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1. Motivation

Similarly, for every irrational number 6, there is a unique compact
invariant (Cantor) set in R/Z whose rotation number under doubling is

0:
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1. Motivation

These “rotation sets” describe angles of the external rays that land on
the boundary of the main cardioid of the Mandelbrot set:
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1. Motivation

Problem: Extend this theory to higher degrees.

e Abstract part: Understanding the structure of rotation sets under
multiplication by d > 2.

e Concrete part: Realizing rotation sets in suitable spaces of degree
d polynomials.
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3. Rotation sets

Fix an integer d > 2.

mg : R/7Z — R/Z is the multiplication by d map defined by

mg(t) =dt (modZ)

A non-empty compact set X C R/Z is a rotation set for m; if

e my(X)=X,and
e the restriction m |y extends to a degree 1 monotone map of the
circle.

The rotation number p(X) € [0, 1) is defined as the rotation number
of any degree 1 monotone extension of my|x.
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3. Rotation sets

Every rotation set is nowhere dense, whereas a randomly chosen point
on the circle has a dense orbit under m .

The union of all rotation sets for mg has Lebesgue measure zero.




4. Gaps

Let X be a rotation set for m,;.

Definition

e Each connected component / of (R/Z) . X is called a gap of X.
e [ isminor if |I| < 1/d, and major otherwise.
e [ istaut if |I| = n/d for some integer n, and loose otherwise.

e The multiplicity of I is the integer part of d|[]|.




Assume p(X) # 0. Define the standard monotone map g as follows:
On a minor gap, set g = my.

On a major gap (a, a + £) of multiplicity n, set

mg(a) te(a,a+n/d]

g0) = mg() te(a+n/d,a+1).
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X has d — 1 major gaps counting
multiplicities.
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Every gap is either periodic or it eventually maps to a taut gap.
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Every gap is either periodic or it eventually maps to a taut gap.

minor

If p(X) is irrational, every gap of X eventually maps to a taut gap. In
particular, at least one major gap of X is taut.
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5. Minimal rotation sets

e Let X be a minimal rotation set with p(X) = 6. Then X is a g-cycle
if 8 = p/q and is a Cantor set if 6 is irrational.

e There is a degree 1 monotone map ¢ : R/Z — R/Z, normalized by
¢(0) = 0, which satisfies

pomg = Rpog on X

and is constant on every gap of X. We call this ¢ the semiconjugacy
associated with X .
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5. Minimal rotation sets

e X supports a unique m -invariant probability measure &, which

satisfies )
o) = [ du.
0
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5. Minimal rotation sets

Definition
The deployment vector of X is

§(X)=(81,....84_1) € A2 c R,

where

8 = pulzi—1,zi).

Note that when 6 = p/q in lowest terms, ¢8(X) € Z4~1.
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Thus, the space of all minimal rotation sets for m; of a given rotation
number 6 is
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5. Minimal rotation sets

Theorem (Goldberg-Tresser)

Given an “admissible” pair (9,8) € (R/Z) x A%~2 there is a unique
minimal rotation set X = Xg 5 with p(X) = 60 and §(X) = 6.

Thus, the space of all minimal rotation sets for m; of a given rotation
number 6 is

e finite with (q-I—(c]i—Z) elements if & = p/q.

e isomorphic to the simplex A?=2 if § is irrational.



6. The cubic case

Example: Under the tripling map m 3, there are four 3-cycles with
rotation number 6 = 2/3:

25
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6. The cubic case

Connectedness locus of the cubic family

fa(z) = e¥92 4 422 4 23 with aeC
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7. Unified proof of the deployment theorem

olet
oi=8i+-+8 1<i<d-1

e Consider the gap measure

d—1 oo

= S a L,

i=1k=0

t
e Integrate: Y (¢) = / dv
0
e The semiconjugacy associated with X will be

o(1) =y~ (t +a)

for suitable a.
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In general, the assignment (6, ) = Xy s is only lower semicontinuous.

Theorem

The following conditions are equivalent:
(i) (0,8) = Xg s is continuous at (6o, So).
(ii) Xg,,5, is maximal.

(iii) Xg,,s, is a Cantor set with d — 1 major gaps of length 1/d.

(iv) The points 01, . ..,04_1 have disjoint orbits under Ry.




8. Some corollaries

Let w denote the leading angle of Xy 5.

Theorem

No
= 0,0
©=7-1"00 T
d—1
1 1 No
S DD D S
— k+1 _
d-1.3 0<o;—k0<6 o d=1
where No > 0 is the length of the initial segment of 0’s in 6.







