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PolyS™ denotes the moduli space of critically marked complex
cubic polynomials f: C — C.

Elements of Polygm are affine conjugacy classes of triples (f, co, c1)
where:

e f is a cubic polynomial and,

e Crit(f) = {co, c1} is a complete list of all the critical points
of fin C.

(f,co,c1) and (g, wo,w1) are in the same conjugacy class if there
exists A : C — C affine such that:

e Aof=goA,
e for i = 0,1 we have w; = A(c)).
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Affine algebraic sets

Poly3™ is an affine algebraic surface:

PolyS™ is isomorphic to the quotient of C2 5 (a, v) by the
involution (a, v) & (—a,—v) with unique fixed point (0,0).

Family of monic cubic with critical points +a:

P.v:z+ (z—a)’(z+2a) +v

Pav(z) = —P-a-v(-2).
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Periodic critical point

The curve S, of period n is formed by all conjugacy classes
[f, co, c1] € Poly§™ such that:
Co has period exactly n under f.

Theorem (Milnor)

Sp c Polys™ is a smooth affine algebraic curve.

Compare with Epstein.



Question

Milnor asked:

Is S, connected?



Question

Milnor asked:

Is S, connected?

Theorem (Arfeux and K.)

S, is connected.
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Low periods

S-IEC
S, =C*
S3=C\{p1,....ps}

84 is connected (Bonifant-Milnor) of genus 6 and 14
punctures.
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Global Topology

Euler characteristic

Bonifant, K. ,Milnor (2010): for n > 2 the Euler characteristic
is Sy is
(2 - n)vs(n)
6
where v3(n) is the number of period n periodic points of a
generic cubic polynomial.

What is the Euler characteristic of the smooth compactification of
Sn?
Requires to compute the number N, of punctures.
(Algorithms by De Marco-Schiff (2010) based on De
Marco-Pilgrim (2010 approx).)
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Dichotomy

The connectedness locus

C(Sn) = {[f.co.c1] € Sn | *(c1) /> oo
is compact.
The escape locus

&(Sn) = {[f.co.c1] € Sn | *(c1) — oo}

is open and every connected component is unbounded.












Escape regions

A escape region U is a connected component of E(S):



Escape regions

A escape region U is a connected component of E(S):

All dynamical systems in U are hyperbolic polynomials with
disconnected Julia set.



Escape regions

A escape region U is a connected component of &(Sp):

All dynamical systems in U are hyperbolic polynomials with
disconnected Julia set.

U is conformally isomorphic to punctured disk.



Escape regions

A escape region U is a connected component of &(Sp):
All dynamical systems in U are hyperbolic polynomials with
disconnected Julia set.
U is conformally isomorphic to punctured disk.

There are at most v3(n)/3 escape regions counting
multiplicities



Escape regions

A escape region U is a connected component of &(Sp):
All dynamical systems in U are hyperbolic polynomials with
disconnected Julia set.
U is conformally isomorphic to punctured disk.

There are at most v3(n)/3 escape regions counting
multiplicities

va(n) [ 36| 24 | 72 | 240
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Basic observations

Fix n > 2.

If R is a connected component of S,
then R contains escape regions.

To prove that Sy is connected is sufficient to show that:

if U and U’ are escape regions of S, then,

there exists a path contained in S, joining U and U’.
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Dynamics on escape regions: itinerary

For f%(2) /» oo, define
itin(z) := (g, it iz, ...) € {0, 1}

where, for all k > 0
f(z) € D;,.
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Dynamics on a escape region U: kneading word

The itinerary of ¢y is independent of [f, cy,c1] € U.

The first n symbols of the itinerary of f(cp) form the kneading
word of U:
k(U) = itlp ... in—10

where jj =0 or 1.

There exists one and only one escape region U with such that:

k(U) =1""0.
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Strategy

Join all escape regions U to U, where x(Uy) = 1"710.

