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Abstract of the Dissertation

Symplectic Involutions: from Cubic Fourfolds to OG10 type Manifolds

by

Lisa Marquand

Doctor of Philosophy

in

Mathematics

Stony Brook University

2023

Irreducible holomorphic symplectic (IHS) manifolds are one of the building blocks of

Kähler manifolds with trivial first Chern class, but very few examples are known. One

strategy for potentially producing new examples is to study the fixed locus of finite groups

of symplectic birational transformations of the known examples. We classify symplectic

birational involutions of IHS manifolds deformation equivalent to O’Grady’s 10 dimensional

example (OG10 type). In particular, we show that there are 6 possible involutions, classified

by their action on the second cohomology. From a cubic fourfold V ⊂ P5 , one can construct

a IHS manifolds of OG10 type, equipped with a Lagrangian fibration X → P5 . Three of the

possible symplectic involutions can be obtained via this construction; explicitly, one starts

with a cubic fourfold admitting an involution that induces a symplectic birational involution of

X. We complete the classification of involutions of a cubic fourfold Hodge theoretically, which

is equivalent to identifying a sublattice A(V )prim ⊂ H4(V,Z) spanned by classes of surfaces

contained in such a cubic. As a byproduct, we show that cubic fourfolds with involutions

exhibit the full range of behaviour with regards to rationality conjectures. In particular, a

cubic fourfold V with an involution that fixes a plane P ⊂ V point-wise is rational.
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Introduction

The main topic of this thesis is the study and classification of birational transformations of

irreducible holomorphic symplectic manifolds (IHS manifolds) of a specified deformation

type. A compact, simply connected Kähler manifold X is an IHS manifold if it admits a

unique nowhere degenerate holomorphic 2-form. Such manifolds are also known as compact

hyperkähler manifolds, and are higher dimensional generalisations ofK3 surfaces. According

to a celebrated result of Beauville and Bogomolov, they are one of three building blocks of

manifolds with trivial first Chern class, alongside abelian varieties and strict Calabi-Yau

varieties.

IHS manifolds have very rich geometry, and have been the focus of a great deal of study.

Despite this, very few examples are known: in every even dimension, there are two deformation

types, discovered by Beauville [Bea83]. The first of these is the Hilbert scheme of points

on a K3 surface (an IHS of K3[n] type), the second the generalised Kummer manifolds. In

addition, there are two sporadic examples: one in dimension 6 and one in dimension 10,

both discovered by O’Grady [O’G99, O’G03]. We call manifolds deformation equivalent to

these examples IHS manifolds of OG6 type or OG10 type respectively - this thesis will focus

primarily on the later example. Both examples were originally obtained as a symplectic

desingularisation of certain moduli spaces, parametrising semistable sheaves on either a K3

or an abelian surface. Interestingly, one can construct examples of IHS manifolds from a

cubic fourfold V ⊂ P5. Beauville and Donagi showed that the Fano variety of lines on a

cubic fourfold is an IHS manifold of K3[2] type [BD85]. C. Lehn, M. Lehn, Sorger and van

Straten constructed an 8-dimensional example of K3[4] type by considering twisted cubics on

V [LLSvS17]. Laza, Saccà and Voisin constructed manifolds of OG10 type, by compactifying

an intermediate Jacobian fibration associated with V [LSV17]. In this thesis we will heavily

exploit this connection between IHS manifolds of OG10 type and cubic fourfolds.

The search for new examples of IHS manifolds is what motivated the study of symplectic

automorphisms. If we consider a finite group of symplectic automorphisms of a known IHS

manifold (that is, an automorphism that preserves the holomorphic symplectic form), then
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both the fixed locus and the quotient inherit induced holomorphic symplectic forms. The fixed

point set of a bi-regular morphism is necessarily smooth, and so the fixed locus is an example

of a holomorphic symplectic manifold - one hopes that by choosing interesting groups of

symplectic automorphisms we could find new examples of IHS. Similarly, the quotient is also

holomorphic symplectic, but necessarily acquires singularities. One would like a classification

of such automorphisms for each deformation type, this is an interesting problem even in the

case of K3 surfaces.

In his celebrated paper [Muk88], Mukai classified symplectic automorphisms of a K3

surface. This was further streamlined by Kondō [Kon98], who related automorphisms of K3

surfaces to automorphisms of the Niemeier lattices. For a K3 surfaces S, the fixed locus of a

finite group of symplectic automorphisms G is necessarily a collection of isolated points. The

resolution of singularities of the quotient S/G is again a K3 surfaces.

Adapting Kondō’s approach, Mongardi obtained a classification of prime order symplectic

automorphisms of manifolds of K3[n] type [Mon13, Mon16]; similar results were obtained

by Huybrechts [Huy16]. A full classification of symplectic automorphisms of manifolds of

OG6 type was obtained in [GOV20]. Once such a classification is obtained, a next step is

to study the fixed loci; this is hard in general, as one needs a suitable geometric model.

Kamenova, Mongardi and Oblomkov classify the fixed locus for symplectic involutions of

K3[n], by studying the involution induced from a symplectic involution of the underlying

K3 surface. They also studied the case of manifolds of generalised Kummer type [KMO18].

Unfortunately (from the point of view of the search for new IHS manifolds), in both cases

the fixed loci consists of IHS manifolds of K3[m] type of lower dimension, and finitely many

isolated points.

The remaining case is that of IHS manifolds of OG10 type; recently, it was shown that

such a manifold can never admit a non-trivial symplectic automorphism [GOV20]. It seems

that restricting ourselves to symplectic automorphisms is too strong a notion: one can instead

consider symplectic birational involutions. Again, the fixed locus will inherit a holomorphic

symplectic form, but now may possibly acquire some mild singularities. This idea is due to

Markushevich and Tikhomirov [MT07], who provide a new construction of an IHS variety

as a fixed locus for a birational symplectic involution of a manifold of K3[6] type. Their

construction and the study of the singularities exploits an explicit Lagrangian fibration

structure whose general fiber is an abelian variety. These techniques were generalised and

developed in [ASF15].

In this thesis we focus on the classification of symplectic birational involutions of IHS
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manifolds of OG10 type. We use two main techniques. The first is a generalisation of the

method of Kondō, Mongardi and Huybrechts to the case of OG10 type; more specifically,

we relate certain involutions to involutions of the Leech Lattice. Our second technique is

more geometric: we consider birational symplectic involutions that are induced from a cubic

fourfold, via the construction of ([LSV17], [Sac21]). These involutions have the best chance

of producing new IHS varieties as the fixed locus, and we are able to study them effectively

utilising the well-understood geometry of cubic fourfolds. However, this is not quite enough to

complete the classification - there are two more possible involutions that do not occur via the

above methods. In joint work with S. Muller [MM23a], we use lattice enumeration techniques

to show the existence of these unexpected involutions, and complete the classification.

The main result of this thesis is thus the classification of symplectic birational involutions

for IHS manifolds of OG10 type. We classify an involution of an IHS manifold X by classifying

the induced action on the second cohomology: a birational involution induces an involution

f ∗ ∈ O(H2(X,Z)). We denote by H2(X,Z)+, H2(X,Z)− the invariant and coinvariant

sublattices; identifying these sublattices determines the action of f ∗. More precisely:

Theorem A (Theorem 4.0.1). Let X be an IHS manifold of OG10 type, f ∈ Bir(X) a

symplectic birational involution. Then the pair H2(X,Z)+, H2(X,Z)− appears below:

H2(X,Z)− H2(X,Z)+
E8(2) U3 ⊕ E8(2)⊕ A2

D+
12(2) E6(2)⊕ U2(2)

E6(2) U3 ⊕D3
4

M U2 ⊕ ⟨2⟩ ⊕ ⟨−2⟩ ⊕ E8(2)
G12 ⟨2⟩3 ⊕ ⟨−2⟩9
G16 ⟨2⟩3 ⊕ ⟨−2⟩5

Here, the lattices M,G12, G16 are explicitly described, and are of rank 10, 12, 16 respectively.

Moreover, for each involution of H2(X,Z) as above, there exists a manifold of OG10 type

with a symplectic birational involution whose induced action is the prescribed involution.

The geometry of an IHS manifold X is governed by its second cohomology - we classify

each involution by classifying the induced action on H2(X,Z). The Global Torelli theorem

due to Markman, Huybrechts and Verbitsky provides us with a way to determine when a

manifold of OG10 type with a prescribed involution exists, but it is purely theoretical. It is

much harder to get a geometric description of such a manifold; nevertheless, this is possible

for three of the involutions.
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The idea is to induce involutions of manifolds of OG10 type via the known constructions.

We focus on the LSV construction: starting with a cubic fourfold V ⊂ P5, one can construct

a compactification of the intermediate Jacobian of V , denoted XV (see [LSV17], [Sac21]). In

particular, XV is an IHS manifold with a Lagrangian fibration over P5, whose general fiber is

the intermediate Jacobian of a smooth hyperplane section of V . An involution of V ⊂ P5

induces a birational involution of XV , preserving this fibration. More precisely:

Theorem B (Theorem 4.3.3). There exists three symplectic birational involutions of a

manifold of OG10 type that are induced from an involution of a cubic fourfold. Conversely,

a symplectic birational involution of a manifold of OG10 type that preserves a Lagrangian

fibration arises from an involution of a cubic fourfold.

