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Dynamics of invertible polynomial maps of C2

If we want invertible polynomial maps, we must move to dimension 2.

One approach: Develop parallels between dynamics in
dimensions 1 and 2.

Consider: z 7→ p(z) which can become invertible if we add another
variable w:

(z, w) 7→ (p(z)− w, z)

Starting with (z, w) 7→ (z, w) we may also construct

(z, w) 7→ (z, w + p(z))

These maps behave very differently under iteration. How do we know
what maps to study?

Another approach: Use Algebra
Jung’s Theorem on the structure of PolyAut(C2).



Dynamical Degree

deg(xjyk) = j + k, and deg((f1, f2)) = max{deg(f1),deg(f2)}.

deg(f) is only sub-multiplicative: deg(f ◦ g) ≤ deg(f)deg(g)

1 = deg(f ◦ f−1) < deg(f)deg(f−1) unless f is linear

The dynamical degree

ddeg(f) := lim
n→∞

deg(fn)1/n

is invariant under conjugation. A complex Hénon map has the form

f(x, y) = (y, p(y)− δx)

with nonzero δ ∈ C and deg(p) > 1.

Theorem (Friedland-Milnor)
Complex Hénon maps minimize degree within their conjugacy classes.
If g ∈ PolyAut(C2) has ddeg(g) > 1, then there are complex Hénon
maps f1, . . . , fk such that g is conjugate to f1 ◦ · · · ◦ fk.



PolyAut(C2): Dynamical Classification

Theorem (Friedland-Milnor)
Suppose that f : C2 → C2 is an invertible polynomial mapping. Then,
modulo conjugacy by automorphisms, f is either:

1. affine or elementary: (x, y) 7→ (αx+ β, γy + p(x))
2. composition f = fn ◦ · · · ◦ f1, where fj is a generalized Hénon

map fj(x, y) = (y, pj(y)− δjx), with dj := deg(pj) ≥ 2 and
nonzero δj ∈ C

In case 1, the elementary maps preserve the set of vertical lines, and
the dynamics is simple.
With f as above, we have ddeg(f) = deg(f) = dk · · · d1 = d,
and the complex Jacobian is δ = δk · · · δ1.

Theorem (Friedland-Milnor, Smillie)
In case 2, the topological entropy is log(d).



Julia sets

We define the sets K+ = {(x, y) ∈ C2 : {fn(x, y), n ≥ 0} is bounded}
and J+ = ∂K+. (Similarly for K− and J−, replacing f by f−1.)

J+ is the set of points where the forward iterates are not locally
normal. Equivalently, this the set where f is not Lyapunov stable in
forward time.

In case 1 (affine or elementary map), J+ is an algebraic set (possibly
empty).

Theorem ([BS1], S=Smillie)
In Hénon case, if q is a saddle point, then W s(q) = J+, i.e.,
J+ is the closure of the stable manifold.
Remark. This is independent of the saddle point q, so all stable
manifolds have the same closures.



How to envision Hénon maps

Let p(z) be an expanding (hyperbolic) polynomial, and let
f(x, y) = (y, p(y)− δ). Then the sets J+ and J− may be described for
small δ:

Theorem (Hubbard-ObersteVorth, Fornæss-Sibony)
If |δ| > 0 is sufficiently small, then J+ is laminated by Riemann
surfaces, and the transversal slice looks locally like Jp. Further, J− is
laminated and transversal to J+. J− is locally the product of a disk
and a Cantor set.

In general, a map f is hyperbolic if J is a hyperbolic set.

Theorem (BS1)
If f is a hyperbolic Hénon map, then the Ruelle-Sullivan picture (for
Axiom A maps) holds.

Problem
How can you recognize hyperbolicity in Hénon maps?

Especially in special cases?



J+ can be a topological manifold of real dimension 3

Corollary
If f is in Case 2, then J+ cannot be a manifold of real dimension 2.
Proof. If J+ is a 2-manifold, it must be equal to W s(q). But there are
more than one saddle point, so this is not possible.
For a polynomial p(y) and small δ, define

f(x, y) = (y, p(y)− δx)

Theorem (Fornæss-Sibony, Hubbard-ObersteVorth)
Suppose that the Julia set Jp ⊂ C is a Jordan curve, and p is
uniformly expanding on Jp. Then for sufficiently small |δ| > 0, J+(f)
is a 3-manifold.

Theorem (Radu-Tanase)
Similar result for quadratic, semi-parabolic maps.

Theorem (Fornæss-Sibony)
For generic h, the 3-manifold J+ is not C1 smooth.



