Surfaces in the space of surfaces

Curtis McMullen Harvard University

coauthors Mukamel and Wright

Planes in compact hyperbolic manifolds

$$f: \mathbb{H}^2 \to M^n = \mathbb{H}^n/\Gamma$$

Theorem (Shah, Ratner)

The closure of $f(\mathbb{H}^2)$ is a compact, immersed, totally geodesic submanifold N^k inside M^n .

Ex: $f: \mathbb{H}^2 \to M^3$

Im(f) = a closed surface, or Im(f) is dense in M^3 .

Moduli space

 M_g = moduli space of Riemann surfaces X of genus g

-- a complex variety, dimension 3g-3

Teichmüller metric

There exists a holomorphic, isometrically immersed complex geodesic

$$f: \mathbb{H}^2 o \mathcal{M}_g$$

through every point in every possible direction.

Planes in M_g

$$f: \mathbb{H}^2 \to M_g = T_g/Mod_g$$

Theorem (M, Eskin-Mirzakhani-Mohammadi, Filip)

The closure of $f(\mathbb{H}^2)$ is an algebraic subvariety of moduli space.

2002, 2014

Example: For g=2, the closure of $f(\mathbb{H}^2)$ can be a Teichmüller curve, a Hilbert modular surface, or the whole space.

The Hilbert modular surface is ruled, but not totally geodesic.

Totally geodesic subvarieties

 $M_g \subset \mathbb{P}^N$ is a projective variety

Almost all subvarieties $V \subset M_g$ are contracted.

PROBLEM

What are the totally geodesic* subvarieties $V \subset M_g$?

(*Every complex geodesic tangent to V is contained in V.)

Known geodesic subvarieties in M_g

I. Covering constructions

Im(f) = a totally geodesicsubvariety

Example: $\widetilde{M}_{1,2} \rightarrow M_{1,3}$

II. Teichmüller curves

Example of a Teichmüller curve

V=ℍ / Γ(2,7,∞)

= the Klein quartic!

Klein quartic

Helaman Ferguson, 1993 Thurston, MSRI director, 1992-1997

 $168 = 7 \times 24 = |PSL_2(Z/7)|$

1st example of a Teichmüller surface

Theorem

There is a primitive, totally geodesic complex surface F (the flex locus) properly immersed into $M_{1,3}$.

Complement

The universal cover of F is not isomorphic, as a complex manifold, to any $T_{\rm g.n.}$

A new Teichmüller space?

Proof that F does not exist

Let V be a totally geodesic hypersurface in M_g . Given [X] in V, let $q_0,...q_n$ be a basis for $Q(X) = T_X^* M_g$. Assume q_0 generates the normal bundle to V.

Then the highly nonlinear condition:

$$\int_X q_0 \frac{\sum \overline{a}_i \overline{q}_i}{|\sum a_i q_i|} = 0$$

Is equivalent to a linear condition on (a_i) of the form

$$\sum a_i b_i = 0.$$

Description of the Teichmüller surface

The flex locus $F \subset M_{1,3}$ is the set of

(A,P) in $M_{1,3}$:

 \exists degree 3 map $\pi:A \rightarrow \mathbb{P}^1$ such that

- (i) $P \sim Z = \text{any fiber of } \pi$; and
- (ii) $P \subset cocritical$ points of π .

What is the dimension of F? Is F irreducible?

Why does F exist?