Both Theorem A and B will be proved in Chapter 4. In order to do so, we must first

embark on a study of involutions for cubic fourfolds Hodge theoretically - we complete this

classification in Chapter 3. Similarly to the situation for IHS manifolds, automorphisms of

cubic fourfolds can be detected by isometries of the primitive middle cohomology. Classifying

such automorphisms is equivalent to identifying a sublattice A(V )prim ⊂ H4(V,Z) spanned
by algebraic cycles. As a consequence, we show that cubics with involutions exhibit the full

range of behaviour in relation to rationality conjectures. It was conjectured by Harris and

Hassett that if the transcendental cohomology T (V ) := A(V )⊥prim does not embed into the

K3 lattice, then V is not rational [Has99, Has16]. If no such embedding exists, we say that

V is potentially irrational.

Theorem C (Theorems 3.0.1, 3.0.2). Let V be a general cubic fourfold with ϕi an involution

of V fixing a linear subspace of P5 of codimension i. Then either:

1. i = 1, ϕ1 is anti-symplectic and A(V )prim ∼= E6(2), T (V ) ∼= U2 ⊕ D3
4. The algebraic

lattice is spanned by classes of planes contained in X. Here, T (V ) does not embed

into the K3 lattice, and V is potentially irrational.

2. i = 2, ϕ2 is symplectic and A(V )prim ∼= E8(2), T (V ) ∼= A2 ⊕ U2 ⊕ E8(2). The algebraic

lattice is spanned by classes of cubic scrolls contained in V . Here, T (V ) does not

embed into the K3 lattice, and V is potentially irrational.

3. i = 3, ϕ3 is anti-symplectic and

A(V )prim ∼= M, T (V ) ∼= U ⊕ A1 ⊕ A1(−1)⊕ E8(2).

4



The algebraic lattice contains an index 2 sublattice spanned by classes of planes contained

in V . Here, T (V ) does embed into the K3 lattice, and V is predicted to be rational.

Here M is the unique rank 10 even lattice obtained as an index 2 overlattice of D9(2)⊕ ⟨24⟩.

Hassett [Has00] defined a countably infinite union of irreducible divisors Cd in the moduli

space of cubic fourfolds, parametrising special cubic fourfolds that contain additional surface

classes. It turns out that cubic fourfolds with additional symmetries contain many algebraic

surfaces, and are contained in many of the divisors Cd. In particular, we show:

Theorem D. Let M be the 10-dimensional moduli space of cubic fourfolds V ⊂ P5 with

ϕ ∈ Aut(V ) an involution fixing a plane P ⊂ V point-wise. Then

M ⊂
⋂

Cd ̸=∅

Cd.

In particular, V ∈ M is rational.

This geometrically meaningful locus is the largest family known to be contained in⋂
Cd ̸=∅ Cd, and is a 10-dimensional family of rational cubic fourfolds. In contrast, a cubic

fourfold with one of the other two possible involutions is conjecturely irrational.

Structure of the Thesis

Chapter 1 summarizes relevant background material on both IHS manifolds and cubic fourfolds.

We review the known constructions in more detail, as well as collecting the structure of the

Beauville-Bogomolov-Fujiki lattice for each deformation type. We review local and global

deformation behaviour for IHS manifolds, as well as the monodromy group. We discuss the

structure of the Kähler and birational Kähler cone, before reformulating the Global Torelli

theorem in a way that is suitable for the study of symplectic birational involutions. We

review the period map for cubic fourfolds, and describe the construction outlined in [LSV17]

in slightly more detail.

Chapter 2 contains the lattice theoretic results needed to undertake the study of symplectic

involutions. We follow [Nik79b], giving clean exposition of the results needed and providing

proofs where we could not find references in the literature. In particular, we focus on

2-elementary lattices and the theory of overlattices. Most of these results can be found in

[Mar23, Appendix A].

Chapter 3 begins the study of involutions of a cubic fourfold V ⊂ P5. We say an involution

is symplectic if it acts trivially on H3,1(V ). We discuss the case of anti-symplectic involutions,

5



and show that the lattice of primitive algebraic cycles A(V )prim is generated by classes of

planes contained in V . We classify A(V ), A(V )prim, T (V ) for cubics with an anti-symplectic

involution fixing a plane P ⊂ V point-wise, and explore the geometry of such cubics. In

particular, we show that such a cubic fourfold is rational. We also discuss the case of

symplectic involutions, showing that in this case A(V )prim is spanned by classes of rational

normal cubic scrolls. We discuss how a such a cubic fourfold with a symplectic involution

defines a 6 dimensional IHS orbifold.

Chapter 4 is devoted to the proof of our main Theorem A. We begin the classification of

symplectic birational involutions of IHS manifolds of OG10 type by studying involutions that

act trivially on the discriminant group of the Beauville-Bogomolov-Fujiki lattice, using the

knowledge of involutions of the Leech lattice. We make the connection between involutions of

a cubic fourfold and birational involutions of an IHS manifold of OG10 type more precise, and

a criteria for when such an involution is induced in this way. We describe the two unexpected

involutions, and how we completed the classification using lattice enumeration techniques.

Finally, we briefly outline the strategy to study the fixed locus for the symplectic birational

involutions - this is ongoing work.

6



Chapter 1

IHS manifolds of OG10 type

Introduction

The main aim of this thesis is to study symplectic birational involutions of IHS manifolds of

OG10 type; that is, birational involutions that preserve the symplectic form. In this Chapter,

we introduce the main objects of study and collect various technical and classical results

in the theory of IHS manifolds. In §1.1 we give the definition of an IHS manifold precisely,

and introduce the key properties they satisfy: the existence of the Beauville Bogomolov

Fujiki form, the local and global Torelli theorems, and the structure of the birational Kähler

cone. In §1.2 we discuss the group of finite symplectic birational automorphisms for an IHS

manifold, and rephrase the Global Torelli theorem for manifolds of OG10 type in a way suited

for this study.

Cubic fourfolds are closely linked to the study of IHS manifolds; we make this connection

precise in §1.3. We recall the Strong Torelli theorem for cubic fourfolds, and discuss several

constructions of IHS manifolds using the geometry of such a cubic.

1.1 Irreducible holomorphic symplectic manifolds

Definition 1.1.1. An irreducible holomorphic symplectic manifold (or IHS manifold)

is a simply connected, compact, Kähler manifold X such that H0(X,Ω2
X) is generated by a

non-degenerate holomorphic 2-form σ.

Such manifolds are often referred to as compact hyperkähler manifolds, due to an

equivalent definition in the Riemannian geometry context.
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It follows from the above definition that the canonical bundle for an IHS manifold X is

trivial, the complex dimension of X is even, and the abelian group H2(X,Z) is a torsion-free

Z module. A fundamental tool in the study of IHS manifolds is the existence of a canonical,

integral, non-divisible quadratic form qX on the free abelian group H2(X,Z). This form first

appeared in [Bea83, §8] and [Fuj87, Thm 4.7]. We call this form the Beauville-Bogomolov

Fujiki form (BBF form); its signature is (3, b2(X)− 3), and is proportional to the quadratic

form:

x 7→
∫
X

√
td(X)x2.

The BBF form satisfies the Fujiki relation: for all x ∈ H2(X,Z), we have that

x2m = cXqX(x)
m,

where cX is a positive rational number (the Fujiki constant) and m := 1
2
dimX. Further, we

note that qX(x) > 0 for all Kähler (e.g ample) classes x ∈ H2(X,Z). When the context is

clear, we denote qX(x) by x2.

1.1.1 Examples

We study IHS manifolds up to deformation equivalence - indeed, one of the starting points

of the study of IHS manifolds is the existence and unobstructedness of their universal

deformations. For an IHS manifold X, we denote by X → Def(X) its universal deformation.

We say that two IHS manifolds X and X ′ are deformation equivalent if there exists a flat

family X → B and 0, 1 ∈ B such that X0
∼= X and X1

∼= X ′.

At the time of writing, there are very few known deformation types of IHS manifolds.

In dimension two, the only example is a K3 surface, and the BBF form coincides with the

standard intersection form. In every even dimension ≥ 4, there are two known deformation

types, both due to Beauville [Bea83, §6, §7], which we describe momentarily. There are two

exceptional examples, one in dimension 6 and one in dimension 10, which were found by

O’Grady [O’G99, O’G03].

We will briefly outline some constructions below, and record the lattice structure of

(H2(X,Z), qX) for each deformation type. Recall that the lattices Ak, Dk, Ek denote the

standard negative definite root lattices of rank k, and U denotes the hyperbolic plane. The

lattice ⟨n⟩ denotes the lattice Z with e2 = n for a generator e. Further properties of integral

lattices will be recalled in Chapter 2.

Example 1.1.1 (Hilbert schemes of points on a K3 surface). Let S be a K3 surface, not

necessarily projective, and consider the Hilbert scheme (or Douady space) S[n] of n points on

8



S. It is an IHS manifold of dimension 2n. For n ≥ 2, Beauville computed both the Fujiki

constant and the second cohomology group:

H2(S[n],Z) ∼= H2(S,Z)⊕ Zδ.