What is the dynamical behavior on the Fatou set F+?

Jacobian(f) = det(Df) = δ is a constant.

f is dissipative ⇔ |δ| < 1 ⇔ volume contracting

Dichotomy: dissipative vs. conservative

Problem
Can a dissipative map have a wandering Fatou component?
What about special maps? (hyperbolic case is known)

Theorem (Astorg-Buff-Dujardin-Peters-Raissy)
There is a (noninvertible) polynomial map f : C2 → C2 with a
wandering Fatou component.

Remark
If a Hénon map has a parabolic fixed point, then it is conservative
(not dissipative).



Invariant Fatou components: Dissipative case, cont’d.

Suppose that Ω is a connected component of int(F+) and that
f(Ω) = Ω.

Theorem (BS2)
Suppose that Ω is a recurrent Fatou component for a dissipative
Hénon map. Then Ω must be one of three types of basin pictured.

Problem
Can the basin of the annulus actually occur?

Theorem (Lyubich-Peters)
Suppose that Ω is a non-recurrent Fatou component for a dissipative
Hénon map. If |δ| < (deg(f))−2, then Ω is the basin of a
semi-parabolic fixed point.

Problem
Can the dissipation condition be weakened to |δ| < 1?



Invariant Fatou components: Conservative case 1

Theorem (Friedland-Milnor)
If |δ| = 1, then K = K+ ∩K− ⊂ {|x|, |y| < R}.

Corollary
If Ω is a component of int(K), then Ω is periodic, i.e., fp(Ω) = Ω.

Corollary
In the conservative case, there are no wandering components.

Let Ω ⊂ int(K) = int(K+) = int(K−) be fixed, i.e., f(Ω) = Ω.

Theorem (BS2)
G(Ω) := limits of sequences fnj |Ω is a (real) torus Tρ with ρ = 1 or 2.

Because of the torus action induced by f , we say that Ω is a rotation
domain, and ρ is the rank of the domain.



Invariant Fatou components: Conservative case 2

Existence of Ω: Choose L =
(
µ1 0
0 µ2

)
, |µj | = 1, suitable for

linearization. If f(p) = p, Df(p) = L, then f can be linearized at p,
and so there is a fixed component Ω ⊂ int(K).
Conversely, if Ω is a component of int(K) with f(Ω) = Ω, and if
there is a fixed point p ∈ Ω, then f can be linearized in a
neighborhood of p. We ask whether every component Ω must arise in
this way (from a fixed point), or whether Ω can be like an annulus or
something without fixed point? Simply:

Problem
Must there be a fixed point in Ω?

Problem
Is it possible that Ω = int(K)? I.e., can the interior of K be
connected?

Problem
What is Ω in terms of uniformization? Can you show it is not
(biholomorphically equivalent to) something familiar like the bidisk ∆2

or the ball B2?



Rate of escape of orbits

Let U+ := C2 −K+ be the points that escape to infinity in forward
time. Then we also have J+ = ∂U+.

G+ := lim
n→∞

1
degn

log(||fn||+ 1)

has the properties
G+ ◦ f = deg ·G+, G+ is continuous and subharmonic on C2

U+ = {G+ > 0}, and G+ is harmonic on U+.
Fundamental currents µ± := 1

2πdd
cG± J± = supp(µ±).

Let ξq : C→Wu(q) be the uniformization of the unstable manifold
with ξq(0) = q. It follows that

f ◦ ξq(ζ) = ξq(βqζ)

and
G+(ξq(βqζ)) = deg(f) ·G+(ξq(ζ))



How to see Hénon maps: the Hubbard picture

We may take a look at the sets J+ which we will prove are not
smooth.
Hubbard looked empirically at Hénon maps in terms of unstable slice
pictures. The set Wu(q) ∩K+ is invariant. This set may be displayed
graphically by plotting level sets of G+ ◦ ξp and its harmonic
conjugate in the uniformizing coordinate ζ ∈ C. The gray/white
shading gives the binary digits of G+ and its harmonic conjugate.

This produces self-similar picture (invariant under ζ 7→ βqζ).

Several properties were suggested by looking at such pictures, and
some of the corresponding Theorems were proved in [BS7].

There are infinitely many possible pictures – one for each saddle
cycle, but all the pictures are closely related to each other. Zooming
in closely at one of the pictures will reveal all of the other pictures.



