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Abstract of the Dissertation

Non-Abelian Hodge Theory, Zeros of Holomorphic One-Forms, and Generic Vanishing

by

Mads Bach Villadsen

Doctor of Philosophy

in

Mathematics

Stony Brook University

2023

This dissertation is a compilation of the results from two related research projects.

In the first, I give a new and significantly easier proof of the theorem that every holomorphic

one-form on a smooth complex projective variety of general type must vanish at some point,

first proven by Popa and Schnell using generic vanishing theorems for Hodge modules. My

proof relies on Simpson’s results on the relation between rank one Higgs bundles and local

systems of one-dimensional complex vector spaces, and the structure of the cohomology jump

loci in their moduli spaces.

In the second, I give a new and technically simpler proof of a theorem by Pareschi, Popa

and Schnell that the direct image of the canonical bundle of a smooth projective variety

along a morphism to an abelian variety admits a Chen-Jiang decomposition. My argument

uses only results on variations of Hodge structures, rather than Hodge modules.

Both projects relate to cohomology jump loci in the moduli space of rank one Higgs

bundles, and involve applying Simpson’s results on the structure of these loci. I give a largely

self-contained, accessible exposition of these results.
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Chapter 1

Introduction

This dissertation is built from my two previous papers [Vil22b; Vil22a] which study the Hodge
theory of abelian varieties and applications in two different directions. In both papers, I
studied theorems whose only available proofs previously relied heavily on vanishing theorems
and the decomposition theorem for Hodge modules, and instead provide technically much
simpler proofs relying on tools from classical Hodge theory.

In particular, a key ingredient in both papers is a theorem of Simpson regarding the
Dolbeault cohomology of rank one Higgs bundles. A Higgs bundle on a complex manifold
X is a holomorphic vector bundle E and a OX-linear map θ : E → Ω1

X ⊗ E, satisfying the
integrability condition θ ∧ θ = 0. The integrability condition implies that we can construct a
Dolbeault complex

E
θ−→ Ω1

X ⊗ E → · · · → Ωn
X ⊗ E,

where n = dimX; denote the hypercohomology of this complex by H•Dol(X;E, θ).
When E = L is a line bundle, θ is just a holomorphic one-form θ ∈ H0(X,Ω1

X), so
the moduli space of rank one Higgs bundles is just Pic(X) × H0(X,Ω1

X). Note that the
tensor product operations gives this a group structure. Simpson [Sim93] proved the following
linearity theorem.

Theorem 1.0.1. Let X be a projective manifold. Then each irreducible component of the
cohomology jump loci

Σk
m(X) = {(L, θ) ∈ Pic0(X)×H0(X,Ω1

X) | dimHk
Dol(X;L, θ) ≥ m}

is of the form
{(α⊗ L, ω + θ) | (L, θ) ∈ Â×H0(A,Ω1

A)},
where (α, ω) ∈ Pic0(X) ×H0(X,Ω1

X) is a point of finite order, Â ⊆ Pic0(X) is an abelian
subvariety, and H0(A,Ω1

A) ⊆ H0(X,Ω1
X) is its tangent space.

Except for the arithmetic part of the theorem (about points of finite order), Simpson’s
proof follows by elementary considerations from the non-abelian Hodge theorem in rank one.
While the non-abelian Hodge theorem [Sim92] is in general a difficult result, the rank one
case can be proven directly starting from the Kähler identities from classical Hodge theory. I
give a complete account of both this case of the non-abelian Hodge theorem, and of Simpson’s
argument, excluding the arithmetic part, in Chapter 2.
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1.1 Zeros of holomorphic one-forms

The results of the paper [Vil22a] are reproduced, with some improvements to exposition, as
Chapter 3. In that paper, I gave a much simpler proof of the following theorem, originally
proven by Popa and Schnell [PS14].

Theorem 1.1.1. Let X be a smooth projective variety of general type over the complex
numbers. Then every holomorphic one-form on X must vanish at some point of X.

The first part of my argument proceeds in the same way as that of [PS14], by using results
on the birational geometry of maps to abelian varieties due to Kawamata to show that the
result follows from the following more precise theorem.

Theorem 1.1.2. Let X be a smooth complex projective variety and f : X → A a morphism
to an abelian variety. If H0(X,ω⊗dX ⊗ f ∗L−1) 6= 0 for some integer d ≥ 1 and some ample
line bundle L on A, then for every holomorphic one-form ω on A, the pullback f ∗ω vanishes
at some point of X.

From here, Popa and Schnell use vanishing theorems for Hodge modules combined with a
cyclic covering trick to prove this more precise theorem. In contrast, the main tool in my
proof is Simpson’s Theorem 1.0.1 discussed above, on the structure of the cohomology jump
loci for Dolbeault cohomology of rank one Higgs bundles. The basic idea behind the use of
Higgs bundles is that for a rank one Higgs bundle (L, θ), consisting of a line bundle L and
a holomorphic one-form θ, the Dolbeault cohomology groups H i

Dol(X;L, θ) vanish if θ has
no zeros. From this, one produces a complex of sheaves CX on X ×H0(A,Ω1

A) related to
the Dolbeault cohomology of rank one Higgs bundles, supported on the incidence locus of
(x, θ) where f ∗θ vanishes at x. The image of this locus in H0(A,Ω1

A) is the locus of one-forms
that acquire zeros somewhere on X. Combining Simpson’s results on the cohomology jump
loci of Higgs bundles with a base change argument proves that the derived direct images of
CX on H0(A,Ω1

A) are vector bundles, but they are also supported in the locus of one-forms
with zeros. A cyclic covering argument finally produces some non-zero torsion-free sheaves
supported on the same locus, proving the theorem.

For this argument, I don’t need the arithmetic part of Simpson’s theorem. Hence this
dissertation provides an essentially self-contained proof of Theorem 1.1.2, starting from the
classical Hodge theorem.

1.2 Chen-Jiang decompositions

The paper [Vil22b] is reproduced as Chapter 4 with minor editing. In it, I give a technically
simpler proof of the Chen-Jiang decomposition theorem (explained below), Theorem 4.0.1,
due in a special case to Chen and Jiang [CJ18] and in full generality to Pareschi-Popa-Schnell
[PPS17]. Instead of the Hodge modules in their proof, I give a more direct and constructive
proof using only variations of Hodge structure, explaining in particular where the projection
maps in the decomposition come from.

To explain this result, consider a morphism f : X → A from a complex smooth projective
variety to an abelian variety. The theory of generic vanishing was initiated by Green and
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Lazarsfeld [GL87; GL91], and proposes to study the sheaf f∗ωX by studying the cohomology
support loci

V k(A, f∗ωX) = {α ∈ Â | Hk(A, f∗ωX ⊗ α) 6= 0},

where Â = Pic0(A) parametrizes line bundles α on A with c1(α) = 0. Green and Lazarsfeld
shows that f∗ωX is a GV-sheaf, meaning that codimÂ V

k(A, f∗ωX) ≥ k for every k =
0, . . . , dimA. Furthermore, they showed that each irreducible component of the cohomology
support loci is linear, meaning a translate of an abelian subvariety of Â. Simpson [Sim93]
later showed, as a corollary of Theorem 1.0.1, that each component contains a torsion point.

However, it can happen that codimÂ V
k(A, f∗ωX) = k for some k > 0, hence f∗ωX fails to

be an M-regular sheaf, a positivity notion later defined by Pareschi and Popa [PP03] which
implies various useful global generation properties. Motivated by this, Chen and Jiang [CJ18]
proved for generically finite morphisms, and Pareschi-Popa-Schnell [PPS17] in the general
case, that while f∗ωX is not necessarily itself M-regular, it admits a decomposition as follows.

Theorem 1.2.1. For any morphism f : X → A from a smooth projective variety to an
abelian variety, the sheaf f∗ωX admits a Chen-Jiang decomposition

f∗ωX ∼=
⊕

k=0,... dimA

τ+B̂⊆V k(A,f∗ωX)

τ ⊗ p∗BFB,

where τ + B̂ ranges over a set of representations of the components of V k(A, f∗ωX) of
codimension exactly k, pB : A→ B is the projection dual to the inclusion B̂ ⊆ Â, and FB is
an M-regular sheaf on B. Here τ can be taken to be any point in the component; in particular,
it can be taken to be a torsion point.

The generalization by Pareschi-Popa-Schnell relies heavily on vanishing and decomposition
theorems for Hodge modules, and the decomposition is ultimately obtained rather abstractly
from semi-simplicity of the category of polarizable Hodge modules.

My proof in [Vil22b] proceeds by producing, for each codimension k component of each
locus V k(A, f∗ωX), the corresponding M-regular sheaf via induction on dimension. This
induction relies crucially on Simpson’s torsion translate result, hence on Theorem 1.0.1;
specifically, Simpson’s result implies that after passing to a suitable étale cover of A, all the
cohomology support loci are abelian subvarieties, i.e. they pass through the origin.

The M-regular sheaves FB are produced very constructively starting from the sheaf f∗ωX ,
and the construction comes with a map f∗ωX → p∗BFB for each FB as in the theorem
(remember that we’ve killed off all the torsion points τ at this point). This map is essentially
a Gysin morphism, hence topological in nature. Following this observation, I show that this
morphism lifts to a morphism of certain variations of Hodge structures, at least on a Zariski
open locus where f and pB ◦ f are smooth. Using the polarizations, theorems of Kollár on
recovering f∗ωX globally from a variation of Hodge structures on the smooth locus, and the
global invariant cycles theorem, I produce the desired direct sum decomposition from these
Gysin morphisms; see Theorem 4.3.4 for the splitting argument.

As part of my exposition on Theorem 1.0.1 in this dissertation, I explain the consequences
of Simpson’s theorem needed for Chapter 4 in Section 2.2.1. For this argument, the torsion
points in Simpson’s theorem are quite important. However, since the torsion translate part
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of Simpson’s theorem relies on arithmetic results quite far from the Hodge theory that is
otherwise the focus in this dissertation, I do not explain the proof of that part of Simpson’s
result.
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Chapter 2

Non-abelian Hodge theory in rank one

In this chapter, we will explain the basics of rank one Higgs bundles on a compact Kähler
manifold, and the structure of their moduli space. Following Simpson [Sim92] in general and
notes of Christian Schnell [Sch13] in the rank one case, we will explain the non-abelian Hodge
theorem relating Higgs bundles to flat connections and local systems. We will establish this
correspondence in rank one using only basic properties of harmonic differential forms on
compact Kähler manifolds, as covered e.g. in [Voi02].

Using this correspondence, we will review the proof of Simpson’s theorem [Sim93] on the
structure of the cohomology jump loci in the moduli space of Higgs bundles.

Throughout this section, let X be a fixed compact Kähler manifold and ω a Kähler form
on X. Let Ap,q(X) be the space of C∞ differential forms of type (p, q) on X, and let Hp,q(X)
be the space of harmonic (p, q)-forms with respect to the Kähler metric associated to ω.

2.1 Higgs bundles and flat connections

In this section we will define Higgs bundles and bundles with flat holomorphic connections.
We will explain how to represent line bundles with vanishing integral first Chern class, as
well as Higgs fields and flat connections on them, using harmonic one-forms, and prove the
non-abelian Hodge theorem in the rank one case.

2.1.1 Hodge theory of line bundles

Consider then a line bundle L. The complex structure of L is a differential operator
∂̄L : A0(X,L)→ A0,1(X,L), where in general Ap,q(X,L) is the space of global C∞-differential
forms of type (p, q) with coefficients in L. If c1(L) ∈ H2(X,Z) vanishes, then L is trivial as a
C∞-line bundle, so ∂̄L : A0(X)→ A0,1(X). Given a global, nowhere vanishing C∞ section s
of L, we get ∂̄Ls = τ ⊗ s for some (0, 1)-form τ , and since ∂̄2

L = 0, τ is ∂̄-closed. Any other
section (local or global) can be represented as fs for a function f , and ∂̄L(fs) = (∂̄f + τ)⊗ s,
so using s to trivialize L, ∂̄L is identified with ∂̄ + τ .

By changing the choice of smooth section s to efs for a smooth function f , we can replace
τ by τ + ∂̄f , so the isomorphism class of the holomorphic line bundle determined by τ in
this way depends only on the class of τ in H0,1(X).

5



In particular, we can represent any line bundle L with c1(L) = 0 as the trivial bundle
with complex structure ∂̄ + τ for τ ∈ H0,1(X) a harmonic form. Equivalently, dτ = 0; indeed
if dτ = 0, then ∂τ = 0, so τ is anti-holomorphic, hence harmonic.

As in classical Hodge theory (which is the case where L = OX), there is a type (1, 0)-
operator ∂L = ∂ − τ̄ . Though we will not use this fact, let us mention as motivation for the
definition of ∂L that it is the (1, 0)-part of the Chern connection on L with respect to the
hermitian metric which is constant on a frame s as above.

Similarly, we can take adjoints ∂∗L and ∂̄∗L with respect to the given Kähler metric. Then
the Kähler identities hold for these operators.

Lemma 2.1.1. Let τ be a harmonic (0, 1)-form and L the associated holomorphic line bundle.
Then

[Λω, ∂̄L] = −i∂∗L
[Λω, ∂L] = i∂̄∗L

where Λω is the adjoint operator of the Lefschetz operator Lω : Hk(X)→ Hk+2(X) given by
taking the wedge product with the Kähler form ω.

Proof. By the classical Kähler identities, we know that [Λω, ∂] = i∂̄∗, so it only remains to
show that [Λω, τ̄ ] = −iτ ∗. As in the proof of the classical Kähler identities, this follows by
reducing to the case of the Euclidean metric on Cn and computing locally.

With the Kähler identities established, the Hodge theorem follows as in the classical case.

Theorem 2.1.2. Every class in Hq(X,Ωp
X⊗L) is uniquely represented by a smooth (p, q)-form

α on X satisfying
∂̄Lα = ∂̄∗Lα = ∂Lα = ∂∗Lα = 0.

Equivalently, α is both ∆∂L-harmonic and ∆∂̄L-harmonic, i.e. ∆∂Lα = ∆∂̄Lα = 0.

Let again L be a line bundle with c1(L) = 0. Now, L is trivial as a holomorphic line bundle
if and only if there exists a global nowhere vanishing holomorphic section, i.e. a nowhere
vanishing smooth function f on X such that ∂̄Lf = ∂̄f + fτ = 0. By the Hodge theorem,
f is a harmonic section of L, so also ∂Lf = ∂f − f τ̄ = 0. It follows that τ̄ − τ = df

f
, which

is equivalent to asking that the periods of τ̄ − τ lie in Z(1) = 2πiZ; indeed f is necessarily
given by

f(x) = exp

(∫ x

x0

τ̄ − τ
)

for some basepoint x0 ∈ X.
In conclusion, the moduli space of line bundles with vanishing first Chern class is naturally

identified with
H0,1(X)

H1(X,Z(1))

Under the identification H0,1(X) = H0,1(X), this recovers the usual description of the Picard
variety Pic0(X).

