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1. Introdution

A key point in Douady and Hubbard's study of the Mandelbrot set M is the

theorem that every paraboli point  6= 1=4 in M is the landing point for exatly
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Figure 1. Julia set for z 7! z
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� 1) showing the six rays

landing on a period two paraboli orbit. The assoiated orbit portrait has

harateristi ar I = (22=63; 25=63) and valene v = 3 rays per orbit

point.

two external rays with angles whih are periodi under doubling. (See [DH2℄. By

de�nition, a parameter point is paraboli if and only if the orresponding quadrati

map has a periodi orbit with some root of unity as multiplier.) This note will try

to provide a proof of this result and some of its onsequenes whih relies as muh as

possible on elementary ombinatoris, rather than on more diÆult analysis. It was

inspired by x2 of the reent thesis of Shleiher [S1℄, whih ontains very substantial

simpli�ations of the Douady-Hubbard proofs with a muh more ompat argument,

and is highly reommended. (See also [S2℄, [LS℄.) The proofs given here are rather

di�erent from those of Shleiher, and are based on a ombinatorial study of the

angles of external rays for the Julia set whih land on periodi orbits. (Compare [A℄,

[GM℄.) As in [DH1℄, the basi idea is to �nd properties of M by a areful study of

the dynamis for parameter values outside ofM . The results in this paper are mostly

well known; there is a partiularly strong overlap with [DH2℄. The only laim to

originality is in emphasis, and the organization of the proofs. (Similar methods an

be used for higher degree polynomials with only one ritial point. Compare [S3℄, [E℄,

and see [PR℄ for a di�erent approah. For a theory of polynomial maps whih may

have many ritial points, see [K℄.)

We will assume some familiarity with the lassial Fatou-Julia theory, as desribed

for example in [Be℄, [CG℄, [St℄, or [M2℄.

Standard De�nitions. (Compare Appendix A.) Let K = K(f



) be the �lled Julia

set, that is the union of all bounded orbits, for the quadrati map

f(z) = f



(z) = z

2

+  :

Here both the parameter  and the dynami variable z range over the omplex num-

bers. The Mandelbrot set M an be de�ned as the ompat subset of the parameter

plane (or -plane) onsisting of all omplex numbers  for whih K(f



) is onneted.

We an also identify the omplex number  with one partiular point in the dynami



PERIODIC ORBITS, EXTERNALS RAYS AND THE MANDELBROT SET 3

11/63

44 50

22

25

37

0

c

Figure 2. Shemati diagram illustrating the orbit portrait (1).

plane (or z-plane), namely the ritial value f



(0) =  for the map f



. The parameter 

belongs toM if and only if the orbit f



: 0 7!  7! 

2

+ 7! � � � is bounded, or in other

words if and only if 0;  2 K(f



). Assoiated with eah of the ompat setsK = K(f



)

in the dynami plane there is a potential funtion or Green's funtion G

K

: C! [0;1)

whih vanishes preisely on K, is harmoni o� K, and is asymptoti to log jzj near

in�nity. The family of external rays of K an be desribed as the orthogonal traje-

tories of the level urves G

K

= onstant. Eah suh ray whih extends to in�nity

an be spei�ed by its angle at in�nity t 2 R=Z, and will be denoted by R

K

t

. Here

 may be either in or outside of the Mandelbrot set. Similarly, we an onsider the

potential funtion G

M

and the external rays R

M

t

assoiated with the Mandelbrot set.

We will use the term dynami ray (or briey K-ray) for an external ray of the �lled

Julia set, and parameter ray (or briey M -ray) for an external ray of the Mandelbrot

set. (Compare [S1℄, [S2℄.)

De�nition. Let O = fz

1

; : : : ; z

p

g be a periodi orbit for f . Suppose that there

is some rational angle t 2 Q=Z so that the dynami ray R

K(f)

t

lands at a point of

O. Then for eah z

i

2 O the olletion A

i

onsisting of all angles of dynami rays

whih land at the point z

i

is a �nite and non-vauous subset of Q=Z. The olletion

fA

1

; : : : ; A

p

g will be alled the orbit portrait P = P(O). As an example, Figure 1

shows a quadrati Julia set having a paraboli orbit with portrait

P =

�

f22=63 ; 25=63 ; 37=63g ; f11=63 ; 44=63 ; 50=63g

	

: (1)

It is often onvenient to represent suh a portrait by a shemati diagram, as shown

in Figure 2. (For details, and an abstrat haraterization of orbit portraits, see x2.)

The number of elements in eah A

i

(or in other words the number of K-rays whih

land on eah orbit point) will be alled the valene v. Let us assume that v � 2. Then

the v rays landing at z ut the dynami plane up into v open regions whih will be

alled the setors based at the orbit point z 2 O. The angular width of a setor S will

mean the length of the open ar I

S

onsisting of all angles t 2 R=Z with R

K

t

� S.
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Figure 3. The boundary of the Mandelbrot set, showing the wake W

P

and the

root point r

P

=

1

4

e

2�i=3

� 1 assoiated with the orbit portrait of Figure 1,

with harateristi ar I

P

= (22=63; 25=63).

(We use the word `ar' to emphasize that we will identify R=Z with the `irle at

in�nity' surrounding the plane of omplex numbers.) Thus the sum of the angular

widths of the v distint setors based at an orbit point z is always equal to +1. The

following result will be proved in 2.11.

Theorem 1.1. The Critial Value Setor S

1

. Let O be an orbit of period p � 1

for f = f



. If there are v � 2 dynami rays landing at eah point of O, then there

is one and only one setor S

1

based at some point z

1

2 O whih ontains the ritial

value  = f(0), and whose losure ontains no point other than z

1

of the orbit O.

This ritial value setor S

1

an be haraterized, among all of the pv setors based

at the various points of O, as the unique setor of smallest angular width.

It should be emphasized that this desription is orret whether the �lled Julia set

K is onneted or not.

Our main theorem an be stated as follows. Suppose that there exists some poly-

nomial f



0

whih admits an orbit O with portrait P , again having valene v � 2. Let

0 < t

�

< t

+

< 1 be the angles of the two dynami rays R

K

t

�

whih bound the ritial

value setor S

1

for f



0

.

Theorem 1.2. The Wake W

P

. The two orresponding parameter rays R

M

t

�

land at

a single point r

P

of the parameter plane. These rays, together with their landing point,

ut the plane into two open subsets W

P

and CrW

P

with the following property: A

quadrati map f



has a repelling orbit with portrait P if and only if  2W

P

, and has

a paraboli orbit with portrait P if and only if  = r

P

.

In fat this will follow by ombining the assertions 3.1, 4.4, 4.8, and 5.4 below.
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De�nitions. This open set W

P

will be alled the P-wake in parameter spae

(ompare Atela [A℄), and r

P

will be alled the root point of this wake. The intersetion

M

P

= M \ W

P

will be alled the P-limb of the Mandelbrot set. The open ar

I

S

1

= (t

�

; t

+

) onsisting of all angles of dynami rays R

K

t

whih are ontained in the

interior of S

1

, or all angles of parameter rays R

M

t

whih are ontained in W

P

, will be

alled the harateristi ar I = I

P

for the orbit portrait P . (Compare 2.6.)

In general, the orbit portraits with valene v = 1 are of little interest to us. These

portraits ertainly exist. For example, for the base map f

0

(z) = z

2

whih lies outside

of every wake, every orbit portrait has valene v = 1. As we follow a path in parameter

spae whih rosses into the wake W

P

through its root point, either one orbit with a

portrait of valene one degenerates to form an orbit of lower period with portrait P ,

or else two di�erent orbits with portraits of valene one fuse together to form an orbit

with portrait P . (If we ross into W

P

through a parameter ray R

M

t

�

, the piture is

similar exept that the landing point of the dynami ray R

K

t

�

jumps disontinuously.

If t

+

and t

�

belong to the same yle under angle doubling, then the landing points

of both of these dynamis rays jump disontinuously.)

However, there is one exeptional portrait of valene one: The zero portrait P =

ff0gg will play an important role. It is not diÆult to hek that the dynami rayR

K

0

of angle 0 for f



lands at a well de�ned �xed point if and only if the parameter value

 lies in the omplement of the parameter ray R

M

0

= R

M

1

= (1=4;1). Furthermore,

this �xed point neessarily has portrait ff0gg. Thus the wake, onsisting of all  2 C

for whih f



has a repelling �xed point with portrait ff0gg, is just the omplementary

region Cr [1=4 ; 1). The harateristi ar I

ff0gg

for this portrait, onsisting of all

angles t suh that R

K

t

�W

ff0gg

, is the open interval (0; 1), and the root point r

ff0gg

,

the unique parameter value  suh that f



has a paraboli �xed point with portrait

ff0gg, is the landing point  = 1=4 for the zero parameter ray.

De�nition. It will be onvenient to say that a portrait P is non-trivial if it either

has valene v � 2 or is equal to this zero portrait.

Remark. An alternative haraterization would be the following. An orbit por-

trait fA

1

; : : : ; A

p

g is non-trivial if and only if it is maximal , in the sense that there

is no orbit portrait fA

0

1

; : : : ; A

0

q

g with A

0

1

�

6=

A

1

. This statement follows easily from

1.5 and 2.7 below. Still another haraterization would be that P is non-trivial if and

only if it is the portrait of some paraboli orbit. (See 5.4.)

Corollary 1.3. Orbit Foring. If P and Q are two distint non-trivial orbit

portraits, then the boundaries �W

P

and �W

Q

of the orresponding wakes are disjoint

subsets of C. Hene the losures W

P

and W

Q

are either disjoint or stritly nested.

In partiular, if I

P

� I

Q

with P 6= Q, then it follows that W

P

�W

Q

.

Thus whenever I

P

� I

Q

, the existene of a repelling or paraboli orbit with

portrait P fores the existene of a repelling orbit with portrait Q. We will write

briey P ) Q. On the other hand, if I

P

\ I

Q

= ; then no f



an have both an

orbit with portrait P and an orbit with portrait Q.

See Figure 5 for a shemati desription of orbit foring relations for orbits with

ray period 4 or less, orresponding to the olletion of wakes illustrated in Figure 4.
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Figure 4. Boundaries of the wakes of ray period four or less.

(Evidently this diagram, as well as analogous diagrams in whih higher periods are

inluded, has a tree struture, with no loops.)

Proof of 1.3, assuming 1.2. First note that W

P

andW

Q

annot have a bound-

ary ray in ommon. For the landing point of suh a ommon ray would have to have

one paraboli orbit with portrait P and one paraboli orbit with portrait Q. But

a quadrati map, having only one ritial point, annot have two distint paraboli

orbits. In fat this argument shows that �W

P

\ �W

Q

= ;. Note that the parameter

point  = 0 (orresponding to the map f

0

(z) = z

2

) does not belong to any wake W

P

with P 6= ff0gg. Sine rays annot ross eah other, it follows easily that either

W

P

�W

Q

; or W

Q

�W

P

; or W

P

\W

Q

= ; ;

as required. �

For further disussion and a more diret proof, see x7.

To �ll out the piture, we also need the following two statements. To any orbit

portrait P = fA

1

; : : : ; A

p

g we assoiate not only its orbit period p but also its ray

period rp, that is the period of the angles t 2 A

i

under doubling modulo one. In many

ases, rp is a proper multiple of p. (Compare Figure 1.) Suppose in partiular that

 2 M is a paraboli parameter value, that is suppose that f



has a periodi orbit

where the multiplier is an r-th root of unity, r � 1. Then one an show that the ray

period for the assoiated portrait is equal to the produt rp. (See for example [GM℄.)

This is also the period of the Fatou omponent ontaining the ritial point. This

ray period rp is the most important parameter assoiated with a paraboli point  or

with a wake W

P

.



PERIODIC ORBITS, EXTERNALS RAYS AND THE MANDELBROT SET 7

1 234 1 23 1 23 4 1 2 1

1

2
34

1
2

3

1
2

3
4

1

2
34

1
2

3

12
3

4

Figure 5. Foring tree for the non-trivial orbit portraits of ray period n � 4.

Eah disk in this �gure ontains a shemati diagram of the orresponding orbit

portrait, with the �rst n forward images of the ritial value setor labeled.

(Compare Figure 4; and ompare the \disked-tree model" for the Mandelbrot

set in Douady [D5℄.)

It follows from 1.2 that every non-trivial portrait whih ours at all must our

as the portrait of some uniquely determined paraboli orbit. The onverse statement

will be proved in 4.8:

Theorem 1.4. Paraboli Portraits are Non-Trivial. If  is any paraboli point

in M , then the portrait P = P(O) of its paraboli orbit is a non-trivial portrait. That

is, if we exlude the speial ase  = 1=4, then at least two K-rays must land on eah

paraboli orbit point.

It then follows immediately from 1.2 that the paraboli parameter point  must be

equal to the root point r

P

of an assoiated wake. It also follows from 1.2 that the

angles of theM -rays whih bound a wakeW

P

are always periodi under doubling. In

x5 we use a simple ounting argument to prove the onverse statement. (This imitates

Shleiher, who uses a similar ounting argument in a di�erent way.)

Theorem 1.5. Every Periodi Angle Ours. If t 6= 0 in R=Z is periodi under

doubling, then R

M

t

is one of the two boundary rays of some (neessarily unique) wake.

Further onsequenes of these ideas will be developed in x6 whih shows that eah

wake ontains a uniquely assoiated hyperboli omponent, x8 whih desribes how

eah wake ontains an assoiated small opy of the Mandelbrot set, and x9 whih
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shows that eah limb is onneted even if its root point is removed. There are two

appendies giving further supporting details.

Aknowledgement. I want to thank M. Lyubih and D. Shleiher for their

ideas, whih play a basi role in this presentation. I am partiularly grateful to

Shleiher and to S. Zakeri for their extremely helpful ritiism of the manusript.

Also, I want to thank both the Gabriella and Paul Rosenbaum Foundation and the

National Siene Foundation (Grant DMS-9505833) for their support of mathematial

ativities at Stony Brook.

2. Orbit Portraits.

This setion will begin the proofs by desribing the basi properties of orbit por-

traits. We will need the following. Let f(z) = z

2

+  with �lled Julia set K.

Lemma 2.1. Mapping of Rays. If a dynami ray R

K

t

lands at a point z 2 �K,

then the image ray f(R

K

t

) = R

K

2t

lands at the image point f(z). Furthermore, if

three or more rays R

K

t

1

; R

K

t

2

; : : : ; R

K

t

k

land at z 6= 0, then the yli order of the

angles t

i

around the irle R=Z is the same as the yli order of the doubled angles

2t

i

(mod Z) around R=Z.

Proof. Sine eah R

K

t

j

is assumed to be a smooth ray, it annot pass through

any preritial point. Hene R

K

2t

j

also annot pass through a preritial point, and

must be a smooth ray landing at f(z). Now suppose that we are given three or more

rays with angles 0 � t

1

< t

2

< � � � < t

k

< 1, all landing at z. These rays, together

with their landing point, ut the plane up into setors S

1

; : : : ; S

k

, where eah S

i

is

bounded by R

K

t

i

and R

K

t

i+1

(with subsripts modulo k). The yli ordering of these

various rays an be measured within an arbitrarily small neighborhood of the landing

point z, sine any transverse ar whih rosses R

K

t

i

in the positive diretion must pass

from S

i�1

to S

i

. Sine f maps a neighborhood of z to a neighborhood of f(z) by an

orientation preserving di�eomorphism, it follows that the image rays must have the

same yli order. �

Now let us impose the following.

Standing Hypothesis 2.2. O = fz

1

; : : : ; z

p

g is a periodi orbit for a quadrati

map f



(z) = z

2

+, with orbit points numbered so that f(z

j

) = z

j+1

, taking subsripts

modulo p. Furthermore there is at least one rational angle t 2 Q=Z so that the

dynami ray R

K

t

assoiated with f lands at some point of this orbit O.

If  belongs to the Mandelbrot set M , or in other words if the �lled Julia set K

is onneted, then this ondition will be satis�ed if and only if the orbit O is either

repelling or paraboli. (Compare [Hu℄, [M3℄.) On the other hand, for  62 M , all

periodi orbit are repelling, but the ondition may fail to be satis�ed either beause

the rotation number is irrational (ompare [GM, Figure 16℄), or beause the K-rays

whih `should' land on O boune o� preritial points en route ([GM, Figure 14℄).

As in x1, let A

j

� R=Z be the set of all angles of K-rays whih land on the point

z

j

2 O.
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Figure 6. Julia set for z 7! z

2

� 7=4, showing the six K-rays landing on a

period three paraboli orbit. Eah number (j) in parentheses is lose to the

orbit point z

j

(and also to f

Æj

(0)).

Lemma 2.3. Properties of Orbit Portraits. If this Standing Hypothesis 2.2 is

satis�ed, then:

(1) Eah A

j

is a �nite subset of Q=Z.