Unstable slice pictures for the map
f(x, y) = (y, y2 − 1.1− .15x)

Self-similar picture with respect to the uniformizing parameter.
Gray/white regions give binary coding for G+/ harmonic conjugate;
Black = K+ (basin of attracting 2-cycle); boundary of black = J+.

Unstable slices with centers (small dot) at 2 fixed points and a 3-cycle:
Multipliers are ≈ 3.5, ≈ −1.1, and 3-cycle with multiplier ≈ 2.8 + 5.3i



How unstable slices are connected by stable manifolds

Stylized picture shows stable manifolds W s(p1) and W s(p2). The
transverse intersections W s(p1) ∩Wu(p2) are dense in Wu(p2) ∩ J+.
By Lambda Lemma at the saddle point p2, the slice at the
intersection point will look like the slice at p2.

In the connected, dissipative, hyperbolic case, [BS7] gives converse.



Unstable slice pictures show connectivity:

Theorem (BS6)
Suppose that f is dissipative, |δ| < 1. Then the TFAE:

I J is connected.
I K is connected.
I ∃ saddle point p: Wu(p) ∩ J+ is connected.
I ∀ saddle point p: Wu(p) ∩ J+ is connected.

In drawing parallels between dimensions 1 and 2, we find that

C−∆↔ the complex solenoid

S1 ↔ the real solenoid Σ0
Theorem (BS7)
Let f dissipative and hyperbolic, and let J be connected. Then J− is
essentially a complex solenoid. The complex solenoid gives external
rays, which land, and give J as a quotient of the (real) solenoid Σ0.

Problem
What sorts of identifications can arise when we take the quotient of
the real solenoid: J ∼= Σ0/ ∼?



Same map: two more unstable slices

Image on the left: the saddle point has period 3 and multiplier
∼ 2.44918 + 4.43005i. Since this multiplier is non-real, we see that the
slice Wu(p) ∩K+ spirals towards p. Complex conjugate also 3-cycle.

Image on the right: the saddle point has period 4 and multiplier
∼ 6.26274. There is also a conjugate pair of (non-real) 4-cycles.



Unstable slice pictures for the map
f(x, y) = (y, y2 − .1− .15x)

This time, J+ is a topological 3-manifold.

Gray/white regions give binary coding for G+/ harmonic conjugate;
Black = K+ (basin of fixed point); boundary of black = J+.

Unstable slices with centers (red) at fixed point, 2-cycle and a 3-cycle:
Multipliers are ≈ 2.4, ≈ 4.6, and 3-cycle with multiplier ≈ −9.2 + 4.7i



Special polynomial maps of C

Example 1. Power map p : z 7→ z2

Julia set is the circle {|z| = 1}.
If z0 6= 0 has period n, then (pn)′ (z0) = 2n

Example 2. Chebyshev map p : z 7→ z2 − 2
Julia set is the interval [−2, 2].
0→ −2→ 2→ 2 p′(2) = 4
If z0 6= 2 has period n, then (pn)′ (z0) = ±2n

There are Chebyshev maps in higher dimension. Some of these Julia
sets have been described in detail by S. Nakane and K. Uchimura.
The corresponding Julia sets are semi-algebraic.

Are there Hénon maps that are special? Are there Hénon maps
with smooth Julia sets?



Julia sets for Hénon maps are never smooth

Theorem (B-Kyounghee Kim)
For any composition f = fn ◦ · · · ◦ f1 of generalized Hénon maps, the
Julia set J+ is not C1 smooth, as a manifold-with-boundary.
Definition of manifold-with-boundary:
At an interior point, J+ is given locally as {r = 0}, where r is class
C1, and dr 6= 0.
At a boundary point, there are r and s of class C1 with dr ∧ ds 6= 0,
and J+ = {r = 0, s ≥ 0}, and the boundary is {r = s = 0}.

Remark. Replacing f by f−1, we conclude that J− is never smooth.



Smooth Julia set has no boundary

Lemma
∂J+ = ∅.

Proof.
J+ is Levi-flat. That is, the 1-form ∂r generates a foliation of J+ by
Riemann surfaces.
The boundary M := ∂J+ is a Riemann surface, which is a closed
submanifold of C2. The restriction g := G−|M is a subharmonic
exhaustion. Further, g is harmonic on M −K = {g > 0}. By the
Maximum Principle, each connected component M0 of M must
intersect K = {g = 0}. Since K is compact, M can have only finitely
many components. Passing to an iterate of f , we may assume that
M0 is invariant.
Since g ◦ f = g/deg, it follows that f is an automorphism of the
Remann surface with an attracting fixed point q. We conclude that
the restriction of G−|M0 is continuous, G−|M0 ≥ 0, and harmonic on
M0 − {q} and G−(q) = 0. Harmonic functions cannot have such
isolated singularities, so we conclude M = ∅.