6



2.1.2 Line bundles with flat connection

Definition 2.1.1. A holomorphic connection on a vector bundle E is a C-linear operator

∇ : E → Ω1
X ⊗ E

satisfying the Leibniz rule
∇(fs) = ∂f ⊗ s+ f∇s

for holomorphic functions f . The connection is flat if ∇ ◦ ∇ = 0, where ∇ is extended to
maps Ωp

X ⊗E → Ωp+1
X ⊗E by applying ∇ to the first factor and taking wedge products. Note

that this extension satisfies the Leibniz rule

∇(α ∧ s) = ∂α⊗ E + (−1)pα ∧∇s

Let M0
dR(X) be the set of isomorphism classes of pairs (L,∇) where L ∈ Pic0(X) and ∇

is a flat connection on L.

Our discussion can be extended to the moduli space MdR(X) of all line bundles with flat
connections; we are restricting to the connected component of (OX , d). Note however that L
having a flat connection implies that c1(L) is torsion (in fact the converse holds as well, i.e.
any line bundle with torsion c1 admits a flat connection).

There is a natural map M0
dR(X) → Pic0(X) that forgets the connection. Given a

holomorphic one-form α and a point (L,∇) ∈M0
dR(X), ∇+ α is again a flat connection on

L, and conversely if (L,∇1), (L,∇2) ∈M0
dR(X), a direct computation shows that ∇1 and ∇2

differ by a unique holomorphic one-form. We have proven:

Proposition 2.1.3. The map M0
dR(X)→ Pic0(X) : (L,∇)→ L is a torsor under H0(X,Ω1

X)
acting affine-linearly on the fibres. In particular, dimM0

dR(X) = h0,1(X) + h1,0(X) = b1(X).

The word “torsor” here means that the group H0(X,Ω1
X) acts on each fibre of M0

dR(X)→
Pic0(X), that the actions vary holomorphically, and that the action on each fibre is free and
transitive.

In fact this proposition determines the natural structure of M0
dR(X) as a complex manifold.

We will later (see Lemma 2.2.2) construct explicitly the Poincaré line bundle P on Pic0(X)×X;
this is the universal family of line bundles on X with c1 = 0, and shows that Pic0(X) is a
fine moduli space. After pulling back P to M0

dR(X)×X by the map M0
dR(X) → Pic0(X),

we will construct a (relative over X) connection on P , turning it into a universal family of
flat line bundles on M0

dR(X)×X, hence M0
dR(X) is also a fine moduli space.

Let us describe this moduli space in terms of harmonic forms. Suppose given a harmonic
form ε ∈ H1(X) (equivalently, a one-form such that both ε1,0 and ε0,1 are d-closed). We’ve
seen that ∂̄ + ε0,1 gives the complex structure on a line bundle L ∈ Pic0(X). The connection
will be given by ∇ = ∂ + ε1,0. It’s clear that this squares to 0 and satisfies the Leibniz rule,
so we just need to check that it maps holomorphic section of L to holomorphic sections of
Ω1
X ⊗ L.

7



For this, suppose ∂̄Ls = (∂̄ + ε0,1)s = 0. By direct computation, we get

∂̄L∇(s) = ∂̄∂(s) + ∂̄(ε1,0s) + ε0,1 ∧ ∂(s) + ε0,1 ∧ ε1,0s
= −∂∂̄(s)− ε1,0 ∧ ∂̄(s)− ∂(ε0,1s)− ε1,0 ∧ ε0,1s
= −∇∂̄(s)

= 0,

where we use the fact that ε is harmonic, hence both ∂-closed and ∂̄-closed, to anti-commute
ε1,0 and ε0,1 with ∂̄ and ∂.

Note that this computation also implies that ∇+ ∂̄L is a flat connection on the trivial
complex C∞-line bundle.

We saw in the previous section that L is trivial if and only if ε0,1 − ε0,1 has periods in
Z(1). In the same way, one sees that (L,∇) is the trivial flat bundle (OX , d) if and only if
(L,∇) admits a nowhere vanishing holomorphic flat section, if and only if the periods of ε
land in Z(1). More precisely, f being flat and holomorphic is equivalent to df + εf = 0 so
−ε = df

f
, hence up to normalization,

f(x) = exp

(∫ x

x0

−ε
)

Note that in this case ε is purely imaginary, so ε̄ = −ε, hence ε1,0 = −ε0,1 and −ε = ε0,1− ε0,1,
so this is compatible with the previous construction just for line bundles.

The torsor structure from the previous proposition implies that we get every flat line
bundle from this construction.

Proposition 2.1.4. Let X be a compact Kähler manifold. Then

M0
dR(X) ∼=

H1(X)

H1(X,Z(1))

We recall finally that a flat bundle (L,∇) has a natural de Rham complex (starting in
degree 0)

DR(L,∇) =
(
L
∇−→ Ω1

X ⊗ L
∇−→ Ω1

X ⊗ L→ · · · → Ωn
X ⊗ L

)
associated to it, where n = dimCX. The de Rham cohomology H i

dR(X;L,∇) of the bundle
is defined as the hypercohomology of this de Rham complex. As is standard, the holomorphic
Poincaré lemma shows that the holomorphic de Rham complex is quasi-isomorphic to the
C∞-de Rham complex (A •(X),∇+∂̄L) of L, with differential∇+∂̄L = d+ε. Since the sheaves
of C∞-forms are soft, this implies that de Rham cohomology of (L,∇) is the cohomology of
the complex

A0(X)
d+ε−−→ A1(X)→ · · · → A2n(X)

More precisely, each sheaf Ωp
X ⊗ L is resolved by the complex

A p,0(X)
∂̄L−→ A p,1(X)→ · · · → A p,n(X),

where A p,q(X) is now the sheaf of (p, q)-forms; putting these together for various p gives
a double complex (A •,•(X),∇, ∂̄L) whose associated simple complex is the C∞-de Rham
complex above.
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2.1.3 Higgs bundles

Definition 2.1.2. A Higgs bundle on X is a pair (E, θ) where

1. E is a vector bundle and

2. θ : E → Ω1
X ⊗ E is an OX-linear map such that θ ∧ θ : E → Ω2

X ⊗ E vanishes.

In other words, θ is a section of the sheaf Ω1
X ⊗ EndE. If E = L is a line bundle, we in

particular have EndL = OX , so the Higgs field θ is equivalently just a holomorphic one-form.
In general, the non-abelian Hodge theorem [Sim92] gives an equivalence of categories,

and corresponding homeomorphism of moduli spaces, between polystable Higgs bundles with
vanishing first and second complex Chern character on one hand, and semisimple flat bundles
on the other hand. In rank one, this gives an equivalence between Higgs bundles whose
underlying line bundle has torsion first Chern class in integral cohomology, and semisimple
rank one flat bundles. We will treat the case where the first Chern class on the Higgs side
vanishes, so the underlying C∞-bundle is trivial.

A rank one Higgs bundle (L, θ) with c1(L) can now be represented by the complex
structure ∂̄ + τ with τ ∈ H0,1(X), and a holomorphic one-form θ ∈ H1,0(X).

Definition 2.1.3. Let M0
Dol(X) = Pic0(X)×H0(X,Ω1

X) be the moduli space of rank one
Higgs bundles with vanishing first Chern class.

The condition that θ ∧ θ = 0 implies that we get a natural Dolbeault complex (starting in
degree 0)

Dol(L, θ) =
(
L

θ−→ Ω1
X ⊗ L

θ−→ Ω2
X ⊗ L→ · · · → Ωn

X ⊗ L
)

The hypercohomology of this complex is the Dolbeault cohomology

H i
Dol(X;L, θ) = Hi(X,Dol(L, θ)).

As with de Rham cohomology, we can compute this using C∞ forms. Resolving Ωp
X ⊗L by

(A p,•(X), ∂̄L) as before, we get the double complex (A •,•(X), θ, ∂̄L), with associated simple
complex (A •(X), ∂̄L + θ) = (A •(X), ∂̄ + τ + θ); the cohomology of this complex gives the
Dolbeault cohomology of (L, θ).

2.1.4 The non-abelian Hodge theorem

Given a flat line bundle (L,∇), described by a harmonic one-form ε as above, Simpson
realized that while the Kähler identities do not hold for the obvious decomposition d+ ε =
(∂ + ε1,0) + (∂̄ + ε0,1), it does hold for a different decomposition. Let

θ =
ε1,0 + ε0,1

2
∈ H1,0(X)

τ =
ε0,1 − ε1,0

2
∈ H0,1(X)

9



such that d+ ε = (∂ − τ̄ + θ̄) + (∂̄ + τ + θ). Note that the pair (τ, θ) defines a Higgs bundle
(K, θ), where ∂̄K = ∂̄+τ (note that L and K are different holomorphic line bundles in general,
unless τ = ε0,1, or equivalently θ = 0).

Note that Lemma 2.1.1 gives the Kähler identities for the pair of operators ∂̄K and
∂K = ∂ − τ̄ . By the same method, we can extend the Kähler identities to account for the
Higgs field θ as well.

Lemma 2.1.5. With notation as above, we have

[Λω, ∂̄ + τ + θ] = −i(∂ − τ̄ + θ̄)∗

[Λω, ∂ − τ̄ + θ̄] = i(∂̄ + τ + θ)∗

If ε defines the trivial flat bundle (OX , d), then ε has periods in Z(1) and is purely
imaginary, so ε0,1 = ε1,0, so θ = 0 and ε = τ − τ̄ . But then the associated Higgs bundle (L, θ)
is trivial, and we get a bijection

M0
dR(X)→M0

Dol(X) : [ε] 7→ ([τ ], θ).

The map involves conjugation so is not holomorphic, but it is still real analytic. Furthermore,
M0

dR(X) and M0
Dol(X) are complex Lie groups under the natural tensor products, and the

map between them is an isomorphism of underlying real Lie groups.
We are almost ready for the non-abelian Hodge theorem in this case. Before stating it,

let us finally define Hp,q(X;K, θ) as the cohomology of the complex

Hq(X,K)
θ−→ Hq(X,Ω1

X ⊗ L)→ · · · → Hq(X,Ωn
X ⊗ L)

in degree p.

Theorem 2.1.6 (Non-abelian Hodge theorem in rank one). Given a compact Kähler manifold
X, there is an isomorphism of real Lie groups

M0
dR(X)→M0

Dol(X) : [ε] 7→ ([τ ], θ)

as described above. If (L,∇) is the flat connection induced by ε, and (K, θ) the associated
Higgs bundle, then

H i
dR(X;L,∇) = H i

Dol(X;K, θ)

for all i. Finally, the Hodge-de Rham spectral sequence

Ep,q
0 = Ap,q(X) =⇒ Hp+q

Dol (X;K, θ)

associated to the double complex (A•,•(X), θ, ∂̄+τ) degenerates at E2, with Ep,q
2
∼= Hp,q(X;K, θ),

so
H i

Dol(X;K, θ) ∼=
⊕
p+q=i

Hp,q(X;K, θ).

10



For (L,∇) = (OX , d) (so (K, θ) = (OX , 0)), this recovers the isomorphism

H i(X,C) ∼=
⊕
p+q=i

Hq(X,Ωp
X)

from classical Hodge theory. Note however that in the decomposition of H i
Dol(X;K, θ)

given here, there is not in general any conjugation symmetry between Hp,q(X;K, θ) and
Hq,p(X;K, θ) as in the classical case. This is essentially because (L,∇) underlies a complex
variation of Hodge structures, but with no real structure in general (i.e. the monodromy
representation π1(X)→ C∗ determined by flat sections of (L,∇) is not generally induced by
a real representation).

Proof. As for the classical Hodge theorem, the Kähler identities (Lemma 2.1.5) imply the
equality of Laplacians ∆d+ε = 2∆∂̄+τ+θ = 2∆∂−τ̄+θ̄. We get further that classes in the de
Rham cohomology H i

dR(X;L,∇) can be uniquely represented by ∆d+ε-harmonic forms, and
that classes in the Dolbeault cohomology H i

Dol(X;K,Θ) can be uniquely represented by
∆∂̄K+θ-harmonic forms. As ∆∂̄K+θ = ∇∂̄+τ+θ, we get an isomorphism

H i
dR(X;L,∇) ∼= H i

Dol(X;K, θ)

The right hand side can be computed by the double complex (A•,•(X), θ, ∂̄ + τ), as we
have already seen. The differential on E0 of the associated spectral sequence is induced
by ∂̄ + τ , so Ep,q

1
∼= Hq(X,Ωp

X ⊗ K). Then the differential on E1 is induced by θ, giving
Ep,q

2 = Hp,q(X;K, θ).
Let us show that the differential d2 : Ep,q

2 → Ep+2,q−1
2 vanishes. Any class in Ep,q

2 can
be represented by a class [α] ∈ Hq(X,Ωp

X ⊗K) such that θ ∧ [α] = 0. Taking a harmonic
representative α, equivalently θ ∧ α is ∂̄K-exact. Recall that the Kähler identities, hence the
∂∂̄-lemma, holds for ∂̄K and ∂K = ∂ − τ̄ (Lemma 2.1.1). By harmonicity,

∂K(θ ∧ α) = ∂θ ∧ α− θ ∧ ∂Kα = 0,

so θ∧α = ∂̄K∂Kβ for some β ∈ Ap−1,q−1(X); then d2[α] = [θ∧∂Kβ]. Now θ∧∂Kβ is ∂̄K-closed,
and ∂K-exact since θ ∧ ∂Kβ = −∂K(θ ∧ β). Again by the ∂∂̄-lemma, θ ∧ ∂Kβ = ∂̄∂γ for some
γ ∈ Ap+1,q−2(X), so the class of θ ∧ ∂Kβ in Hq−1(X,Ωp+2

X ⊗ L) is 0 as desired.
Then Ep,q

3 = Ep,q
2 . As above, we can compute d3[α] as [θ ∧ ∂Kγ], but repeatedly using the

∂∂̄-lemma again shows that this class is ∂̄K-exact. The same argument shows that dl = 0 for
all l ≥ 2, giving the desired degeneration of the spectral sequence.