(2) For eah j modulo p, the doubling map t 7! 2 t (mod Z) arries A

j

bijetively onto

A

j+1

preserving yli order around the irle,

(3) All of the angles in A

1

[ � � � [ A

p

are periodi under doubling, with a ommon

period rp, and

(4) the sets A

1

; : : : ; A

p

are pairwise unlinked; that is, for eah i 6= j the sets A

i

and

A

j

are ontained in disjoint sub-intervals of R=Z.

As in x1, the olletion P = fA

1

; : : : ; A

p

g is alled the orbit portrait for the orbit

O. As examples, Figure 6 shows an orbit of period and ray period three, with portrait

P =

�

f3=7 ; 4=7g ; f6=7 ; 1=7g ; f5=7 ; 2=7g

	

;

Figure 7 shows a period three orbit with ray period six, and with portrait

P =

�

f4=9 ; 5=9g ; f8=9 ; 1=9g ; f7=9 ; 2=9g

	

;

while Figure 8 shows an orbit of period and ray period �ve, with portrait

P =

��

11

31

;

12

31

�

;

�

22

31

;

24

31

�

;

�

13

31

;

17

31

�

;

�

26

31

;

3

31

�

;

�

21

31

;

6

31

��

:

Proof of 2.3. Sine some A

i

ontains a rational number modulo Z, it follows

from 2.1 that some A

j

ontains an angle t

0

whih is periodi under doubling. Let the

period be n � 1, so that 2

n

t

0

� t

0

(mod Z). Applying 2.1 n times, we see that the

mapping �(t) � 2

n

t (mod Z) maps the set A

j

� R=Z injetively into itself, preserving

yli order and �xing t

0

. In fat we will show that every element of A

j

is �xed by �.

For otherwise, if t 2 A

j

were not �xed, then hoosing suitable representatives modulo
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Figure 7. Julia set for z 7! z

2

� 1:77, showing the six K-rays landing on a

period three orbit. In ontrast to Figure 6, these six rays are permuted ylially

by the map.

Figure 8. Julia set J(f



) for  = �1:2564 + :3803 i, showing the ten rays

landing on a period 5 orbit. Here the angles are in units of 1=31.

c c

c

Figure 9. Shemati diagrams assoiated with the orbit portraits of Figures 6,

7, 8. The angles are in units of 1=7, 1=9 and 1=31 respetively.
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Z we would have for example t

0

= �(t

0

) < t < �(t) < t

0

+ 1. Sine � preserves yli

order, it would then follow indutively that

t

0

< t < �(t) < �

Æ2

(t) < �

Æ3

(t) < � � � < t

0

+ 1 :

Hene the suessive images of t would onverge to a �xed point of �. But this is

impossible sine every �xed point of � is repelling. Thus � �xes every point of A

j

.

But the �xed points of � are preisely the rational numbers of the form i=(2

n

� 1),

so it follows that A

j

is a �nite set of rational numbers. It follows easily that all of

the A

k

are pointwise �xed by �. This proves (1), (2) and (3) of 2.3; and (4) is learly

true sine rays annot ross eah other. �

It is often onvenient to ompatify the omplex numbers by adding a irle of

points e

2�it

1 at in�nity, anonially parametrized by t 2 R=Z. Within the resulting

losed topologial disk  , we an form a diagram D illustrating the orbit portrait P

by drawing all of the K-rays joining the irle at in�nity to O. These various rays are

disjoint, exept that eah z 2 O is a ommon endpoint for exatly v of these rays.

Note that this diagram D deforms ontinuously, preserving its topology, as we

move the parameter point , provided that the periodi orbit O remains repelling,

and provided that the assoiated K-rays do not run into preritial points. (Compare

[GM, Appendix B℄.)

In fat, given P , we an onstrut a diagram homeomorphi to D as follows. Start

with the unit irle, and mark all of the points e(t) = e

2�it

orresponding to angles

t in the union A

P

= A

1

[ � � � [ A

p

. Now for eah A

i

, let ẑ

i

be the enter of gravity

of the orresponding points e(t), and join eah of these points to ẑ

i

by a straight line

segment. It follows easily from Condition (4) that these line segments will not ross

eah other. (In pratie, in drawing suh diagrams, we will not usually use straight

lines and enters of gravity, but rather use some topologially equivalent piture,

�xing the boundary irle, whih is easier to see. Compare Figures 2, 5, 9.)

It will be onvenient to temporarily introdue the term formal orbit portrait for a

olletion P = fA

1

; : : : ; A

p

g of subsets of R=Z whih satis�es the four onditions of

2.3, whether or not it is atually assoiated with some periodi orbit. In fat we will

prove the following.

Theorem 2.4. Charaterization of Orbit Portraits. If P is any formal orbit

portrait, then there exists a quadrati polynomial f and an orbit O for f whih realizes

this portrait P.

This will follow from Lemma 2.9 below. To begin the proof, let us study the way in

whih the angle doubling map ats on a formal orbit portrait. As in x1, the number

of angles in eah A

j

will be alled the valene v for the formal portrait P . It is easy to

see that any formal portrait of valene v = 1 an be realized by an appropriate orbit

for the map f(z) = z

2

. Hene it suÆes to study the ase v � 2. For eah A

j

2 P

the v onneted omponents of the omplement R=Z r A

j

are onneted open ars

with total length +1. These will be alled the omplementary ars for A

j

.

Lemma 2.5. The Critial Ars. For eah A

j

in the formal orbit portrait P, all

but one of the omplementary ars is arried di�eomorphially by the angle doubling

map onto a omplementary ar for A

j+1

. However, the remaining omplementary
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ar for A

j

has length greater than 1=2. Its image under the doubling map overs one

partiular omplementary ar for A

j+1

twie, and every other omplementary ar for

A

j+1

just one.

De�nition. This longest omplementary ar will be alled the ritial ar for A

j

.

The ar whih it overs twie under doubling will be alled the ritial value ar for

A

j+1

. (This language will be justi�ed in 2.9 below.)

Proof of 2.5. If I � R=Z is a omplementary ar for A

j

of length less than 1=2,

then learly the doubling map arries I bijetively onto an ar 2I of twie the length,

bounded by two points of A

j+1

. This image ar annot ontain any other point of

A

j+1

, sine the doubling map from A

j

to A

j+1

preserves yli order. It follows easily

that these image ars annot overlap. Sine we annot �t v ars of total length +2

into the irle without overlap, and sine there annot be any omplementary ar of

length exatly 1=2, it follows that there must be exatly one \ritial" omplementary

ar for A

j

whih has length greater than 1=2. Suppose that it has length (1 + �

j

)=2.

Then the v � 1 non-ritial ars for A

j

have total length (1� �

j

)=2, and their images

under doubling form v�1 omplementary ars for A

j+1

with total length 1��

j

. Sine

the doubling map is exatly two-to-one, it follows easily that it maps the ritial ar

for A

j

onto the entire irle, doubly overing one \ritial value ar" for A

j+1

whih

has length �

j

, and overing every other omplementary ar for A

j+1

just one. �

Lemma 2.6. The Charateristi Ar for P. Among the omplementary ars for

the various A

j

2 P, there exists a unique ar I

P

of shortest length. This shortest

ar is a ritial value ar for its A

j

, and is ontained in all of the other ritial value

ars.

De�nition. This shortest omplementary ar I

P

will be alled the harateristi

ar for P . (Compare 2.11.)

Proof of 2.6. There ertainly exists at least one omplementary ar I

P

of

minimal length ` among all of the omplementary ars for all of the A

j

2 P . This

I

P

must be a ritial value ar, sine otherwise it would have the form 2J where

J is some omplementary ar of length `=2. Suppose then that I

P

is the ritial

value ar for A

j+1

, doubly overed by the ritial ar I



for A

j

. Sine I

P

is minimal,

it follows from 2.3(4) that this open ar I

P

annot ontain any point of the union

A

P

= A

1

[� � �[A

p

. Hene its preimage under doubling also annot ontain any point

of A

P

. This preimage onsists of two ars I

0

and I

00

= I

0

+ 1=2, eah of length `=2.

Note that both of these ars are ontained in I



. In fat the ar I



of length (1+ `)=2

is overed by these two open ars of length `=2 lying at either end, together with the

losed ar I



r (I

0

[ I

00

) of length (1� `)=2 in the middle.

Now onsider any A

k

2 P with k 6� j. It follows from the unlinking property

2.3(4) that the entire set A

k

must be ontained either in the ar (R=Z)r I



of length

(1�`)=2, or in I



and hene in the ar I



r(I

0

[I

00

) whih also has length (1�`)=2. In

either ase, it follows that the union of all non-ritial ars for A

k

is ontained in this

same ar of length (1� `)=2, and hene that the image of this union under doubling

is ontained in the ar

2((R=Z)r I



) = 2(I



r (I

0

[ I

00

)) = (R=Z)r I

P
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of length 1� `. Therefore, the ritial value ar for A

k+1

ontains the omplementary

ar I

P

, as required. It follows that this minimal ar I

P

is unique. For if there were

an I

0

P

of the same length, then this argument would show that eah of these two

must ontain the other, whih is impossible. �

Remark. This harateristi ar never ontains the angle zero. In fat let I



be

the ritial ar whose image under doubling overs I

P

twie. If 0 2 I

P

, then it is not

hard to see that one endpoint of I



must lie in I

P

and the other endpoint must lie

outside, in 1=2 + I

P

. But this is impossible by 2.3(4) and the minimality of I

P

.

Reall that the union A

P

= A

1

[ � � � [A

p

ontains pv elements, eah of whih has

period rp under doubling. Hene this union splits up into

pv

rp

=

v

r

distint yles under doubling. If P is the portrait of a periodi orbit O, then the

ratio v=r an be desribed as the number of yles of K-rays whih land on the orbit

O. As examples, we have v = r = 3 for Figure 1 and v = r = 2 for Figure 7 so that

there is only one yle under doubling, but v = 2 and r = 1 for Figures 6 and 8 so

that there are two distint yles. In fat we next show that there are at most two

yles in all ases.

Lemma 2.7. Primitive versus Satellite. Any formal orbit portrait of valene

v > r must have v = 2 and r = 1. It follows that there are just two posibilities:

Primitive Case. If r = 1, so that every ray whih lands on the period p orbit is

mapped to itself by f

Æp

, then at most two rays land on eah orbit point.

Satellite Case. If r > 1, then v = r so that exatly r rays land on eah orbit point,

and all of these rays belong to a single yli orbit under angle doubling.

This terminology will be justi�ed in x6. (Compare Figure 12.)

Proof of 2.7. Suppose that v > r and v � 3. Let I

P

be the harateristi

ar. We suppose that I

P

is the ritial value ar in the omplement of A

1

. Let

I

�

the omplementary ar for A

1

whih is just to the left of I

P

and let I

+

be the

omplementary ar just to the right of I

P

. To �x our ideas, suppose that I

�

has

length `(I

�

) � `(I

+

). Sine I

+

is not the ritial value ar for A

1

, we see, arguing as

in 2.6, that it must be the image under iterated doubling of the ritial value ar I

0

for some A

j

. That is, we have I

+

= 2

m

I

0

for some m � 1. Hene `(I

0

) < `(I

+

).

The hypothesis that v > r implies that the two endpoints of I

P

belong to di�erent

yles under doubling. Thus the left endpoints of I

0

and I

P

belong to distint yles,

hene I

0

6= I

P

. Therefore, by 2.6, I

0

stritly ontains I

P

. This ar I

0

annot stritly

ontain the neighboring ar I

+

, sine it is shorter than I

+

. Hene it must have an

endpoint in I

+

, and therefore, by 2.3(4), it must have both endpoints in I

+

. But this

implies that I

0

ontains I

�

, whih is impossible sine `(I

0

) < `(I

+

) � `(I

�

). Thus, if

v > r it follows that v � 2, hene r = 1 and v = 2, as asserted. �

Lemma 2.8. Two Rays determine P. Let P = fA

1

; : : : ; A

p

g be a formal orbit

portrait of valene v � 2, and let I

P

= (t

�

; t

+

) be its harateristi ar, as desribed

above. Then a quadrati polynomial f



has an orbit with portrait P if and only if the

two K-rays with angles t

�

and t

+

for the �lled Julia set of f



land at a ommon point.
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Proof. If f



has an orbit with portrait P , this is true by de�nition. Conversely, if

these rays land at a ommon point z

1

, then the orbit of z

1

is ertainly periodi. Let

P

0

be the portrait for this atual orbit. We will denote its period by p

0

, its valene

by v

0

, and so on. Note that the ray period rp is equal to r

0

p

0

, the ommon period of

the angles t

�

and t

+

under doubling.

Primitive Case. Suppose that r = 1 so that v=r = 2, and so that eah of these

angles t

�

has period exatly p under doubling. If p

0

< p hene r

0

> 1, then it would

follow from 2.7 applied to the portrait P

0

that t

�

and t

+

must belong to the same

yle under doubling, ontraditing the hypothesis that v=r = 2.

Satellite Case. If r > 1 hene v = r, then t

�

and t

+

do belong to the same yle

under doubling, say 2

k

t

�

� t

+

(mod Z). Clearly it follows that r

0

> 1 hene v

0

= r

0

.

Furthermore, it follows easily that multipliation by 2

k

ats transitively on A

1

, and

hene that all of the rays R

K

t

with t 2 A

1

land at the same point z

1

. In other words

A

1

� A

0

1

. This implies that r � r

0

hene p � p

0

. If p were stritly greater than p

0

,

then it would follow that A

1+p

0

is also ontained in A

0

1

. But the two sets A

1

and

A

1+p

0

are unlinked in R=Z. Hene there is no way that multipliation by 2

p

an at

non-trivially on A

1

[ A

1+p

0

arrying eah of these two sets into itself and preserving

yli order on their union. This ontradition implies that A

1

= A

0

1

and p = p

0

, and

hene that P = P

0

, as required. �

Now let  be some parameter value outside the Mandelbrot set. Then, following

Douady and Hubbard, the point , either in the dynami plane or in the parameter

plane, lies on a unique external ray, with the same well de�ned angle t() 2 R=Z in

either ase. (Compare Appendix A.)

Lemma 2.9. Outside the Mandelbrot Set. Let P = fA

1

; : : : ; A

p

g be a formal

orbit portrait with harateristi ar I

P

, and let  be a parameter value outside of

the Mandelbrot set. Then the map f



(z) = z

2

+  admits a periodi orbit with portrait

P if and only if the external angle t() belongs to this open ar I

P

.

Proof. The two dynami rays R

K

t()=2

and R

K

(1+t())=2

meet at the ritial point

0, and together ut the dynami plane into two halves. Furthermore, every point of

the Julia set �K = K is uniquely determined by its symbol sequene with respet

to this partition. Correspondingly, the two diametrially opposite points t()=2 and

(1 + t())=2 on the irle R=Z ut the irle into two semiirles, and almost every

point t 2 R=Z has a well de�ned symbol sequene with respet to this partition under

the doubling map. Two rays R

K

t

and R

K

u

land at a ommon point of K if and only

if the external angles t and u have the same symbol sequene.

First suppose that the angle t() lies in the harateristi ar I

P

. Then, with

notation as in the proof of 2.6, the two points t()=2 and (1 + t())=2 lie in the two

omponents I

0

and I

00

of the preimage of I

P

. For every A

j

2 P , all of the points of

A

j

lie in a single omponent of R=Zr (I

0

[ I

00

). Hene the rays R

K

t

with t 2 A

j

land

at a ommon point z

j

2 K. It follows from 2.8 that these points lie in an orbit with

portrait P , as required.

On the other hand, if t() lies outside of I

P

, then it is easy to hek that the two

endpoints of I

P

are separated by the points t()=2 and (1+ t())=2. Hene these two
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endpoints, both belonging to A

1

2 P , land at di�erent points of K. Hene f



has no

orbit with portrait P .

Finally, in the limiting ase where t() is preisely equal to one of the two endpoints

t

�

of I

P

, sine these angles are periodi under doubling, it follows that the ray R

K

t

�

passes through a preritial point, and hene does not have any well de�ned landing

point in K. This ompletes the proof of 2.9. �

Evidently the Realization Theorem 2.4 is an immediate orollary. Sine we have

proved 2.4, we an now forget about the distintion between \formal" orbit portraits

and portraits whih are atually realized. We an desribe further properties of por-

traits and their assoiated diagrams as follows.

De�nition 2.10. Suppose that we start with any periodi orbit O with valene

v � 2 and period p � 1, and �x some point z

i

2 O. As in x1, the v rays landing at

z

i

ut the dynami plane C up into v open subsets whih we all the setors based at

z

i

. Evidently there is a one-to-one orrespondene between setors based at z

i

and

omplementary ars for the orresponding set of angles A

i

� R=Z, haraterized by

the property that R

K

t

is ontained in the open setor S if and only if t is ontained

in the orresponding omplementary ar. By de�nition, the angular size �(S) > 0 of

a setor is the length of the orresponding omplementary ar, whih we an think of

as its \boundary at in�nity". It follows that

P

S

�(S) = 1, where the sum extends

over the v setors based at some �xed z

i

2 O.

Remark. The angular size of a setor has nothing to do with the angle between

the rays at their ommon landing point, whih is often not even de�ned.

