D-Q

Zhang. The motivation for the Theorem on the previous slide was to
replace “abstract” existence by “concrete” existence. We find, for
instance f := L ◦ J in the case of the curve with a cusp, such maps
are of the form:

L =















0 0 0 . . . 0 1
β1 0 0 . . . 0 1 − β1

0 β2 0 . . . 0 1 − β2

...
...

0 0 0 . . . βk 1 − βk















where βi = (δi − 1)/(δ(δk+1 − δi)), and δ is any root of the
polynomial χn which gives the dynamical degree of L ◦ J .

Different choices of invariant curve lead to different matrices L.



Invariant currents and measures

In dimension k: δ0 = 1, and δk is the topological degree. Thus for
invertible maps, δk = 1.

f is said to be cohomologically hyperbolic if there is a unique
1 ≤ p ≤ k − 1 such that δp(f) is maximal. In this case, the maximal
growth occurs uniquely in bidegree (p, p) (codimension p).

Theorem (Dinh-Sibony)
If f is a cohomologically hyperbolic automorphism, then there are
invariant currents T s/u, and these may be used to form an invariant
measure µ with interesting dynamical properties.

Problem: How many of the details of the heuristic picture for
dimension 2 be carried over to higher dimension?



Invariant fibrations

Let f : X 99K X be a meromorphic map. Suppose that there is a
dominant, meromorphic map φ : X 99K Y and a meromorphic map
g : Y 99K Y such that g ◦ φ = φ ◦ f . Then the sets {φ = const} form
an invariant fibration.
In the presence of an invariant fibration, there is a dynamical degree
on the fiber, written δj(f |φ), and it is related to the other dynamical
degrees by:

Theorem (Dinh-Nguyen, Dinh-Nguyen-Truong)
Suppose that the map f has an invariant fibration as above. Then

δp(f) = max
max{0,p−k+ℓ}≤j≤min{p,ℓ}

δj(g)δp−j(f |φ)

Corollary
If X is a 3-fold, and f : X 99K X is a birational map with an
invariant fibration, then δ1 = δ2. In this case, f is not
cohomologically hyperbolic.



Guedj’s conjecture

If dim(X) = 3, and if f : X 99K X is birational, then the condition
that f is not cohomologically hyperbolic is equivalent to the condition
that δ1(f) = δ2(f).

Guedj conjectured: If δ1(f) = δ2(f) > 1, then f has an invariant
fibration, or at least an invariant foliation.

In dimension 2, any invertible map is cohomologically hyperbolic
⇔ δ > 1. The Guedj Conjecture is true in this case because of:

Theorem (Diller-Favre)
If f is a bimeromorphic map of a compact, complex surface X, and if
δ(f) > 1 if and only if there is no invariant fibration.

Problem for dimension 3: If f is a map which is not cohomologically
hyperbolic, is there a heuristic picture for approaching the dynamics?

An invariant fibration or foliation might let the dynamics be
approached with lower-dimensional techniques.



Counterexample to Guedj’s conjecture

For n ≥ 2 we choose nonzero a, c ∈ C such that

na2 + (n+ 1)ac+ nc2 = 0

and set

L =









0 0 0 1
1 0 0 a
0 1 0 0
0 0 1 c









and recall
J [x0 : · · · : x3] = [x−1

0 : · · · : x−1
3 ]

Theorem (B-Cantat-Kyounghee Kim)
For n ≥ 2, we set fa,c := L ◦ J . The dynamical degrees are
δ1(f) = δ2(f) > 1. There is no (singular) foliation of dimension 1 or
2 which is invariant under fa,c. In particular, there is no invariant
(singular) fibration.



Structure of example

f(Σ0) = e1 := [0 : 1 : 0 : 0], f(Σ1) = e2, f(Σ2) = e3

f(Σ3) = p := [1 : a : 0 : c]

Theorem
Let Y denote P3 blown up at the points e1 and e3. Then the induced
map fY is a dominant map of an invariant 4-cycle of surfaces:

Σ0 → E1 → Σ2 → E3 → Σ0

The orbit of the exceptional image point q is inside this invariant set.

Figure: Construction of Y .



Pseudo-automorphism

Theorem
If na2 + (n+ 1)ac+ nc2 = 0, then the fY orbit of q lands on the point
e0. Let X denote the space obtained by blowing up the 4n+ 2 points q,
fY (q), . . . , f4n

Y q = e0, and e3. Then the induced map fX is a
pseudo-automorphism.

One difference between these maps and the B-Diller-Kim maps is that
that there are two “levels” of blowup, which is to say that it is not
obtained by blowing distinct points in P3. Another difference is that
these were not constructed using a group law. In fact:

Theorem
All of these surfaces are birationally equivalent to P3, but the maps
(pairs) (fa,c, Xa,c) are birationally inequivalent, and inequivalent to
the maps obtained in the BDK construction



Invariant hypersurface

Theorem
Let g := f4|Σ0

. Then the dynamical degree of δ1(g) > 1, but it is not
the dynamical degree is not a Salem number. Thus g is not
birationally conjugate to a surface automorphism.

Using this and the fact that δ1(f
4) > δ1(g) > 1, we may show:

Theorem
f is not birationally conjugate to an automorphism of a 3-dimensional
manifold.

The divisor Σ0 + E1 + Σ2 + E3 represents the anti-canonical class.
Furthermore, this spans the 1-eigenspace of f∗

X acting on H1,1(X).
Every fX -invariant divisor is a multiple of this. By studying g∗, we
may show:

Theorem
There is a unique g-invariant curve on Σ0.



One idea in the proof of the BCK Theorem

Suppose that F is an invariant foliation of codimension 1. Then the
singular locus of F is an algebraic variety of dimension at most 1. If
F “crosses” one of the indeterminate curves, then the image of that
curve under J must be in the singular set of J .

The image of one of these singular curves must lie inside the invariant
4-cycle of surfaces. It is trapped inside this 4-cycle and has infinite
orbit there. This contradicts the fact that it must lie inside the
1-dimensional singular locus of F .