We note that there is a natural holomorphic embedding Pic0(X) ⊆M0
Dol(X), by endowing

a line bundle L with the trivial Higgs field θ = 0. Under the non-abelian Hodge correspondence,
this gives a real analytic embedding of Pic0(X) as the space of unitary flat connections. The
unitary connections are those whose associated monodromy representation of π1(X) takes
values in the unitary group U(1), or equivalently, the connections which are compatible with
a metric, in the sense that ∇+ ∂̄L is the Chern connection for some hermitian metric.
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2.2 Cohomology jump loci

Consider again the moduli spaces M0
dR(X),M0

Dol(X) of line bundles with flat connections,
and rank one Higgs bundles. Each have natural associated cohomology theories Hk

dR and
Hk

Dol respectively, which define natural cohomology jump loci

Σk
m(X)Dol = {(L, θ) ∈M0

Dol(X) | dimHk
Dol(X;L, θ) ≥ m}

Σk
m(X)dR = {(L,∇) ∈M0

dR(X) | dimHk
dR(X;L,∇) ≥ m}

By the non-abelian Hodge theorem, these loci are mapped to each other by the correspondence
between M0

dR(X) and M0
Dol(X), and so we will occasionally just write Σk

m(X) when we are
agnostic about which model to consider.

In general, for a subset ZdR ⊆M0
dR(X), we will write ZDol ⊆M0

Dol(X) for the associated
subset of the Dolbeault moduli space, and just Z if we are agnostic about which we are
talking about.

Note that the Dolbeault moduli space admits a natural C×-action: If (L, θ) ∈M0
Dol(X)

and λ ∈ C×, let λ · (L, θ) = (L, λθ). Using the complex

Hq(X,L)
θ−→ Hq(X,Ω1

X ⊗ L)→ · · · → Hq(X,Ωn
X ⊗ L)

to compute Dolbeault cohomology as Hk
Dol(X;L, θ) =

⊕
p+q=kH

p,q(X;L, θ), it is evident that

Σk
m(X)Dol is C×-stable.

Given a map f : X → Y of compact Kähler manifolds, we get natural pullback morphisms

f ∗ : M0
dR(Y )→M0

dR(X)

f ∗ : M0
Dol(Y )→M0

Dol(X)

which are compatible with the non-abelian Hodge correspondence.
Note that as Pic0(X) and H0(X,Ω1

X) are both obtained, via pullback, from the Albanese
variety Alb(X), we have M0

Dol(X) ∼= M0
Dol(Alb(X)), and similarly M0

dR(X) ∼= M0
dR(Alb(X)).

Using the same identifications for Y , we see that all pullback maps on M0
dR and M0

Dol can be
recovered as pullbacks from morphisms to complex tori.

Definition 2.2.1. A linear subvariety of M0
dR(X) (equivalently of M0

Dol(X)) is a subset ZdR

of the form
(L,∇)⊗ im(f ∗ : M0

dR(T )→M0
dR(X)),

or equivalently ZDol ⊆M0
Dol(X) of the form

(K, θ)⊗ im(f ∗ : M0
Dol(T )→M0

Dol(X))

for a morphism f : X → T to a complex torus and (L,∇) ∈M0
dR(X) (equivalently (K, θ) ∈

M0
Dol(X) the Higgs bundle associated to (L,∇)).

Linear subvarieties have various nice properties: They are automatically analytic subva-
rieties in both M0

dR(X) and M0
Dol(X), and are C×-stable in M0

Dol(X). We will see that any
set which is analytic in M0

dR(X) and C×-stable in M0
Dol(X) is actually a linear subvariety; in

12



particular, this will apply to the cohomology jump loci defined above, giving the first part of
the following theorem due to Simpson [Sim93].

We note that Simpson gives various different proof of this theorem, involving also the Betti
moduli space M0

B(X) of rank one local systems on X. The moral of Simpson’s arguments is
that any set which is sufficiently nice in two out of three of the models M0

B(X),M0
dR(X) and

M0
Dol(X) will in fact be as nice as possible, namely a linear subvariety.

Theorem 2.2.1. Let X be a compact Kähler manifold. Then the cohomology jump loci
Σk
m(X) are unions of linear subvarieties.

If furthermore X is projective, then each cohomology jump locus contains a torsion point
(i.e. a point of finite order under the group structure on M0

dR(X) and M0
Dol(X)).

Finally, we will apply this theorem to deduce a result about certain cohomology jump
loci in Pic0(X) (see Section 2.2.1).

For Chapter 3 about zeros of holomorphic one-forms, only the first part of Simpson’s
theorem is needed, and for that purpose our treatment here will be essentially self-contained.
The reader interested only in this application can skip Section 2.2.1.

For Chapter 4, the second, arithmetic part of the theorem will be crucial. Here, the
available proofs require either an input from transcendental number theory (a criterion of
Schneider-Lang that implies that we can recognize torsion points by looking at points over
number fields) [Sim93]; A reduction to positive characteristic [PR04]; or Hodge modules
[Sch15]. These approaches are all quite technical, and would require introducing significant
additional material on top of the mostly classical Hodge-theoretic techniques otherwise used
in this document, so we will omit the proof of this statement.

It should be noted that Botong Wang [Wan16] extended the Hodge module approach
to the compact Kähler case, thus the projectivity assumption in the theorem is actually
superfluous.

Theorem 2.2.1 will follow immediately from the following lemma and proposition.

Lemma 2.2.2. The space M0
dR(X) is a fine moduli space, in the sense that there exists a

universal family (P,∇P ) of line bundles with flat connections on M0
dR(X)×X. Here ∇P is a

relative connection
∇P : P → Ω1

M0
dR(X)×X/M0

dR(X) ⊗ P,

which is in particular p∗1OM0
dR(X)-linear, where p1 : M0

dR(X)×X →M0
dR(X) is the projection.

For each point (L,∇L) ∈M0
dR(X), we have

(P,∇P )|{(L,∇L)}×X ∼= (L,∇L).

If we fix a base point x0 ∈ X and require that P |M0
dR(X)×{x0} is the trivial bundle, then

(P,∇P ) is unique up to isomorphism.
As a consequence of the existence of this family, the cohomology jump loci

Σk
m(X)dR ⊆M0

dR(X)

are analytic subvarieties.
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Proof. Write H1 = H1(X), and similarly for H0,1 and H1,0. Consider the trivial line bundle
on H1 ×X with differential operators

∂̄P = ∂̄ +

g∑
j=1

tjp
∗
2ε

0,1
j

∇P = ∂H1×X/H1 +

g∑
j=1

sjp
∗
2ε

1,0
j ,

where ε0,1j ∈ H0,1, ε1,0j ∈ H1,0 form bases and tj, sj are the corresponding holomorphic

coordinates on H0,1,H1,0. Note that H0,1 = H1,0 as complex vector spaces, so we can take
sj = t̄j.

For ε ∈ H1 and (L,∇) the corresponding line bundle with connection, the pair ∂̄P ,∇P

have the property that they restrict to ∂̄L,∇ on {ε}×X. Let P̃ be the trivial C∞-line bundle
on H1 ×X with complex structure ∂̄p. Then

∇P : P̃ → ΩH1×X/H1 ⊗ P̃

is a relative connection, by the same computation we used in Section 2.1.2 to construct flat
connections. Note that ∇P is p−1

1 OH1-linear since both terms defining it are.
Recall that M0

dR(X) is the quotient of H1 by the lattice Γ ⊂ H1 of one-forms γ such
that γ̄ − γ has periods in Z(1) (note that Γ does not have full rank in this case). We will
extend the action of Γ on H1 ×X to an action on the total space H1 ×X × C of the trivial
C∞-bundle and show that it is compatible with the operators ∂̄P and ∇P . The quotient
P = (H1 ×X × C)/Γ with the induced operators will then be the desired universal bundle.

Given a base point x0 ∈ X and γ ∈ Γ, define

fγ(x) = exp

(∫ x

x0

(−γ)

)
;

the condition on the periods of γ are equivalent to this being a well-defined C∞-function on
X (recall that this is the function we used to trivialize the flat bundle associated to γ in
Section 2.1.2). Then define the action of Γ on H1 ×X × C by

γ · (ε, x, z) = (ε+ γ, x, fγ(x)z)

It is now a direct computation to check that the of γ on sections of H1 ×X × C→ H1 ×X,
given by the pullback

(γ∗s)(ε, x) = fγ(x) · s(ε− γ, x),

commutes with ∂̄P and ∇P . For this, combine the fact that dfγ = −fγ ·γ by construction with
the Leibniz rules for ∂̄P and ∇P with respect to ∂̄ and ∂. It follows that ∂̄P and ∇P descend
to differential operators on the quotient P , which then gets the structure of a holomorphic
line bundle with a relative flat connection.

Note that as ∂̄P only involves the coordinates of H0,1, the line bundle P (without the
connection) is actually the pullback of a line bundle on Pic0(X)×X, defined in the same
way by descending P̃ restricted to H0,1 ×X along the projection H0,1 ×X → Pic0(X)×X.
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By slight abuse of notation, we will also denote this line bundle on Pic0(X)×X by P ; it is
the Poincaré bundle, the universal family of line bundles on X with c1 = 0.

Consider now the projection p1 : M0
dR(X)×X →M0

dR(X). To compute the direct image
Rp1∗DR(P,∇P ) of the relative de Rham complex, take the complex of sheaves of relative
P -valued C∞-forms

(A •,•(M0
dR(X)×X/M0

dR(X), P ), ∂̄P ,∇P ).

As this is a complex of soft sheaves, we can compute the pushforward as the (simple complex
associated to the) direct image

p1∗(A
•,•(M0

dR(X)×X/M0
dR(X), P ), ∂̄P ,∇P ).

This is a bounded complex of OM0
dR(X)-modules; we will argue that it has coherent cohomology.

To see this, consider the double complex spectral sequence where we first take cohomology
along ∂̄P . Then the E1-page has (p, q)-term

p∗Rqp1∗(Ω
p

Pic0(X)×X/Pic0(X)
⊗ P ),

where p : M0
dR(X) → Pic0(X) is the projection and P , by abuse of notation as above, is

also the Poincaré line bundle on Pic0(X)×X, so (p× idX)∗P = P . Hence the E1-page of
the spectral sequence is a complex of OM0

dR(X)-coherent sheaves. As all differentials in the
spectral sequence are OM0

dR(X)-linear, the spectral sequence hence has coherent limit.
As Rp1∗DR(P,∇P ) is now bounded with coherent cohomology, it is (at least locally)

quasi-isomorphic to a bounded complex of locally free sheaves (E•, d). But by base change,
the fibre of (E•, d) at a point (L,∇L) ∈ M0

dR(X) computes the de Rham cohomology of
the flat line bundle (L,∇L) on X. Hence the cohomology jump locus Σk

m(X)dR is locally
identified with the locus

{p ∈M0
dR(X) | dimHk(E•|p, d) ≥ m}

This is analytic. Indeed,

dimHk(E•|p, d) = dim ker dk|p − dim im dk−1|p,

which is bounded below by m if and only if rk dk−1|p + rk dk|p ≤ rkEk −m. Rank bounds on
maps of vector bundles are defined analytically by the vanishing of certain matrix minors (in
local charts where the bundles involved are trivial), so we are done.

Proposition 2.2.3. If ZdR ⊆M0
dR(X) is an irreducible analytic subvariety such that ZDol ⊆

M0
Dol(X) is stable under C×, then Z is a linear subvariety.

Proof. First, translate Z such that ZdR contains the origin as a smooth point. Recall that
M0

dR(X) was constructed as a discrete quotient of H1(X), which is then the tangent space
at the origin of M0

dR(X). Similarly, M0
Dol(X) = Pic0(X)×H0(X,Ω1

X) is a discrete quotient
of H0,1(X) × H1,0(X), which is then the tangent space of M0

Dol(X). The correspondence
M0

dR(X)→M0
Dol(X) induces the isomorphism of real vector spaces

h : H1(X)→ H0,1(X)×H1,0(X) : ε 7→

(
ε0,1 − ε1,0

2
,
ε1,0 + ε0,1

2

)
,
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with inverse h−1(τ, θ) = (θ − τ̄) + (τ + θ̄).
Consider the real tangent space W ⊆ H0,1(X) ×H1,0(X) of ZDol at the origin. By the

assumption of C×-stability of Z, W is stable under multiplication by C× on H1,0(X). Further,
since ZdR is a complex analytic subvariety of M0

dR(X), h−1(W ) is actually a C-vector subspace
of H1(X).

Consider the quotient map π : H0,1(X) × H1,0(X) → M0
Dol(X). This is really just the

product of the quotient mapH0,1(X)→ Pic0(X) and the identificationH1,0(X) ∼= H0(X,Ω1
X).

We will argue in steps that

1. W = V̄ × V for a C-vector subspace of H1,0(X), hence W is C-linear;

2. {0} × V ⊆ π−1(ZDol using C×-stability;

3. W ⊆ π−1(ZDol) using the complex analytic structure of ZdR; and finally concluding
that

4. ZDol = π(W ), finishing the proof with a small remark.

Let us show that W = V̄ ×V for a C-vector subspace of H1,0(X). Let W 1,0 = W ∩H1,0(X)
and W 0,1 = W ∩ H0,1(X), which are respectively C- and R-vector subspaces. Stability of
W under the action of C× on H1,0(X) implies that W = W 0,1 ×W 1,0. But now C-linearity
of h−1(W ) implies that h(i · h−1(W )) = W . As h(i · h−1(τ, θ)) = (iθ̄,−iτ̄), it follows that
W 0,1 and W 1,0 are complex conjugate to each other, so W is C-linear. Write V = W 1,0 in
the following.

We now prove that {0} × V ⊆ π−1(ZDol. Indeed given θ ∈ V , (0, θ) is in the tangent
space W , hence there is a sequence of points (τn, θn) ∈ π−1(ZDol) converging to the origin
(0, 0), but such that the secant lines C · (τn, θn) converge to C · (0, θ). Now there’s a sequence
λn ∈ C× such that λnθn converges to θ, and since π−1(ZDol) is closed and C×-stable (under
the action on H1,0(X), we get that (0, θ) ∈ π−1(ZDol).

Now we use again the complex analytic structure of ZdR. The real vector subspace
h−1({0}×V ) consists of elements θ+ θ̄ for θ ∈ V , but is also contained in the preimage of ZdR

under the quotient H1(X)→M0
dR(X), which is complex analytic. Any holomorphic function

vanishing on h−1({0} × V ) also vanishes on the complex vector space spanned thereby, hence
π−1(Zdol) contains also

h(λθ + λθ̄) =

(
(λ− λ̄)θ̄

2
,
(λ+ λ̄)θ

2

)
,

for λ ∈ C. Thus V̄ × V = W ⊆ π−1(ZDol).
Finally, π(W ) ⊆ ZDol. The corresponding sets in M0

dR(X) are complex analytic of the
same dimension, and irreducible, so π(W ) = ZDol. Remember that π is the product of the
quotient H0,1(X)→ Pic0(X) and the identity on H1,0(X). The image of V̄ under the former
projection is now a subtorus T of Pic0(V ) with tangent space V , and π(W ) = T × V . Since
V is also the space of holomorphic one-forms on the dual torus T̂ , we conclude that ZDol is
the pullback of M0

Dol(T̂ ) under the induced mapping X → Alb(X) → T̂ , the second map
being dual to the inclusion T → Pic0(X).
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Remark 2.2.4. This proof also illustrates very well the structure of linear subvarieties in
M0

Dol(X), like the cohomology jump loci Σk
m(X)Dol. Namely, a linear subvariety is of the form

(L⊗ T, θ + V ) = {(L⊗K, θ + v) | K ∈ T, v ∈ V },

where (L, θ) ∈M0
Dol(X), T is a subtorus of Pic0(X), and V is the tangent space of T . This

has even dimension 2 dimT , and in particular, (L ⊗ T, θ + V ) = M0
Dol(X) if and only if

T = Pic0(X). This last fact is the critical input from non-abelian Hodge theory used in the
proof of Theorem 3.0.1 in Chapter 3.