Altogether there are pv rays landing at the various points of the orbit O. Together

these rays ut the plane up into pv � p + 1 onneted omponents. The losures of

these omponents will be alled the piees of the preliminary puzzle assoiated with

the diagram D or the assoiated portrait P . Note that every losed setor S an be

expressed as a union of preliminary puzzle piees, and that every preliminary puzzle

piee is equal to the intersetion of the losed setors ontaining it. This onstrution

will be modi�ed and developed further in Setions 7 and 8.

For every point z

i

of the orbit, note that just one of the v setors based at z

i

ontains the ritial point 0. We will all this the ritial setor at z

i

, while the others

will be alled the non-ritial setors at z

i

. Another noteworthy setor at z

i

(not

neessarily distint from the ritial setor) is the ritial value setor , whih ontains

f(0) = .

Lemma 2.11. Properties of Setors. The diagram D �  assoiated with any

orbit O of valene v � 2 has the following properties:

(a) For eah z

i

2 O, the ritial setor at z

i

has angular size stritly greater than 1=2.

It follows that the v�1 non-ritial setors at z

i

have total angular size less than 1=2.

(b) The map f arries a small neighborhood of z

i

di�eomorphially onto a small

neighborhood of z

i+1

= f(z

i

), arrying eah setor based at z

i

loally onto a setor

based at z

i+1

, and preserving the yli order of these setors around their base point.

The ritial setor at z

i

always maps loally, near z

i

, onto the ritial value setor

based at z

i+1

.
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() Globally, eah non-ritial setor S at z

i

is mapped homeomorphially by f onto

a setor f(S) based at z

i+1

, with angular size given by �(f(S)) = 2�(S). However,

the ritial setor at z

i

maps so as to over the entire plane, overing the ritial

value setor at z

i+1

twie with a rami�ation point at 0 7! , and overing every other

setor just one.

(d) Among all of the pv setors based at the various points of O, there is a unique

setor of smallest angular size, orresponding to the harateristi ar I

P

. This

smallest setor ontains the ritial value, and does not ontain any other setor.

(As usual, the index i is to be onstrued as an integer modulo p.) The proof,

based on 2.6 and the fat that f is exatly two-to-one exept at its ritial point, is

straightforward and will be left to the reader. Evidently Theorem 1.1 follows. �

Now let us take a loser look at the dynamis of the diagram D or of the assoiated

portrait P . The iterated map f

Æp

�xes eah point z

i

2 O, permuting the various rays

whih land on z

i

but preserving their yli order. Equivalently, the p-fold iterate of

the doubling map arries eah �nite set A

i

� Q=Z onto itself by a bijetion whih

preserves the yli order. For any �xed i mod p, we an number the angles in A

i

as

0 � t

(1)

< t

(2)

< � � � < t

(v)

< 1. It then follows that

2

p

t

(j)

� t

(j+k)

(mod Z) ;

taking supersripts modulo v, where k is some �xed residue lass modulo v.

De�nition 2.12. The ratio k=v (mod Z) is alled the ombinatorial rotation number

of our orbit portrait. It is easy to hek that this rotation number does not depend

on the hoie of orbit point z

i

. Let d be the greatest ommon divisor of v and k. The

we an express the rotation number as a fration q=r in lowest terms, where k = qd

and v = rd. (In the speial ase of rotation number zero, we take q = 0 and r = 1.)

In all ases, note that the denominator r � 1 is equal to the period of the angles

t

(j)

2 A

i

under the mapping t 7! 2

p

t (mod Z) from A

i

to itself. It follows easily that

the period of t

(j)

under angle doubling is equal to the produt rp. Thus this de�nition

of r as the denominator of the rotation number is ompatible with our earlier notation

rp for the ray period.

Notation Summary. Sine we have been aumulating quite a bit of notation,

here is a brief summary:

Orbit period p: the number of distint element in our orbit O,

Ray period rp: the period of eah angle t 2 A

1

[ � � � [A

p

under doubling.

Rotation number q=r: desribes the ation of multipliation by 2

p

on eah set A

i

.

Valene v: number of angles in eah A

i

, for a total of pv angles altogether.

Cyle number v=r: the number of disjoint yles of size rp in the union A

1

[� � �[A

p

.

Aording to 2.7, this yle number is always equal to 1 for a satellite portrait,

and is at most 2 in all ases. Thus, in the ase v � 2 there are just two possibilities

as follows:

Primitive Case. The rotation number is zero. There are v = 2 rays landing at eah

orbit point, for a total of 2p rays. These split up into two yles of p rays eah under

doubling.
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Satellite Case. The rotation number is q=r 6� 0. There are v = r rays landing at

eah orbit point, for a total of pv = rp rays altogether. These rp rays are permuted

ylially under angle doubling, so that the number of yles is v=r = 1.

As examples, Figures 6, 8 illustrate primitive portraits with rotation number zero,

while Figures 1, 7 show satellite portraits with rotation number 1=3 and 1=2. We will

see in x6 that primitive portraits orrespond to primitive hyperboli omponents in

the Mandelbrot set, that is, to those with a usp point.

3. Parameter Rays.

This setion will prove the following preliminary version of Theorem 1.2.

Let P be any orbit portrait of valene v � 2, and let I

P

= (t

�

; t

+

) be its

harateristi ar, where 0 < t

�

< t

+

< 1. If the quadrati polynomial f



= z

2

+ 

has an orbit O with portrait P , reall that the two dynami rays R

K

t

�

and R

K

t

+

for

f



land at a ommon orbit point, and together bound a setor S

1

whih has minimal

angular size among all of the setors based at points of the orbit O. This S

1

an also

be haraterized as the smallest of these setors whih ontains the ritial value .

(Compare Lemmas 2.6, 2.9, 2.11.)

Theorem 3.1. Parameter Rays and the Wake. The two parameter rays R

M

t

�

and R

M

t

+

with these same angles land at a ommon paraboli point in the Mandelbrot

set. Furthermore, these two rays, together with their ommon landing point, ut the

parameter plane into two open subsets W

P

and CrW

P

with the following property:

The quadrati map f



has a repelling orbit with portrait P if and only if  2W

P

.

Proof. Let A

P

= A

1

[ � � � [ A

p

be the set of all angles for the orbit portrait

P , and let n = rp be the ommon period of these angles under doubling. The set

F

n

� M of possibly exeptional parameter values will onsist of those  for whih

f

Æn



has a �xed point of multiplier +1. Sine F

n

� C is an algebrai variety and

is not the entire omplex plane, it is neessarily a �nite set. As noted in [GM℄, if

 belongs to the Mandelbrot set but  62 F

n

, then the various dynami rays R

K(f



)

t

with t 2 A

P

all land on repelling periodi points, and the pattern of whih of these

rays land at a ommon point remains stable under perturbation of  throughout some

open neighborhood within parameter spae.

Now suppose that  lies outside of the Mandelbrot set. Then , onsidered as a

point in parameter spae, belongs to some uniquely de�ned parameter ray R

M

t()

, and

onsidered as a point in the dynami plane for f



, belongs to the dynami ray R

K

t()

with this same angle. In this ase, a dynami ray R

K

t

for f



has a well de�ned landing

point in K = K(f



) if and only if the forward orbit f2t ; 4t ; 8t ; : : : g under doubling

does not ontain this angle t(). Sine the angles in A

P

are periodi, it follows that

the dynami rays R

K

t

with t 2 A

P

all have well de�ned landing points in K if and

only if the ritial value angle t() does not belong to A

P

.

Let t 2 A

P

and let 

0

2 M be any aumulation point for the parameter ray

R

M

t

. Sine every neighborhood of 

0

ontains parameter values  2 R

M

t

for whih the

dynami ray R

K(f



)

t

does not land, it follows that 

0

must belong to F

n

. Thus every
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aumulation point for R

M

t

belongs to the �nite set F

n

, whih proves that R

M

t

must

atually land at a single point of F

n

.

These parameter rays R

M

t

with t 2 A

P

, together with the points of F

n

, ut the

omplex parameter plane up into �nitely many open sets U

i

, and the pattern of whih

of the orresponding dynami rays R

K

t

for t 2 A

P

land at a ommon periodi point

remains �xed as  varies through any U

i

. Sine every U

i

is unbounded, it follows from

Lemma 2.9 that for  2 U

i

the map f



has an orbit with portrait P if and only if

U

i

is that open set whih ontains the points in C rM with external angle t() in

(t

�

; t

+

). Sine this open set annot ontain any other points of C rM , it follows

that the two rays R

M

t

�

and R

M

t

+

must land at a ommon point of F

n

, so as to separate

the parameter plane.

De�ne the root point r

P

2 M to be this ommon landing point, and de�ne the

wake W

P

to be that onneted omponent of Cr (R

M

t

�

[ R

M

t

+

[ r

P

) whih does not

ontain 0. For  2W

P

r F

n

, it follows from the disussion above that f



does have a

repelling orbit with portrait P , while for  2 C r (W

P

[ F

n

) it follows that f



does

not have any repelling orbit with portrait P . Thus, to omplete the proof of 3.1, we

need only onsider those f



with  in the �nite set F

n

.

First suppose that some point 

0

2 F

n

rW

P

had a repelling orbit with portrait

P . Then any nearby parameter value would have a nearby repelling orbit with the

same landing pattern for rays with angles in A

P

. A priori it might seem possible that

some extra ray, perhaps one landing on a paraboli orbit for f



0

, might land on this

same repelling orbit after perturbation. (Compare [GM, Fig. 12℄.) However, this is

ruled out by 2.8. Hene all nearby parameter values must belong to W

P

, whih is

impossible.

Now onsider a parameter point 

0

2 F

n

\W

P

. Then for every  in a puntured

neighborhood of 

0

the two raysR

K(f



)

t

�

land at a well de�ned repelling point of period

p. The multiplier � = �() of this periodi point is well de�ned, and is learly bounded

and holomorphi as a funtion of . Evidently the singularity of this holomorphi

funtion at 

0

is removable. Sine the funtion j�()j � 1 annot have an isolated

minimum, it follows that j�()j > 1, not only for  6= 

0

, but also for  = 

0

. It then

follows easily that the repelling periodi orbit for  6= 

0

ontinues analytially to a

repelling periodi orbit for  = 

0

also. �

We will deal with paraboli orbits with portrait P in the next two setions.

4. Near Paraboli Maps.

Let ̂ be a paraboli point in parameter spae. This setion will study the dynami

behavior of the quadrati map f



for  in a neighborhood of ̂. (Compare [DH2,

x14(CH)℄, [Sh2℄.)

Let O be the paraboli orbit for f

̂

with period p � 1 and with representative point

ẑ. Then the multiplier

^

� = (f

Æp

̂

)

0

(ẑ) is a primitive r-th root of unity for some r � 1.

Let P be the assoiated orbit portrait, with ray period rp � p. We will �rst prove

the following.
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or

Figure 10 (ourtesy of S. Zakeri). The left sketh shows a paraboli �xed

point with r = 3, the middle shows the modi�ed version with an attrating

orbit of period 3, and the right shows a modi�ed version with an attrating

�xed point. Here the arrows indiate the ation of f

Æ3

.

Theorem 4.1. Deformation Preserving the Orbit Portrait. There exists a

smooth path in parameter spae ending at the paraboli point ̂ and onsisting of

parameter values  with the following property: The assoiated map f



has both a

repelling orbit of period p and an attrating orbit of period rp. Furthermore, this

repelling orbit has portrait P, and lies on the boundary of the immediate basin for the

attrating orbit. As  tends to ̂, these two orbits both onverge towards the original

paraboli orbit O.

(Compare Figure 10, middle.) The proof will depend on the following.

Lemma 4.2. Convenient Coordinates. For any omplex number � lose to

^

�

there exists at least one parameter value  lose to ̂ and point z

�

lose to ẑ so that z

�

is a periodi point for the map f



with period p and with multiplier �. Furthermore

there is a loal holomorphi hange of oordinate z = �

�

(w) with z

�

= �

�

(0) so that

the map F = F

�

= �

�1

�

Æ f

Æp



Æ �

�

takes the form

F (w) = �w + R(�;w)

for w near zero, and so that its r-th iterate takes the form

F

Ær

(w) = �

�1

�

Æ f

Ærp



Æ �

�

= �

r

w

�

1 + w

r

+R

0

(�;w)

�

; (2)

where the remainder terms R and R

0

satisfy jRj ; jR

0

j � onstant jwj

r+1

uniformly

for � in some neighborhood of

^

� and for w in some neighborhood of zero.

(In 4.5, we will sharpen this statement by showing that the phrase \at least one"

in 4.2 an be replaed by \exatly one".)

Proof of 4.2 in the Primitive Case. First suppose that P is a primitive

portrait, so that the multiplier

�

f

Æp

̂

�

0

(ẑ) is equal to +1 for ẑ 2 O, with r = 1. In

this ase, ẑ is a �xed point of multipliity two for the iterate f

Æp

̂

, and splits into

two nearby �xed points under perturbation. (It annot have a higher multipliity,

sine a �xed point of multipliity � > 2 would have � � 1 � 2 attrating Leau-

Fatou petals, eah with at least one ritial point in its basin, whih is impossible

for a quadrati map.) As  traverses a small loop around ̂, these two �xed points

a priori may be (and in pratie always will be) interhanged. However, if we loop

twie around ̂, then eah of these �xed points must return to its original position.
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Thus, if we introdue a new parameter u by the equation  = ̂ + u

2

, then we an

hoose these �xed points as holomorphi funtions, z

�

= z

�

(u) for � = 1; 2, with

z

1

(0) = z

2

(0) = ẑ. Evidently the u-plane is a two-fold branhed over of the -

parameter plane. Let �

�

(u) =

�

f

Æp



�

0

�

z

�

(u)

�

be the multiplier for the orbit of z

�

, and

note that �

1

(0) = �

2

(0) = 1. Sine the holomorphi funtion u 7! �

1

(u) annot be

onstant, it takes on all values lose to +1 as u varies through a neighborhood of 0.

Expanding the funtion f

Æp



as a power series about its �xed point z

1

, we obtain

f

Æp



(z

1

(u) + h) � z

1

(u) = �

1

(u)h + a(u)h

2

+ (higher terms in h) (3)

for h and u lose to zero, where  = ̂ + u

2

. Here the oeÆient a(u) is also a

holomorphi funtion of u, with a(0) 6= 0 sine the �xed point multipliity is two. It

follows that a(u) 6= 0 for u suÆiently small. Denoting the expression (3) by g

u

(h),

and replaing the variable h = z � z

1

by w = �

u

h where �

u

= a(u)=�

1

(u), we see

easily that the funtion

F

u

(w) = �

u

g

u

�

w=�

u

�

has the required form (2). �

Proof of 4.2 in the Satellite Case. We now suppose that

^

� is a primitive r-th

root of unity, with r > 1. Then we an solve for the period p point z = z() as a

holomorphi funtion of  for  in some neighborhood of ̂, with z(̂) = ẑ. Hene

the multiplier �() = (f

Æp



)

0

(z()) will also be a holomorphi funtion of , taking the

value

^

� 2

r

p

1 when  = ̂. Similarly �()

r

is a holomorphi funtion, taking the value

�(̂)

r

= 1 when  = ̂. This funtion �()

r

learly annot be onstant, so it takes all

values lose to +1 as  varies through a neighborhood of ̂.

We will onstrut a sequene of holomorphi hanges of variable whih onjugate

the map z 7! f

Æp



(z) in a neighborhood of z = z() to maps h 7! g

;k

(h) in a neigh-

borhood of h = 0, where 1 � k � r, so that

g

;k

(h) = �()h

�

1 + a

k

()h

k

+ (higher terms in h)

�

for some onstant a

k

(). Here  an be any point in some neighborhood of ̂. To

begin the onstrution, let

g

;1

(h) = f

Æp

(z() + h) � z() :

This ertainly has the required properties. Now indutively set

g

;k+1

(h) = �

�1

Æ g

;k

Æ �(h) where �(h) = h+ bh

k+1

for 1 � k < r. We laim that the onstant b = b() an be uniquely hosen so that

g

;k+1

will have the required form. In fat a brief omputation shows that

g

;k+1

(h) = �h

�

1 + (a+ b� �

k

b)h

k

+ (higher terms) :

But �

k

6= 1 sine � is lose to

^

�, whih is a primitive r-th root of unity with 1 � k < r.

Hene there is a unique hoie of b so that a+ b� �

k

b = 0, as required.