If
k(U) #1"0,
then join U to U’ such that:
k(U") has more 1's than «(U).
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Let B be the space of degree 3 topological branched coverings
F:C—C
with marked branched points oo, ¢y and ¢y such that:

F(c0) = o0 and F is locally 3-to-1 around oo,
Co is of period n under F,
F(cq) is not in the periodic orbit of co.

Let B be the space of affine conjugacy classes of (F, cp, ¢1).
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Rees Polynomial Theorem

Sp minus a finite set is contained in 8.

Theorem (Rees)

If (Ft)te[o,1] is @ path in B such that Fo and Fy belong to Sp,

then there exists a path (pt)ie[o,1] homotopic in B to (Fi)ie[o,1]
rel endpoints such that:

p: € Sy for all t € [0, 1].
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construct a path (F;) from Fy = f to Fy € U’ with

K(W,) = I1 e im_‘] 1 Im+1 e in_‘]O.
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Twisting and c-equivalence

The path (F;) is obtained by concatenation of:

(1) A twisting path from f to gs.
g1 will be a topological branched covering
(2) A Cui-Tan combinatorial equivalence path from gy to Fy.

F1 will be a cubic polynomial
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Twisting path from f to gy

[0,1]3s+ T 'ofeB.
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Dynamical plane of g1 = T, Tof







“Green lines of g1~
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Semi-rational maps

Consider a branched covering F : C — C.

Pe ={F"(c) : n> 0, c branched point of F}.

We say that F : C — C is a semi-rational map if the following
statements hold:

» The set of accumulation points P of Pg is finite or empty.

» If P # 0, then F is holomorphic in a neighborhood of Pp.

> Every periodic orbit in Pf is either attracting or
superattracting.

Example:
g1 =T of.



Cui-Tan equivalence

Let Gy and Gy be two semi-rational maps.



Cui-Tan equivalence

Let Gy and Gy be two semi-rational maps.

We say that Gy and G are c-equivalent, if there exist
homeomorphisms ¢ and ¥ such that:

Gy
—

C [
e
c-%2,C

where:



Cui-Tan equivalence

Let Gy and Gy be two semi-rational maps.

We say that Gy and G are c-equivalent, if there exist
homeomorphisms ¢ and ¥ such that:

@]

Gy
—

Ql

¥

(—
Ql «—
° hS)

Go
N

@]

where:

> ¢ is isotopic to i relative to Uy U Pg,.



Cui-Tan equivalence

Let Gy and Gy be two semi-rational maps.

We say that Gy and G are c-equivalent, if there exist
homeomorphisms ¢ and ¥ such that:

Gy
—

C [
e
c-%2,C

where:
> ¢ is isotopic to ¥ relative to Uy U Pg,.
» ¢ is holomorphic in neighborhood Uy of Pé1.
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Theorem (Cui and Tan)

Let F : C — C be a semi-rational map.

F is c-equivalent to a rational map R
if and only if

F has no Thurston obstruction.

In this case, R is unique up to Mobius conjugacy.



No Thurston obstruction

Lemma (a la Levy)

If g1 is a semi-rational map such that:
(g1, co, 1) € B,
g7(c1) — oo,

then g1 has no Thurston obstructions.
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Cui-Tan equivalence path: from g to F;

The endpoint g1 € B of the twisting path is semi-rational.
Thus, g1 is c-equivalent to F1 € S, (by Cui-Tan):

Fi=gogioy™.
Equivalence path from g¢ to Fy:

1) Post-composition by isotopy from idc to ¥~ o ¢ relative
| e Yy y ¥
to U U Py,:

g1 =y lopogi =y oFoy.

(2) Conjugacy by isotopy of ¢ with idc:

Yy o Fjoy — Fy.
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Kneading of F;
Y 1 Py, — PF, is a conjugacy.

The image of the “Green lines of g1" hitting ¢y under  are the
Green lines of Fy hitting y/(c1), modulo isotopy rel Py, .




Summary

We found a path F; such that:
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Remarks

Dynatomic curves.

Explicit paths in Sj,.
























Thank you!

Happy Birthday Jack!