If J+ is smooth, then f is dissipative.

Lemma
K+ has nonempty interior. Further, |δ| < 1, i.e., f decreases volume.

Proof.
J+ is orientable and divides C2 into at least 2 components. U+ is a
component of C2 − J+. Further, for fixed x0, the slice U+ ∩ {x = x0}
is connected and contains a neighborhood of infinity. If the slice
{x = x0} ∩ int(K+) is empty, then {x = x0} ∩ J+ must be an arc, but
this prevents J+ from being smooth. Thus each slice must intersect
interior points of K+.
If |δ| ≥ 1, then by Friedland-Milnor, K+ ∩ {|x| > R} has no interior.
Thus we must have |δ| < 1.



(Almost) all fixed points belong to J+.

Lemma
There is at most one fixed point in int(K+).

Theorem (BS2)
If q ∈ int(K+) is a fixed point, then let Ω ⊂ int(K+) denote the
component containing it. It follows that Ωq is a recurrent Fatou
component and is the basin of a point or an invariant (Siegel) disk. In
both cases, the boundary is ∂Ωq = J+.

Proof of Lemma.
If J+ is smooth, the one side of the complement is U+, and the other
side is given by Ωq. Thus there can be at most one fixed point q.



All fixed points in J+ are saddles.

Lemma
If q ∈ J+ is a fixed point, then q is a saddle.

Proof.
Let Tq(J+) denote the tangent space, and let Hq denote its C
invariant subspace. Then Hq is invariant under Df , so we let αq be
the associated eigenvalue. Since J+ is Levi-flat, it follows that
|αq| ≤ 1. Further, it can be shown that |αq| < 1. Let βq denote the
other eigenvalue of Dqf . Thus |δ| = |αqβq| < 1. We conclude that
since q cannot be attracting, |βq| ≥ 1. Since the real tangent space
Tq(J+) is invariant, and U+ is invariant, it follows that βq > 0 is real.
Finally, we cannot have βq = 1, or in this case we would have a
semi-attracting/semi-parabolic point, so J+ would have a cusp. Thus
βq > 1, and we have a saddle point.



All saddles have the same multipliers

Lemma
If q ∈ J+ is a fixed point, then its multipliers are d and δ/d.

Proof.
Let ξq : C→Wu(q) be the uniformization of the unstable manifold
with ξ(0) = q. It follows that

f ◦ ξq(ζ) = ξq(βqζ)

and
G+(ξq(βqζ)) = deg(f) ·G+(ξq(ζ))

We conclude that if Jq := ξ−1
q (J+) ⊂ C is the pre-image under ξq,

then ξq is self-similar under multiplication by βq. Since Jq is C1

smooth and self-similar, it follows that it is actually linear. Rotating
coordinates, we may assume it is the imaginary axis, and G+ ◦ ξq(ζ) is
a multiple of Re(ζ) for Re(ζ) > 0 and 0 for Re(ζ) < 0. Since G+

multiplies by deg when we compose with f , we conclude that
βq = deg(f).



Summary so far

Remark
It turns out that there was nothing special about the multiplier d.
The important point was that the fixed points have the same
multipliers. From this point forward, we will forget the condition that
J+ is smooth, and we replace it by the condition:

With at most one exception, the multipliers of all the fixed
points are the same.

We will now show by algebra that this is not possible.



Defining equations for fixed points:
unfolding dynamical space.

Use the notation (x0, y0) = (x, y) and (xj+1, yj+1) = fj(xj , yj).
Fixed point:
(xk, yk) = f(x, y) = fk(· · · (f1(x, y) · · · ) = (x, y) = (x0, y0),

C2
x1,y1

f1−→ C2
x2,y2

f2−→ · · · fn−1−→ C2
xn,yn

fn−→ C2
x1,y1



If q = (x, y) is a fixed point for f = fn ◦ · · · ◦ f1, then we may
represent it as a finite sequence (xj , yj) with j ∈ Z/nZ, subject to the
conditions (x, y) = (x1, y1) = (xn+1, yn+1) and

fj(xj , yj) = (xj+1, yj+1)

Given the form of fj , we have xj+1 = yj , so we may drop the xj ’s
from our notation and write q = (yn, y1). We identify this point with
the sequence q̂ = (y1, . . . , yn) ∈ Cn, and we define the polynomials

ϕ1 := p1(y1)− δ1yn − y2

ϕ2 := p2(y2)− δ2y1 − y3

. . . . . . . . .