In partiular, pushing this argument as far as possible, we an take k = r and

replae f

Æp



near z = z() by g

;r

(h) = �h

�

1 + ah

r

+ � � �

�

near h = 0. Hene we an

replae f

Ærp



near z() by

g

Ær

;r

(h) = �

r

h

�

1 + a

0

h

r

+ (higher terms)

�

;



PERIODIC ORBITS, EXTERNALS RAYS AND THE MANDELBROT SET 21

VεVε

Figure 11. A repelling petal V

�

and attrating petal V

0

�

for the map

F (w) � w + w

2

(illustrating the primitive ase, before perturbation).

where omputation shows that a

0

=

�

1+�

r

+�

2r

+ � � �+�

(r�1)r

�

a. Here the oeÆient

a

0

of h

r

must be non-zero when � =

^

�, and hene for � lose to

^

�. For otherwise, the

Leau-Fatou owers around the points of the paraboli orbit would give rise to more

than one periodi yle of attrating petals for f



. This is impossible, sine eah suh

yle must ontain a ritial point, and a quadrati polynomial has only one ritial

point. Finally, after a sale hange, replaing g

;r+1

(h) by F



(w) = �



g

Ær

;r+1

(w=�



)

for suitably hosen �



, we obtain simply

F

Ær



(w) = �

r

w

�

1 + w

r

+ (higher terms in w)

�

;

as required. �

Proof of 4.1. First note that we an hoose a smooth path in parameter spae so

that the multiplier �

r

of Lemma 4.2 is real and belongs to some interval (1 ; 1 + �).

This follows easily from the fat that � is a non-onstant holomorphi funtion of 

in the ase r > 1, or of u =

p

� ̂ in the ase r = 1. Note that the map F

Ær

of 4.2

satis�es

jF

Ær

(w)j = �

r

� jwj �

�

1 + Re(w

r

) + (higher terms)

�

(4)

and

arg(F

Ær

(w)) = arg(w) + Im(w

r

) + (higher terms) (5)

whenever �

r

is real and positive; and note also that F

Ær

has a loally de�ned holo-

morphi inverse of the form

F

�r

(w) = w

�

1 � w

r

=�

2r

+ (higher terms)

�

=�

r

;

whih satis�es

jF

�r

(w)j = jwj

�

1�Re(w

r

)=�

2r

+ (higher terms)

�

=�

r

(4

0

)

and

arg(F

�r

(w)) = arg(w) � Im(w

r

)=�

2r

+ (higher terms) : (5

0

)

As a representative repelling petal for F

Ær

let us hoose a small wedge shaped

region V

�

desribed in polar oordinates by setting w = � e

2�it

with 0 � � � � and
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jtj < 1=(8r). (Compare Figure 11 for the ase r = 1.) If �

r

� 1 with �

r

suÆiently

lose to 1, it follows easily from (4

0

) and (5

0

) that V

�

maps into itself under F

�r

, with

all orbits onverging towards the boundary �xed point at w = 0. If a dynami ray

for f

̂

lands at ẑ, then it must land through one of the r repelling petals, for example

through the image of V

�

in the z-plane. For  suÆiently lose to ̂, this image must

still ontain a full segment, from some point z to f

Ærp



(z), of the perturbed ray, hene

this perturbed ray must still land at the repelling point whih orresponds to w = 0.

Note that no new rays land at this point, after perturbation. There are only �nitely

many rays whih have period p. But every dynami ray of period p for f

̂

with angle

not in the set A

P

of angles for P must land on some disjoint repelling point, and this

ondition will be preserved under perturbation. Thus the perturbed orbit, for �

r

> 1,

still has portrait P .

As an attrating petal for F

Ær

we an hoose the set V

0

�

= e

�i=r

V

�

onsisting of

all w = �e

2�it

with 0 � � � � and

3

8r

� t �

5

8r

. If �

r

> 1 with �

r

lose to 1, then

using (4) and (5) we an hek that F

Ær

maps V

0

�

into itself. However, the origin is

a repelling point, so orbits annot onverge to it. In fat, if K is the ompat set

obtained from V

0

�

by removing a very small neighborhood of the origin, then F

Ær

maps

K into its own interior. It follows easily that all orbits in V

0

�

r f0g onverge to an

interior �xed point. This must be a stritly attrating point, and must orrespond to

an attrating orbit of period rp for the map f



. �

Corollary 4.3. Paraboli Points as Root Points. If f

̂

has a paraboli orbit

whose portrait P is non-trivial, then ̂ must be equal to the root point r

P

of the P-wake.

Note: The hypothesis that P is non-trivial is atually redundant. (See 4.8.) It

will be shown in 5.4 that every paraboli point is the root point of only one wake, so

that the root point of the P-wake always has portrait equal to P .

Proof of 4.3. Sine f

̂

has a paraboli orbit with portrait P , it ertainly annot

have a repelling orbit with portrait P . Hene it annot be inside the P-wake by

3.1. On the other hand, by 4.1 it must belong to the boundary of the P-wake. By

onstrution, the root point r

P

is the only boundary point of W

P

whih belongs to

the Mandelbrot set. �

Here is a omplementary statement to 4.1, in the ase r > 1.

Lemma 4.4. A Deformation Breaking the Portrait. Under the hypothesis of

4.1, there also exists a smooth path of parameter values , onverging to ̂, so that

eah f



has an attrating orbit of period p, and a repelling orbit of period rp whih lies

on the boundary of its immediate basin. Furthermore, the dynami rays with angles

in A

P

= A

1

[ � � � [ A

p

all land on this repelling orbit.

(Compare Figure 10, right.) For suh values of  (still assuming that r > 1), it

follows that there is no periodi orbit with portrait P . Together with 4.1, this gives

an alternative proof that ̂ is on the boundary of the P-wake.

The proof of 4.4 is ompletely analogous to the proof of 4.1, and will be left to the

reader: One simply deforms so that �

r

< 1, instead of �

r

> 1. �

The following assertion helps to make the statement of 4.2 more preise.
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Lemma 4.5. Loal Uniqueness. Under the hypothesis of 4.2, there exist unique

single valued funtions  = (�) and z = z(�) ; de�ned and holomorphi for � in a

neighborhood of

^

�, so that z(�) is a periodi point of period p and multiplier � for the

map f

(�)

, with ̂ = (

^

�) and ẑ = z(

^

�). This funtion (�) is univalent in the satellite

ase, but has a simple ritial point at

^

� in the primitive ase.

The impliations of this lemma for the geometry of the Mandelbrot set will be

desribed in 6.1 and 6.2.

Proof of 4.5. First onsider the satellite ase, with

^

� 6= 1. Then learly the period

p orbit and its multiplier �() depend smoothly on  throughout some neighborhood

of ̂. We will show that the derivative d�=d is non-zero at ̂. For otherwise, we ould

write

�

r

() = 1 + a(� ̂)

k

+ (higher terms)

with k � 2. Hene we ould vary  from ̂ in two or more di�erent diretions so

that �

r

> 1 and in two or more intermediate diretions so that �

r

< 1. The former

points would be within the P-wake and the later points would be outside it; but

this on�guration is impossible by 3.1. Thus d�=d 6= 0, and it follows by the Inverse

Funtion Theorem that the inverse mapping � 7! (�) is well de�ned and holomorphi

throughout a neighborhood of

^

�, as required.

In the primitive ase, the situation is di�erent, but the proof is similar. In this

ase, setting  = ̂+ u

2

, we must express the multiplier �

1

for one of the two nearby

period p points as a holomorphi funtion of u, and show that the derivative d�

1

=du

is non-zero at u = 0. Otherwise, if the derivative d�

1

(u)=du were equal to zero for

u = 0, then we ould write

�

1

(u) = 1 + a u

k

+ (higher terms)

for some k � 2. It would follow that we ould vary u from 0 in two or more di�erent

diretions so that �

1

> 1 and in two or more separating diretions so that �

2

> 1.

All of these points would be within the P-wake, but the rays landing on the periodi

point z

1

would have to jump disontinuously so as to land on z

2

as we pass from

�

1

> 1 to �

2

> 1, and suh points of disontinuity must be outside the P-wake.

Even allowing for the fat that the u-plane is a two-fold overing of the -plane, suh

a on�guration is inompatible with 3.1. Therefore, �

1

and u must determine eah

other holomorphially in a neighborhood of

^

� $ 0. In partiular, it follows that the

parameter value  = ̂+ u

2

an be expressed as a holomorphi funtion of �

1

, with a

simple ritial point at �

1

=

^

�. �

To onlude this setion, we will prove that the portrait of a paraboli periodi

point is always non-trivial. We will use a somewhat simpli�ed form of the Hubbard

tree onstrution to show that every paraboli orbit with ray period rp � 2 must

have portrait with valene v � 2. First some general remarks about loally onneted

subsets of the plane.

Lemma 4.6. A Canonial Retration. Let K � C be ompat, onneted,

loally onneted, and full, and let U be a onneted omponent of the interior of K.

Then the losure U is homeomorphi to the losed unit disk, and there is a unique
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retration �

U

from C onto U whih arries eah external ray, and also eah onneted

omponent of the omplement K rU , to a single point of the irle �U . There are at

least two distint external rays landing at a point z

0

2 �U if and only if K r fz

0

g is

disonneted, or if and only if there is some onneted omponent X of K r U with

�

U

(X) = fz

0

g.

Proof. (Compare [D5℄.) The statement that U is a disk follows easily from well

known results of Carath�eodory. Furthermore, aording to Carath�eodory, there is a

unique retration from C onto K whih maps eah external ray to its landing point.

Composing this with the retration K ! U whih maps eah omponent X of KrU

to the unique intersetion point z

0

2 X \ U , we obtain the required retration �

U

.

For any suh X , note that there must be at least one maximal open interval of

angles t suh that the ray R

K

t

lands in X . The endpoints of suh a maximal interval

are the angles for the required pair of rays landing on z

0

. Conversely, if there were

two rays landing on z

0

but no omponent X attahed in between, then there would

be an entire open interval of angles t so that R

K

t

lands at z

0

. But this is impossible

by a lassial theorem of F. and M. Riesz. (See for example [M2, App. A℄.) �

In partiular, let K = K(f) be the �lled Julia set for a hyperboli quadrati

polynomial. (We are atually interested in the paraboli ase, but will work �rst with

the hyperboli ase, sine that will suÆe for our purposes, and sine it is muh easier

to prove loal onnetivity in the hyperboli ase.)

Lemma 4.7. The Dynami Root Point. Suppose that f = f



has an attrating

orbit of period n � 2. Let K be its �lled Julia set, and let U

0

and U

1

� K be the

Fatou omponents ontaining the ritial point 0 and the ritial value  respetively.

Then the anonial retration �

U

1

: C ! U

1

arries the omponent U

0

to the unique

point r



2 �U

1

whih is �xed by f

Æn

. Hene at least two dynami rays land at this

point.

(See for example Figures 1, 6.) Following Shleiher, I will all r



the dynami root

point for the Fatou omponent U

1

.

Proof. Let U

0

! U

1

�

!U

2

�

!� � �

�

!U

n

= U

0

be the Fatou omponents ontaining

the ritial orbit. Then f

Æn

maps eah irle �U

j

onto itself by an expanding map

of degree two. Hene there is a anonial homeomorphism a

j

: �U

j

! R=Z whih

onjugates f

Æn

to the angle doubling map on the standard irle. For eah z 2 CrU

j

,

the image a

j

(�

U

j

(z)) will be alled the internal angle of the point z with respet to

U

j

. The map f from �U

j

to �U

j+1

preserves the internal angles of boundary points

for 0 < j < n, but doubles them for the ase j = 0 of the ritial omponent.

De�ne the t-wake L

t

(U

j

) to be the set of all z 2 CrU

j

with a

j

(�

U

j

(z)) = t 2 R=Z.

These wakes are pairwise disjoint sets with union equal to CrU

j

. In general f maps

to t-wake of U

j

homeomorphially onto the t-wake of U

j+1

for 0 < j < n, and onto

the 2t-wake of U

j+1

when j = 0. However, there is one exeptional value of t for eah

U

j

with 0 < j < n. Namely, if the wake L

t

(U

j

) ontains the ritial omponent U

0

then it ertainly annot map homeomorphially, and its image may be muh larger

than L

t

(U

j+1

).
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Let A

j

� R=Z be the �nite set onsisting of all angles t 2 R=Z suh that the wake

L

t

(U

j

) ontains one of the omponents U

k

(where neessarily j 6= k). Then it follows

that A

1

� A

2

� � � � � A

n

and 2A

n

= A

0

. On the other hand, sine K is full, the

various U

j

must be onneted together in a tree-like arrangement (the Hubbard tree).

There annot be any yles. Hene at least one of the A

i

must onsist of a single

angle. It follows easily that A

1

= f0g, and the onlusion follows. �

Corollary 4.8. Paraboli Orbit Portraits are Non-Trivial. If  is any paraboli

point of the Mandelbrot set other than  = 1=4, and if O is the paraboli orbit for f



,

then at least two dynami rays land on eah point of O.

(This is just a restatement of Theorem 1.4 of x1.)

Proof. In the satellite ase this is trivially true, while in the primitive ase it

follows from 4.7, using 4.1 to pass from the paraboli to the hyperboli ase. This

ompletes the proof of Theorem 1.4. �

5. The Period n Curve in (Parameter�Dynami) Spae.

It is onvenient to de�ne a sequene of numbers �

2

(n) indutively by the formula

2

k

=

X

njk

�

2

(n) ; or �

2

(k) =

X

njk

�(k=n)2

n

;

to be summed over all divisors n � 1 of k, where �(k=n) 2 f�1; 0g is the M�obius

funtion. In fat we will be mainly interested in the quotients �

2

(n)=2 and �

2

(n)=n.

The �rst few values are

n 1 2 3 4 5 6 7 8 9 10

�

2

(n)=2 1 1 3 6 15 27 63 120 252 495

�

2

(n)=n 2 1 2 3 6 9 18 30 56 99 .

De�ne the period n urve Per

n

� C

2

to be the lous of zeros of the polynomial

Q

n

(; z) whih is de�ned by the formula

f

Æk



(z)� z =

Y

njk

Q

n

(; z) ; or Q

k

(; z) =

Y

njk

�

f

Æk



(z)� z

�

�(k=n)

;

taking the produt over all divisors n of k. For example,

Q

1

(; z) = z

2

+ � z ; Q

2

(; z) =

(z

2

+ )

2

+ � z

z

2

+ � z

= z

2

+ z + + 1 :

Note that eah point (; z) 2 Per

n

determines a periodi orbit

z = z

0

7! z

1

7! � � � 7! z

n

= z

0

for the map f



. Let �

n

= �

n

(; z) = �f

Æn



(z)=�z = 2

n

z

1

� � � z

n

. For a generi hoie

of , this orbit has period exatly n, and �

n

is the multiplier. However, if z is a

paraboli periodi point for f



with ray period n = rp > p, then (; z) belongs both

to Per

n

with �

n

= 1, and to Per

p

with �

p

2

r

p

1. (In fat, the two urves Per

n

and

Per

p

interset transversally at (; z).)

Remarks. Compare [M4℄ for a somewhat analogous disussion for ubi polyno-

mials. The fat that Q

n

is really a polynomial an be veri�ed by expressing f

Æk



(z)�z
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as a produt of irreduible polynomials, and heking that eah of these irreduible

fators has a well de�ned period n dividing k. The fators are all distint sine

�(f

Æj



(z) � z)=�z 6= 0 at every zero of this polynomial when jj is large. It is shown

in [Bou℄, and also in [S1℄, [LS℄, that the algebrai urve Per

n

(or the polynomial Q

n

)

is atually irreduible; however, we will not make any use of that fat.

Lemma 5.1. Properties of the Period n Curve. This algebrai urve Per

n

� C

2

is non-singular. The projetion (; z) 7!  is a proper map of degree �

2

(n) from Per

n

to the parameter plane, while the projetion (; z) 7! z is a proper map of degree

�

2

(n)=2 to the dynami plane. Finally, the funtion (; z) 7! �

n

(; z) is a proper map

of degree n�

2

(n)=2 to the �

n

-plane.

Note that the yli group of order n, whih we will denote by Z

n

, ats on Per

n

, a

generator arrying (; z) to ( ; f



(z)).

Lemma 5.2. Properties of Per

n

=Z

n

. The quotient Per

n

=Z

n

is a smooth algebrai

urve onsisting of all pairs (;O) where O is a periodi orbit for f



whih is either

non-paraboli of period n, or paraboli with attrating petals of period n. At any point

where �

n

6= 1, the oordinate  an be used as loal uniformizing parameter, while

in a neighborhood of a point with �

n

= 1, the multiplier �

n

= �

n

(; z) serves as a

loal uniformizing parameter for this urve. The projetion maps (;O) 7!  and

(;O) 7! �

n

are proper, with degrees �

2

(n)=n and �

2

(n)=2 respetively.

The proof that Per

n

and Per

n

=Z

n

are non-singular will be divided into three ases,

as follows.

Generi Case. First onsider a point (̂; ẑ) 2 Per

n

with �

n

(̂; ẑ) 6= 1. Then, by

the Impliit Funtion Theorem, we an solve the equation f

Æn



(z) = z loally for z

as a smooth funtion of . It follows that both of the urves Per

n

and Per

n

=Z

n

are

loally smooth, with  as loal uniformizing parameter.