2.2.1 Application to generic vanishing on abelian varieties

Theorem 2.2.1 has applications to understanding certain jump loci of coherent cohomology.
Namely, for each p, q,m, define the jump loci

V q
m(X,Ωp

X) = {L ∈ Pic0(X) | dimHq(X,Ωp
X ⊗ L) ≥ m}

These were studied by Green and Lazarsfeld [GL87; GL91] in the case that p = 0 (or
dually p = n), who gave certain codimension estimates on these loci in Pic0(X) (the Generic
Vanishing Theorem, recalled in one form in Section 4.1.1), and showed that they are translates
of subtori.

Simpson generalized and strengthened this theorem by embedding Pic0(X) into M0
Dol(X)

and applying Theorem 2.2.1.

Theorem 2.2.5. Let X be a compact Kähler manifold. Then every irreducible component of
Sqm(X,Ωp

X) is a translate of a subtorus of Pic0(X).
If X is projective, then these translations are furthermore by torsion points.

By the work of Botong Wang [Wan16], the projectivity assumption is also superfluous
here.

Remark 2.2.6. In various applications, including in Chapter 4, the fact that the translations
are by torsion points is crucial. In Chapter 4, this is used as follows: If translation by a
torsion point τ ∈ Pic0(X) occurs, consider the multiplication map N : AlbX → AlbX where
N ∈ N is sufficiently divisible that under the dual map Pic0(X)→ Pic0(X), τ is mapped to
the origin. Replace then X with the base change X ′ → X along the multiplication-by-N
map. Since X ′ → X is étale, it is easy to relate the cohomology jump loci of the two spaces;
but in X ′, the jump locus associated to τ is now just a subtorus.

In this way, considerations about the cohomology jump loci can often be reduced to the
case where all the cohomology jump loci are just subtori (or, in the projective case, abelian
subvarieties).

Proof. Recall that for a Higgs bundle (L, θ) ∈M0
Dol(X), we have

H i
Dol(X;L, θ) =

⊕
p+q=i

Hp,q(X;L, θ),
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and that Hp,q(X;L, θ) is the degree p cohomology of the sequence

Hq(X,L)
θ−→ Hq(X,Ω1

X ⊗ L)→ · · · → Hq(X,Ωn
X ⊗ L)

Under the embedding Pic0(X)→ M0
Dol(X) : L 7→ (L, 0), we see that Hp,q(X;L, 0) recovers

the cohomology groups Hq(X,Ωp
X ⊗ L) that define the cohomology jump locus V q

m(X,Ωp
X).

Define then the jump loci

V p,q
m (X) = {(L, θ) ∈M0

Dol(X) | dimHp,q(X;L, θ) ≥ m},

so we get V q
m(X,Ωp

X) = V p,q
m (X) ∩ Pic0(X). It now suffices to show that any irreducible

component Z of V p,q
m (X) is a linear subvariety of M0

Dol(X) (containing a torsion point in the
projective case), given that the jump loci Σk

m(X)Dol are.
Let then k = p+ q, and let m(Z) be the generic value of dimHk

Dol(X;L, θ) for (L, θ) ∈ Z.
Then Z ⊆ Σk

m(Z)(X)Dol, by semicontinuity of cohomology. But for the same reason, Z must

actually be an irreducible component. Indeed, in a neighbourhood of a general point (L, θ) ∈ Z,
any (L′, θ′) must have dimHa,b(X;L′, θ′) ≤ dimHa,b(X;L, θ) for all a, b, but if also (L′, θ′) ∈
Σk
m(Z)(X)Dol, then m(Z) ≤

∑
a+b=k dimHa,b(X;L′, θ′) ≤

∑
a+b=k dimHa,b(X;L′, θ′) = m(Z).

Thus dimHp,q(X;L′, θ′) = dimHp,q(X;L, θ) ≥ m, so (L′, θ′) ∈ Z.
It follows that Z is a linear subvariety, and contains a torsion point in the projective

case.
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Chapter 3

Kodaira dimension and zeros of
holomorphic one-forms, revisited

In [PS14], Popa and Schnell showed that any holomorphic one-form on a smooth projective
variety of general type must vanish at some point, a conjecture of Hacon-Kovács and Luo-
Zhang [HK05; LZ05]. Wei [Wei20] later gave a slightly simplified argument (as well as a
generalization to log-one-forms). Both proofs use the decomposition theorem and various
vanishing theorems for Hodge modules. We give a new approach using only classical Hodge
theory, namely the rank one case of Simpson’s correspondence between Higgs bundles and
local systems, and his results on the structure of cohomology jump loci of local systems. Our
approach should thus be much more accessible than either of the two previous proofs.

As in [PS14], we will prove the following more precise result.

Theorem 3.0.1 ([PS14, Theorem 2.1]). Let X be a smooth complex projective variety and
f : X → A a morphism to an abelian variety. If H0(X,ω⊗dX ⊗ f ∗L−1) 6= 0 for some integer
d ≥ 1 and some ample line bundle L on A, then for every holomorphic one-form ω on A, the
pullback f ∗ω vanishes at some point of X.

The following conjecture of Luo and Zhang [LZ05] follows as in [PS14]. For varieties of
general type, this shows that every holomorphic one-form must vanish at some point.

Corollary 3.0.2 ([PS14, Conjecture 1.2]). Let X be a smooth complex projective variety
and W ⊆ H0(X,Ω1

X) be a linear subspace such that every element of W \ {0} is everywhere
non-vanishing. Then dimW ≤ dimX − κ(X).

Our proof of Theorem 3.0.1 goes as follows. Let V = H0(A,Ω1
A) and

Zf = {(x, ω) ∈ X × V | f ∗ω(TxX) = 0}.

The goal is to show that the restriction of the projection p2 : X × V → V to Zf is surjective.
We borrow the idea in [PS14], going back to work of Viehweg-Zuo [VZ01], of constructing

two separate sheaves on V . The first is an ambient sheaf coming from a cyclic cover of X,
which we will show to be locally free. The second is a non-zero subsheaf coming from X and
supported on p2(Zf ). As the subsheaf is necessarily torsion free, it must have support equal
to V , hence p2(Zf ) = V as desired.
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Let us outline the argument for why the ambient sheaf is locally free.
After base change by an isogeny of A, we can assume that (ωX ⊗ f ∗L−1)⊗d has a non-zero

section s. Let Y be a resolution of singularities of the associated degree d cyclic cover of X
branched along s, and consider the composition h : Y → A.

The ambient sheaf is a higher direct image of a complex of sheaves on Y × V , and the
fibres of the complex over points in V are Dolbeault complexes of certain Higgs bundles
on Y . Using Simpson’s results [Sim92; Sim93] relating Higgs bundles to local systems and
analyzing cohomology jump loci in the moduli space of local systems, we show that the
hypercohomology groups of these Dolbeault complexes have constant dimension over V . This
gives the result by Grauert’s theorem on locally free direct images.

3.1 Proof of Corollary 3.0.2

Let us first show how Corollary 3.0.2 follows from Theorem 3.0.1. This is the same argument
as that given in [PS14].

Proof of Corollary 3.0.2. We only need to consider the case κ(X) ≥ 0. Let g : X ′ → Z be a
smooth model of the Iitaka fibration of X such that µ : X ′ → X is a birational modification.
We will argue that there exists a map Z → A, where A is a quotient abelian variety of the
Albanese variety AlbX, such that the following diagram commutes:

X ′ X

Z A

µ

g f

Here X → A is the composition X → AlbX → A, where the first map is the Albanese
morphism and the second is the quotient map.

To see this, we will argue that under the composition X ′ → X → AlbX, the fibres of g
map to translates of a fixed abelian subvariety B ⊂ AlbX, and then let A = AlbX/B.

This follows from a results of Kawamata [Kaw81, Theorem 1], combined with a standard
argument that Kawamata spells out in the same paper [Kaw81, Proof of Theorem 13]. These
results rely on some birational geometry that we will not discuss in detail here, but the idea
is as follows. Let G = g−1(z) be a general fibre of g; as g is an Iitaka fibration, κ(G) = 0.
By [Kaw81, Theorem 1], G surjects onto its own Albanese variety, hence the image of G in
AlbX is a translate τG +BG of an abelian subvariety B. But an abelian variety contains at
most countably many abelian subvarieties (this can be seen by writing A = V/Γ for Γ ⊂ V
a discrete lattice of full rank in the complex vector space V ; any abelian subvariety of A
corresponds to a vector subspace W ⊂ V such that W ∩ Γ is a lattice of full rank in W ).
The abelian subvarieties BG will vary continuously as G varies, but then it follows that BG is
actually a fixed abelian subvariety B independent of G.

Kawamata argues that this gives a rational map Z → A = AlbX/B : z 7→ τg−1(z). After
possibly modifying the Iitaka fibration further to resolve the indeterminacy locus, we get the
desired morphism.

Now note that dimG = dimX − κ(X), and dimA ≥ dim AlbX − dimG, hence dimA ≥
dimH0(X,Ω1

X) − (dimX − κ(X)). We will argue that the image of f ∗ : H0(A,Ω1
A) →
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H0(X,Ω1
X) consists of one-forms with a non-empty zero locus, hence completing the proof

since this space has codimension at most dimX − κ(X) in H0(X,Ω1
X).

To see this, let L be a very ample line bundle on A. Then f : X → A is the map induced
by the line bundle f ∗L. On the other hand, the rational map X 99K Z is induced by the line
bundle ω⊗mX for sufficiently big and divisible m, by definition of the Iitaka fibration. That
X → A factors rationally as X 99K Z → A implies that there is a non-zero map f ∗L→ ω⊗mX ,
hence a non-zero section of ω⊗mX ⊗ f ∗L−1, and we conclude by Theorem 3.0.1.

3.2 Proof of Theorem 3.0.1

Fix a smooth projective variety X over the complex numbers and a morphism f : X → A
to an abelian variety throughout. Let V = H0(A,Ω1

A) be the vector space of holomorphic
one-forms on A, and let S = SymV ∗ be the graded coordinate ring of the vector space V .
For an integer i, let S•+i denote S as a graded module over itself, with grading shifted by i,
and let CX,• be the complex of graded OX ⊗ S-modules given by

OX ⊗ S•−g → Ω1
X ⊗ S•−g+1 → · · · → Ωn

X ⊗ S•−g+n,

in degrees −n to 0, where n = dimX, g = dimA, and the differential is induced by the map
OX ⊗ V → Ω1

X given by φ⊗ ω 7→ φf ∗ω. In a basis ω1, . . . , ωg of V with dual basis s1, . . . , sg
of S1, the differential is given by

θ ⊗ s 7→
g∑
i=1

(θ ∧ f ∗ωi)⊗ sis.

We denote the associated complex of vector bundles on X × V by CX .

Lemma 3.2.1 ([PS14, Lemma 14.1]). The support of CX is equal to

Zf = {(x, ω) ∈ X × V | f ∗ω(TxX) = 0}.

Proof. Let p : T ∗X → X be the projection from the cotangent bundle of X. On T ∗X, p∗Ω1
X

has a tautological section, corresponding to a map OT ∗X = p∗OX → p∗Ω1
X . Using this map

to define the differential, we get a complex

p∗OX → p∗Ω1
X → · · · → p∗Ωn

X

But this is just the standard Koszul resolution of the structure sheaf OZ of the zero section
Z ⊂ T ∗X.

Now consider the pullback map df : X × V → T ∗X. The differential of CX is induced by
the tautological section of p∗1Ω

1
X induced by pulling back one-forms from A, so CX is the

pullback along df of the Koszul complex discussed above. Hence CX computes the derived
pullback of OZ , whose support is exactly Zf .
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Remark 3.2.2. For a possibly more elementary alternative argument, observe that if a one-form
ω is nowhere vanishing, then OX

ω−→ Ω1
X → · · · → Ωn

X is exact. By restricting CX to the sets
X × {ω} as ω varies, and using that CX is a complex of vector bundles, this proves that the
support of CX is contained in Zf , which suffices for our purposes.

For α ∈ Pic0(A), let Cα
X = CX ⊗ p∗1f ∗α and Cα

X,• = CX,•⊗ f ∗α, where p1 is the projection
X × V → X. The sheaves Rip2∗C

α
X on V are then supported on p2(Zf ) for all i; recall that

we are trying to show that p2(Zf ) = V . We will show that these sheaves are locally free for
general α in Proposition 3.2.3 below. As we will see, the fibres of Cα

X over V are related to
certain Higgs bundles on X.

Recall that a Higgs bundle on X is a vector bundle E together with a morphism of
coherent sheaves θ : E → Ω1

X ⊗E, the Higgs field, satisfying θ ∧ θ = 0. Given a Higgs bundle,
we get a holomorphic Dolbeault complex

E
θ∧−→ E ⊗ Ω1

X → · · · → E ⊗ Ωn
X .

Simpson’s non-abelian Hodge theorem [Sim92] associates to each Higgs bundle (E, θ)
(satisfying some conditions on stability and Chern classes) a local system C(E,θ) of complex
vector spaces, and shows that Dolbeault cohomology

Hk
Dol(X,E, θ) = Hk(X,E

θ∧−→ E ⊗ Ω1
X → · · · → E ⊗ Ωn

X),

the hypercohomology of the Dolbeault complex, is isomorphic to the cohomology of C(E,θ).
We will only need the rank one case; see also the lecture notes [Sch13, Lectures 17-18] for

a concrete treatment of this case, and the associated Hodge theory.
In the rank one case, a Higgs bundle is just a line bundle together with a holomorphic

one-form. The stability condition in Simpson’s theorem is always satisfied for line bundles,
and the condition on Chern classes is simply that the first Chern class vanishes in H2(X,C);
let Picτ (X) be the space of line bundles satisfying this condition. Let then MDol(X) =
Picτ (X) × H0(X,Ω1

X), and let MB(X) denote the moduli space of local systems of one-
dimensional complex vector spaces on X. Then Simpson’s correspondence, mapping a rank
one Higgs bundle to the associated local system, takes the form of a real analytic isomorphism
MDol(X) ∼= MB(X).