Here, 2δ is the class of the divisor in S[n] parameterising non-reduced subschemes. The BBF

form of S[n] restricts to the intersection pairing on H2(S,Z) and in particular

(H2(S[n],Z), qS[n]) ∼= U3 ⊕ E2
8 ⊕ ⟨−2(n− 1)⟩.

We say that an IHS manifold X that is deformation equivalent to S[n] is a manifold of K3[n]

type.

Example 1.1.2 (Generalised Kummer varieties). Let A be an abelian surface, A[n+1] the

Hilbert scheme of n+ 1 points of A. This carries a holomorphic symplectic form, however is

not simply connected. Instead, consider the sum morphism

A[n+1] → A, where (a1, . . . an+1) 7→
n+1∑
i=1

ai.

We let Kn(A) denote the fiber of this morphism over 0 ∈ A; this is an IHS manifold as shown

by Beauville. For n = 1, this recovers the Kummer K3 surface associated to A, thus Kn(A) is

called a Generalised Kummer variety. Again, there is a decomposition of second cohomology:

H2(Kn(A),Z) ∼= H2(A,Z)⊕ Zδ,

orthogonal for the BBF form, and as a lattice

(H2(Kn(A),Z), qKn(A)) ∼= U3 ⊕ ⟨−2(n+ 1)⟩.

We say that an IHS manifold that is deformation equivalent to Kn(A) is a manifold of Kumn

type.

Example 1.1.3 (Moduli of sheaves). Let S be a projective K3 surface, and consider a

primitive class v = (r, l, s) ∈ H∗(S,Z), where r ∈ H0(S,Z), l ∈ NS(S) and s ∈ H4(S,Z).

There is a pairing ⟨·, ·⟩ on H∗(S,Z) called the Mukai pairing; choose such a v with ⟨v, v⟩ =
2n− 2. One can construct a projective IHS manifold of K3[n] type as a coarse moduli space

X of stable coherent sheaves on S with Mukai vector v, with respect to a fixed v-generic

ample line bundle on S [O’G97]. One can construct manifolds of Kumn-type in a similar

manner; we omit the details.
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Example 1.1.4 (OG6 and OG10). Let S be a projective K3 surface, and consider the Mukai

vector v = 2w, where w ∈ H∗(S,Z) is primitive with ⟨w,w⟩ = 2. The moduli space X of

stable coherent sheaves on S with Mukai vector 2v is a projective irreducible holomorphic

symplectic variety (IHS variety) of dimension 10, singular along a subvariety of codimension

2. In particular, there exists a holomorphic symplectic two form on the smooth part of X,

which extends to a holomorphic two form on any resolution. For this particular choice of

Mukai vector, O’Grady showed that there exists a resolution of singularities X → X such

that the holomorphic symplectic form extends to a form that is everywhere nondegenerate

on X. Such a resolution is called a symplectic resolution; here X is an IHS manifold.

Moreover, X is a new deformation type of IHS manifold; an example that is deformation

equivalent to such an X is a manifold of OG10 type. A similar construction can be done

starting with an abelian surface; we omit the details and refer the reader to [O’G99, O’G03].

In [Rap08], Rapagnetta computed the BBF form for an IHS manifold of OG10 type.

Indeed, there is an isometry (H2(X,Z), qX) ∼= Λ, where

Λ := U3 ⊕ E2
8 ⊕ A2.

We shall see another construction of manifolds of OG10 type in §1.3.5.

1.1.2 Moduli spaces and the period map

Let X be a IHS manifold whose Beauville-Bogomolov lattice η : (H2(X,Z), qX) ∼= L for a

fixed lattice L. We call a choice of isometry η a marking of X - two marked IHS manifolds

(X, η), (X ′, η′) are isomorphic if there exists an isomorphism f : X → X ′ compatible with

the markings.

Recall that deformations of X are unobstructed, and we denote the universal deformation

of X by X → Def(X). By Ehresmann’s theorem, if η : H2(X,Z) → L is a marking of X,

then there exists a family of markings ηt : H
2(Xt,Z) → L such that η := η0.

We let

DL := {x ∈ P(L⊗ C) | x2 = 0, x · x̄ > 0}+

denote the period domain associated to L, and consider the local period map

P : Def(X) → DL,

associating P(Xt) = [ηt(H
2,0(Xt))].

Theorem 1.1.5 (Local Torelli theorem). [Bea83] The period map P : Def(X) → DL is a

local isomorphism.
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It is true that IHS manifolds satisfy a global Torelli theorem, as proved by Huybrechts,

Markman and Verbitsky. We will state Markman’s Hodge theoretic version in 1.1.7, but in

order to do so we need to introduce the notion of a monodromy operator.

Definition 1.1.2. Let X,X ′ be IHS manifolds. An isomorphism f : H∗(X,Z) → H∗(X ′,Z)
is a parallel-transport operator if there exists a smooth and proper family π : X → B of

IHS manifolds over an analytic base B, with 0, 1 ∈ B, isomorphisms X0
∼= X, X1

∼= X ′ and

a continuous path γ : [0, 1] → B such that the parallel transport in the local system Rπ∗Z
along γ induces the homomorphism f .

A parallel transport operator f : H2(X,Z) → H2(X,Z) is called a monodromy opera-

tor. The monodromy group Mon2(X) is the subgroup of O(H2(X,Z)) consisting of all

monodromy operators. Such isometries are always contained in the index two subgroup of

O(H2(X,Z)) consisting of orientation preserving isometries, denoted by O+(H2(X,Z)).
The monodromy group has been completely described for all known deformation types of

IHS manifolds. In particular, for manifolds of OG10 this was computed recently by Onorati:

Theorem 1.1.6. [Ono21, Theorem 5.4] Let X be of OG10 type. Then

Mon2(X) ∼= O+(H2(X,Z)).

We can now state Markman’s Hodge theoretic version of the global Torelli theorem.

Theorem 1.1.7. [Mar11, Theorem 1.3] Let X,X ′ be IHS manifolds that are deformation

equivalent.

1. X and X ′ are birational if and only if there exists a monodromy operator f : H2(X,Z) →
H2(X ′,Z) that is a Hodge isometry.

2. Let f : H2(X,Z) → H2(X ′,Z) be a monodromy operator which is a Hodge isometry.

Then there exists an isomorphism f̃ : X ′ → X such that f = f̃ ∗ if and only if f maps

some Kähler class on X to a Kähler class on X ′.

In order to study birational transformations, we are reduced to understanding monodromy

operators that preserve the Hodge structure. We will introduce the notion of the birational

Kähler cone in the next section, enabling us to produce a numerical criterion for when an

isometry f ∈ O(H2(X,Z)) is such a monodromy operator.
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1.1.3 Kähler and birational Kähler cones

Throughout, we let X be a IHS manifold of a fixed deformation type. The BBF form allows

us to define several cones contained in H1,1(X,R) that are useful for studying birational

transformations. These are sub-cones of the positive cone CX , which is the connected

component of {α ∈ H1,1(X,R) | qX(α) > 0} that contains a Kähler class. The Kähler cone

KX ⊂ CX is the subset containing the Kähler classes. The birational Kähler cone BK(X)

is the union of the Kähler cones of all IHS manifolds birational to X, i.e

BK(X) :=
⋃

f :X99KX′

f ∗K(X ′).

Here, f runs over all birational maps from X to an IHS manifold X ′. When X is projective,

the closure of BK(X) is the movable cone. We can describe both cones more precisely using

the following result:

Theorem 1.1.8. [Huy03],[Bou01] The closure of KX is the set of all classes α ∈ CX such

that
∫
C
α ≥ 0 for all rational curves C The closure of BK(X) is the set of all classes α ∈ CX

such that qX(α,D) ≥ 0 for all uniruled divisors D ⊂ X.

The BBF form gives us a way to identify uniruled divisors numerically.

Proposition 1.1.9. [Bou04, Prop. 4.7] Let D ⊂ X be an prime effective divisor such that

qX(D,D) < 0. Then D is uniruled.

Such a divisor is said to be prime exceptional. A divisor is stably prime exceptional

if it is prime exceptional on a very general deformation of (X,D). By [Mar11, §5], the
hyperplanes D⊥ ⊂ CX for D stably prime exceptional define the walls of the birational Kähler

cone. We denote by Wpex ⊂ H2(X,Z) the set of stably prime exceptional divisors.

Proposition 1.1.10. The birational Kähler cone BK(X) is an open set in a connected

component of

CX \
⋃

D∈Wpex

D⊥.

To obtain the Kähler cone of X, one has to further subdivide the birational Kähler cone

with more hyperplanes, or walls.

Definition 1.1.3. Let D ∈ Pic(X) be a divisor, not necessarily effective. Then D is called a

wall divisor if D2 < 0 and γ(D⊥) ∩ BK(X) = ∅ for all γ ∈ Mon2(X)Hdg.
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Here Mon2(X)Hdg is the subgroup of monodromy operators that preserve the Hodge

structure. We let W ⊂ H2(X,Z) denote the set of wall divisors. Notice that a stably prime

exceptional divisor is the multiple of a wall divisor, and wall divisors which have an effective

multiple are stably prime exceptional.