Primitive Paraboli Case. Now onsider a point (̂; ẑ) 2 Per

n

with �

n

(̂; ẑ) = 1,

where ẑ has period exatly n under f

̂

. Aording to the proof of 4.5, if we set

 = ̂+u

2

, then both z and �

n

= �

n

(; z) an be expressed loally as smooth funtions

of u with d�

n

=du 6= 0. It follows that both Per

n

and Per

n

=Z

n

are loally smooth

at this point, and that we an use either u or �

n

as loal uniformizing parameter.

(Similarly dz=du 6= 0, so we ould use z as loal uniformizing parameter for Per

n

.

However d=du is zero when u = 0, so  annot be used as loal parameter.)

Satellite Paraboli Case. Again suppose that �

n

(̂; ẑ) = 1, but now assume

that the period p of ẑ is stritly less than the ray period n = rp. For  near ̂, let

z = z() be the equation of the unique period p point near ẑ. Using the hange of

variable w = �(z � z()) + (higher terms) of 4.2, the map f

Æn



orresponds to

w 7! F

Ær

(w) = �

r

w

�

1 + w

r

+ (higher terms)

�

; (6)

where � = �(w) is the multiplier of this period p orbit. The equation for a �xed point is

w = �

r

w (1 + w

r

+ (higher terms)). Dividing by w (sine we want the �xed point

with w 6= 0 or with z 6= z()), this beomes

1 = �

r

(1 + w

r

+ (higher terms)) or �

r

= 1� w

r

+ (higher terms) :
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Thus we an express � as a holomorphi funtion of w, with a ritial point at w = 0.

Therefore, by 4.5, we an also express  as a holomorphi funtion of w. Sine w is

de�ned as a holomorphi funtion of z and  with �w=�z 6= 0, it follows that Per

n

is

loally smooth with loal uniformizing parameter z or w.

Now note that there is a unique loal hange of oordinate w 7! �(w) with �

0

(0) = 1

so that �

r

= 1��(w)

r

. Sine the expression �(w)

r

is invariant under the Z

n

ation of

Per

n

, it follows easily that this ation an be desribed by the formula �(w) 7!

^

��(w).

It follows that �(w)

r

= 1��

r

is a loal uniformizing parameter for the quotient urve

Per

n

=Z

n

. Therefore, either � or  an also be taken as loal uniformizing parameter.

In partiular, it follows that the multiplier �

n

of the period n = rp orbit an be

expressed as a smooth funtion of the multiplier � = �

p

of the period p orbit. Note

that

d�

n

=d(�

r

) = �r (7)

at the paraboli point. (Compare [CM (4.3)℄.) This an be veri�ed by diret ompu-

tation from (6), or by using the holomorphi �xed point formula [M2℄ for the funtion

f

Æn



to show that the expression

r

1� �

n

+

1

1� �

r

depends smoothly on the parameter  throughout some neighborhood of the paraboli

point. Therefore �

n

an also be used as loal uniformizing parameter for Per

n

=Z

n

.

The degrees of the various projetion maps an easily be omputed algebraially, by

ounting solutions to the appropriate polynomial equations. Here is a more geometri

argument, whih also provides a quite expliit desription of the ends of the urve

Per

n

, and hene proves that these mappings are proper. Let us onsider the limiting

ase as jj ! 1. Setting  = �v

2

with jvj > 2, let �� be the open disk of radius 1

entered at �v. It is not diÆult to hek that both � and �� map holomorphially

onto a disk f(�) whih ontains � [ (��). The (�lled) Julia set K an then be

desribed expliitly as follows. Given an arbitrary sequene of signs �

0

; �

1

; : : : , there

is one an only one orbit z

0

7! z

1

7! � � � in K with z

j

2 �

j

� for every j � 0. This

is proved using the Poinar�e metri for the inverse maps f(�) ! �� � f(�). In

partiular, the number of solutions of period n is equal to the number of sign sequenes

of period n, whih is easily seen to be �

2

(n). Thus the degree of the projetion to the -

plane is �

2

(n). It follows also that the produt z

1

� � � z

n

= �=2

n

is given asymptotially

by

�=2

n

� �z

n

� �v

n

= �(�)

n=2

as jvj ! 1 :

Thus the degree of the projetion to the �-plane is n times the degree of the projetion

to the z-plane, and is n=2 times the degree of the projetion to the -plane. �

Thus we have a diagram of smooth algebrai urves and proper holomorphi maps

with degrees as indiated:

Per

n

n

�! Per

n

=Z

n

�

2

(n)=2

���! �

n

-plane

# �

2

(n)=2 # �

2

(n)=n

z-plane -plane
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For a generi hoie of , it follows that the map f



has exatly �

2

(n)=n periodi

orbits of period n, while for generi hoie of �

n

there are exatly �

2

(n)=2 pairs

(;O) onsisting of a parameter value  and a period n orbit of multiplier �

n

for

the map f



. The disussion shows that the orrespondene (;O) 7! (; �

n

) yields

a smooth immersion of Per

n

=Z

n

into C

2

. (Caution: Presumably some f



may have

two di�erent period n orbits with the same multiplier, so this immersion may have

self-intersetions.)

Corollary 5.3. Counting Paraboli Points. The number of paraboli points in

the Mandelbrot set with ray period rp = n is equal to �

2

(n)=2.

Proof. This is the same as the number of points in the pre-image of +1 under

the projetion (;O) 7! �

n

(;O) from Per

n

=Z

n

to the �

n

-plane. Aording to 5.2,

the degree of this projetion is �

2

(n)=2, and +1 is a regular value. The onlusion

follows. �

We are now ready to prove the main results, as stated in x1.

Corollary 5.4. There are exatly two parameter rays whih angles whih are periodi

under doubling landing at eah paraboli point ̂ 6= 1=4. Hene distint wakes have

distint root points; and for eah non-trivial portrait P, the root point of the P-wake

has a paraboli orbit with portrait P.

(For angles whih are not periodi, ompare 9.4.)

Corollary 5.5. Every parameter ray R

M

t

whose angle has period n � 2 under

doubling forms one of the two boundary rays for one and only one wake W

P

, where

P is some portrait with ray period n.

Proof of 5.4 and 5.5. Aording to 5.3, the number of paraboli points ̂ with

ray period n � 2 is equal to �

2

(n)=2, and aording to Theorem 1.4 eah suh point

is the landing point of at least two rays, whih neessarily have ray period n. Thus

altogether there are at least �

2

(n) distint rays of period n. On the other hand, sine

the map t 7! 2

n

t (mod Z) has 2

n

� 1 �xed points, it follows indutively that the

number of angles with period exatly n � 2 is preisely equal to �

2

(n). Thus there

annot be more than two rays landing at any suh point ̂. It follows that ̂ is the

root point of at most one wake. For if ̂ were the root point of two di�erent wakes,

then (even if they shared a boundary ray) it would be the landing point for at least

three di�erent parameter rays. Using 4.3, it now follows that eah suh ̂ is the root

point r

P

for exatly one wake W

P

, and furthermore that eah f

r

P

has a paraboli

orbit with portrait P .

Here we have assumed that n � 2. However, for n = 1 there is learly just one

parameter ray R

M

0

= (1=4;1) whih is �xed under doubling, and its landing point

̂ = 1=4 is the unique paraboli point with ray period n = 1. This ompletes the proof

of 5.4 and 5.5. Clearly Theorems 1.2 and 1.5, as stated in x1, follow immediately. �

To onlude this setion, here is a more expliit desription of the �rst few period

n urves:

Period 1. The urve Per

1

= Per

1

=Z

1

�

=

C an be identi�ed with the �

1

-plane.

It is a 2-fold branhed over of the -plane, rami�ed at the root point r

ff0gg

= 1=4,

and an be desribed by the equations z = �

1

=2 ;  = z � z

2

. Note that the unit
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disk j�

1

j < 1 in the �

1

-plane maps homeomorphially onto the region bounded by the

ardioid in the -plane.

Period 2. The quotient Per

2

=Z

2

�

=

C an be identi�ed either with the �

2

-plane or

with the -plane, where �

2

= 4 (1+ ). The urve Per

2

�

=

C is a 2-fold branhed over

with oordinate z, branhed at the point �

2

= 1 whih orresponds to the period 2

root point  = r

P

= �3=4 with portrait P = ff1=3; 2=3gg. It is desribed by the

equation z

2

+ z + (+ 1) = 0, with Z

2

-ation z $ f



(z) = �z � 1.

Period 3. (See [Giarrusso and Fisher℄.) The quotient Per

3

=Z

3

�

=

C an be identi-

�ed with a 2-fold branhed over of the -plane, branhed at the root point r

P

= �7=4

of the real period 3 omponent, where P = ff3=7; 4=7g; f6=7; 1=7g; f5=7; 2=7gg. If we

hoose a parameter u on this quotient by setting  = �(u

2

+ 7)=4, then omputation

shows that the multiplier is given by the ubi expression �

3

= u

3

�u

2

+7u+1. The

urve Per

3

itself is onformally isomorphi to a thrie puntured Riemann sphere.

It an be desribed as a 3-fold yli branhed over of this u-plane, branhed with

rami�ation index 3 at the two points u = (1�

p

�27)=2 where �

3

= 1.

6. Hyperboli Components.

By de�nition, a hyperboli omponent H of period n in the Mandelbrot set is a

onneted omponent of the open set onsisting of all parameter values  suh that

f



has a (neessarily unique) attrating orbit of period n. We will �rst study the

geometry of a hyperboli omponent near a paraboli boundary point.

Lemma 6.1. Geometry near a Satellite Boundary Point. Let ̂ be a paraboli

point with orbit portrait P having ray period rp > p. Then ̂ lies on the boundary of

exatly two hyperboli omponents. One of these has period rp and lies inside the P-

wake, while the other has period p and lies outside the P-wake. Loally the boundaries

of these omponents are smooth urves whih meet tangentially at ̂.

Proof. Aording to 4.1, ̂ lies on the boundary of a hyperboli omponent H

rp

of

period rp whih lies inside the P-wake, while aording to 4.4 it lies on the boundary

of a omponent H

p

of period p whih lies outside the P-wake. Let O

rp

and O

p

be

the assoiated periodi orbits, with multipliers �

rp

and �

p

. Aording to 4.5, the

multiplier �

p

an be used as a loal uniformizing parameter for the -plane near ̂.

Therefore the boundary �H

p

, with equation j�

p

j = 1, is loally smooth. Similarly, it

follows from equation (7) of x5, that we an take �

rp

as loal uniformizing parameter,

so the lous j�

rp

j = 1 is also loally smooth. These two boundary urves are nees-

sarily tangent to eah other sine the two hyperboli omponents annot overlap, or

by diret omputation from (7).

To see that there are no other omponents with ̂ as boundary point, �rst note

that all periodi orbits for the map f

̂

, other than its designated paraboli orbit, must

be stritly repelling. For any orbit with multiplier j�j � 1 must either attrat the

ritial orbit (in the attrating or paraboli ase) or at least be in the !-limit set of

the ritial orbit (in the Cremer ase), or have Fatou omponent boundary in this

!-limit set (in the Siegel disk ase). Sine the unique ritial orbit onverges to the

paraboli orbit, all other periodi orbits must be repelling.
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Figure 12. Detail of the Mandelbrot boundary, showing the rays landing at

the root points of a primitive period 4 omponent and a satellite period 12

omponent.

Now hoose some large integer N . If we hoose  suÆiently lose to ̂, then all

repelling periodi orbits of period � N for f

̂

will deform to repelling periodi orbits

of the same period for f



. Thus any non-repelling orbit of period � N for f



must

be one of the two orbits O

p

and O

rp

whih arise from perturbation of the paraboli

orbit. In other words, any hyperboli omponent H

0

of period � N whih intersets

some small neighborhood of ̂ must be either H

p

or H

rp

. In partiular, any hyperboli

omponent whih has ̂ as boundary point must oinide with either H

p

or H

rp

. �

By de�nition, the omponent H

rp

is a satellite of H

p

, attahed at the paraboli

point ̂. (It follows from (7) that jd�

rp

=d�

p

j = r

2

at ̂, so to a �rst approximation the

omponent H

p

is r

2

times as big as its satellite H

rp

. Compare [CM℄.)

Lemma 6.2. Geometry near a Primitive Boundary Point. If the portrait P

of the paraboli point ̂ has ray period rp = p, then ̂ lies on the boundary of just

one hyperboli omponent H, whih has period p and lies inside the P-wake. The

boundary of H near ̂ is a smooth urve, exept for a usp at the point ̂ itself.

Proof. As in the proof of 4.2, we set  = ̂ + u

2

and �nd a period p point z(u)

with multiplier �(u) whih depends smoothly on u, with d�=du 6= 0. Hene the lous

j�(u)j = 1 is a smooth urve in the u-plane, while its image in the -plane has a usp

at  = ̂. The rest of the argument is ompletely analogous to the proof of 6.1. �

Lemma 6.3. The Root Point of a Hyperboli Component. Every paraboli

point of ray period n = rp is on the boundary of one and only one hyperboli ompo-

nent of period n. Conversely, every hyperboli omponent of period n has one and only
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one paraboli point of ray period n on its boundary. In this way, we obtain a anoni-

al one-to-one orrespondene between paraboli points and hyperboli omponents in

parameter spae.

Proof. The �rst statement follows immediately from 6.1 and 6.2. Conversely, if

H is a hyperboli omponent of period n, then we an map H holomorphially into

the open unit disk D by sending eah  2 H to the multiplier of the unique attrating

orbit for f



. In order to extend to the losure H , it is onvenient to lift to the urve

Per

n

=Z

n

, using the proper holomorphi map ( ; O) 7!  of x5. Evidently H lifts

biholomorphially to an open set H

\

� Per

n

=Z

n

, whih then maps holomorphially

to the �

n

-plane under the projetion (;O) 7! �

n

(;O). (Here H

\

is a onneted

omponent of the set of (;O) suh that O is an attrating period n orbit for f



.)

Sine the projetion to the �

n

-plane is open and proper, it follows easily that the

losure H

\

maps onto the losed disk D. In partiular, there exists a point (̂ ;

^

O)

of H

\

with �

n

(̂;

^

O) = +1. Evidently this ̂ is a paraboli boundary point of H with

ray period dividing n, and it follows from 6.1 and 6.2 that it must have ray period

preisely n.

Aording to 4.7, for eah  2 H there is a unique repelling orbit of lowest period

on the boundary of the immediate basin for the attrating orbit of f



. Furthermore,

aording to 4.1, the portrait P = P

H

for this orbit is the same as the portrait for the

paraboli orbit of f

̂

. Sine there is only one paraboli point with spei�ed portrait

by Theorem 1.2, this proves that there an only one suh point ̂ 2 �H . �

De�nition. This distinguished paraboli point on the boundary �H of a hyper-

boli omponent is alled the root point of the hyperboli omponent H . We know

from 1.2 and 1.4 that the paraboli points of ray period n an be indexed by the

non-trivial orbit portraits of ray period n. Hene the hyperboli omponents of period

n an also be indexed by non-trivial portraits of ray period n. We will write H = H

P

(or P = P

H

) if H is the hyperboli omponent with root point r

P

. We will say that

H is a primitive omponent or a satellite omponent aording as the assoiated portrait

is primitive or satellite.

Remark 6.4. Of ourse there are many other paraboli points in �H . For eah root

of unity � = e

2�iq=s

6= 1 a similar argument shows that there is at least one point

(̂

�

;O

�

) 2 �H

\

with �

n

(̂

�

; O

�

) = �. In fat the following theorem implies that ̂

�

is unique. This ̂

�

is the root point for a hyperboli omponent H

0

of period sn > n,

with assoiated orbit portrait P

0

of period n and rotation number q=s. By de�nition,

P

0

is the (q=s)-satellite of P , and H

0

is the (q=s)-satellite of H .

We next prove the following basi result of Douady and Hubbard. Again let H be

a hyperboli omponent of period n and let H

\

� Per

n

=Z

n

be the set of pairs (;O)

with  2 H , where O is the attrating orbit for f



.

Theorem 6.5. Uniformization of Hyperboli Components. The losure H is

homeomorphi to the losed unit disk D. In fat there is a anonial homeomorphism

D

�

=

H

\

! H
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whih arries eah point � 6= 1 in D to the unique point  2 H suh that f



has a

period n orbit of multiplier �. This homeomorphism extends holomorphially over a

neighborhood of D, with just one ritial point 1 2 D mapping to the root point ̂ 2 H

in the primitive ase, and with no ritial points in the satellite ase. The losures

of the various hyperboli omponents are pairwise disjoint, exept for the tangential

ontat between a omponent and its satellite as desribed in 6:1.