For each k and m, consider the cohomology jump loci

Σk
m(X) = {L ∈MB(X) | dimHk(X,L) ≥ m}

Σk
m(X)Dol = {(E, θ) ∈MDol(X) | dimHk

Dol(X,E, θ) ≥ m}

of local systems and Dolbeault cohomology of Higgs bundles. These loci get mapped to each
other under Simpson’s correspondence.

Using this relationship, Simpson [Sim93] proves that every irreducible component of these
loci is a linear subvariety or, in his terminology, a translate of a triple torus (in fact a torsion
translate, though we will not need that). A triple torus is a closed, connected, algebraic
subgroup N of MB(X) such that the corresponding subgroup of MDol(X) (which we will also
refer to as a linear subvariety) is also algebraic (this is equivalent to the usual definition,
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involving also the de Rham moduli space, by [Sim93, Lemma 2.1]). A linear subvariety is
thus a subset of MB(X) of the form

{L ⊗N | N ∈ N}

where N is a triple torus and L ∈MB(X) a local system.
Simpson [Sim93, Lemma 2.1] shows that a triple torus is of the form g∗MB(T ) for a

map g : X → T to an abelian variety, where g∗ : MB(T )→MB(X) denotes pullback of local
systems. It follows that a linear subvariety in MDol(X) is a translate of a subset of the form
g∗ Pic0(T )× g∗H0(T,Ω1

T ) for g : X → T a morphism to an abelian variety. In particular, a
linear subvariety is either the entire moduli space, or maps to a proper subvariety of Pic0(X)
under the projection MDol(X)→ Pic0(X) that forgets the Higgs field.

The following proposition is the main new ingredient in the proof. Note that this
proposition is valid for an arbitrary morphism f : X → A, not just those that satisfy the
hypotheses of Theorem 3.0.1.

Proposition 3.2.3. For general α ∈ Pic0(A), the higher direct image sheaves Rip2∗C
α
X are

locally free on V for all i.

Proof. We will show that for general α, the dimensions of the hypercohomology H i(X ×
{v}, Cα

X |X×{v}) of Cα
X on fibres of p2 are constant in v. The result follows by a version of

Grauert’s theorem on locally free direct images for complexes of sheaves [EGAIII, Proposition
7.8.4]

Note that for any fibre X × {v} of p2 for v ∈ V , the restriction of Cα
X to the fibre is the

Dolbeault complex

f ∗α
∧f∗v−−−→ f ∗α⊗ Ω1

X → · · · → f ∗α⊗ Ωn
X .

of the Higgs bundle (f ∗α, f ∗v). The Dolbeault cohomology of these Higgs bundles is governed
by the cohomology jump loci Σk

m(X)Dol, of which only finitely many are nonempty by
algebraicity. Each irreducible component of the nonempty ones is a linear subvariety, so it
suffices to show that for each linear subvariety S of MDol(X), the set {α} × f ∗V is either
entirely contained in S or entirely disjoint from it, for general α.

Let then φ = f ∗ : MDol(A)→MDol(X), and suppose S ⊂MDol(X) is a linear subvariety.
We observe that if N is a triple torus, then the connected component of the identity in
φ−1(N) is again a triple torus; it follows that φ−1(S) is either empty, or a finite union of
linear subvarieties. If φ−1(S) = MDol(A) then {α} × f ∗V ⊂ S for any α ∈ Pic0(A). If S is a
proper subset of MDol(A), it suffices to take α to be outside the image of φ−1(S) in Pic0(A)
under the projection MDol(A)→ Pic0(A).

If we could show that one of the sheaves Rip2∗C
α
X were nontrivial on V , under the

hypotheses of Theorem 3.0.1, we would now be done. Unfortunately we cannot, but instead
we make use of a covering construction as in [PS14].

Lemma 3.2.4 ([PS14, Lemma 11.1]). Suppose ω⊗dX ⊗ f ∗L−1 has a nonzero section for some
d and some ample line bundle L on A. For an isogeny φ : A′ → A, define f ′ : X ′ → A′ by
base change of f . For an appropriately chosen φ, there exists an ample line bundle L′ on A′

such that (ωX′ ⊗ f ′∗L′−1)⊗d has a nonzero section.
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Proof. Let A′ = A, and φ : A → A be given by multiplication by 2d. Then φ∗L is the dth
power of some line bundle L′, which is hence ample. Further, the pullback of ωX along the
étale map X ′ → X is ωX′ , so (ωX′ ⊗ f ′∗L′−1)⊗d has a non-zero section.

Assume now the hypotheses of Theorem 3.0.1. Note that zero loci of one-forms are not
affected by étale covers, so if we can prove the theorem for f ′ : X ′ → A′, then the desired
conclusion also follows for f : X → A.

In particular, replacing f by this f ′, we can now assume without loss of generality that
B⊗d has a nonzero section s for B = ωX ⊗ f ∗L−1. Let Y be a resolution of singularities of
the d-fold cyclic cover π : Xd → X ramified along Z(s), giving us the following maps:

Y Xd X

A

φ

h

π

f

By construction, Xd = Spec
⊕d−1

i=0 B
−i, so π∗π

∗B =
⊕d−2

i=−1B
−i. This has a section in

the i = 0 term, and the corresponding section of π∗B gives a morphism φ∗B−1 → OY , an
isomorphism away from Z(s). Together with pullback of forms, this gives injective morphisms
φ∗(B−1 ⊗ Ωk

X)→ Ωk
Y . As OX → φ∗OY is injective, the corresponding morphisms

B−1 ⊗ Ωk
X → φ∗Ω

k
Y

on X are also injective.
Note that we get a complex CY,• of graded OY ⊗S-modules using the morphism h : Y → A,

constructed in the same way that CX,• was constructed starting from f above Lemma 3.2.1.
We give a slightly modified version of [PS14, Lemma 13.1].

Lemma 3.2.5. The morphisms above induce a morphism of complexes of graded OX ⊗ S-
modules

B−1 ⊗ CX,• → Rφ∗CY,•

Proof. The morphisms φ∗(B−1 ⊗ Ωk
X)→ Ωk

Y commute with the differentials on Y , giving

φ∗(B−1 ⊗ CX,•)→ CY,•

Using the projection formula and the morphism OX → Rφ∗OY , pushing forward to X gives
the desired composition

B−1 ⊗ CX,• → (B−1 ⊗ CX,•)⊗L Rφ∗OY → Rφ∗CY,•
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Proof of Theorem 3.0.1. We must show that Zf surjects onto V under the projection p2 : X×
V → V .

Let α ∈ Pic0(A) be a general element. Then Lemma 3.2.5 gives, after twisting by f ∗α and
pushing forward to V , a morphism Rp2∗(p

∗
1B
−1⊗Cα

X)→ Rp∗2C
α
Y where p1 : X×V → X is the

first projection, and p2, by abuse of notation, is used for both of the projections X × V → V
and Y × V → V . Let F be the image of the induced map R0p2∗(p

∗
1B
−1 ⊗ Cα

X)→ R0p2∗C
α
Y .

As α is general, each Rip2∗C
α
Y is locally free by Proposition 3.2.3. In particular F is

torsion free. Since CX is supported on Zf , F is supported on p2(Zf), so it suffices to show
that F is non-zero.

Let k = g−n. Then CX,k = ωX and CY,k = ωY , and the morphism B−1⊗CX,k → Rφ∗CY,k
from Lemma 3.2.5 induces the morphism of sheaves f ∗L = B−1 ⊗ ωX → φ∗ωY constructed
before the lemma after taking cohomology sheaves (by results of Kollár [Kol86b], we actually
have Rφ∗ωY = φ∗ωY since φ is generically finite, but we do not need this).

After twisting by α, the morphism B−1 ⊗ Cα
X,k → Rφ∗C

α
Y,k thus induces f ∗(L ⊗ α) →

φ∗ωY ⊗f ∗α. For the graded S-module F• = H0(V,F ), it follows that Fk
∼= H0(X, f ∗(L⊗α))

since the pushforward to V preserves injectivity. But f ∗(L⊗ α) has non-zero sections, hence
F is non-zero: Otherwise all sections of its pushforward f∗OX ⊗ L⊗ α to A would vanish,
which would imply that X is contained in a general translate of a hyperplane section of A, a
contradiction.
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Chapter 4

Chen-Jiang decompositions for
projective varieties, without Hodge
modules

Given a morphism f : X → A from a smooth projective variety over C to an abelian variety,
the direct image f∗ωX is known by work of Green and Lazarsfeld [GL87] to be a GV-sheaf,
that is, the cohomology support locus

V k(A, f∗ωX) = {α ∈ Â | Hk(A, f∗ωX ⊗ α) 6= 0}

has codimension at least k in the dual abelian variety Â for each k ≥ 0. Moreover, the precise
structure of these loci is well understood: The components of V k(A, f∗ωX) are translates of
abelian subvarieties by [GL91], and are in fact translates by points of finite order by work of
Simpson [Sim93]. We recall these results more precisely in Section 4.1.1.

In the case where f is generically finite, Chen and Jiang [CJ18] prove a semi-positivity
result for f∗ωX corresponding to the structure of the cohomology support loci. Namely, they
prove that there exists a decomposition

f∗ωX ∼=
⊕
i

αi ⊗ p∗iFi,

since called a Chen-Jiang decomposition in [PPS17], where each αi ∈ Â is a point of
finite order, pi : A→ Ai is a surjective homomorphism of abelian varieties with connected
fibres, and each Fi is an M-regular coherent sheaf on Ai, i.e. for each k > 0 we have
codimÂi

V k(Ai,Fi) > k. The dual of each pi is an inclusion p̂i : Âi → Â, and the codimension

k components of V k(A, f∗ωX) for each k are exactly the translates by αi of Âi, so the failure
of f∗ωX itself to be M-regular is explained by this decomposition. The proof by Chen and
Jiang relies on the structural results on V k(A, f∗ωX), but is otherwise algebraic in nature.

Using Hodge modules, this theorem was widely generalized by Pareschi, Popa and Schnell
[PPS17]. They prove a Chen-Jiang decomposition result for the associated graded pieces
of the Hodge filtration on any polarizable real Hodge module on a compact complex torus.
Since direct images of canonical bundles arise in this way, the result of Chen-Jiang is thus
extended to arbitrary morphisms (and even to the Kähler setting).
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Building on this result, Lombardi, Popa and Schnell [LPS20] prove that direct images of
pluricanonical bundles of smooth projective varieties likewise admit Chen-Jiang decomposi-
tions, by showing that for f : X → A and any m ≥ 2, there exists a smooth projective variety
Xm and a morphism fm : Xm → A such that f∗ω

⊗m
X is a direct summand in fm∗ωXm . In the

case where (X,∆) is a klt pair, Jiang and Meng [Jia21; Men21] independently give results
for direct images of line bundles with divisor rationally equivalent to m(KX + ∆), Jiang for
integral m ≥ 1 with the condition that f be primitive for m ≥ 2, and Meng unconditionally
for any rational m ≥ 1. All of these results in turn have applications to the birational theory
of irregular varieties.

The proof in [PPS17] relies heavily on Hodge modules and the decomposition theorem,
but in the geometric case where f : X → A is a morphism from a smooth projective variety
to an abelian variety, it is reasonable to expect a more direct proof along the lines of the
original work by Chen-Jiang. We give such a proof (Section 4.2), relying only on the theory of
variations of Hodge structure, removing the dependence of the previously mentioned results
on Hodge modules.

Theorem 4.0.1. For any morphism f : X → A from a smooth projective variety to an
abelian variety, the sheaf f∗ωX admits a Chen-Jiang decomposition.

Following the method of [CJ18], the key part of the proof is the following. Assume that
the components of the vanishing loci V k(A, f∗ωX) pass through the origin, and are hence
abelian subvarieties; this can be arranged via an isogeny of A. Suppose then that B̂ ⊂ Â
is a codimension k component of V k(A, f∗ωX), and let p : A→ B be the projection dual to
the inclusion of B̂. We must then produce an appropriate M-regular sheaf F on B such
that p∗F is a direct summand of f∗ωX . Given such M-regular sheaves for each such B, the
theorem follows for formal reasons (see Lemma 4.2.1).

In the case where f is generically finite, Chen and Jiang show that Rkp∗f∗ωX is actually
the pushforward to B of the canonical bundle of a lower-dimensional variety, hence admits
a Chen-Jiang decomposition by dimensional induction. The M-regular summand of this
decomposition serves as F . More precisely, they construct the following diagram (note that
the notation here differs slightly from the paper [CJ18]).

X

Y A

Z B

g

f

q

r

f ′

p

h

Here X
q−→ Z

h−→ B is a modified Stein factorization where Z is smooth and h generically
finite, and Y is the pullback of p along h. Then q is a fibration of relative dimension k, so
Rkq∗ωX = ωZ hence Rkp∗f∗ωX = h∗ωZ . Furthermore r is a pullback of a morphism of abelian
varieties so r∗ωZ = ωY , and since g is generically finite, ωY is a direct summand of g∗ωX ,
hence F is a direct summand of f∗ωX by base change.

In the general case of arbitrary f , we use results of Kollár [Kol86a; Kol86b] on variations
of Hodge structures and higher direct images of canonical bundles to prove that p∗Rkp∗f∗ωX
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is a direct summand of f∗ωX , otherwise finishing the proof in the same manner as Chen and
Jiang. The more technical proof is deferred to Section 4.3.

Theorem 4.0.2. Suppose X
f−→ Y

g−→ Z are surjective morphisms of smooth projective
varieties, and that g is a smooth fibration of relative dimension k with ωY/Z trivial. Then
f∗ωX admits g∗Rkg∗f∗ωX as a direct summand.

The idea is to construct, by Grothendieck duality, a morphism

ΨX/Y : f∗ωX/Y → g∗Rkg∗f∗ωX/Z

which, fibrewise, encodes certain Gysin morphisms. This is most easily described when Z is
a point. Let y ∈ Y be a general point and F = f−1(y) the corresponding fibre of f . Then
the fibre of ΨX/Y at y is a morphism H0(F, ωF )→ Hk(Y, f∗ωX). When composed with the
edge map Hk(Y, f∗ωX) → Hk(X,ωX) of the Leray spectral sequence we get a morphism
Ψ′X/Y |y : H0(F, ωF )→ Hk(X,ωX). On the other hand, the inclusion F → X gives a Gysin

morphism Hd(F,C)→ H2k+d(F,C) where d = dimF , and the restriction to H0(F, ωF ) under
the Hodge decomposition coincides with Ψ′X/Y |y.

To prove the theorem, we construct a morphism of variations of Hodge structure over an
open locus which encodes the topological Gysin morphisms on fibres (although for technical
reasons, we actually split the direct image g∗ΨX/Y on Z instead and then use the push-pull
adjunction). The splitting then comes from the semisimplicity of the category of polarizable
VHS, and we use Kollár’s results on higher direct images of canonical bundles [Kol86b,
Theorem 2.6] to extend from the open locus. The resulting more precise statement, describing
the morphism f∗ωX → g∗Rkg∗f∗ωX , is given as Theorem 4.3.4.