Remark 1.1.11. We note that via the BBF form qX we can identify H2(X,Z) with the dual

of H2(X,Z), and consider H2(X,Z) ⊂ H2(X,Q). Let R be an extremal ray of the Mori cone

of X, that is the cone spanned by classes of effective curves in X. Then any divisor D ∈ QR

is a wall divisor (see [Mon15, Lemma 1.4]). One can instead use extremal rays to cut out the

Kähler cone; this is the notion of an MBM class as defined by Amerik and Verbitsky (see

[AV15, AV21] for more details).

1.2 Symplectic birational transformations of IHS

manifolds

We are now ready to discuss symplectic birational transformation of manifolds of OG10 type,

and to reformulate the Global Torelli theorem in a way that is more useful for our study. In

this section we will specialise to the case of OG10 type manifolds; similar result hold in the

other cases (see [Mon13, Mon16] for the case of K3[n], [KMO18] for symplectic involutions of

K3[n], Kumn type, and [GOV20] for the case of OG6).

1.2.1 Symplectic birational transformations

We denote by Aut(X), Bir(X) the groups of automorphisms and birational transformations

of X respectively. For an IHS manifold X, a birational transformation f ∈ Bir(X) is well

defined in codimension one. We thus obtain an isometry f ∗ : H2(X,Z) → H2(X,Z).

Definition 1.2.1. We say a birational transformation f ∈ Bir(X) is symplectic if the

induced action f ∗ : H2(X,C) → H2(X,C) acts trivially on σ. Otherwise, f is non-symplectic

(or anti-symplectic if f has order 2).

Assume now that X is an IHS manifold of OG10 type, and consider the associated

representation map

η∗ : Bir(X) → O(Λ); f 7→ η ◦ f ∗ ◦ η−1.

Note that for a nontrivial birational transformation f ∈ Bir(X) the induced isometry

η∗(f) ∈ O(Λ) is non-trivial. Indeed, if η∗(f) was trivial, by [Fuj81] we see that f is a regular
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automorphism of X. By [MW17, Theorem 3.1], the associated representation Aut(X) → O(Λ)

is injective, and so f is trivial.

Definition 1.2.2. An isometry g ∈ O(Λ) is induced by a birational transformation if there

exists a f ∈ Bir(X) such that η∗(f) = g.

A birational transformation of X preserves the birational Kähler cone BK(X). This in

turn imposes restrictions on which involutions of the lattice Λ are induced by birational

involutions of such a manifold X. The structure of the birational Kähler cone for a manifold

of OG10 type is now fully understood [MO20]; from Proposition 1.1.10, this amounts to

understanding the set of stably prime exceptional divisors Wpex for a manifold of OG10 type.

Proposition 1.2.1. [MO20, Proposition 3.1] Let X be a IHS manifold of OG10 type,

η : H2(X,Z) → Λ a marking. Then D ∈ Pic(X) is stably prime exceptional if and only if

η(D) ∈ Wpex, where

Wpex = {v ∈ Λ : v2 = −2} ∪ {v ∈ Λ : v2 = −6, divΛ(v) = 3}.

We call v ∈ Wpex with v2 = −2 (resp. v2 = −6) a short root (resp. a long root). A

chamber defined by Wpex is called an exceptional chamber.

Theorem 1.2.2. [MO20, Theorem 3.2] Let X be a manifold of OG10 type. Then, the

birational Kähler cone BK(X) of X is an open set inside one of the components of

C(X) \
⋃

v∈Wpex

v⊥

where C(X) is the connected component of the positive cone containing a Kähler class.

Using this description for the birational Kähler cone, we can rephrase the Global Torelli

Theorem in a way that is more suited for the study of symplectic birational transformations

of X. We denote by O+
hdg(Λ), and O+

sp(Λ) the group of signed Hodge isometries and signed

symplectic isometries respectively. The group O+
s p(Λ, C) is the subgroup of O+

sp(Λ) leaving

C invariant.

Theorem 1.2.3. (Torelli Theorem for OG10) A subgroup of G ⊂ O(Λ) is induced by a group

of symplectic birational transformations on a manifold of OG10 type if and only if there exist

a signed Hodge structure on Λ and an exceptional chamber C such that G ⊂ O+
sp(Λ, C).
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Proof. The proof follows almost identically to that of [GOV20, Theorem 2.15] in the case of

manifolds of OG6-type. We reproduce the argument in the case of OG10 type for convenience.

Suppose that G is induced by a group of symplectic birational transformations on a

manifold X of OG10 type. It follows that G is contained in the monodromy group of X,

Mon2(X). By [Ono21, Theorem 5.4], Mon2(X) ∼= O+(H2(X,Z)). The Hodge decomposition

and the canonical choice of the positive cone induce a signed Hodge structure on Λ. All

birational transformations of X preserve the birational Kähler cone, and by Theorem 1.2.2

this is a chamber C cut out by the vectors in Wpex. Therefore, G ⊂ O+
sp(Λ, C).

Conversely, suppose there exists a signed Hodge structure on Λ and a Kähler chamber C

such that G ⊂ O+
sp(Λ, C). Then, by Huybrechts’ theorem on the surjectivity of the period map

[Huy97, Theorem 8.1] there exists a manifold X of type OG10 whose Hodge decomposition

induces the given signed Hodge structure. Moreover, we can assume that C is the birational

Kähler cone of X. As G consists of monodromy transformations and respects the birational

Kähler cone, it is induced by birational transformations of X by Markman’s Hodge theoretic

version of the Torelli theorem [Mar11, Theorem 1.3]. The birational transformation must be

symplectic.

1.3 Cubic fourfolds

Cubic fourfolds are intimately linked with IHS manifolds through various constructions. In

order to study symplectic birational transformations of manifolds of OG10 type, we will

exploit this connection. We must first understand automorphisms of cubic fourfolds from a

Hodge theoretic perspective. In this section we review the relevant results that will allow us

to conduct this study. In §1.3.1 we review the period map for cubic fourfolds, and in §1.3.2
the Torelli Theorem for cubic fourfolds V , and reduce the classification of involutions of V to

the classification of involutions of Hodge structures. This is essentially a lattice theoretic

question; we will follow the same approach as in the case of K3 surfaces (Nikulin, Mukai,

Kondō and others). Finally, in §1.3.3, we review some constructions of IHS manifolds starting

from a cubic fourfold.

Remark 1.3.1. In this section all ADE lattices are assumed to be positive definite for ease of

notation.
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1.3.1 The period map for cubic fourfolds

Let V be a smooth cubic fourfold. The middle cohomology H4(V,Z) with the natural

intersection pairing (denoted by x · y for x, y ∈ H4(V,Z)) is the unique unimodular odd

lattice of signature (21, 2). We denote by ηV ∈ H4(V,Z) the square of the hyperplane class of
V , with η2V = 3. The primitive cohomology H4(V,Z)prim := ⟨ηV ⟩⊥ carries a polarized Hodge

structure of K3 type (i.e. Hodge numbers (0,1,20,1,0)). As a lattice, H4(V,Z)prim ∼= L, where

L := (E8)
2 ⊕ U2 ⊕ A2.

Denote by M the moduli space of smooth cubic fourfolds, constructed using GIT [Laz09].

Denote by D/Γ = {x ∈ P(L⊗ C) | x2 = 0, x · x < 0}+/Γ the global period domain for cubic

fourfolds. Here the global monodromy group Γ is the subgroup of O(L) that preserves the

period domain D and acts trivially on the discriminant group L∗/L ∼= Z/3Z. Starting with a

cubic fourfold V , we associate the Hodge structure on its middle cohomology, obtaining a

period map:

P : M → D/Γ.

In order to discuss the image of this map, we define two divisors in D/Γ.

Definition 1.3.1.

1. A norm 2 vector v ∈ L is called a short root. The set of short roots in L determines a

Γ-invariant hyperplane arrangement H6 in D. Let C6 := H6/Γ ⊂ D/Γ be the associated

divisor.

2. A norm 6 vector v ∈ L with divisibility 3 is called a long root. The set of long roots in

L determines a Γ-invariant hyperplane arrangement H2 in D. Let C2 := H2/Γ ⊂ D/Γ.

The two divisors C2, C6 above are the complement of the image of the period map. Geomet-

rically, C6 corresponds to singular cubic fourfolds, where as C2 corresponds to degenerations

of cubics to the secant to the Veronese surface in P5. We recall that cubic fourfolds contained

in C2 are determinantal.

Theorem 1.3.2 (Voisin, Hassett, Laza, Looijenga). The period map for cubic fourfolds is an

isomorphism

P : M → D/Γ \ (C2 ∪ C6).

16



1.3.2 Strong Torelli and automorphisms

Let ϕ ∈ Aut(V ) be an automorphism of a cubic fourfold V . By considering the induced

action ϕ∗ on H4(V,Z)prim ∼= L, we obtain a map

Aut(V ) → O(L).

We note that this map is injective (combine [JL17, Prop. 2.12], [MM64]). Further, the Strong

Global Torelli Theorem [Zhe19] holds for cubic fourfolds. In other words, any isomorphism

between polarized Hodge structures of two smooth cubic fourfolds is induced by a unique

isomorphism between the cubic fourfolds themselves.

Proposition 1.3.3 (Strong Global Torelli Theorem). Let V1, V2 be two smooth cubic fourfolds.