Proof. Reall that �

n

: Per

n

=Z

n

! C is a proper holomorphi map of degree

�

2

(n)=2. We will �rst show that there are no ritial values of �

n

within the losed

unit disk D. This will imply that the inverse image �

�1

n

(D) is the disjoint union of

�

2

(n)=2 disjoint sets H

\

, eah of whih maps di�eomorphially onto D. First note

that there are no ritial values of �

n

on the boundary irle �D. In the ase of a root

of unity � 2 �D, every (;O) with �

n

(;O) = � must be paraboli, and it follows

from 6.1 and 6.2 that the derivative of �

n

at (;O) is non-zero. Consider then a point

(̂;O) 2 �H

\

suh that �

n

(̂;O) is not a root of unity. Aording to 5.2, we an

use  as loal uniformizing parameter throughout a neighborhood of (̂;O). If this

were a ritial point of �

n

, then it would follow that we ould �nd two di�erent line

segments emerging from ̂ whih map into D, separated by two line segments whih

map outside of D. In other words, one of the following two possibilities would have

to our.

Case 1. There are two di�erent hyperboli omponents with ̂ as non-root bound-

ary point. Eah of these omponents must have a root point, and be ontained in

its assoiated wake. But these two omponents annot be separated by any rational

parameter ray, hene eah one must be ontained in the wake of the other, whih is

impossible.

Case 2. The single hyperboli omponent H must approah ̂ from two di�erent

diretions, separated by two diretions whih lie outside of H . In other words. There

must be a simple losed loop L � H whih enloses points lying outside of H . Now

the olletion of iterates f

Æk



(0) must be uniformly bounded for  2 L, and hene

also for all  in the region bounded by L. Thus this entire region must lie within the

interior of the Mandelbrot set, whih is impossible sine this region ontains paraboli

points.

Thus both ases are impossible, and �

n

must be loally injetive near the boundary

of H

\

. It follows easily that H

\

maps onto D by a proper map of some degree d � 1,

and similarly that the boundary �H

\

wraps around the boundary irle �D exatly d

times. Now a ounting argument shows that this degree is +1. In fat the number of

H or H

\

of period n is equal to �

2

(n)=2 by 6.3 and 5.3. Sine the degree of the map

�

n

on Per

n

=Z

n

is also �

2

(n)=2 by 5.2, it follows that eah H

\

must map with degree

d = 1. Therefore �

n

maps eah H

\

biholomorphially onto D.

Next onsider the projetion (;O) 7!  from the ompat set H

\

onto H . This

is one-to-one, and hene a homeomorphism, by a theorem of Douady and Hubbard

whih asserts that a polynomial of degree d an have at most d � 1 non-repelling

yles. (Compare [Sh1℄. Alternatively, it follows from the lassial Fatou-Julia theory

that a polynomial with one ritial point an have at most one attrating yle. If
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two distint points of �H

\

mapped to a single point of �H , then, as in Case 2 above,

a path between these points in H

\

would map to a loop in H whih ould enlose no

boundary points of H , leading to a ontradition.)

Aording to 5.2, the parameter  an be used as loal uniformizing parameter

for Per

n

=Z

n

unless �

n

= 1. Hene the only possible ritial value for the projetion

H

\

! H is the root point. In fat, by 6.1 and 6.2, the root point is atually a ritial

value if and only if H is a primitive omponent.

Finally suppose that two di�erent hyperboli omponents have a ommon boundary

point. If this boundary point is paraboli, then one of these omponents must be a

satellite of the other by 6.1 and 6.2. If the point were non-paraboli, then the argument

of Case 1 above would yield a ontradition. This ompletes the proof of 6.5. �

7. Orbit Foring.

Reall that an orbit portrait is non-trivial if either it has valene v � 2, or it is

the zero portrait ff0gg. The following statement follows easily from 1.3. However, it

seems of interest to give a diret and more onstrutive proof; and the methods used

will be useful in the next setion.

Lemma 7.1. Orbit Foring. Let P and Q be distint non-trivial orbit portraits.

If their harateristi ars satisfy I(P) � I(Q), then every f



with a (repelling or

paraboli) orbit of portrait P must also have a repelling orbit of portrait Q.

Compare Figure 5, and see 1.3 and for further disussion. The proof of 7.1 begins

as follows.

Puzzle Piees. Reall from 2.10 that the pv rays landing on a periodi orbit

for f = f



separate the dynami plane into pv � p + 1 onneted omponents, the

losures of whih are alled the (unbounded) preliminary puzzle piees assoiated with

the given orbit portrait. (As in [K℄, we work with puzzle piees whih are losed

but not ompat. The assoiated bounded piees an be obtained by interseting eah

unbounded puzzle piee with the ompat region enlosed by some �xed equipotential

urve.)

Most of these preliminary puzzle piees � have the Markov property that f maps �

homeomorphially onto some union of preliminary puzzle piees. However, the puzzle

piee ontaining the ritial point is exeptional: Its image under f overs the ritial

value puzzle piee twie, and also overs some further puzzle piees one. To obtain

a modi�ed puzzle with more onvenient properties, we will subdivide this exeptional

piee into two onneted sub-piees.

Let �

1

be the preliminary puzzle piee ontaining the ritial value. Then ��

1

onsists of the two rays whose angles bound the harateristi ar for P , together

with their ommon landing point, say z

1

. The pre-image �

0

= f

�1

(�

1

) is bounded

by two rays landing at the point z

0

= f

�1

(z

1

) \ O, together with two rays landing

at the symmetri point �z

0

. Note that �

0

is a onneted set ontaining the ritial

point, and that the map f from �

0

onto �

1

is exatly two-to-one, exept at the ritial

point 0, whih maps to .
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The pv rays landing on O, together with these two additional rays landing on

�z

0

, ut the omplex plane up into pv � p + 2 losed subsets whih we will all

the piees of the orreted puzzle assoiated with P . These will be numbered as

�

0

; �

1

; : : : ; �

pv�p+1

, with �

0

and �

1

as above. The entral piee �

0

will be alled

the ritial puzzle piee, and �

1

will be alled the ritial value puzzle piee. This

orreted puzzle satis�es the following.

Modi�ed Markov Property. The puzzle piee �

0

maps onto �

1

by a 2-fold

branhed overing, while every other puzzle piee maps homeomorphially onto a �nite

union of puzzle piees.

We an represent the allowed transitions by a Markov matrix M

ij

, where

M

ij

=

(

1 if �

i

maps homeomorphially, with f(�

i

) � �

j

0 if f(�

i

) and �

j

have no interior points in ommon,

and where M

01

= 2 sine �

0

double overs �

1

. Sine f is quadrati, note that

the sum of entries in any olumn is equal to 2. Equivalently, this same data an be

represented by a Markov graph, with one vertex for eah puzzle piee, and with M

ij

arrows from the i-th vertex to the j-th.

As an example, for the puzzle shown in Figure 13, we obtain the Markov graph of

Figure 14, or the following Markov matrix

�

M

ij

�

=

2

6

6

6

6

6

6

4

0 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 1 0 1

1 0 0 0 1 1

0 0 1 0 1 0

3

7

7

7

7

7

7

5

: (8)

To illustrate the idea of the proof of 7.1, let us show that any f having an orbit with

this portrait P must also have a repelling orbit with portrait Q = ff1=7; 2=7; 4=7gg.

(Compare the top impliation in Figure 5.) Inspeting the next to last row of the

matrix (8), we see that f(�

4

) = �

0

[ �

4

[ �

5

. Therefore, there is a branh g of

f

�1

whih maps the interior of �

4

holomorphially onto some proper subset of itself.

This mapping g must stritly derease the Poinar�e metri for the interior of �

4

. On

the other hand, it is easy to hek that the 1=7 ; 2=7 and 4=7 rays are all ontained

in the interior of �

4

. Hene their landing points, all them w

1

; w

2

and w

3

, are also

ontained in �

4

, neessarily in the interior, sine the points of K \ ��

4

have period

four. Now

g : w

1

7! w

3

7! w

2

7! w

1

;

and all positive distanes are stritly dereased. Thus if the distane from w

i

to w

j

were greater than zero, then applying g three times we would obtain a ontradition.

This proves that w

1

= w

2

= w

3

, as required. This �xed point must be repelling, sine

g learly annot be an isometry.

A similar argument proves the following statement. Suppose that f = f



has an

orbit O with some given portrait P . By a Markov yle for P we will mean an in�nite

sequene of non-ritial puzzle piees �

i

1

; �

i

2

: : : whih is periodi, i

j

= i

j+m

with
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z1

z2
z3

z0

Π1

Π2

Π3
Π5

Π4

Π0

Figure 13. Julia set with a paraboli orbit of period four with harateristi

ar I(P) = (3=15 ; 4=15), showing the six orreted puzzle piees; and a or-

responding shemati diagram. (For the orresponding preliminary puzzle, see

the top of Figure 5.)

1 5

40

32

Figure 14. Markov graph assoiated with the matrix (8), with one vertex for

eah puzzle piee. Sine f is quadrati, there are two arrows pointing to eah

vertex.

period m � 1, and whih satis�es f(�

i

�

) � �

i

�+1

, so that M

i

�

i

�+1

= 1, for every �

modulo m.

Lemma 7.2. Realizing Markov Cyles. Given suh a Markov yle, there is

one and only one periodi orbit z

1

7! � � � 7! z

m

for f



with period dividing m so that

eah z

�

belongs to �

i

�

, and this orbit is neessarily repelling unless it oinides with

the given orbit O (whih may be paraboli). In partiular, for any angle t whih is
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periodi under doubling, if the dynami ray with angle 2

�

t lies in �

i

�

for all integers

�, then this ray must land at the point z

�

.

(Note that the period of t may well be some multiple of m, as in the example just

disussed.)

Proof. There is a unique branh of f

�1



whih arries the interior of �

i

�+1

holo-

morphially onto a subset of �

i

�

. Let g

i

�

be the omposition of these m maps, in the

appropriate reversed order so as to arry the interior of �

i

�

into itself.

A similar onstrution applies to the assoiated external angles. Let J

i

� R=Z

be the set of all angles of dynami rays whih are ontained in �

i

. Thus eah J

i

is

a �nite union of losed ars, and together the J

i

over R=Z without overlap. Now

there is a unique branh of the 2-valued map t 7! t=2 whih arries J

i

�+1

into J

i

�

with derivative 1=2 everywhere. Taking an m-fold omposition, we map eah J

i

�

into

itself with derivative 1=2

m

. This omposition may well permute the various onneted

omponents of J

i

�

. However, some iterate must arry some omponent of J

i

�

into

itself, and hene have a unique �xed point t in that omponent. The landing point of

the orresponding dynami ray will be a periodi point z

�

2 �

i

�

.

Case 1. If this landing point belongs to the interior of �

i

�

, then it is �xed by some

iterate of our map g

i

�

. This map g

i

�

annot be an isometry, hene it must ontrat

the Poinar�e metri. Therefore every orbit under g

i

�

must onverge towards z

�

. Thus

z

�

is an attrating �xed point for g

i

�

, and hene is a repelling periodi point for f .

Case 2. If the landing point belongs to the boundary of �

i

�

then it must belong

to O [ f�z

0

g, and hene to the original orbit O sine �z

0

is not periodi. Evidently

this ase will our only when the angle t belongs to the union A

1

[ � � � [A

p

of angles

in the given portrait P . �

Note. It is essential for this argument that our given Markov yle f�

i

�

g does

not involve the ritial puzzle piee �

0

. In fat, as an immediate orollary we get the

following statement:

Corollary 7.3. Non-Repelling Cyles. Any non-repelling periodi orbit for f

must interset the ritial puzzle piee �

0

as well as the ritial value puzzle piee �

1

.

Proof of 7.1. If I(P) � I(Q), then it follows from Lemma 2.9 that there exists a

map

^

f having both an orbit with portrait P and an orbit with portrait Q. The latter

orbit determines a Markov yle in the puzzle assoiated with P . (The ondition

I(P) � I(Q) guarantees that this yle avoids the ritial puzzle piee.) Now for any

map f with an orbit of portrait P , we an use this Markov yle, together with 7.2, to

onstrut the required periodi orbit and to guarantee that the rays assoiated with

the portrait Q land on it, as required. �

In fat an argument similar to the proof of 7.2 proves a muh sharper statement.

Let O be a repelling periodi orbit with non-trivial portrait P .

Lemma 7.4. Orbits Bounded Away From Zero. Given an in�nite sequene

of non-ritial puzzle piees f�

i

k

g for k � 0 with f(�

i

k

) � �

i

k+1

, there is one and

only one point w

0

2 K(f) so that the orbit w

0

7! w

1

7! � � � satis�es w

k

2 �

i

k

for every k � 0. It follows that the ation of f on the ompat set K

P

onsisting

of all w

0

2 K(f) suh that the forward orbit fw

k

g never hits the interior of �

0

is
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topologially onjugate to the one-sided subshift of �nite type, assoiated to the matrix

[M

ij

℄ with 0-th row and olumn deleted. In partiular, the topology of K

P

depends

only on P, and not on the partiular hoie of f within the P-wake.

Proof Outline. First replae eah puzzle piee �

i

by a slightly thikened puzzle

piee, as desribed in [M3℄. (Compare x8, Figure 18.) The interior of this thikened

piee is an open neighborhood N

i

� �

i

, with the property that f(N

i

) � N

j

whenever

f(�

i

) � �

j

. It then follows that there is a branh of f

�1

whih maps N

j

into N

i

,

arryingK\�

j

into K\�

i

, and reduing distanes by at least some �xed ratio r < 1

throughout the ompat set K \ �

j

. Further details are straightforward. �

Presumably this statement remains true for a paraboli orbit, although the present

proof does not work in the paraboli ase. (Compare [Ha℄.)

8. Renormalization.

One remarkable property of the Mandelbrot boundary is that it is densely �lled

with small opies of itself. (See Figures 11, 14 for a magni�ed piture of one suh

small opy.) This setion will provide a rough outline, without proofs, of the Douady-

Hubbard theory of renormalization, or the inverse operation of tuning, whih provides

a dynamial explanation for these small opies. It is based on [D4℄ as well as [DH3℄,

[D3℄. (Compare [D1℄, [M1℄. For the Yooz interpretation of this onstrution, see

[Hu℄, [M3℄, [M℄, [Ly℄. For a more general form of renormalization, see [M℄, [RS℄.)

To begin the onstrution, onsider any orbit portrait P of ray period n � 2 and

valene v � 2. Let  be a parameter value inW

P

[fr

P

g, so that f = f



has a periodi

orbit O with portrait P , and let S = S(f) be the ritial value setor for this orbit

(so that S is the ritial value puzzle piee). To a �rst approximation, we ould try to

say that f is \P-renormalizable" if the orbit of  under f

Æn

is ompletely ontained

in S. In fat this is a neessary and suÆient ondition whenever the map f

Æn�1

j

S

is univalent. However, in examples suh as that of Figures 1, 2 one needs a slightly

sharper ondition.

Let I

P

= (t

�

; t

+

) be the harateristi ar for this portrait, so that �S onsists

of the dynami rays of angle t

�

and t

+

together with their ommon landing point z

1

,

and let ` = t

+

� t

�

be the length of this ar.

Lemma 8.1. A (Nearly) Quadrati-Like Map. The dynami rays of angle

t

0

1

= t

�

+`=2

n

and t

0

2

= t

+

�`=2

n

land at a ommon point z

0

6= z

1

in S\f

�n

(z

1

). Let

S

0

� S be the region bounded by �S together with these two rays and their ommon

landing point. Then the map f

Æn

arries S

0

onto S by a proper map of degree two,

with ritial value equal to the ritial value f(0) = .

This region S

0

an be desribed as the n-fold \pull-bak" of S along the orbit O.

(Compare Figure 16, whih also shows the �rst three forward images of S

0

.)

Proof of 8.1. First suppose that  2 W

P

is outside the Mandelbrot set. Then,

following Appendix A, we an biset the omplex plane by the two rays leading from

in�nity to the ritial point. (Compare the proof of 2.9.) In order to hek that the

two rays of angle t

0

1

and t

0

2

have a ommon landing point, we need only show that

they have the same symbol sequene with respet to the resulting partition. In other



38 J. MILNOR

Figure 15. Detail near the period 4 hyperboli omponent H

P

of Figure 12,

where P = P(1=5; 4=15), showing the �rst eight of the parameter setors whih

must be pruned away from M to leave the small Mandelbrot set onsisting of

P-renormalizable parameter values.

words, we must show, for every k � 0, that the 2

k

t

0

1

and 2

k

t

0

2

rays lie on the same

side of the biseting ritial ray pair. For k � n this is lear sine 2

n

t

0

1

� t

+

and

2

n

t

0

2

� t

�

modulo Z.

Now onsider the ritial puzzle piee �

0

of x7. Evidently �

0

is a neighborhood,

of angular radius `=4, of the biseting ritial ray pair. For k < n � 1 the dynami

rays with angle 2

k

t

�

and 2

k

t

+

both lie in the same omponent of Cr�

0

. Sine 2

k

t

0

j

di�ers from 2

k

t

j

by at most `=4, it follows that the 2

k

t

0

1

and 2

k

t

0

2

rays have the same

symbol. Finally, for k = n� 1, it is not diÆult to hek that the 2

k

t

0

1

and 2

k

t

0

2

rays

both land at the same point �z

0

6= z

0

. This proves that the t

0

1

and t

0

2

rays land at the

same point, di�erent from z

1

, when  62 M . A straightforward ontinuity argument

now proves the same statement for all  2 W

P

.

