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Planes in
compact hyperbolic manifolds

Theorem (Shah, Ratner)

The closure of f(H2) is a compact, immersed, 

totally geodesic submanifold 
Nk inside Mn.

f : H2 → Mn = Hn/Γ 

Ex:    f : H2 → M3   

        Im(f) = a closed surface, or
        Im(f) is dense in M3. 

Dense plane in M3

S2 = boundary of H3 

M3

Closed, totally geodesic surface in M3

S2 = boundary of H3 

M3



Arithmetic tetrahedra

Open problem:  Do ∞ many closed geodesic surfaces 
⇒ M is arithmetic?

Moduli space

}
-- a complex variety, dimension 3g-3

{

The exceptional triangular billiard tables
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Mg  = moduli space of Riemann surfaces X of genus g

f : H2 �Mg

Teichmüller metric

  There exists a holomorphic, isometrically immersed
complex geodesic

through every point in every possible direction.

 f(τ) = Polygon(τ)/gluing = genus 3 X(τ)
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Example of a complex geodesic  f : H2 → M3 Planes in Mg

f : H2 → Mg = Tg/Modg 

Example:    For g=2, the closure of f(H2) can be

                               a Teichmüller curve, 
                              a Hilbert modular surface,
                              or the whole space.

Theorem (M, Eskin-Mirzakhani-Mohammadi, Filip)

The closure of f(H2) is an algebraic

subvariety of moduli space.

2002, 
2014

The Hilbert modular surface is ruled, but
not totally geodesic.



Totally geodesic subvarieties

Mg  ⊂ PN is a projective variety

PROBLEM

  What are the totally geodesic* subvarieties 
V ⊂ Mg ?

 Almost all subvarieties V ⊂ Mg are
contracted.

(*Every complex geodesic tangent to V is contained in V.)

Known geodesic subvarieties in Mg

I.  Covering constructions II.  Teichmüller curves

V=H / Γ

H
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finite area
Mh

f
Mg

X

Y Mh
~

d

Im(f) = a totally geodesic 
subvariety Im(f) = a totally geodesic 

curve
Example:  M1,2 → M1,3 
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Example of a Teichmüller curve

V=H / Γ(2,7,∞)

H
f

M3

 = the Klein quartic!

Helaman Ferguson, 1993

Klein quartic

168 = 7x24 =  |PSL2(Z/7)|
Thurston, MSRI director, 1992-1997



1st example of a Teichmüller surface

Theorem 

There is a primitive, totally geodesic complex
surface F (the flex locus) 

properly immersed into M1,3.

Complement

The universal cover of F is not isomorphic, as a
complex manifold, to any Tg,n.

A new Teichmüller space?

Proof that F does not exist

Let V be a totally geodesic hypersurface in Mg.

Given [X] in V, let q0,...qn be a basis for Q(X) = TX Mg .*

Then the highly nonlinear condition:
Z

X
q0

P
aiqi

|
P

aiqi|
= 0

Is equivalent to a linear condition on (ai) of the form
X

aibi = 0.

Assume q0 generates the normal bundle to V.   

The flex locus F ⊂ M1,3

What is the dimension of F?  Is F irreducible? ....

(A,P) in M1,3 : 

∃ degree 3 map π:A→P  such that  

(i) P ~ Z = any fiber of π; and
(ii) P ⊂ cocritical points of π.

is the set of

1

Description of the Teichmüller surface

→π 

A TREATISE

ON THE

HIGHER PLAM CURVES :

INTENDED AS A SEQUEL

TO

A TREATISE ON CONIC SECTIONS.
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The Polar Conic

A

Polar(S,A)

S
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HA

The Hessian 

A

HA = {S : Pol(A,S) is 2 lines}

= Z(det D2f)
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A

CA

={lines in Pol(S,A), some S}

CA ⟶ HA
2

The Cayleyan

cf.  Lattès, Tate, Dabija and Jonsson, ...
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Doubling on P2



The flex locus F ⊂ M1,3

Corollary:  F is 2 dimensional.

(A,P) in M1,3 :  
P = double(L) ∩ A, for some L in CA

is:

CA → F → M1
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6 The Solar Configuration
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6 The Solar Configuration
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6 The Solar Configuration

Sun
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6 The Solar Configuration
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F is the set of codawn configurations {(A,P)}

The gothic locus ΩG ⊂ ΩM4 

Theorem: ΩG is an SL2(R) invariant 4-manifold. 

ΩG = {(X,ω) in ΩM4(2,2,2) :
 

(i) ∃ J with A=X/J of genus 1;
(ii) ω is odd for J;
(iii) ∃ odd cubic map p: X →B, genus 1;
(iv) p(Z(ω)) = one point.

From ΩG to F

           → (A,q) =  (X/J, ω2/J) 

→ (A,P  = poles(q))   in F 

(X, ω) in ΩG 

Corollary: F is totally geodesic

G F

Cathedral polygons
Wright
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Theorem 
For every real quadratic field K = Q (√d),

there exists a,b in K such that P(a,b)/~
generates a Teichmüller curve V in M4. 

Complement.
  We have a new infinite series of 

Teichmüller curves in (the gothic locus G ⊂) M4.



Known Teichmüller curves

M3

M2

M6

M5

M4

Veech 1989

. . 
.. . 

.

. . . Calta, M 2002
(Jacobian)

. . .

. . .

M 2005
(Prym)

. . . MMW 2016

?

Bouw-Möller 2006

. . 
.

Q.  What are the totally geodesic
surfaces in M1,3 ?

Why does F exist?
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Satellite Cayleyan

degree 12, 
27 nodes, 
9 cusps