4.1 Preliminaries

We work throughout with smooth varieties over C.

4.1.1 Generic vanishing

Fix an abelian variety A throughout this section, and let Â be the dual abelian variety. Let
us recall some basic notions related to GV-sheaves.

For a coherent sheaf F on A, let V k(A,F ) = {α ∈ Â | Hk(A,F ⊗ α) 6= 0} denote its
kth cohomology support locus. This is a closed subvariety of Â.

Definition 4.1.1. A coherent sheaf F on an abelian variety A is a GV-sheaf if

codimÂ V
k(A,F ) ≥ k

for every k ≥ 0, and M-regular if

codimÂ V
k(A,F ) > k

for every k > 0.

28



Following [Sch19], define the symmetric Fourier-Mukai transform to be the contravariant
functor

FMA : Db
coh(A)→ Db

coh(Â)

given by the formula

FMA(K) = R(pr2)∗(P ⊗ pr∗1DA(K))

where pr1 : A× Â→ A and pr2 : A× Â→ Â are the two projections, P is the Poincaré
line bundle on A× Â normalized by requiring that its fibres over 0 ∈ A respectively 0 ∈ Â
are trivial, and

DA(K) = R Hom(K,ωA[dimA])

is the Grothendieck duality functor on A. Then FMA is an equivalence of categories with
inverse FMÂ, and is a version of the Fourier-Mukai transform particularly well-adapted to
talking about generic vanishing.

GV-sheaves and M-regular sheaves can be defined in terms of the Fourier-Mukai transform.
This goes back to Hacon for GV-sheaves, and Pareschi and Popa [PP11] for M-regular sheaves.

Proposition 4.1.1 ([Hac04, Theorem 1.2],[PP11, Proposition 2.8]). A coherent sheaf F on
an abelian variety A is a GV-sheaf if and only if FMA(F ) is a sheaf (i.e. a complex with
cohomology only in degree 0), and F is M-regular if and only if FMA(F ) is furthermore a
torsion-free sheaf.

Proposition 4.1.2 ([Sch19, Proposition 4.1]). Let f : A → B be a morphism of abelian
varieties. Denoting by f̂ : B̂ → Â the dual morphism, there are natural isomorphisms

FMB ◦Rf∗ = Lf̂ ∗ ◦ FMA

FMA ◦ Lf ∗ = Rf̂∗ ◦ FMB

Proposition 4.1.3 ([Sch19, Proposition 5.1]). For a ∈ A let ta : A→ A be the translation
morphism and Pa the corresponding line bundle on Â. For a ∈ A and α ∈ Â, there are
natural isomorphisms

FMA ◦ (ta)∗ = (Pa ⊗−) ◦ FMA

FMA ◦ (Pα ⊗−) = (tα)∗ ◦ FMA

The following characterization of the vanishing loci arising from canonical bundles is due
to Green-Lazarsfeld and Simpson for ordinary direct images.

Theorem 4.1.4 ([GL87; GL91; Sim93]). Suppose f : X → A is any morphism from a smooth
projective variety X to an abelian variety A. For every i, the sheaf Rif∗ωX is a GV-sheaf.
Furthermore, for every k, every component of V k(A,Rif∗ωX) is a translate of an abelian
subvariety of Â by a point of finite order.
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By work of Kollár, for each i the higher direct image Rif∗ωX is a direct summand in
g∗ωY for some g : Y → A, where Y is smooth projective [Kol86b, Corollary 2.24], and the
properties stated in the theorem are inherited by direct summands, so we get the theorem for
higher direct images as well.

4.1.2 Variations of Hodge structure and higher direct images of
canonical bundles

We will fix notation for, and recall some facts about, variations of Hodge structure. For the
full definition see e.g. [PS08]. We will follow the notation of [Kol86b]; see also that paper for
an introduction to canonical extensions.

The data of a VHS of weight k on a smooth variety U consists of a local system H,
which for us will always have coefficient group Q, together with a filtration by holomorphic
subbundles of the vector bundle H = H ⊗Q OU , denoted

H = F 0(H) ⊃ · · · ⊃ F n(H) ⊃ 0

by abuse of notation, such that the fibre of the filtration at a given point x defines a
rational Hodge structure of weight k on the rational vector space Hx. We likewise let
Gri(H) = F i/F i+1, which are again vector bundles. We let ∇ : H →H ⊗ Ω1

U denote the
induced Gauss-Manin connection, with respect to which the Hodge filtration is required to
satisfy the Griffiths transversality condition

∇(F p) ⊂ F p−1 ⊗ Ω1
U

Finally, a polarization on H is a map of local systems H⊗H → QU which induces polarizations
on the rational Hodge structures Hx for all x ∈ U .

Suppose f : X → Y is a smooth projective morphism with fibres of dimension d. For
any k, the sheaf Rkf∗QX is then a local system underlying a VHS of weight k. We note
that this VHS is polarizable. To see this, choose a class η ∈ H2(X,Q) whose restriction
to fibres of f is Kähler, as granted by the assumption that f is projective. For i ≤ d, η
induces a bilinear form on Rif∗QX defined fibrewise at y ∈ Y by (α, β) 7→

∫
F
ηd−i|F ∧ α ∧ β

where F = f−1(y). This defines a polarization on the primitive part (Rif∗QX)prim by the
Hodge-Riemann bilinear relations. By the relative Hard Lefschetz theorem and consequent
relative Lefschetz decomposition, Rkf∗QX decomposes as a direct sum of (Tate twists of)
such primitive pieces, hence admits a polarization.

Note in particular that in middle degree d and up, the bottom piece of the Hodge filtration
is

F k+d(Rk+df∗QX) = Rkf∗ωX/Y .

Suppose now that H underlies a VHS on an open subset X0 ⊂ X such that X \X0 is a
normal crossings divisor. Suppose the monodromy of H around this divisor is quasi-unipotent.
A choice of set-theoretic logarithm log : C× → C yields a corresponding canonical extension
of H and the filtration F •(H) to vector bundles on X. One way to fix such a logarithm is by
choosing a fixed length 2π interval for the imaginary values of the logarithm. The choice [0, 2π)
is called the upper canonical extension in [Kol86b], and will be denoted by uH , uF •(H).
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The choice (−2π, 0] gives the lower canonical extension, denoted by lH , lF •(H). Similarly,
u Gri(H) and l Gri(H) denote the associated graded pieces of the extended filtrations.

We briefly recall the local construction. In an analytic neighbourhood of a point in X \X0,
X0 looks like (D∗)s ×Dr for some s and r, where D is the unit disk and D∗ the punctured
unit disk. The local monodromy on a fixed fibre of H in this neighbourhood is generated
by the monodromy operators T1, . . . , Ts corresponding to the generators of the fundamental
groups of each D∗. We will describe how to extend over each D∗ separately, so it suffices for
us to assume that s = 1 and r = 0, so we simply have a VHS on D∗ with quasi-unipotent
monodromy generated by an operator T .

Let exp: H→ D∗ be the universal cover of the unit disk by the left half plane in C. Then
T acts on global sections of exp∗H by the action of pullback along the translation by i of
H. In particular, T acts on the space V of global flat sections.

Now choose coordinates on V such that T decomposes as a product T = UD of a unipotent
matrix U and a diagonal matrix D. The unipotent matrix has a logarithm given by the usual
power series expansion

logU =
∞∑
k=1

(−1)k+1 (B − I)k

k
,

while our choice of logarithm gives a logarithm logD; thus we get N = log T = logU + logD.
If v ∈ V , then the section

s(z) = exp

(
− 1

2πi
N · log z

)
v(z)

is T -invariant, hence descends to a global section of H . This defines a trivialization of
H , hence an extension of H to a free sheaf on D. This also gives an extension of the
Gauss-Manin connection on H to a connection on the extension with logarithmic singularities
at 0, though we will not need a detailed description of this. The nilpotent orbit theorem says
that the filtration F •(H) likewise extends, and these local extensions glue to an extension of
H to X.

One technical obstacle with this theory is that if Hi, i = 1, 2 are two VHS on D∗ with
monodromy operators Ti, the monodromy operator of H1 ⊗ H2 is T = T1 ⊗ T2, but the
chosen logarithms of T and the Ti may not be directly related. Decomposing Ti = UiDi and
T = UD in a unipotent and diagonal part, the eigenvalues of D are products d1d2 where di is
an eigenvalue of Di. But it is not necessarily the case that log(d1d2) = log d1 + log d2, and as
a consequence it is not necessarily the case that the canonical extension of H, with this fixed
choice of logarithm, is the tensor product of the canonical extensions of the Hi. However, if,
say, H1 has trivial monodromy, then canonical extensions and tensor products will in fact
commute in this special case since d1d2 = d2 for every pair of eigenvalues as above. This will
be important in the proof of Theorem 4.0.2.

Using this machinery of canonical extensions, Kollár proves the following results.

Theorem 4.1.5 ([Kol86b, Theorem 2.6]). Let f : X → Y be a surjective map of relative
dimension d between smooth projective varieties. Suppose Y 0 ⊂ Y is an open subset such
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that Y \ Y 0 is a normal crossings divisor and f is smooth over Y 0. Let X0 = f−1(Y 0) and
f 0 = f |X0. Then

Rkf∗ωX/Y ∼= uF k+d(Rk+df 0
∗QX0)

Rkf∗OX ∼= l Gr0(Rkf 0
∗QX0)

In particular, Rkf∗OX and Rkf∗ωX/Y are locally free.

Theorem 4.1.6 ([Kol86b, Theorem 3.4]). Let X, Y, Z be projective varieties, X smooth, and
f : X → Y, g : Y → Z surjective maps. Then

1. Rp(g ◦ f)∗ωX ∼=
⊕

iR
ig∗R

p−if∗ωX ;

2. Rig∗R
jf∗ωX is torsion-free;

3. Rig∗R
jf∗ωX = 0 if i > dimY − dimZ;

4. In the derived category of coherent sheaves on Z,

Rg∗R
jf∗ωX =

⊕
i

Rig∗R
jf∗ωX [−i].

Theorem 4.1.5 shows that Rkf∗ωX/Y , hence also Rkf∗ωX , is globally controlled by a
polarizable VHS on an open subset. Observe the following.

1. The formation of canonical extensions is compatible with taking direct sums of VHS.

2. The open subset Y 0 ⊂ Y in the theorem does not have to be the entire smooth locus
of f ; any non-empty Zariski-open subset thereof suffices as long as the complement is
normal crossings.

3. The category of polarizable VHS is semisimple [PS08, Theorem 10.13].

It follows that one way to get a direct sum decomposition of Rkf∗ωX is to construct an
appropriate morphism involving the VHS Rk+df 0

∗QX0 , for some appropriate Y 0 as in the
theorem. This will be the mechanism for getting the splitting in Theorem 4.0.2.

4.1.3 Chen-Jiang decompositions

Let’s recall the following definition and proposition from [LPS20].

Definition 4.1.2 ([LPS20, Definition 4.1]). Suppose F is a coherent sheaf on an abelian
variety A. A Chen-Jiang decomposition of F is a direct sum decomposition

F ∼=
⊕
i

αi ⊗ p∗iFi

where each pi : A → Ai is a surjective homomorphism of abelian varieties with connected
fibres, each Fi is an M-regular coherent sheaf on Ai and each αi ∈ Â is a line bundle of finite
order.
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Proposition 4.1.7 ([LPS20, Proposition 4.6]). Suppose F ′ and F ′′ are coherent sheaves on
an abelian variety A. If F ′ ⊕F ′′ admits a Chen-Jiang decomposition, so do F ′ and F ′′.

The following proposition is essentially proven as part of the proof of [CJ18, Theorem
3.5].

Proposition 4.1.8. Suppose F is a coherent sheaf on an abelian variety A, and φ : A′ → A
is an isogeny. Then F admits a Chen-Jiang decomposition if and only if φ∗F does.

Proof. If F admits a Chen-Jiang decomposition then clearly so does φ∗F .
In the other direction note that by Propositions 4.1.1, 4.1.2, and 4.1.3, a Chen-Jiang

decomposition of φ∗F is equivalent to a decomposition

FMA′(φ
∗F ) ∼=

⊕
i

ταi∗ιi∗Gi

where for each i, ταi
is a translation of A′ by a point αi of finite order, ιi : Âi → Â′ the

inclusion of an abelian subvariety, and Gi is a torsion free sheaf on Âi.
Now for each i, φ̂∗ταi∗ιi∗Gi is the direct image of a torsion free sheaf on φ̂−1(Âi), which

is again a torsion translate of an abelian subvariety of Â; namely the direct image of(
φ̂|φ̂−1(Âi)

)∗
Gi translated by a preimage of αi.

By Proposition 4.1.2 and since φ is an isogeny we have

φ̂∗FMA′(φ
∗F ) = FMA(φ∗φ

∗F ),

so φ∗φ
∗F admits a Chen-Jiang decomposition. But F is a direct summand thereof, hence

admits a Chen-Jiang decomposition by Proposition 4.1.7.

Given a morphism f : X → A to an abelian variety, we will need to understand how the
image f(X) relates to the various components of the cohomology support loci of f∗ωX .

Lemma 4.1.9. Suppose given f : X → A where X is a smooth projective variety, A an
abelian variety, and suppose B̂ ⊂ Â is a codimension k component of V k(A, f∗ωX) which
passes through 0 ∈ Â (and is hence an abelian subvariety by Theorem 4.1.4). Let p : A→ B
be dual to the inclusion. Then all fibres of f(X) over B are of dimension k, hence f(X) is
the preimage of p(f(X)). In particular p|f(X) : f(X)→ p(f(X)) is a smooth fibration with
trivial relative canonical bundle.

Proof. Observe that p is smooth of relative dimension k, so it suffices to show that a general
fibre of p|f(X) has dimension k. Suppose β ∈ B̂. By Kollár’s result (Theorem 4.1.6), we have

hk(A, f∗ωX ⊗ p∗β) =
k∑
i=0

hi(B,Rk−ip∗f∗ωX ⊗ β)

The left hand side is non-zero by the assumptions on B, while for general β ∈ B̂, the
terms with i > 0 on the right hand side vanish since Rk−ip∗f∗ωX is a direct summand of
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Rk−i(p ◦ f)∗ωX (by Theorem 4.1.6 again), which is a GV-sheaf by Theorem 4.1.4. It follows
that h0(B,Rkp∗f∗ωX ⊗ β) is non-zero, hence that Rkp∗f∗ωX is non-zero.

To conclude, recall that Rk(p ◦ f)∗ωX , hence the summand Rkp∗f∗ωX , is torsion-free over
the image of f in B (Theorem 4.1.6). By base change over the smooth locus of f , this kth

higher direct image would vanish if the general fibre had dimension smaller than k, hence the
general fibre actually has dimension k.