Thus we obtain the required region S

0

� S. As in x2, it will be onvenient to

omplete the omplex plane by adjoining a irle of points at in�nity. Note that the

boundary of S

0

within this irled plane  onsists of two ars of length `=2

n

at

in�nity, together with two ray pairs and their ommon landing points. As we traverse

this boundary one in the positive diretion, the image under f

Æn

evidently traverses

the boundary of S twie in the positive diretion. Using the Argument Priniple, it
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S
z1

z2
z3

z4

S

Figure 16. The n-fold pull-bak of the ritial setor S along the orbit O,

illustrated shematially for the orbit diagram of period n = 4 whih has har-

ateristi ar (1=5; 4=15). Compare Figures 5 (top), 12, 16.

follows that the image of S

0

is ontained in S, and overs every point of S twie, as

required. Thus f

Æn

j

S

0

must have exatly one ritial point, whih an only be . �

Thus we have an objet somewhat like a quadrati-like map, as studied in [DH3℄.

Note however that S

0

is not ompatly ontained in S.

De�nition. We will say that f is P-renormalizable if f(0) =  is ontained in

the losure S

0

, and furthermore the entire forward orbit of  under the map f

Æn

is

ontained in S

0

. If this ondition is satis�ed, and the orbit of  is also bounded so that

 2M , then we will say that  belongs to the \small opy" P �M of the Mandelbrot

set whih is assoiated with P . (This terminology will be justi�ed in 8.2. If the orbit

is unbounded, then we may say that  belongs to a P-renormalizable external ray.)

Closely assoiated is the \small �lled Julia set" K

0

= K(f

Æn

jS

0

) onsisting of all

z 2 S

0

suh that the entire forward orbit of z under f

Æn

is bounded and ontained in S

0

.

(Compare Figure 17.) Thus the ritial value f(0) =  belongs to K

0

if and only if f is

P-renormalizable, with  2 M . As in the lassial Fatou-Julia theory,  belongs to

K

0

if and only if K

0

is onneted.

In order to tie this onstrution up with Douady and Hubbard's theory of polynomial-

like mappings, we need to thiken the setor S, and then ut it down to a bounded set.

(Compare [M3℄.) We exlude the exeptional speial ase where  is the root point

r

P

. Thus we will suppose that the periodi point z

1

2 �S is repelling. Choose a small

disk D

�

about z

1

whih is mapped univalently by f

Æn



and is ompatly ontained in

f

Æn



(D

�

). Choose also a very small � > 0, and onsider the dynami rays with angle

t

�

� � and t

+

+ �. Following these rays until they �rst meet D

�

, they delineate an

open region T � S [ D

�

in C. (Compare Figure 18.) Now let T

0

be the onneted
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Figure 17. Julia set for the enter point of the period 12 satellite omponent

of Figure 12 (the point  of Figure 15), and a detail near the ritial value ,

showing the �rst eight of the setors of the dynami plane whih must be pruned

away to leave the small Julia set assoiated with P-renormalization, with P as

in Figures 12, 15. (Here the right hand �gure has been magni�ed by a fator

of 75.) This an be desribed as the Julia set of Figure 13 (left) tuned by a

\Douady rabbit" Julia set.

T

S

Figure 18. The setor S and the thikened setor T .

omponent of f

�n



(T ) whih ontains S

0

. It is not diÆult to hek that T

0

� T , and

that f

Æn



arries T

0

onto T by a proper map of degree two.

To obtain a bounded region, we let U be the intersetion of T with the set

fz 2 C ; G

K

(z) < 1g, where G

K

is the Green's funtion for K = K(f



). Simi-

larly, let U

0

be the intersetion T

0

with fz ; G

K

(z) < 1=2

n

g. Then U

0

is ompatly

ontained in U , and f

Æn



arries U

0

onto U by a proper map of degree two. In other

words, f

Æn



jU

0

is a quadrati-like map.

Evidently the forward orbit of a point z 2 U

0

under f

Æn



is ontained in U

0

if and

only if z belongs to the small �lled Julia set K

0

. In partiular, for  2M , the map f



is P-renormalizable if and only if  2 K

0

, or if and only if K

0

is onneted.
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If these onditions are satis�ed, then aording to [DH3℄ the map f

Æn



restrited to

a neighborhood of K

0

is \hybrid equivalent" to some uniquely de�ned quadrati map

f



0

, with 

0

2M . Briey, we will write  = P � 

0

, or say that  equals P tuned by 

0

.

Douady and Hubbard show also that this orrespondene



0

7! P � 

0

is a well de�ned ontinuous embedding of M r f1=4g onto a proper subset of itself.

As an example, as 

0

varies over the hyperboli omponent H

ff0gg

whih is bounded

by the ardioid, they show that P � 

0

varies over the hyperboli omponent H

P

.

It is onvenient to supplement this onstrution, by de�ning the operation

P ; 

0

7! P � 

0

in two further speial ases. If 

0

is the root point 1=4 = r

ff0gg

of M , then we de�ne

P � (1=4) = r

P

to be the root point of the P-wake. Furthermore, if P = ff0gg is the zero orbit

portrait, then we de�ne ff0gg� to be the identity map,

ff0gg � 

0

= 

0

for all 

0

2 M . With these de�nitions, we have the following basi result of Douady

and Hubbard.

Theorem 8.2. Tuning. For eah non-trivial orbit portrait P, the orrespondene

 7! P �  de�nes a ontinuous embedding of the Mandelbrot set M into itself. The

image of this embedding is just the \small Mandelbrot set" P �M � M desribed

earlier. Furthermore, there is a unique omposition operation P ; Q 7! P �Q between

non-trivial orbit portraits so that the assoiative law is valid,

(P � Q) �  = P � (Q � )

for all P ; Q and 

0

. Under this � omposition operation, the olletion of all non-

trivial orbit portraits forms a free (assoiative but nonommutative) monoid, with the

zero orbit portrait as identity element.

The proof is beyond the sope of this note.

We an better understand this onstrution by introduing a nested sequene of

open sets

S = S

(0)

� S

0

= S

(1)

� S

(2)

� � � �

in the dynami plane for f , where S

(k+1)

is de�ned indutively as S

(k)

\f

�n

(S

(k)

) for

k � 1. Thus S = S

(0)

is bounded by the dynami rays of angle t

�

and t

+

, together

with their ommon landing point z

1

. Similarly, S

(1)

is bounded by �S

(0)

together

with the rays of angle t

�

+ `=2

n

and t

+

� `=2

n

, together with their ommon landing

point, whih is an n-fold pre-image of z

1

. If  2 S

(1)

, so that S

(2)

is a 2-fold branhed

overing of S

(1)

, then S

(2)

has two further boundary omponents, namely the rays of

angle t

�

+ `=2

2n

and t

�

+ `=2

n

� `=2

2n

and their ommon landing point, together

with the rays of angle t

+

� `=2

n

+ `=2

2n

and t

+

� `=2

2n

and their ommon landing

point, for a total of 4 boundary omponents. Similarly, if  2 S

(2)

, then S

(3)

has 8

boundary omponents, as illustrated in Figure 17.
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The angles whih are left, after we have ut away the angles in all of these (open)

setors, form a standard middle fration Cantor set K, whih an be desribed as

follows. Let � be the fration 1� 2=2

n

. Start with the losure [t

�

; t

+

℄ of the hara-

teristi ar for P , with length `. First remove the open middle segment of length � `,

leaving two ars of length `=2

n

. Then, from eah of these two remaining losed ars,

remove the middle segment of length � `=2

n

, leaving four segments of length `=2

2n

,

and ontinue indutively. The intersetion of all of the sets obtained in this way is

the required Cantor set K � [t

�

; t

+

℄ of angles. These are preisely the angles of the

dynami rays whih land on the small Julia set �K

0

(at least if we assume that these

Julia sets are loally onneted).

There is a ompletely analogous onstrution in parameter spae, as illustrated in

Figure 15. As noted earlier, parameter rays of angle t

�

and t

+

land on a ommon

point r

P

, and together form the boundary of the P-wake. Similarly, the parameter

rays of angle t

�

+ `=2

n

and t

+

� `=2

n

must land at a ommon point. These rays,

together with their landing point, utW

P

into two halves. For  in the inner half, with

boundary point r

P

, the ritial value of f



lies in S

0

= S

(1)

, while for  in the outer

half, this is not true. Similarly, for eah pair of dynami rays with a ommon landing

point in �K, forming part of the boundary of S

(k)

, there is a pair of parameter rays

with the same angles whih have a ommon landing point in �M and form part of the

boundary of a orresponding region W

(k)

P

in parameter spae. The basi property is

that  2 W

(k)

p

if and only if  belongs to the orresponding region S

(k)

in the dynami

plane for f



.

Dynamially, the Cantor set K � R=Z an be desribed as the set of angles in

[t

�

; t

�

+ `=2

n

℄ [ [t

+

� `=2

n

; t

+

℄

suh that the entire forward orbit under multipliation by 2

n

is ontained in this set.

Evidently the resulting dynamial system is topologially isomorphi to the one-sided

two-shift. Thus eah element t 2 K an be oded by an in�nite sequene (b

0

; b

1

; : : : )

of bits, where eah b

k

is zero or one aording as 2

nk

t belongs to the left or right

subar. We will write t = P � (b

0

b

1

b

2

� � � ). Intuitively, we an identify this sequene

of bits b

i

with the angle :b

0

b

1

b

2

� � � =

P

b

k

=2

k+1

. However, some are is needed

sine the orrespondene :b

0

b

1

b

2

� � � 7! P � (b

0

b

1

� � � )has a jump disontinuity at every

dyadi rational angle, i.e., at those angles orresponding to gaps in the Cantor set K.

Thus we must distinguish between the left hand limit P ��� and the right hand limit

P � �+ when � is a dyadi rational.

With this notation, the angles of the bounding rays for the various open sets S

(k)

,

or for the orresponding sets W

(k)

P

in parameter spae, are just these left and right

hand limits P � ��, where � varies over the dyadi rationals; and the omposition

operation between non-trivial orbit portraits an be desribed as follows: If Q has

harateristi ar (t

�

; t

+

), then P � Q has harateristi ar (P � t

�

; P � t

+

). For

further details, see [D3℄.
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9. Limbs and the Satellite Orbit.

Let P be a non-trivial orbit portrait with period p � 1 and ray period rp � p.

(Thus P may be either a primitive or a satellite portrait.) Reall that the limb M

P

onsists of all points whih belong both to the Mandelbrot set M and to the losure

W

P

of the P-wake. By de�nition, a limb M

Q

with Q 6= P is a satellite of M

P

if its

root point r

Q

belongs to the boundary of the assoiated hyperboli omponent H

P

.

(See 6.4.) We will prove the following two statements. (Compare [Hu℄, [S�℄, [S3℄.)

Theorem 9.1. Limb Struture. Every point in the limb M

P

either belongs to the

losure H

P

of the assoiated hyperboli omponent, or else belongs to some satellite

limb M

Q

.

(For a typial example, see Figure 12.) For any parameter value  in the wakeW

P

,

let O() = O

P

() be the repelling orbit for f



whih has period p and portrait P .

Clearly this orbit O() varies holomorphially with the parameter value .

Corollary 9.2. The Satellite Orbit. To any  2 W

P

there is assoiated another

orbit O

?

() = O

?

P

(), distint from O(), whih has period n = rp and whih also

varies holomorphially with the parameter value . As  tends to the root point r

P

, the

two orbits O() and O

?

() onverge towards a ommon paraboli orbit of portrait P.

(Compare 4.1.) This assoiated orbit O

?

() is attrating if  belongs to the hyperboli

omponent H

P

� W

P

, indi�erent for  2 �H

P

, and is repelling for  2 W

P

rH

P

,

with portrait equal to Q if  belongs to the satellite wake W

Q

.

As an example, both statements apply to the zero portrait, with M

ff0gg

equal to

the entire Mandelbrot set, with W

ff0gg

= Cr (1=4;+1), and with H

ff0gg

bounded

by the ardioid. In this ase, for any  2 W

ff0gg

, the orbit O() onsists of the beta

�xed point (1+

p

1� 4)=2 while O

?

() onsists of the alpha �xed point (1�

p

1� 4)=2,

taking that branh of the square root funtion with

p

1 = 1.

Proof of 9.1. For eah  2 H

P

let O

?

() be the unique attrating periodi

orbit. By the disussion in x6, this orbit extends analytially as we vary  over

some neighborhood of the losure H

P

, provided that we stay within the wake W

P

.

Furthermore, this orbit beomes stritly repelling as we ross out of H

P

. Therefore

we an hoose a neighborhoodN ofH

P

whih is small enough so that this analytially

ontinued orbit O

?

() will be stritly repelling for all  2 N \W

P

r H

P

. If  also

belongs to the Mandelbrot set, so that  2 N \M

P

r H

P

, it follows that at least

one rational dynami ray lands on the orbit O

?

(); hene there is an orbit portrait

Q = Q() of period n assoiated with O

?

(). Choosing the neighborhood N even

smaller if neessary, we will show that the rotation number of Q() is non-zero, and

hene that this portrait Q() is non-trivial. In other words, we will prove that 

belongs to a limb M

Q

whih is assoiated to the orbit O

?

().

First onsider a point ̂ whih belongs to the boundary �H

P

. Then O

?

(̂) is an

indi�erent periodi orbit, with multiplier on the unit irle. Consider some dynami

ray R

K

t

whih has period n, but does not partiipate in the portrait P , and hene

does not land on the original orbit O(̂). Suh a ray ertainly annot land on O

?

(̂),

for that would imply that O

?

(̂) was a repelling or paraboli orbit of rotation number

zero. However, for ̂ in the boundary of H

P

the orbit O

?

(̂) is never repelling, and
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is paraboli of rotation number zero only when ̂ is the root point of H

P

, so that

O

?

(̂) = O(̂). Sine we have assumed that the ray R

K

t

does not land on O(̂),

it must land on some repelling or paraboli periodi point whih is disjoint from

O

?

(̂). In fat it must land on a repelling orbit, sine a quadrati map annot have a

paraboli orbit and also a disjoint indi�erent orbit. (Compare x6.) Now as we perturb

 throughout some neighborhood of ̂ it follows that the orresponding ray still lands

on a repelling periodi point disjoint from O

?

(). Sine O

?

() has period n, but no

ray of period n an land on it, this proves that the rotation number of the assoiated

portrait Q() is non-zero, as asserted.

Let X be any onneted omponent of M

P

r H

P

. Sine the Mandelbrot set is

onneted, X must have some limit point in �H

P

. Therefore, by the argument above,

some point  2 X must belong to a wake W

Q

assoiated with the orbit O

?

(). Sine

the portrait Q has period n, the root point r

Q

of its wake must lie on the boundary

of some hyperboli omponent H

0

whih has period n and is ontained in W

P

. In

fat, for suitable hoie of , we laim that H

0

an only be H

P

itself. There are

�nitely many other omponents of period n, but these others are all bounded away

from H

P

, while the point  2 X an be hosen arbitrarily lose to H

P

. Thus we may

assume that W

Q

is rooted at a point of �H

P

, and hene is a satellite wake. Sine the

onneted set X annot ross the boundary of W

Q

, it follows that X is ompletely

ontained within W

Q

, whih ompletes the proof of 9.1 �

Proof of 9.2. As in the argument above, the orbit O

?

() is well de�ned for  in

some neighborhood of W

P

\ H

P

, and we an try to extend analytially throughout

the simply onneted region W

P

. There is a potential obstrution if we ever reah

a point in W

P

where the multiplier �

n

of this analytially extended orbit is equal

to +1. However, this an never happen. In fat suh a point would have to belong

to the Mandelbrot set, and hene to some satellite limb M

Q

. But we an extend

analytially throughout the assoiated wake W

Q

, taking O

?

() to be the repelling

orbit O

Q

() for every  2W

Q

. Thus there is no obstrution. It follows similarly that

the analytially extended orbit must be repelling everywhere in W

P

rH

P

. For if it

beame non-repelling at some point , then again  would have to belong to some

satellite limb M

Q

, but O

?

() is repelling throughout the wake W

Q

. �

Corollary 9.3. Limb Connetedness. Eah limb M

P

= M \W

P

is onneted,

even if we remove its root point r

P

.

Proof. The entire Mandelbrot set is onneted by [DH1℄. It follows that eahM

P

is onneted. For if some limbM

P

ould be expressed as the union of two disjoint non-

vauous ompat subsets, then only one of these two ould ontain the root point r

P

.

The other would be a non-trivial open-and-losed subset of M , whih is impossible.