Assume that there is an isomorphism ϕ : H4(V2,Z)
∼=−→ H4(V1,Z) of polarized Hodge structures.

Then there exists a unique isomorphism f : V1

∼=−→ V2 such that ϕ = f ∗. In particular, for any

smooth cubic fourfold V ,

Aut(V ) ∼= AutHS(V, ηV ),

where AutHS(V, ηV ) denotes the group of Hodge isometries fixing the class ηV .

Thus it is natural to study automorphisms of a cubic fourfold via the induced Hodge

isometry of H4(V,Z)prim.

Definition 1.3.2. We say an automorphism ϕ ∈ Aut(V ) is symplectic if ϕ acts trivially on

H3,1(V ). Otherwise, ϕ is non-symplectic (or anti-symplectic in the case of involutions).

Possible cyclic groups of symplectic automorphisms of a cubic fourfold were classified

[Fu16], followed by a classification of possible symplectic automorphism groups [LZ22]. The

action on H4(V,Z)prim was identified in each symplectic case by a lattice theoretic argument,

however the geometry was not explored.

1.3.3 Constructions via cubic fourfolds

Cubic fourfolds lead to IHS manifolds through various constructions, and one can study

birational transformations that are induced by automorphisms of the cubic. In this section

we will discuss two examples; we note that this is not an extensive list, and we only mention

constructions related to our study.

Example 1.3.4 (The Fano variety of lines). Let V ⊂ P5 be a smooth cubic fourfold. Then

the Fano variety of lines on V , denoted by F (V ) is a smooth IHS manifold of dimension 4, as
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shown in [BD85]. The manifold F (V ) is deformation equivalent to the Hilbert scheme of two

points on a K3 surface, and hence is of K3[2] type.

Automorphisms of the Fano variety of lines induced from a cubic fourfold were first studied

by Camere [Cam12] in her work on symplectic involutions. Using lattice theoretic techniques

and the classification of automorphisms of the Leech lattice, Hōhn and Mason determined

the possible finite groups of symplectic automorphisms for manifolds of K3[2] type [HM19].

Example 1.3.5 (The LSV construction). Let V ⊂ P5 be a smooth cubic fourfold, and denote

by B := |H| = (P5)∨ the linear system of hyperplane sections of V . Let f : Y → B be the

universal family of hyperplane sections: for generic b ∈ B, the fiber f−1(b) = Yb is a smooth

hyperplane section of V . For such a section, the associated intermediate Jacobian

J(Yb) := H2,1(Yb)
∨/H3(Yb,Z)

is a principally polarized abelian variety of dimension 5 [CG72]. Let U ⊂ B be the open

set parametrising smooth hyperplane sections, and let πU : JU → U ⊂ (P5)∨ be the Donagi-

Markman fibration; i.e the family of intermediate Jacobians of the smooth hyperplane sections

of V . The total space JU admits a holomorphic symplectic form, by [DM96].

The main result of [LSV17] is the construction, for a general V , of a smooth projective

irreducible holomorphic symplectic compactification JV of JU , with a Lagrangian fibration

π : JV → (P5)∨ extending πU . It was shown that JV is an irreducible holomorphic symplectic

manifold, deformation equivalent to O’Grady’s 10 dimensional exceptional example [O’G99]

and is thus of OG10 type. Using both degeneration techniques of [KLSV18] and results of

birational geometry, Saccá proved the existence of such a symplectic compactification JV for

any cubic fourfold, not necessarily general, in [Sac21]. In this case, the compactification may

not be unique. With these two results, we have the following theorem:

Theorem 1.3.6. ([LSV17],[Sac21]) Let V ⊂ P5 be a smooth cubic fourfold, and let πU : JU →
U ⊂ (P5)∨ be the Donagi-Markman fibration. Then there exists a smooth projective irreducible

symplectic compactification JV of JU of OG10 type with a morphism π : JV → (P5)∨ extending

πU .

We note that the same result holds for the irreducible holomorphic symplectic compactifi-

cation J T
V of the non trivial JU -torsor J

T
U → U of [Voi18].
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Chapter 2

Lattice theory

Introduction

A key technique in our study of involutions for both cubic fourfolds and for IHS manifolds

is to study isometries of certain lattices. To a cubic fourfold V , we consider the middle

primitive cohomology H4(V,Z)prim, equipped with the intersection pairing. For an irreducible

holomorphic symplectic manifold X, we consider the second cohomology H2(X,Z) equipped
with the BBF form. An involution of ϕ ∈ Aut(V ) (respectively f ∈ Bir(X)) induces an

isometry of the associated lattice.

In this section we will review necessary results about lattices. We mainly follow [Nik79b]

and we provide proofs to results that we could not find references for in the literature. Most

of these results can be found in [Mar23, Appendix A]. In §2.1 we discuss Nikulin’s theory of

overlattices, followed by the theory of primitive embeddings in §2.2. As we are most interested

in involutions of lattices, we recall some results regarding 2-elementary lattices in §2.3.

2.0.1 Notation

A lattice of rank r is a free finitely generated Z-module L ∼= Zr equipped with a non-degenerate

symmetric bilinear pairing L⊗L → Z, denoted e⊗ f 7→ e · f . In particular, all of the lattices

we consider are integral. We write e2 = e · e; occasionally we denote this by qL(e). We assume

that L is even (e2 ∈ 2Z for each e ∈ N) unless otherwise stated.

We denote by divL(v) = max{λ ∈ Z | v · L ∈ λZ} the divisibility of an element v ∈ L.

The lattice L(n) is obtained from L by multiplying the pairing by n. The lattice ⟨n⟩
denotes the lattice Z with e2 = n for a generator e. The lattices Ak, Dk, Ek denote the

standard negative definite root lattices of rank k, and U denotes the hyperbolic plane.
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The dual lattice L∗ is given by

L∗ := {y ∈ L⊗Q | y · x ∈ Z for all x ∈ L}.

The finite abelian group AL := L∗/L is called the discriminant group of L, with induced

quadratic form qL : AL → Q/2Z (or symmetric bilinear form bL : AL × AL → Q/Z if L is

odd).

Example 2.0.1. Consider the lattice A2; let α1, α2 be generators with α2
i = 2 and α1·α2 = −1.

Then AA2
∼= Z/3Z, and is generated by the class

γ :=

[
2α1 + α2

3

]
.

One can see that qA2(γ) =
2
3
.

We say that two lattices L and M are in the same genus if they are isomorphic over the

ring of p-adic integers Zp for each prime p, and also isomorphic over R. Two lattices in the

same genus are not always isomorphic over Z: for example, there are two non-isomorphic

rank 16 negative definite unimodular lattices D+
16 and E8 ⊕ E8, which are necessarily in the

same genus.

2.1 Overlattices

Let L be an even lattice. An overlattice of L is an even lattice Γ where L ⊂ Γ is an

embedding for which Γ/L is a finite abelian group.

Let HΓ = Γ/L We have a chain of embeddings:

L ⊂ Γ ⊂ Γ∗ ⊂ L∗,

and so HΓ ⊂ L∗/L = AL, and (Γ∗/L)/HΓ = AΓ.

We have the following result due to Nikulin [Nik79b, Props. 1.4.1, 1.4.2].

Proposition 2.1.1. Let L be an even lattice.

1. The correspondence Γ 7→ HΓ determines a bijection between even overlattices of L and

isotropic subgroups of AL (a subgroup H ⊂ AL is isotropic if qL|H = 0).

2. We have (HΓ)
⊥ = Γ∗/L ⊂ AL and (qL|(HΓ)⊥)/HΓ = qΓ.

3. Two even overlattices L ⊂ Γ1 and L ⊂ Γ2 are isomorphic if and only if the isotropic

subgroups HΓ1 , HΓ2 ⊂ AL are conjugate under some automorphism of L.
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2.2 Primitive embeddings

An embedding of lattices M ⊂ L is called primitive if L/M is a free group; we denote

this by M ↪→ L, and denote N = M⊥ the orthogonal complement of M in L. Then L

is an overlattice of M ⊕ N , and HL = L/(M ⊕ N) ⊂ AM ⊕ AN is the isotropic subgroup

corresponding to qM ⊕qN . The embeddings M ↪→ L and N ↪→ L being primitive is equivalent

to the condition that the projections HL → AM and HL → AN are embeddings.

Lemma 2.2.1. [Nik79b, Prop 1.15.1] Primitive embeddings of M with signature (m+,m−)

into an even lattice L with signature (l+, l−) are determined by the data (HM , HL, γ,N, γN)

where

• HM , HL are subgroups of AM , AL respectively and γ : q|AM |HM
→ −q|AL|HL

is an

isometry;

• N is an even lattice with signature (l+−m+, l−−m−) and discriminant form −δ where

δ ≡ (qAM
⊕−qAL

)|Γ⊥
γ /Γγ

and γN : qN → (−δ) is an isometry.

The group HM is called the gluing group; indeed, if L is unimodular, and N = M⊥,

then HM
∼= AM

∼= AN and γN : qN → −qM is the gluing map. More precisely:

Lemma 2.2.2. Let M be an even lattice of signature (m+,m−). The existence of a primitive

embedding of M into some unimodular lattice L of signature (l+, l−) is equivalent to the

existence of a lattice N of signature (n+, n−) and discriminant form qAN
such that the

following are satisfied:

• m+ + n+ = l+ and m− + n− = l−.