4.1.4 Generic base change

Finally we will need the following generic base change theorem. Suppose X
f−→ Y

g−→ Z are
proper morphisms of schemes of finite type over a field, that Z is generically reduced, and
that h = g ◦ f is surjective. Let F be a coherent sheaf on X. For z ∈ Z, let G = h−1(z) and
H = g−1(z) be the fibres over z, and consider f |G : G→ H.

Proposition 4.1.10 ([LPS20, Proposition 5.1]). In the setting above, there is a non-empty
Zariski-open subset U ⊂ Z such that the base change morphism(

Rif∗F
)
|H → Ri(f |G)∗(F |G)

is an isomorphism of sheaves on H for every z ∈ U and every i.

In particular, if X, Y and Z are smooth projective and F is the relative canonical bundle
ωX/Y = ωX ⊗ f ∗ω−1

Y , this says that the restriction (f∗F )|H is, for general z ∈ Z, isomorphic
to the relative canonical bundle ωG/H of the morphism f |G, and similarly for the higher direct
images.

4.2 Chen-Jiang decompositions for direct images of

canonical bundles

The goal of this section is to prove that Chen-Jiang decompositions always exist for direct
images of canonical bundles, following the approach originally used in [CJ18] to give the
decompositions for generically finite morphisms.

Let us first recall the original proof of [CJ18, Theorem 3.5], namely that if f : X → A is a
generically finite morphism to an abelian varietythen f∗ωX admits a Chen-Jiang decomposition.
First, by Theorem 4.1.4 and Proposition 4.1.8 it suffices to assume that all components of
the cohomology support loci V k(A, f∗ωX) for every k passes through the origin of A. Indeed
choose a finite order point in each such component, then choose an isogeny φ : A′ → A such
that each of those finite points get mapped to the origin of Â′ under φ∗. If X ′ = X ×A A′
and f ′ : X ′ → A′ is the second projection, then φ∗f∗ωX = f ′∗ωX′ , and the components of
V k(A′, f ′∗ωX′) all pass through the origin of A′.

Chen and Jiang’s proof of [CJ18, Theorem 3.4] is then essentially to show the following
result, and prove that the conditions are satisfied when f is generically finite.

Lemma 4.2.1. Assume all components of each V k(A, f∗ωX) pass through 0 ∈ A. Suppose
that for each k > 0, and for each component B̂ of V k(A, f∗ωX) of codimension k, there exists
an M-regular sheaf FB on B with the following properties.
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1. If pB : A → B is dual to the inclusion B̂ → Â, then f∗ωX admits p∗BFB as a direct
summand.

2. For general β ∈ B̂, hk(A, f∗ωX ⊗ p∗Bβ) = h0(B,FB ⊗ β)

Then f∗ωX admits a Chen-Jiang decomposition.

Proof. Following the notation of [CJ18], let SkX denote the set of codimension k components
of V k(A, f∗ωX). Then Step 2 of the proof of [CJ18, Theorem 3.4] applies verbatim to show
that there exists a decomposition

f∗ωX ∼= W ⊕
⊕

k>0,B̂∈Sk
X

p∗BFB

It remains to show that W is M-regular. This follows from the arguments of Step 3 of the
proof of [CJ18, Theorem 3.4] and the second point in the statement of this lemma.

As outlined in the introduction, Chen and Jiang critically use the fact that if f : X → Y is
generically finite and surjective, then f∗ωX is a direct summand of ωY . The main new result
is Theorem 4.0.2, which serves as a generalization of this statement to arbitrary morphisms.
We defer the proof of this to Section 4.3, but recall the statement here.

Corollary 4.2.2. Suppose f : X → A is a morphism from a smooth projective variety X to
an abelian variety A. Then Rif∗ωX admits a Chen-Jiang decomposition on A for all i.

Proof. For i > 0, there exists by work of Kollár [Kol86b, Corollary 2.24] a smooth variety Z
with dimZ = dimX − i and a morphism φ : Z → A such that Rif∗ωX is a direct summand
of φ∗ωZ (the claim about the dimension of Z follows from the proof of Kollár’s corollary; in
fact Z is a generic intersection of i hyperplane sections of some birational model of X). The
result follows by Proposition 4.1.7.

Remark 4.2.3. The proof of Corollary 4.2.2 for a fixed X and i > 0 only relies on Theorem 4.0.1
in the case of varieties with strictly smaller dimension than X. In the proof of Theorem 4.0.1,
we can thus assume that Rif∗ωX admits a Chen-Jiang decomposition for all i > 0 by induction
on dimX.

Proof of Theorem 4.0.1. By Theorem 4.1.4 and Proposition 4.1.8, we can assume that all
components of the cohomology support loci V k(A, f∗ωX) are in fact abelian subvarieties. It
suffices to verify the conditions of Lemma 4.2.1. Namely, suppose B̂ is a codimension k
component of V k(A, f∗ωX) with k > 0, and p : A→ B is dual to the inclusion B̂ ⊂ Â. Then
we must show that there exists an M-regular sheaf F on B such that hk(A, f∗ωX ⊗ p∗β) =
h0(B,F ⊗ β) for general β ∈ B̂, and that f∗ωX admits p∗F as a direct summand.

Let Y ⊂ A be the image of f , and p(Y ) = Z ⊂ B. Let g : Y → Z denote the restriction
of p and q = g ◦ f . By Lemma 4.1.9, g is a smooth fibration of relative dimension k, and
ωY/Z is trivial. Now let πZ : Z ′ → Z be a resolution of singularities of Z, and construct the
following diagram by pullback.
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X ′ Y ′ Z ′

X Y Z

f ′

πX

g′

πY πZ

f g

Then g′ is again a smooth fibration of relative dimension k, and ωY ′/Z′ is trivial. By

Theorem 4.0.2 applied to the sequence X ′
f ′−→ Y ′

g′−→ Z ′, we can now conclude that f ′∗ωX′
admits g′∗Rkg′∗f

′
∗ωX′ as a direct summand. Pushing forward to Y it follows that f∗ωX admits

g∗Rkg∗f∗ωX as a direct summand, by flat base change along g and the fact that πX∗ωX′ = ωX
since πX is birational.

To apply Lemma 4.2.1, it then suffices to show that Rkg∗f∗ωX admits as direct summand
an M-regular sheaf F such that h0(B,Rkp∗f∗ωX ⊗ β) = h0(B,F ⊗ β) for general β ∈ B̂. It
suffices to show that Rkg∗f∗ωX admits a Chen-Jiang decomposition as a sheaf on B, as we
can then take F to be the M-regular summand of the decomposition.

But Rkg∗f∗ωX is a direct summand of Rkq∗ωX by Kollár’s result (Theorem 4.1.6). By
dimensional induction and Corollary 4.2.2 (see Remark 4.2.3), Rkq∗ωX admits a Chen-Jiang
decomposition on B, hence so does Rkg∗f∗ωX by Proposition 4.1.7.

4.3 Splitting of direct images of canonical bundles

The goal of this section is to prove Theorem 4.0.2. More precisely, suppose given surjective

morphisms of smooth varieties X
f−→ Y

g−→ Z where g is flat. Let q = g ◦ f . We will construct
a morphism ΨX : f∗ωX → g!Rkg∗f∗ωX [−k] where k = dimY − dimZ; as g is flat, this is
actually a map of sheaves. We will then show that this morphism is split surjective in the
setting of Theorem 4.0.2, using the results by Kollár outlined in Section 4.1.2.

4.3.1 Relative Gysin morphism for canonical bundles

To construct the desired morphism, note first that Rig∗f∗ωX vanishes for i > k by Kollár’s
result (Theorem 4.1.6), hence Rg∗f∗ωX , as an object of the derived category of coherent
sheaves on Z, is concentrated in degrees 0 to k. Thus the projection to the kth cohomology
sheaf gives a map Rg∗f∗ωX → Rkg∗f∗ωX [−k]. By adjunction this corresponds to a morphism

ΨX : f∗ωX → g!Rkg∗f∗ωX [−k].

Since Y and Z are smooth and g is flat of relative dimension k, we have

g!Rkg∗f∗ωX [−k] ∼= ωY/Z ⊗ g∗Rkg∗f∗ωX .

Note that there’s a canonical morphism Rkg∗f∗ωX → Rkq∗ωX , namely the edge map from
the composed functor spectral sequence Rig∗R

jf∗ωX =⇒ Ri+jq∗ωX . By Kollár’s result
(Theorem 4.1.6), this map is an inclusion of a direct summand. Pulling this back to Y , and
applying twists by canonical bundles and composing with twists of ΨX , yields the following
morphisms.
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f∗ωX ωY/Z ⊗ g∗Rkg∗f∗ωX

f∗ωX/Z ωY/Z ⊗ g∗Rkg∗f∗ωX/Z ωY/Z ⊗ g∗Rkq∗ωX/Z

f∗ωX/Y g∗Rkg∗f∗ωX/Z g∗Rkq∗ωX/Z

ΨX

ΨX/Z

Ψ′
X/Z

ΨX/Y

Ψ′
X/Y

Lemma 4.3.1. For a general point y ∈ Y , let F = f−1(y), G = q−1(g(y)) and H = g−1(g(y)).

1. The fibre Ψ′X/Y |y : H0(F, ωF ) → Hk(G,ωG) of Ψ′X/Y is the Gysin morphism of the
inclusion F ⊂ G.

2. The fibre of ΨX/Y at y is a surjective morphism

ΨX/Y |y : H0(F, ωF )→ Hk(H, (f |G)∗ωG).

3. Furthermore, let z = g(y) and assume g is a fibration. Then the fibre (g∗ΨX/Z)|z of
g∗ΨX/Y : q∗ωX/Y → Rkg∗f∗ωX/Z at z is an isomorphism for general y.

The notation can be summarized in the following commuting diagram, where all squares
are cartesian.

F G X

{y} H Y

{z} Z

Proof. Step 1: Identifying fibres of Ψ′X/Y with Gysin morphisms.

By generic base change (Proposition 4.1.10), we can assume Z is a point, so G = X,H = Y
and F is a general fibre of f . Then dimY = k, dimX = d+ k, and dimF = d.

Taking a log resolution of Y , we can furthermore assume that the the discriminant locus
of f is normal crossings. By Kollár’s result (Theorem 4.1.5) all the higher direct images
Rif∗ωX are then locally free. At a general y ∈ Y , we get a sequence

H0(F, ωF )→ Hk(Y, f∗ωX)→ Hk(X,ωX),

and the linear dual is a sequence

Hd(X,OX)→ H0(Y,Rdf∗OX)→ Hd(F,OF )
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by Serre duality on the spaces involved. We claim that the first morphism is the edge map
from the second page of the Leray spectral sequence for OX , the second the base change
morphism to the fibre, and the composition as a result the restriction to a fibre.

Let
DY (−) = R Hom(−, ωY [dimY ])

be the Serre duality functor for Y and similarly DX for X. Then

DY (Rf∗ωX) = Rf∗OX [dimX],

and since the discriminant locus of f is a normal crossings divisor, the Rif∗ωX are locally
free and

DY (Rif∗ωX [−i]) = Rd−if∗OX [i+ dimY ],

recalling that d = dimX − dimY .
To compute the dual of the fibre

ΨX/Y |y : H0(F, ωF )→ Hk(Y, f∗ωX),

we can apply Hom(−,OY ) and compute fibres of the resulting morphism, since the sheaves
involved are locally free. But since ΨX/Y = ΨX ⊗ ω−1

Y we have

Hom(ΨX/Y ,OY ) = DY (ΨX)[− dimY ].

Now the morphism ΨX is constructed as the composition

f∗ωX → g!Rg∗f∗ωX → g!Rkg∗f∗ωX [−k]

where the first morphism is the unit of adjunction, and the second is the projection to the
highest cohomology sheaf. The (Serre) dual of the former is the counit of adjunction

g∗Rg∗R
df∗OX → Rdf∗OX ,

while the dual of the latter is the inclusion

g∗R
df∗OX → Rg∗R

df∗OX

of the lowest direct image along g. The composition is thus just the counit of the non-
derived adjunction, namely g∗g∗R

df∗OX → Rdf∗OX . Since Z is a point, g∗g∗R
df∗OX =

H0(Y,Rdf∗OX)⊗OY , and the fibre at a general y ∈ Y is just given by restricting a global
section to the fibre over y, so H0(Y,Rdf∗OX)→ Hd(F,OF ) in the sequence above is given
as claimed.

The morphism
Hk(Y, f∗ωX)→ Hk(X,ωX)

is an edge map in the Leray spectral sequence for ωX with respect to f , induced by the
canonical map f∗ωX → Rf∗ωX . The edge map

Hd(X,OX)→ H0(Y,Rdf∗OX)
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in the Leray spectral sequence for OX is similarly induced by the projection Rf∗OX →
Rdf∗OX [−d] to the highest direct image (the ones in degree > d vanishing by duality). We
claim that these maps get identified under DY .

Let K0 d−→ K1 → · · · be any locally free resolution of Rf∗ωX . Then the inclusion f∗ωX →
Rf∗ωX is canonically identified with the inclusion ker d→ K0. Applying DZ (and dropping
the index shifts from the notation) gives a resolution (· · · → K1∨ → K0∨)⊗ ωY of Rf∗OX .
The inclusion ker d→ K0 gets mapped under DY to the surjection (K0∨ → coker d∨)⊗ ωY .
But this is just the canonical map Rf∗OX → Rdf∗OX [−d] as desired. This proves the claim
that Ψ′X/Y is the Gysin morphism on general fibres.

Step 2: Surjectivity of general fibres of ΨX/Y .

Let us now show that the restriction

H0(Y,Rdf∗OX)→ Hd(F,OF )

is injective. Suppose that α ∈ H0(Y,Rdf∗OX) vanishes when restricted to some point y0 in
the smooth locus Y 0 ⊂ Y of f . Lift α to an element α̃ of Hd(X,OX), and let X0 = f−1(Y 0)
and f 0 : X0 → Y 0 be the restriction of f . Since f 0 is smooth, Rdf 0

∗CX0 is a local system,
and the Leray spectral sequence for CX0 with respect to f 0 degenerates, we get a map

π : Hd(X,CX)→ H0(Y 0, Rdf 0
∗CX0).

Furthermore, the fibre of Rdf 0
∗CX0 at y ∈ Y 0 is exactly Hd(F,C). Applying the Hodge

decomposition for X and F , the restriction of π(α̃) to y equals the restriction of α to y,
which vanishes for y = y0. But π(α̃) is then a section of a local system which vanishes at a
point, and since Y 0 is connected, π(α̂) must thus be identically 0. It follows that α vanishes
at every y ∈ Y 0. As Rdy∗OX is locally free, and since α vanishes on a dense open set, we get
α = 0. This dually gives the desired surjectivity.