Now onsider the open subset M

P

r fr

P

g. This is a union of the onneted set

H

P

r fr

P

g, together with the various satellite limbs M

Q

, where eah M

Q

has root

point r

Q

belonging to H

P

r fr

P

g. Sine eah M

Q

is onneted, the onlusion

follows. �

Remark 9.4. It follows easily that every satellite root point separates the Mandelbrot

set into exatly two onneted omponents, and hene that exatly two parameter rays
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Figure 19. Piture in the dynami plane for a polynomial f



with  62 M , and

a orresponding piture in the parameter plane .

land at every suh point. For a proof of the orresponding statement for a primitive

root (other than 1=4) see [Ta℄ or [S3℄.

Appendix A. Totally Disonneted Julia Sets and the Mandelbrot set.

This appendix will be a brief review of well known material. For any parameter

value , let K = K(f



) be the �lled Julia set for the map f



(z) = z

2

+ , and let

G(z) = G

K

(z) = lim

n!1

1

2

n

log

�

�

f

Æn

(z)

�

�

be the anonial potential funtion or Green's funtion, whih vanishes only on K, and

satis�es G(f(z)) = 2G(z). The level sets fz ; G(z) = G

0

g are alled equipotential

urves for K, and the orthogonal trajetories whih extend to in�nity are alled the

dynami rays R

K

t

, where t 2 R=Z is the angle at in�nity.

Now suppose that K is totally disonneted (and hene oinides with the Julia

set J = �K). Then the value G(0) = G()=2 > 0 plays a speial role. In fat there

is a anonial onformal isomorphism  



from the open set fz ; G(z) > G(0)g to

the region fw ; log jwj > G(0)g. The map z 7! f(z) on this region is onjugate

under  



to the map w 7! w

2

, and the equipotentials and dynami rays in the z-plane

orrespond to onentri irles and straight half-lines through the origin respetively

in the w-plane. In partiular, if we hoose a onstant G

0

> G(0), then the lous

fz ; G(z) = G

0

g is a simple losed urve, anonially parametrized by the angle of

the orresponding dynami ray. In partiular, the ritial value  2 CrK has a well

de�ned external angle, whih we denote by t() 2 R=Z. Thus  



()=j 



()j = e

2�it()

,

and  belongs to the dynami ray R

t()

= R

K

t()

.
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However, for G

0

= G(0) this lous fz ; G(z) = G(0)g is a �gure eight urve. The

open set fz ; G(z) < G(0)g splits as a disjoint union U

0

[ U

1

, where the U

b

are the

regions enlosed by the two lobes of this �gure eight. (We an express this splitting in

terms of dynami rays as follows. The rayR

K

t()

� CrK has two preimage rays under

f



, with angles t()=2 and (1 + t())=2 respetively. Eah of these joins the ritial

point 0 to the irle at in�nity, and together they ut C into two open subsets, say

V

0

� U

0

and V

1

� U

1

. If  does not belong to the positive real axis, then we an hoose

the labels for these open sets so that the zero ray is ontained in V

0

, and  2 V

1

.)

We then ut the �lled Julia set K into two disjoint ompat subsets K

b

= K \ U

b

.

These onstitute a Bernoulli partition. That is, for any one-sided-in�nite sequene of

bits b

0

; b

1

; : : : 2 f0; 1g, there is one and only one point z 2 K with f

Æk



(z) 2 K

b

k

for

every k � 0. To prove this statement, let U be the region fz ; G(z) < G()g and let

�

b

: U ! U

b

be the branh of f

�1

whih maps U di�eomorphially onto U

b

. Using

the Poinar�e metri for U , we see that eah �

b

shrinks distanes by a fator bounded

away from one, and it follows easily that the diameter of the image

�

b

0

Æ �

b

1

Æ � � � Æ �

b

n

(U)

shrinks to zero, so that this intersetion shrinks to a single point z 2 K, as n ! 1.

Thus eah point of J = K an be uniquely haraterized by an in�nite sequene of

symbols (b

0

; b

1

; : : : ) with b

j

2 f0; 1g. In partiular, K is homeomorphi to the

in�nite artesian produt f0; 1g

N

, where the symbol N stands for the set f0; 1; 2; : : :g

of natural numbers. We say that the dynamial system (K; f



j

K

) is a one sided shift

on two symbols.

Similarly, given any angle t 2 R=Z, if none of the suessive images 2

k

t (mod Z)

under doubling is preisely equal to t()=2 or (1 + t())=2, then t has an assoiated

symbol sequene, alled its t()-itinerary, and the ray R

K

t

lands preisely at that

point of K whih has this symbol sequene. For the speial ase t = t(), this symbol

sequene haraterizes the point  2 K, and is alled the kneading sequene for 

or for t(). (However, if t() is periodi, there is some ambiguity sine the symbols

b

n�1

; b

2n�1

; : : : of the kneading sequene are not uniquely de�ned in the period n

ase.)

If t is periodi under doubling, then the itinerary is periodi (if uniquely de�ned),

and the ray R

K

t

lands at a periodi point of K. For further disussion, see [LS℄, as

well as Appendix B.

Here we have been thinking of  = f(0) as a point in the dynami plane (the z-

plane), but we an also think of  2 C rM as a point in the parameter plane (the

-plane). In fat Douady and Hubbard onstrut a onformal isomorphism from the

omplement ofM onto the omplement of the losed unit disk by mapping  2 CrM

to the point  



() = exp(G

K

() + 2�it()) 2 C rD. Thus they show that the value

of the Green's funtion on  and the external angle t() of  are the same whether  is

onsidered as a point of CrK(f



) or as a point of CrM . In partiular, the point

 2 CrM lies on the external ray R

M

t()

for the Mandelbrot set.
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Appendix B. Computing Rotation Numbers.

This appendix will outline how to atually ompute the rotation number q=r of a

periodi point for a map f



with  62 M . Let � = t() 2 R=Z be the angle of the

external ray whih passes through . We may identify this ritial value angle with a

number in the interval 0 < � � 1. The two preimages of � under the angle doubling

map m

2

: R=Z! R=Z separate the irle R=Z into the two open ars

I(0) = I

�

(0) =

�

� � 1

2

;

�

2

�

and I(1) = I

�

(1) =

�

�

2

;

� + 1

2

�

:

(We will write I

�

instead of I whenever we want to emphasize dependene on the

ritial value angle � .) For any �nite sequene b

0

; b

1

; : : : ; b

k

of zeros and ones, let

I(b

0

; b

1

; : : : ; b

k

) be the losure of the open set

I(b

0

; b

1

; : : : ; b

k

) = I(b

0

) \m

�1

2

I(b

1

) \ � � � \m

�k

2

I(b

k

)

onsisting of all t 2 R=Z with m

Æi

2

(t) 2 I(b

i

) for 0 � i � k. (Caution: This is not the

same as the intersetion of the orresponding losures m

�i

2

I(b

i

), whih may ontain

additional isolated points.) An easy indution shows that I(b

0

; b

1

; : : : ; b

k

) is a �nite

union of losed ars with total length 1=2

k+1

. If � = (b

0

; b

1

; : : : ) is any in�nite

sequene of zeros and ones, it follows that the intersetion

I(�) =

\

k

I(b

0

; b

1

; : : : ; b

k

)

is a ompat non-vauous set of measure zero. For eah angle t 2 R=Z there are two

possibilities:

Preritial Case. If t satis�es m

Æi

2

(t) � � for some i > 0, then there will be two

distint in�nite symbol sequenes with t 2 I(b

0

; b

1

; b

2

� � � ). In this ase, the assoiated

dynami ray R

K

t

does not land, but rather bounes o� some preritial point for the

map f



. (Compare [GM℄.)

Generi Case. Otherwise there will be a unique in�nite symbol sequene with

t 2 I(b

0

; b

1

; � � � ). The orresponding ray R

K

t

will land at the unique point of the

Julia set for f



whih has this same symbol sequene, as desribed in Appendix A. In

partiular, if t is periodi under doubling, then R

K

t

must land at a periodi point of

the Julia set, possibly with smaller period.

Lemma B.1. Symbol Sequenes and Rotation Numbers. For any symbol

sequene � = (b

0

; b

1

; : : : ) 2 f0; 1g

N

whih is periodi of period p, the map m

Æp

2

on the

ompat set I

�

(�) � R=Z has a well de�ned rotation number rot(b

0

; : : : ; b

p�1

; �) 2

R=Z whih is invariant under yli permutation of the bits b

i

. This number inreases

monotonially with � , and winds b

0

+ � � �+ b

p�1

times around the irle as � inreases

from 0 to 1.

To see this, we introdue an auxiliary monotone degree one map whih is de�ned

on the entire irle and agrees with m

Æp

2

on I

�

(�). (Compare [GM℄.) By de�nition, a

monotone degree one irle map  : R=Z! R=Z is the redution modulo Z of a map

	 : R! R whih is monotone inreasing and satis�es the identity 	(u+1) = 	(u)+1.
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τ

1

2

τ/2 τ/2(1+τ)/2 (1+τ)/2

1+τ

Figure 20. Graphs of �

0;�

and �

1;�

(with � = 0:6.)

Suh a 	, alled a lift of  , is unique up to addition of an integer onstant. The

translation number of suh a map 	 is de�ned to be the real number

Trans(	) = lim

k!1

�

	

Æk

(u)� u

�

=k :

This always exists, and is independent of u. The rotation number rot( ) of the asso-

iated irle map is now de�ned to be the image of this real number Trans(	) under

the projetion R ! R=Z. This is well de�ned, sine Trans(	 + 1) = Trans(	) + 1.

One important property is the identity

Trans(	

1

Æ	

2

) = Trans(	

2

Æ	

1

) ; (9)

where 	

1

and 	

2

are the lifts of two di�erent monotone degree one irle maps. If 	

1

is a homeomorphism, this is just invariane under a suitable hange of oordinates,

and the general ase follows by ontinuity.

Given any b 2 f0; 1g, and given a ritial value angle � , de�ne an auxiliary mono-

tone map �

b;�

by the formula

�

b;�

(u) =

(

min(2u ; �) if b = 0;

max(2u ; �) if b = 1;

for u between (� � 1)=2 and (� +1)=2, extending by the identity �(u+1) = �(u)+ 1

for u outside this interval. (See Figure 20.) Note that I(b) is just the set of points

on the irle where the assoiated irle map �

b;�

is not loally onstant, and that

�

b;�

(u) � 2u (mod Z) whenever u 2 I(b).

For any symbol sequene � whih is periodi of period p, we set �

�;�

equal to the

p-fold omposition �

b

p�1

;�

Æ � � � Æ �

b

0

;�

. (Note that I

�

(�) is just the set of all points

t 2 R=Z suh that the orbit of t under the assoiated irle map �

�;�

oinides with

the orbit of t underm

Æp

2

.) This omposition is also monotone, with �(t+1) = �(t)+1,
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1

2

τ
1/7 6/7

Rot

Figure 21. The translation number as a funtion of the ritial value exterior

angle � for the period 3 point with symbol sequene 110 = (1; 1; 0; 1; 1; 0; : : : ).

and therefore has a well de�ned translation number, whih we denote by

Trans(b

0

; � � � ; b

p�1

; �) = Trans(�

�;�

) 2 R :

It follows from property (9) that this translation number is invariant under yli

permutation of the bits b

0

; : : : ; b

p�1

. Sine eah �

b;�

(u) inreases monotonially

with � , with �

b;0

(0) = 0 and �

b;1

(0) = b, it follows easily that Trans(�

�;�

) depends

monotonially on � , inreasing from 0 to b

0

+ � � � + b

p�1

as � inreases from 0 to 1.

In other words its image in R=Z wraps b

0

+ � � � + b

p�1

times around the irle as �

varies from 0 to 1. By de�nition, the rotation number rot(b

0

; : : : ; b

p�1

; �) of m

Æp

2

on

the ompat set I

�

(�) is equal to the image of the real number Trans(�

�;�

) in the

irle R=Z. �

If a map f



has ritial value angle t() = � , then it is not hard to see that

rot(b

0

; : : : ; b

p�1

; �) oinides with the rotation number as de�ned in 2.12 for the

orbit with periodi symbol sequene b

0

; : : : ; b

p�1

= (b

0

; : : : ; b

p�1

; b

0

; : : : ; b

p�1

; : : : ),

so long as at least one rational ray lands on this orbit. (Compare [GM, Appendix

C℄.)

We will use the notation S(q=r) for the orbit portrait with orbit period p = 1 and

rotation number q=r, assoiated with the q=r-satellite of the main ardioid. (Compare

[G℄.) If P is an arbitrary orbit portrait, then P �S(q=r) an be desribed as its (q=r)-

satellite portrait. (See 6.4, 8.2.)

To any orbit portrait P with period p � 1 and ray period n = rp � p we an

assoiate a symbol sequene � = �(P) of period p as follows. Choose any  62 M in

the wakeW

P

, and number the points of the f



-orbit with portrait P as z

0

7! z

1

7! � � � ,

where z

0

is on the boundary of the ritial puzzle piee and z

1

is on the boundary

of the ritial value puzzle piee. Now let �(P) be the symbol sequene for z

0

, as

desribed in Appendix A. This is independent of the hoie of  2W

P

rM

P

.

There is an assoiated satellite symbol sequene �

?

= �

?

(P) of period n = rp,

onstruted as follows. (Compare 9.2.) By de�nition, the k-th bit of �

?

is idential to

the k-th bit of � for k 6� 0 (mod n), but is reversed, so that 0$ 1, when k � 0 (mod n).
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Lemma B.2. Satellite Symbol Sequenes. For every satellite P � S(q

0

=r

0

) of

P, the symbol sequene �(P � S(q

0

=r

0

)) oinides with the satellite sequene �

?

(P).

The translation number Trans(�(P); �) is onstant for � in the harateristi ar I

P

,

while Trans(�

?

(P); �) inreases by +1 as � inreases through I

P

, taking the value

q

0

=r

0

(mod Z) on the harateristi ar of P � S(q

0

=r

0

).

Intuitively, if we tune a map in H

P

by a map in H

S(q

0

=r

0

)

then we must replae the

Fatou omponent ontaining the ritial point for the �rst map by a small opy of

the �lled Julia set for a (q

0

=r

0

)-rabbit. Here the period p point z

0

for P orresponds

to the �-�xed point of this small rabbit, while the period n point z

0

for P � S(q

0

=r

0

)

orresponds to the � �xed point for this rabbit. Perturbing out of the onnetedness

lousM , these two points will be separated by the ray pair terminating at the ritial

point. Further details will be omitted. �

For example, starting with �

�

ff0gg

�

= 0, where the overline indiates in�nite

repetition, we �nd that

�(S(q=r)) = �

?

�

ff0gg

�

= 1 ;

while

�

?

(S(1=2)) = 01 ; �

?

(S(q=3)) = 011 ; �

?

(S(q=4)) = 0111 ; : : : :

We an use this disussion to provide a di�erent insight on the ounting argument

of x5. Sine Trans(�

?

(P) ; �) inreases by +1 on the harateristi ar I

P

, we see

that the total number of portraits (or the total number of harateristi ars) with ray

period rp = n is equal to the sum of b

0

+ � � �+ b

n�1

taken over all yli equivalene

lasses of symbol sequenes of period exatly n. But the number of suh symbol

sequenes, up to yli permutation, is �

2

(n)=n, and the average value of b

0

+� � �+b

n�1

is equal to n=2, sine eah symbol sequene with sum di�erent from n=2 has an

opposite with zero and one interhanged. Therefore, this sum is equal to �

2

(n)=2, as

in x5.

Examples (Compare Figure 4). Here is a list for all yli equivalene lasses of

symbol sequenes of period at most four:

Trans(0 ; �) is identially zero.

Trans(1 ; �) inreases from 0 to 1 for 0 � � � 1, taking the value q=r in the

harateristi ar for S(q=r).

Trans(1; 0 ; �) inreases from 0 to 1 as � passes through (1=3 ; 2=3), the harateristi

ar for S(1=2).

Trans(1; 0; 0 ; �) inreases from 0 to 1 as � passes through the harateristi ar

(3=7 ; 4=7) for the period 3 portrait with root point  = �1:75.

Trans(1; 1; 0 ; �) inreases by one in the ar (1=7 ; 2=7) for S(1=3), and by one more

in the ar (5=7 ; 6=7) for S(2=3). (Compare Figure 21.)

Trans(1; 0; 0; 0 ; �) inreases by one in the ar (7=15 ; 8=15), orresponding to the

leftmost period 4 omponent on the real axis.

Trans(1; 1; 0; 0 ; �) inreases by one in the ars (1=5 ; 4=15) and (11=15 ; 4=5) assoi-

ated with the period 4 omponents on the 1=3

rd

and 2=3

rd

limbs. (Figure 12.)
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Trans(1; 1; 1; 0 ; �) inreases by one in the ars (1=15 ; 2=15) and (13=15 ; 14=15) for

S(1=4) and S(3=4), and also in the ar (2=5 ; 3=5) for the portrait S(1=2) � S(1=2)

with root point �1:25.
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