ϕn := pn(yn)− δnyn−1 − y1

The condition to be a fixed point is that q̂ = (y1, . . . , yn) belongs to
the zero locus Z(ϕ1, . . . , ϕn) of the ϕi’s.



Differential of f ; condition for multiplier λ

By the Chain Rule, the differential of f at q = (yn, y1) is given by

Df(q) =
(

0 1
−δn p′n(yn)

)
· · ·
(

0 1
−δ1 p′1(y1)

)
The condition for Df to have a multiplier λ at q is Φ(q̂) = 0, where

Φ = det
(
Df −

(
λ 0
0 λ

))

Lemma

Φ = p′1(y1) · · · p′n(yn) +
∑

ci1,...,im
∏

i1<···<im

p′ij (yij )

where the summation is taken over terms m ≤ n− 2.



Reformulation as a problem in algebraic geometry

Heuristically, our Theorem will follow if we show:

Theorem (Simplified)
For all choices of p1, . . . , pn and δ1, . . . , δn, and for any multiplier λ,
Φ does not vanish on the entire zero set Z(ϕ1, . . . , ϕn) ⊂ Cny1,...,yn

, i.e.

Z(ϕ1, . . . , ϕn) 6⊂ {Φ = 0}

Equivalently, Φ does not belong to the ideal 〈ϕ1, . . . ϕn〉.
Equivalently, there are polynomials Aj(y1, . . . , yn), 1 ≤ j ≤ n such that

Φ = A1ϕ1 + · · ·+Anϕn

If we look at the definitions of ϕj and Φ, this Theorem seems clear.

In fact, one of the fixed points is not a saddle, so if we let α denote its
y-coordinate, we must show that there are no A1, . . . An such that

(y1 − α)Φ = A1ϕ1 + · · ·+Anϕn



Multivariate Division Algorithm

We want to determine whether a polynomial f belongs to the ideal
〈ϕ1, . . . , ϕn〉. We choose an ordering on the set of monomials, and we
let LT (ϕj) denote the leading term of ϕi. Let M be a monomial term
in f which is divisible by some LT (ϕi1). We define the reduction f1

by ϕi1 :
f = q1ϕi1 + f1

where q1 := M/LT (ϕi1). We continue by reducing f1 if some
monomial term is divisible by some leading term LT (ϕj). We
continue as far as possible to reach

f = q1ϕi1 + · · ·+ qmϕim + r

Note that the remainder r obtained by this Algorithm depends on the
choice of monomial ordering, as well as choices of ϕij , so may not be
unique.

However, we have uniqueness if we use a Gröbner basis. In particular,
with a Gröbner basis, we will have r = 0 if and only if f belongs to
the ideal 〈ϕ1, . . . , ϕn〉.



Gröbner bases

Let I = I(G) denote the ideal generated by the basis G. Choose a
monomial ordering.

Theorem (Equivalent properties that define/characterize a
Gröbner basis with respect to a given monomial ordering)

(i) The ideal given by the leading terms of polynomials in I is itself
generated by the leading terms of the basis G;

(ii) The leading term of any polynomial in I is divisible by the leading
term of some polynomial in the basis G;

(iii) The multivariate division of any polynomial in the polynomial
ring R by G gives a unique remainder;

(iv) The multivariate division by G of any polynomial in the ideal I
gives the remainder 0.



Proof of Theorem

The degree of a monomial ya := ya1
1 · · · yan

n is deg(ya) = a1 + · · ·+ an.
We will use the graded lexicographical order on the monomials in
{y1, . . . , yn}. That is, ya > yb if either deg(ya) > deg(yb), or if
deg(ya) = deg(yb) and ai > bi, where i = min{1 ≤ j ≤ n : aj 6= bj}.
Lemma
With the graded lexicographical order, G := {ϕ1, . . . , ϕn} is a Gröbner
basis.

Theorem
Suppose that f = fn ◦ · · · ◦ f1 with n ≥ 3. Then
(y1 − α)Φ 6= A1ϕ1 + · · ·+Anϕn.

Outline of proof.
We divide L.H.S. first by ϕ1, then ϕ2, then ϕn. The remainder is now

(d1d2δ2y1y
dn−1
n + d1dnδ1y1y

d2−1
2 )

n−1∏
i=3

ydi−1
i + l.o.t

which cannot be removed by any ϕj for 3 ≤ j ≤ n− 1, since no
further division is possible.