Step 3: Surjectivity of general fibres of g∗ΨX/Y .

For the final statement of the lemma, consider the monodromy action of π1(Y 0) on Hd(F,C),
and the subspace Hd(F,C)π1(Y 0) of invariants under this action.

Define H0(F, ωF )π1(Y 0) as the preimage of Hd(F,C)π1(Y 0) under the inclusion H0(F, ωF ) ↪→
Hd(F,C). Note that π1(Y 0) does not act on H0(F, ωF ); we are considering invariants under
the action on the larger space Hd(F,C).

Consider the following commuting diagram.

H0(Y, f∗ωX/Y ) Hk(Y, f∗ωX)

H0(F, ωF ) H0(F, ωF )π1(Y 0)

H0(ΨX/Y )

ΨX/Y |y

⊇

We claim that the right side vertical map is an isomorphism, while the image of the restriction
morphism H0(Y, f∗ωX/Y )→ H0(F, ωF ) contains H0(F, ωF )π1(Y 0); this would yield the desired
surjectivity.
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Define dually Hd(F,OF )π1(Y 0) ⊂ Hd(F,OF ) as the image of Hd(F,C)π1(Y 0) under the
canonical projection Hd(F,C) → Hd(F,OF ). Note again that π1(Y

0) does not act on
Hd(F,OF ) by itself, only on the larger Hd(F,C).

Then Hd(F,OF )π1(Y 0) is exactly the image of the restriction morphism

H0(Y,Rdf∗OX)→ Hd(F,OF ).

Indeed the image of the restriction map Hd(X,OX)→ Hd(F,OF ) is exactly Hd(F,OF )π1(Y 0)

by the global invariant cycles theorem and the fact that the restriction map in singular
cohomology is a morphism of Hodge structures, and the coherent restriction map factors
through H0(Y,Rdf∗OX).

We conclude that the restriction morphism gives an isomorphism

H0(Y,Rdf∗OX)
∼−→ Hd(F,OF )π1(Y 0)

by the injectivity from the previous step of this proof. SinceHd(F,OF )π1(Y 0) andH0(F, ωF )π1(Y 0)

are dual, we conclude that the restriction of ΨX/Y |y to H0(F, ωF )π1(Y 0) is an isomorphism.
Finally, observe that by the global invariant cycles theorem, the image of the restriction

H0(X,Ωd
X)→ H0(F, ωF ) is exactly H0(F, ωF )π1(Y 0), and that this restriction factors through

H0(Y, f∗ωX/Y ); in fact

H0(Y, f∗ωX/Y )→ H0(F, ωF )π1(Y 0)

is an isomorphism by the same type of argument as in step 2. It follows that

H0(ΨX/Y ) : H0(Y, f∗ωX/Y )→ Hk(Y, f∗ωX)

is an isomorphism as desired.

The case where Z is a point immediately gives the following.

Corollary 4.3.2. Suppose f : X → Y is a surjective morphism of relative dimension k
between smooth projective varieties. If Hk(Y, f∗ωX) 6= 0 then ωX/Y is effective.

4.3.2 Morphism of VHS

Taking the direct image of Ψ′X/Z along g yields

g∗ΨX/Z : q∗ωX/Z → g∗ωY/Z ⊗Rkq∗ωX/Z .

The goal is to recover this morphism from a map of VHS, at least over the locus where g and
q are smooth.

Let Z0 ⊂ Z be a Zariski-open subset over which q and g are smooth, and let q0 : X0 → Z0

and g0 : Y 0 → Z0 be the corresponding restrictions. Let d = dimX − dimY . We construct
a morphism of VHS Rkg0

∗QY 0 ⊗ Rdq0
∗QX0 → Rd+kq0

∗QX0 as follows. A section of Rkg0
∗QZ0

is locally a cohomology class α ∈ Hk(g−1(U),Q) and a section of Rdq0
∗QX is locally a class

β ∈ Hd(q−1(U),Q) for small open U ⊂ Z. Thus we get an element f ∗α∧β ∈ Hd+k(q−1(U),Q),
which defines a local section of Rd+kq0

∗QX0 . As this is compatible with the Hodge filtrations,
we get a morphism of VHS.

As q0 and g0 are smooth, dualizing gives the desired map Φ: Rd+kq0
∗QX0 → Rkg0

∗QY 0 ⊗
Rd+2kq0

∗QX0 .
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Lemma 4.3.3. Suppose g is smooth and ωY/Z is trivial. On the lowest graded piece of the
Hodge filtration, the morphism

Rd+kq0
∗QX0 ⊗OZ0 → Rkg0

∗QY 0 ⊗Rd+2kq0
∗QX0 ⊗OZ0

induced by Φ agrees with the restriction to Z0 of

g∗Ψ
′
X/Z : q∗ωX/Z → g∗ωY/Z ⊗Rkq∗ωX/Z .

Proof. As q0 and g0 are smooth, base change applies to the direct images of the line bundles.
By proper base change for the direct images of constant sheaves, it thus suffices to assume
that Z is a point. Then g∗Ψ

′
X/Z is just a map

H0(X,ωX)→ H0(Y, ωY )⊗Hk(X,ωX),

and we must identify the dual

Hk(Y,OY )⊗Hd(X,OX)→ Hd+k(X,OX)

with the cup product map, by definition of Φ.
By assumption, ωY/Z = ωY is trivial, so fix an isomorphism by choosing a non-zero

τ ∈ H0(Y, ωY ). Suppose given

α ∈ Hk(Y,OY ), β ∈ Hd(X,OY ), γ ∈ H0(X,ωX).

Since Hk(Y,OY ) is dual to H0(Y, ωY ), we can assume that α is dual to τ under Serre duality.
The claim is that

f ∗α ∧ β ∧ γ = (α⊗ β,Ψ′X/Z(γ))

in Hk+d(X,ωX), where the right hand side is the Serre duality pairing of Hk(Y,OY ) ⊗
Hd(X,OX) with H0(Y, ωY )⊗Hk(X,ωX). To see this, note that triviality of ωY implies that
the natural map

H0(Y, f∗ωX/Y )⊗H0(Y, ωY )→ H0(Y, f∗ωX) = H0(X,ωX)

is an isomorphism. Thus there’s a global section ψ ∈ H0(Y, f∗ωX/Y ) such that γ = τ ⊗ ψ.
At least over the smooth locus of Y , ψ is nothing but a holomorphic d-form on X such that
γ = f ∗τ ∧ ψ.

For general y ∈ Y , let F = f−1(y). Then Ψ′X/Z(γ) is exactly the Gysin morphism of the

inclusion F ⊂ X applied to the restriction ψ|F , tensor τ , by Lemma 4.3.1. To compute, we
note now that

(α⊗ β,G(γ)) = (α, τ) · (β|F , ψ|F )

= (β|F , ψ|F )

since α and τ are dual. In particular, (β|F , ψ|F ) is independent of y (this is related to
monodromy invariance of ψ|F ). On the other hand,

f ∗α ∧ β ∧ γ = f ∗(α ∧ τ) ∧ β ∧ ψ

To integrate the right hand side, we integrate β ∧ ψ over fibres F , then integrate α ∧ τ over
Y ; but that gives exactly the desired result.
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Finally, we can state and prove the following more precise version of Theorem 4.0.2.

Theorem 4.3.4. Suppose X
f−→ Y

g−→ Z are surjective morphisms of smooth projective
varieties, and let q = g ◦ f . Suppose further that g is a smooth fibration and ωY/Z is trivial.
Then the morphism ΨX : f∗ωX → g∗Rkg∗f∗ωX is split surjective.

Proof. By generic base change (Proposition 4.1.10), we can fix an open Z0 ⊂ Z over which q
is smooth and base change to fibres over Z applies to the sheaves f∗ωX and g∗Rkg∗f∗ωX .

We can in fact assume that Z \ Z0 is a normal crossings divisor. If not, consider a log
resolution πZ : Z ′ → Z of Z \Z0; by pullback we get the following diagram, where the vertical
maps are birational.

X ′ Y ′ Z ′

X Y Z

f ′

πX

g′

πY πZ

f g

Assuming f ′∗ωX′
∼= g′∗Rkg′∗f

′
∗ωX′ ⊕Q, we get f∗ωX ∼= g∗Rkg∗f∗ωX ⊕ πY ∗Q. Indeed

πY ∗f
′
∗ωX′ = f∗πX∗ωX′

= f∗ωX

since πX is birational, and on the other hand

πY ∗g
′∗Rkg′∗f

′
∗ωX′ = g∗πZ∗R

kg′∗f
′
∗ωX′

= g∗Rkg∗f∗ωX

where the first line is by flat base change along g, and the second by Kollár’s result (Theo-
rem 4.1.6).

Assume thus that Z \Z0 is a normal crossings divisor. In particular, q is smooth away from
a normal crossings divisor, which implies that Rkq∗ωX and its direct summand Rkg∗f∗ωX are
locally free by Kollár’s result (Theorem 4.1.5). Consider then

g∗ΨX/Z : q∗ωX/Z → g∗ωY/Z ⊗Rkq∗ωX/Z

which, by Lemma 4.3.3, is induced over Z0 by a morphism of VHS

Φ: Rd+kq0
∗QX0 → Rkg0

∗QY 0 ⊗Rd+2kq0
∗QX0 .

Since the category of polarizable VHS is semisimple [PS08, Theorem 10.13], there is a direct
sum decomposition of VHS Rd+kq0

∗QX0
∼= I ⊕K where K is the kernel of Φ, and I maps

isomorphically to the image of Φ. We also have a decomposition Rkg0
∗QZ0 ⊗Rd+2kq0

∗QX0
∼=

I ⊕ C, and the resulting I ⊕K → I ⊕ C is just the identity map on I while vanishing on K.
Again by Theorem 4.1.5, the lowest piece of the Hodge filtration of the upper canonical

extension of Rd+kq0
∗QX0 is exactly q∗ωX/Z , while the same construction applied to Rkg0

∗QY 0⊗
Rd+2kq0

∗QX0 yields g∗ωY/Z ⊗ Rkq∗ωX/Z . Note in the latter case that Rkg0
∗QY 0 has trivial

monodromy around the complement of Z0, since g is smooth, so taking canonical extensions
and tensor products does in fact commute in this case by the discussion in Section 4.1.2.
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Let I ,K ,C be the lowest pieces of the Hodge filtration on the upper canonical extensions
of I,K and C respectively. The formation of canonical extensions is compatible with direct
sums, so q∗ωX/Z ∼= I ⊕K . By Lemma 4.3.3, the image of g∗Ψ

′
X/Z inside g∗ωY/Z ⊗Rkq∗ωX/Z

agrees with I over Z0. Since all sheaves involved are locally free, it follows that I is in fact
the image of g∗Ψ

′
X/Z .

Back on Y , the push-pull adjunction for g applied to Ψ′X/Z , together with the projection
formula, gives the following commuting diagram.

g∗q∗ωX/Z g∗g∗ωY/Z ⊗ g∗Rkq∗ωX/Z

f∗ωX/Z ωY/Z ⊗ g∗Rkq∗ωX/Z

g∗g∗Ψ′X/Z

Ψ′
X/Z

As ωY/Z is trivial and g is a fibration, the right side vertical map is an isomorphism.
Moreover, g∗I is a direct summand of both the top left and bottom right corners, and the
composition through f∗ωX/Z , when restricted to g∗I , is the identity. It thus remain only to
show that I = Rkg∗f∗ωX/Z , as it would then follow that g∗I = g∗Rkg∗f∗ωX/Z is the image
of Ψ′X/Z , hence also of ΨX/Z , and the previous diagram yields a splitting of ΨX/Z as desired.

Thus we must show that ΨX/Z remains surjective after pushing forward to Z. On Z,
I and Rkg∗f∗ωX/Z are both locally free subsheaves of Rkq∗ωX/Z (in fact direct summands).
Thus it suffices to show that for general z ∈ Z, the fibre of g∗ΨX/Z at z is surjective. By
generic base change (Proposition 4.1.10) we can assume that Z is just a point, in which case
we are to show that the map induced by ΨX/Z on global sections is surjective.

Since ΨX/Z and ΨX/Y are related by twisting by ωY/Z , fixing a trivialization of ωY/Z
identifies the two maps, so we are done by Lemma 4.3.1.

It seems more natural to consider VHS on Y rather than Z to get the splitting, but
there’s a technical issue with that approach. Namely, one ends up having to take a resolution
π : Y ′ → Y of Y that doesn’t come from a resolution of Z by pullback. One then wants to
express π∗g∗Rkg∗f∗ωX/Z as a direct summand of the canonical extension of a VHS pulled
back from an open subset of Z, with the hope of splitting ΨX/Y . While g is smooth, so
functoriality of canonical extensions is not an issue there, the composition π ◦ g is not smooth,
so it’s not clear what the canonical extension on Y ′ gives. This functoriality issue can be
fixed by appealing to Hodge modules, which would give a proof along these lines even without
the assumptions on g and ωY/Z .

4.3.3 Effectiveness of relative canonical bundles and fibres of the
Albanese morphism

Corollary 4.3.2 can be used to give a variation of a proof of a theorem by Jiang. For a smooth
projective variety X, let Pn = h0(X,ωnX) denote the plurigenera of X.

Theorem 4.3.5 ([Jia11, Theorem 3.1]). Suppose X be a smooth projective variety with
P1(X) = P2(X) = 1. Then the fibres of the Albanese mapping are connected.
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Proof. By [HP02], it is known that the Albanese mapping aX : X → Alb(X) is surjective
in this case. Taking the Stein factorization and resolving singularities of the middle term

(replacing X with a birational modification) yields a factorization X
g−→ V

b−→ Alb(X) of aX
where b is generically finite. It is a theorem of Chen and Hacon [CH01] that if, in this case,
P1(V ) = P2(V ) = 1, then the Albanese mapping of V is birational, and as a consequence
also b is birational so aX has connected fibres. To prove the theorem it thus suffices to show
that ωX/V is effective.

However, it follows from the theory of GV-sheaves, by an observation of Ein and
Lazarsfeld [EL97], that Hg(Alb(X), aX∗ωX) 6= 0 since P1(X) = P2(X) = 1, where g =
dim Alb(X) = dimV . Since b is generically finite, and by Kollár’s result (Theorem 4.1.6),
Hg(Alb(X), aX∗ωX) = Hg(V, g∗ωX). Then Corollary 4.3.2 gives the conclusion.

44



Bibliography

[CH01] Jungkai A. Chen and Christopher D. Hacon. “Characterization of abelian varieties”.
Inventiones Mathematicae 143.2 (Feb. 2001), pp. 435–447.

[CJ18] Jungkai Alfred Chen and Zhi Jiang. “Positivity in varieties of maximal Albanese
dimension”. Journal für die reine und angewandte Mathematik (Crelles Journal)
2018.736 (Mar. 2018), pp. 225–253.
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