• AN ≡ AM and qAN
= −qAM

.

2.3 2-elementary lattices

We say that an even lattice L is 2-elementary if the discriminant group AL is a 2-elementary

group i.e AL
∼= (Z/2Z)a for some a ≥ 1. We obtain examples of 2-elementary lattices by

considering involutions.

Let L be any even lattice. An involution ι ∈ O(L) determines two eigenspaces

L± := {v ∈ L : ι(v) = ±v}.
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We call L− (respectively L+) the coinvariant lattice (resp. invariant lattice). The

following hold:

• L− and L+ are primitive, mutually orthogonal lattices;

• H := L/(L+ ⊕ L−) is a 2-elementary group (i.e H = (Z/2)a);

• H admits embeddings into the discriminant groups AL+ and AL− such that the diagonal

embedding H ⊂ AL+ ⊕ AL− is isotropic with respect to the finite quadratic form

qL+ ⊕ qL− [[Nik79b] Sect. 1.5].

Lemma 2.3.1. If Λ is a unimodular lattice and ι ⊂ O(Λ) is an involution, then Λ− and Λ+

are 2-elementary lattices.

Lemma 2.3.2. Let L be a lattice, and ι ⊂ O(L) an involution acting as the identity on AL.

Then L− is a 2-elementary lattice.

Proof. Let Λ be a unimodular lattice such that there exists a primitive embedding L ↪→ Λ,

and let R = L⊥. Since ι acts as the identity on AL, we can extend ι by the identity on R. Since

R− = 0, it holds that L− ∼= Λ−. We deduce by Lemma 2.3.1 that L− is 2-elementary.

In fact, the converse is true: given a primitive embedding of a 2-elementary lattice M

into an even lattice, we can always ensure it is the coinvariant sublattice for some involution.

More precisely:

Lemma 2.3.3. Let M be a 2-elementary lattice with a primitive embedding M ↪→ L into

a lattice L such that N := (M)⊥L . Then there exists an involution ι ∈ O(L) such that the

coinvariant lattice L− = M and the invariant lattice L+ = N .

Proof. By assumption we have that

M ⊕N ↪→ L ↪→ L⊗Q ∼= (M ⊕N)⊗Q.

We can define ιQ : LQ → LQ by ι(x) = −x for x ∈ M , and ι(x) = x for x ∈ N . We

want to show that ιQ is defined over L. By assumption L/(M ⊕ N) ∼= (Z/2Z)a, and thus

for all x ∈ L, we have that 2x ∈ M ⊕ N . Let x ∈ L. By above, we can write x = x−+x+

2
,

with x− ∈ M,x+ ∈ N . Thus ιQ(x) = x mod M ⊕N , and [ιQ(x)] = [x] in L/(M ⊕N); thus

ιQ(x) ∈ L.
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Let M be a 2-elementary lattice. Nikulin proved that M is classified by three natural

invariants: the signature (m+,m−), the number of generators a of AM and δ ∈ {0, 1} with

δ = 0 if and only if the finite quadratic form qM : AM → Q/2Z takes values in Z/2Z.

Theorem 2.3.4. (Classification of 2-elementary lattices) The genus of an even 2-elementary

lattice is determined by the invariants δM , l(M) and sign(M). If M is indefinite, then the

genus consists of one isomorphism class.

An even 2-elementary lattice M with δM = δ, l(M) = a and sign(M) = (m+,m−) exists

if and only if the following conditions are satisfied:

1. m+ +m− ≥ a;

2. m+ +m− + a ≡ 0 mod 2;

3. m+ −m− ≡ 0 mod 4 if δ = 0;

4. δ = 0, m+ −m− ≡ 0 mod 8 if a = 0;

5. m+ −m− ≡ 1 mod 8 if a = 1;

6. δ = 0 if a=2, m+ −m− ≡ 4 mod 8;

7. m+ −m− ≡ 0 mod 8 if δ = 0 and a = m+ +m−.

Note that the genus of a definite 2-elementary lattice may consist of more than one

isomorphism class. We will use the above classification to determine the existence of primitive

embeddings in specific situations. In particular, we will be interested in embeddings of

2-elementary lattices into the lattice

Λ := A2 ⊕ (E8)
2 ⊕ U3.

Recall that for an IHS manifold X of OG10 type we have that H2(X,Z) ∼= Λ.

Lemma 2.3.5. Let M be a 2-elementary, negative definite lattice of rank r with invariants

(r, a, δ), where a = l(AM). Then there exists a primitive embedding M ↪→ Λ if and only if

there exists a lattice N of signature (3, 21− r) satisfying the following properties:

1. AN
∼= (Z/2Z)a ⊕ Z/3Z;

2. qN |(Z/2Z)a ∼= −qM ;

3. qN |Z/3Z ∼= qΛ.
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We say δ := δN = 0 or 1 if and only if δM = 0 or 1.

Proof. This follows from Lemma 2.2.1 and 2.3.4.

Lemma 2.3.6. Let M be an even lattice of rank r such that (Z/2Z)r ⊂ AM . Then M(1/2)

is a well-defined integral lattice.

Proof. For T := M(1/2) to be well-defined, we must check that the induced symmetric

bilinear form takes integral values. Recall that (x, y)T = 1
2
(x, y)M , and thus this is equivalent

to showing that divM(x) is divisible by 2 for all x ∈ M . Let G be the Gram matrix of M ; it

has integral entries, and has Smith Normal form

diag(d1, . . . dr),

with d1d2 . . . dr ≠ 0, and di|di+1 for i = 1, . . . r−1. Further, d1d2 . . . di is the greatest common

divisor all the i× i minors of G. In particular, d1 is the greatest common divisor of all entries

of G. Thus in order to prove that divM(x) is divisible by 2 for all x ∈ M it suffices to show

that 2|d1.
Since M is a free module over a PID, there exists a basis u1, . . . ur of M∗ such that

v1 = d1u1, . . . , vr = drur is a basis of M . Hence

M∗/M =
Zu1 ⊕ . . .Zur

Zv1 ⊕ . . .Zvr
≡ (Z/d1Z)⊕ . . . (Z/drZ).

Since (Z/2Z)r is a subgroup of AM , we must have that d1 is divisible by 2; if not, AM can

only contain (Z/2Z)r−1.

Lemma 2.3.7. Let M be an even, 2-elementary lattice with l(AM) = r where r is the rank

and δ = 1. Consider the lattice T := M(1
2
). Then T is an odd unimodular lattice.

Proof. Assume that T := M(1
2
) is even. Then for all x ∈ T , we have that (x · x)T = 2k for

some integer k. Thus (x · x)M = 4k.

Since δ = 1, there exists γ ∈ AM of order 2 with q(γ)M ∈ (Q \ Z)/2Z. We can write

γ = α +M for α ∈ M∗, and so (α · α)M ∈ Q \ Z. Since γ has order 2, we have that 2γ ∈ M ,

i.e 2α ∈ M and so α = x
2
for some x ∈ M . Finally we see that

(α · α)M =
(x · x)M

4
= k

with k an integer, providing a contradiction.
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Lemma 2.3.8. Let T be an odd lattice. Then M := T (2) has Z/2Z ⊂ AM and qM (ξ) ̸∈ Z/2Z,
where ξ is a generator of Z/2Z ⊂ AM .

Proof. Since T is odd, there exists an element v ∈ T with (v, v)T = 2k+ 1 for some integer k.

Thus (v, v)M = 4k + 2 ≡ 2 mod 4.

Write divN(v) = d; then divM(v) = 2d. Let v∗ = v
2d
, and consider the class [v∗] ∈ AM .

Then d[v∗] = [v
2
] is an element of order 2 in AM , and thus generates a subgroup

⟨d[v∗]⟩ ∼= Z/2Z ⊂ AM .

Now

q(d[v∗]) = d2q(v∗) = d2
(v, v)M
4d2

=
4k + 2

4
̸∈ Z/2Z.

2.3.1 p-elementary lattices

Let p ̸= 2 be prime. A p-elementary lattice M is a lattice such that AM
∼= (Z/pZ)a. We will

need the following existence result:

Theorem 2.3.9. [RS81, Section 1]

1. An even, hyperbolic, p-elementary lattice M of rank r with p ̸= 2, r ≥ 3 is uniquely

determined by the number l(AM).

2. For p ̸= 2, a hyperbolic p-elementary lattice with invariants r, a := l(AM) exists if and

only if the following conditions are satisfied: a ≤ r, r ≡ 0 mod 2, and if a ≡ 0 mod 2, then r ≡ 2 mod 4

if a ≡ 1 mod 2, then p ≡ (−1)r/2−1 mod 4.

