Institute for Mathematical Sciences

Preprint ims17-01

Marco Martens and Bjorn Winkler
Instability of renormalization

Abstract: In the theory of renormalization for classical dynamical systems, e.g. unimodal maps and critical circle maps, topological conjugacy classes are stable manifolds of renormalization. Physically more realistic systems on the other hand may exhibit instability of renormalization within a topological class. This instability gives rise to new phenomena and opens up directions of inquiry that go beyond the classical theory. In phase space it leads to the coexistence phenomenon, i.e. there are systems whose attractor has bounded geometry but which are topologically conjugate to systems whose attractor has degenerate geometry; in parameter space it causes dimensional discrepancy, i.e. a topologically full family has too few dimensions to realize all possible geometric behavior.

View ims17-01 (PDF format)