Surfaces in the space of surfaces Curtis McMullen Harvard University coauthors Mukamel and Wright # Planes in compact hyperbolic manifolds $$f: \mathbb{H}^2 \to M^n = \mathbb{H}^n/\Gamma$$ Theorem (Shah, Ratner) The closure of $f(\mathbb{H}^2)$ is a compact, immersed, totally geodesic submanifold N^k inside M^n . Ex: $f: \mathbb{H}^2 \to M^3$ Im(f) = a closed surface, or Im(f) is dense in M^3 . #### Moduli space M_g = moduli space of Riemann surfaces X of genus g -- a complex variety, dimension 3g-3 #### Teichmüller metric There exists a holomorphic, isometrically immersed complex geodesic $$f: \mathbb{H}^2 o \mathcal{M}_g$$ through every point in every possible direction. #### Planes in M_g $$f: \mathbb{H}^2 \to M_g = T_g/Mod_g$$ Theorem (M, Eskin-Mirzakhani-Mohammadi, Filip) The closure of $f(\mathbb{H}^2)$ is an algebraic subvariety of moduli space. 2002, 2014 Example: For g=2, the closure of $f(\mathbb{H}^2)$ can be a Teichmüller curve, a Hilbert modular surface, or the whole space. The Hilbert modular surface is ruled, but not totally geodesic. #### Totally geodesic subvarieties $M_g \subset \mathbb{P}^N$ is a projective variety Almost all subvarieties $V \subset M_g$ are contracted. #### **PROBLEM** What are the totally geodesic* subvarieties $V \subset M_g$? (*Every complex geodesic tangent to V is contained in V.) # Known geodesic subvarieties in M_g I. Covering constructions Im(f) = a totally geodesicsubvariety Example: $\widetilde{M}_{1,2} \rightarrow M_{1,3}$ II. Teichmüller curves #### Example of a Teichmüller curve V=ℍ / Γ(2,7,∞) = the Klein quartic! # Klein quartic Helaman Ferguson, 1993 Thurston, MSRI director, 1992-1997 $168 = 7 \times 24 = |PSL_2(Z/7)|$ ## 1st example of a Teichmüller surface #### **Theorem** There is a primitive, totally geodesic complex surface F (the flex locus) properly immersed into $M_{1,3}$. #### Complement The universal cover of F is not isomorphic, as a complex manifold, to any $T_{\rm g.n.}$ A new Teichmüller space? #### Proof that F does not exist Let V be a totally geodesic hypersurface in M_g . Given [X] in V, let $q_0,...q_n$ be a basis for $Q(X) = T_X^* M_g$. Assume q_0 generates the normal bundle to V. Then the highly nonlinear condition: $$\int_X q_0 \frac{\sum \overline{a}_i \overline{q}_i}{|\sum a_i q_i|} = 0$$ Is equivalent to a linear condition on (a_i) of the form $$\sum a_i b_i = 0.$$ # Description of the Teichmüller surface The flex locus $F \subset M_{1,3}$ is the set of (A,P) in $M_{1,3}$: \exists degree 3 map $\pi:A \rightarrow \mathbb{P}^1$ such that - (i) $P \sim Z = \text{any fiber of } \pi$; and - (ii) $P \subset cocritical$ points of π . What is the dimension of F? Is F irreducible? Why does F exist?