Moreover, if r ̸≡ 2 mod 8, then r > a > 0.
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Chapter 3

Cubic fourfolds with an involution

Recently, there has been renewed interest in the classification of automorphisms of a cu-

bic fourfold. This has been motivated by two main problems: the irrationality of a gen-

eral cubic fourfold, and the search for new constructions of IHS manifolds. Adapting the

techniques of Nikulin, Mukai and Kondō ([Muk88], [Kon98], [Nik79a])who studied sym-

plectic automorphisms of K3 surfaces, one can hope to classify automorphisms of a cubic

fourfold V ⊂ P5 Hodge theoretically. The Strong Torelli theorem 1.3.3 asserts that auto-

morphisms of V are equivalent to (polarized) Hodge isometries of the middle cohomology

H4(V,Z). Such an isometry in turn determines the lattice of algebraic primitive cycles

A(V )prim := H2,2(V,C) ∩H4(V,Z)prim contained in the cubic V .

The purpose of this chapter is to study the case of involutions of a cubic fourfold V ,

and to determined the lattice A(V )prim. Our main motivation is to the study of birational

transformations of IHS manifolds of OG10 type, which will be discussed in Chapter 4. We

say that an involution of a cubic fourfold is symplectic if it acts trivially on H3,1(V ); such an

involution will induce a symplectic birational involution of the associated manifold of OG10

type through the construction detailed in 1.3.5. Thus a Hodge theoretic classification of the

involutions of V will be one major tool in order to classify symplectic birational involutions

in the OG10 setting.

Any automorphism of a cubic fourfold V ⊂ P5 can be lifted to one of the ambient

projective space: there are three possible involutions of V , denoted ϕ1, ϕ2, ϕ3. Here ϕi

is uniquely characterised by the dimension of the fixed linear subspaces of P5; ϕi fixes

complementary linear spaces of codimension i, 6− i respectively. The involutions ϕ1, ϕ3 are

easily seen to be anti-symplectic, where as ϕ2 is symplectic. It is easy to write down the

equation for a cubic fourfold with specified involution ϕi. Identifying the lattice A(V )prim
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and the transcendental lattice T (V ) := (A(V )prim)
⊥ is more subtle; it roughly corresponds to

identifying a basis of algebraic cycles. The main result of this chapter is the classification of

these lattices.

Theorem 3.0.1. Let V be a general cubic fourfold with ϕi an involution of V fixing a linear

subspace of P5 of codimension i. Then either:

1. i = 1, ϕ1 is anti-symplectic and A(V )prim ∼= E6(2), T (V ) ∼= U2 ⊕ D3
4. The algebraic

lattice is spanned by classes of planes contained in V ;

2. i = 2, ϕ2 is symplectic and A(V )prim ∼= E8(2), T (V ) ∼= A2 ⊕ U2 ⊕ E8(2). The algebraic

lattice is spanned by classes of cubic scrolls contained in V ;

3. i = 3, ϕ3 is anti-symplectic and

A(V )prim ∼= M, T (V ) ∼= U ⊕ A1 ⊕ A1(−1)⊕ E8(2).

The algebraic lattice contains an index 2 sublattice spanned by classes of planes contained

in V .

Here M is the unique rank 10 even lattice obtained as an index 2 overlattice of D9(2)⊕ ⟨24⟩,
as described in §3.2.14.

Case (1) is studied in detail in [LPZ18]; the existence of the involution ϕ1 is equivalent to

the cubic having an Eckardt point. In case (2), the lattice A(V )prim ∼= E8(2) was identified

as part of [LZ22] by purely lattice theoretic considerations. Here we show that this lattice is

generated by classes corresponding to cubic scrolls contained in V ; in particular V contains

120 pairs of families of cubic scrolls. Case (3) was previously unknown, we approach this case

using both lattice theoretic and geometric techniques.

The study of automorphisms Hodge theoretically has many consequences with regards

to rationality. It was conjectured by Harris that if the transcendental cohomology T (V )

is not induced from a K3 surface, then V is not rational; evidence was given by Hassett

[Has99, Has16]. Indeed, all known rational cubic fourfolds have an associated K3 surface.

Kuznetsov [Kuz10a] proposed another criteria for rationality via the derived category, which

was verified for the known examples of rational cubic fourfolds [Kuz16]. This criteria is

satisfied exactly when V has an associated K3 ([AT14], [BLM+21]). A more generalised

notion, introduced in ([Huy17],[Bra20]), is an associated twisted K3 surface (S, α), where

α ∈ Br(S) (see §3.4.1 for more details). Our next result identifies which cubic fourfolds with

an involution have an associated K3 or twisted K3 surface.
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Theorem 3.0.2. Let V be a cubic fourfold with an involution ϕi fixing a linear subspace of

P5 of codimension i.

1. For the symplectic involution ϕ2, V does not have an associated K3 surface, or a visible

twisted K3 surface.

2. For the antisymplectic involution ϕ1, V has an associated twisted K3 surface (S, α) for

α ∈ Br(S)2, but does not have an associated K3 surface.

3. For the antisymplectic involution ϕ3, V has an associated K3 surface.

It follows that the cubic fourfolds of case (1) and (2) of Theorem 3.0.1 are conjecturely

irrational, whereas a cubic V with involution ϕ3 is expected to be rational. We indeed verify

rationality for such a cubic:

Theorem 3.0.3. Let Mϕ3 be the moduli space of cubic fourfolds with the involution of type

ϕ3. Then [V ] ∈ Mϕ3 is rational.

The results contained in this chapter can be found also in [Mar23]. Let us briefly outline

the content. In §3.1, we recall the necessary results on automorphisms of cubic fourfolds

and set up notation. We begin by investigating the geometry of a cubic fourfold with anti-

symplectic involutions in §3.2, showing that the lattice A(V ) is generated (over Q) by the

classes of planes, before identifying the lattices A(V )prim, T (V ) for the cubic in Case (3). In

§3.3, we make some complementary remarks, showing that a cubic with symplectic involution

cannot contain a plane, but rater A(V ) is generated by classes of cubic scrolls. Finally, in

§3.4, we discuss the implications of rationality for each family of cubic fourfolds; in particular

we prove Corollary 3.0.3.

Remark 3.0.4. Throughout this chapter, all ADE lattices are assumed to be positive definite

for ease of notation.

3.1 Preliminaries

Let V be a cubic fourfold, f ∈ Aut(V ) an involution. Denote the induced action on

L := (E8)
2 ⊕ U2 ⊕ A2

by ϕ, via the isomorphism L ∼= H4(V,Z)prim. We denote by L± the invariant and coinvariant

sublattices of L respectively.
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We define the following sublattices of H4(V,Z):

A(V ) := H2,2(V ) ∩H4(V,Z),

T (V ) := (A(V ))⊥H4(V,Z),

the lattice of algebraic cycles, and the transcendental lattice, respectively. Note that the

integral Hodge conjecture holds for cubic fourfolds [Voi13, Thm 1.4], so every class v ∈ A(V )

is indeed algebraic. We denote by A(V )prim the lattice A(X) ∩H4(X,Z)prim ⊂ H4(X,Z)prim.

Proposition 3.1.1. Let V ⊂ P5 be a smooth cubic fourfold and ϕ ∈ Aut(V ). Let r denote

the rank of L−.

1. The covariant sublattice L− is 2-elementary, with discriminant group of length 0 ≤ a ≤
min{r, 22− r}. Thus

AL−
∼= (Z/2Z)a;AL+

∼= Z/3Z⊕ (Z/2Z)a.

2. If ϕ is symplectic, L− has signature (r, 0).

3. If ϕ is anti-symplectic, L− has signature (r − 2, 2).

Proof. Since ϕ ∈ Aut(V ) ∼= AutHS(V, ηV ), ϕ acts as the identity on ⟨ηV ⟩, and thus acts

trivially on A⟨ηV ⟩ ∼= Z/3Z ∼= AL. We see that H4(V,Z)− ∼= L−, and since H4(V,Z) is an

unimodular lattice, L− is 2-elementary by Lemma 2.3.1. The description of the discriminant

group of L+ follows from Proposition 2.1.1.

Suppose now that ϕ is symplectic; by definition, ϕ acts trivially on T (V ), thus L− ⊂ A(V ).

The class ηV ∈ A(V ) is clearly invariant under ϕ, and so L− ⊂ A(V ) ∩ L. The claim on the

signature follows. Similarly, if ϕ is anti-symplectic, then T (V ) ⊂ L−, but ηV is invariant.

Definition 3.1.1. We say that a cubic with symplectic involution is general if A(V ) is as

small as possible, i.e A(V )prim ∼= L−. Similarly, a cubic with anti-symplectic involution is

general if A(V )prim ∼= L+.

3.1.1 Moduli of cubic fourfolds with an involution

Let Mϕ denote the moduli space of cubic fourfolds with an involution of type ϕ, constructed

via GIT. Similarly to the theory developed by Dolgachev [Dol96] for K3 surfaces, one can also

define Mϕ as a moduli space of lattice polarised cubic fourfolds. More precisely, let M be a

positive definite lattice with a fixed primitive embedding into the primitive lattice L. Assume
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further that M does not contain any short or long roots. One can define a moduli space MM

of cubics such that M ⊂ H2,2(V ) ∩ H4(V,Z)prim ⊂ H4(V,Z)prim ∼= L and the composition

M ⊂ L is equivalent to the fixed embeddings. In other words, MM is the moduli space of

cubics with primitive algebraic lattice equivalent to the prescribed lattice M . We say such

a cubic is M-polarized [YY21]. Up to passing to a normalization, MM is (possibly the

complement of some divisors in) a locally symmetric variety DM/ΓM , where DM is the type IV

domain associated with the transcendental lattice T = M⊥
L . Thus dimMM = 20− rank(M).

Further, if M ⊂ M ′ ⊂ L (all primitive embeddings), then MM ′ ⊂ MM ; the more algebraic

cycles contained in X, the smaller the moduli. To construct Mϕ, for ϕ anti-symplectic, we

apply the above construction for M = L+.

In particular, one can consider the loci of special cubic fourfolds [Has00] as lattice polarised

cubic fourfolds.

Definition 3.1.2. A cubic fourfold V is special if it admits a surface S not homologous to

a complete intersection, i.e Z[ηV ] ⊊ A(V ). A labeling of V consists of a rank 2 saturated

sublattice K ⊂ A(V ) containing ηV . The discriminant of K is the determinant of the

intersection form of K, denoted by d.

Theorem 3.1.2. [Has00] Let M denote the moduli of smooth cubic fourfolds. Let Cd ⊂ M
denote special cubic fourfolds admitting a labeling of discriminant d. Then Cd is non-empty if

and only if d > 6, d ≡ 0, 2 mod 6. Moreover, Cd is an irreducible divisor.

We will see that cubic fourfolds with involutions are very special cubic fourfolds - in other

words, the rank of A(V )prim is large. In particular, we can compute the dimension of Mϕ by

computing the dimension of invariant classes in H3,1(V ). This is easy due to the fact that

any automorphism of V is induced by a projective transformation of the ambient P5 that

leaves V invariant [MM64, Theorem 1 and 2]. One can linearise such an automorphism, and

obtain a complete classification of cyclic automorphisms of cubic fourfolds [GAL11]. One

can identify which are symplectic [Fu16]. In particular, for involutions we have the following

classification.

Proposition 3.1.3. [GAL11], [Fu16] Let V = V (F ) be a smooth cubic fourfold in P5,

ϕ ∈ Aut(V ) an involution of V . Applying a linear change of co-ordinates, we can diagonalise

ϕ, so that

ϕ : P5 → P5, [x0, . . . x5] 7→ [(−1)a0x0, . . . , (−1)a5x5],

with ai ∈ {0, 1}. Let a := (a0, . . . a5), and d = dimMϕ. Then either:

30



1. a = (0, 0, 0, 0, 0, 1) and ϕ := ϕ1 fixes linear subspaces of P5 of codimension 1 and 5

respectively. We have that ϕ1is anti-symplectic, d = 14, and

F = g(x0, x1, x2, x3, x4) + x2
5l1(x0, x1, x2, x3, x4)

2. a = (0, 0, 0, 0, 1, 1) and ϕ := ϕ2 fixes linear subspaces of P5 of codimension 2 and 4

respectively. We have that ϕ2 is symplectic, d = 12 and

F = g(x0, x1, x2, x3)+x2
4l1(x0, x1, x2, x3)+

+ x4x5l2(x0, x1, x2, x3) + x2
5l3(x0, x1, x2, x3)

3. a = (0, 0, 0, 1, 1, 1) and ϕ := ϕ3 fixes two linear subspaces of P5 of codimension 3. We

have that ϕ3 is anti-symplectic, d = 10 and

F = g(x0, x1, x2) + x0q0(x3, x4, x5) + x1q1(x3, x4, x5) + x2q2(x3, x4, x5)

Here li, qi, g denote homogeneous polynomials of degree 1, 2 and 3, respectively.

Proof. The classification and dimension of the families of such cubics can be found in either

[GAL11] or [Fu16]. Let Ω =
∑

i(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx5. A basis for H3,1(V ) is

given by {Res Ω
F 2}, where F is the defining equation for V . One can check whether this is

invariant or not for each involution above.

Corollary 3.1.4. Let V be a general cubic fourfold with an involution ϕ. Then:

1. If ϕ is anti-symplectic, the sublattice A(V )prim ∼= L+ ↪→ L is a positive definite lattice

of rank

r(L+) =

6, if ϕ = ϕ1

10, if ϕ = ϕ3.

2. If ϕ is symplectic, the sublattice A(V )prim ∼= L− ↪→ L is a positive definite lattice of

rank 8.

Proof. The claims follow immediately from Proposition 3.1.1 and Proposition 3.1.3.

Despite both containing many algebraic surfaces, the geometry of cubic fourfolds with a

symplectic involution is very different to that of one with an anti-symplectic involution. We

will discuss each in turn.
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3.2 Geometry of anti-symplectic involutions

In this section, we focus on cubic fourfolds V admitting an anti-symplectic involution. After

a change of co-ordinates, we can assume that (V, ϕi) has the form given by Proposition 3.1.3,

for i = 1, 3. In §3.2.1 we will show that such a cubic contains many planes, whose classes

span the algebraic cohomology A(V ) (over Q). Determining the integral structure is slightly

more nuanced; for the case of ϕ1 this was done in [LPZ18], and we review in §3.2.1.1. The
case of ϕ3 had not been previously studied - we identify the lattices A(V ), A(V )prim, T (V )

explicitly in §3.2.2, proving Theorem 3.0.1 for the case (V, ϕ3).

3.2.1 Existence of planes

We prove that in the anti-symplectic case the algebraic lattice A(V ) is spanned (over Q) by

the classes of planes. It is straightforward to see that a cubic fourfold with an anti-symplectic

involution contains many invariant planes.

Lemma 3.2.1. Let V be a general cubic fourfold, ϕ an anti-symplectic involution. Then V

contains an invariant plane P . Further, (V, P ) determines a plane sextic curve CP and a

theta-characteristic on CP . More precisely:

1. if ϕ = ϕ1, CP = L ∪Q where L is a line, Q is a smooth quintic curve, κ a non-trivial

odd theta characteristic on Q.

2. if ϕ = ϕ3 and CP = C ∪D where C,D are smooth cubic curves, κ a non-trivial two

torsion line bundle on D.

Conversely, such a triple (L,Q, κ) (respectively (C,D, κ)) determines a cubic fourfold with

an anti-symplectic involution of type (V, ϕ1) (respectively (V, ϕ3)).

Proof. Keeping the notation of Theorem 3.1.3, we see that we can choose co-ordinates for P5

such that ϕ is either ϕ1 or ϕ3 and the equation for V is as in the theorem.

For the involution ϕ1, studied in [LPZ18], V contains the cone over a cubic surface S,

where S is fixed by the involution. Each of the 27 lines on the cubic surface gives a plane

contained in V that is invariant under ϕ1.

In the case of ϕ3, one can see from the equation of V that the plane V (x0, x1, x2) is

contained in V , and is point-wise fixed by ϕ3.

Choose this invariant plane P . The linear projection with center P expresses V as a

quadric fibration over P2; indeed, P2 parametrises the space of P3-sections of V containing P
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(see for example [Voi86]). The blow up P5
P of the ambient projective space along P gives a

commutative diagram:

VP P5
P

P2

π
τ

where VP is the strict transform of V , and τ and π are the linear projections with center P .

The generic fiber of π is a smooth quadric surface; the degenerate fibers of π are parametrised

by a plane sextic CP , the discriminant curve, where CP = V (detAi) for a matrix Ai depending

on ϕi for i = 1, 3 respectively. A simple analysis of the cases gives:

A1 =


l3 l34 0 q3

l34 l4 0 q4

0 0 l1 0

q3 q4 0 f

 ; A3 =


l3 l34 l35 0

l34 l4 l45 0

l35 l45 l5 0

0 0 0 g

 ,

where each li, lij are linear, qi quadratic and f, g cubic polynomials. We see that CP is the

union of two curves of the correct degree respectively. We discuss the case of ϕ3 in detail; the

other case is similar.

Let V be a cubic fourfold with the involution ϕ3 - we can rewrite the equation of V as:

l3x
2
3 + l4x

2
4 + l5x

2
5 + 2l34x3x4 + 2l35x3x5 + 2l45x4x5 + g = 0 (3.2.1)

where li, lij, g are homogeneous polynomials in x0, x1, x2, with li, lij linear and g degree 3.

The discriminant sextic CP is given by the determinant of the matrix A3, and so CP is the

union of two smooth cubic plane curves C and D, where

C = V (g)

D = V (l3l4l5 − l245l3 + 2l34l35l45 − l234l5 − l235l4).

Since D is a determinantal curve, by [Bea00, Prop 4.2] this determines an even theta

characteristic κ on the corresponding curve. In particular, since D is an elliptic curve

κ⊗2 = OD. Conversely, suppose we have the triple (C,D, κ). Then by [Bea00, Prop 4.2] we

can write D as the determinant of a 3× 3 matrix of linear forms in 3 variables. Using this

matrix and C = V (g), we can write an equation for a cubic fourfold of the form of equation

(3.2.1). This is clearly invariant under the involution ϕ3.

The general fiber of π : VP → P2 is a smooth quadric surface, and the fiber over a smooth

point of the discriminant curve CP is a quadric cone. We claim that the fiber over a node of
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CP is the union of two planes. This follows from the following elementary lemma, we omit

the proof.

Lemma 3.2.2. Let P ⊂ V be a cubic fourfold containing a plane, π : VP → P2 be the quadric

fibration obtained via projection from P . Suppose that π−1(p) was a plane with multiplicity 2

(a double plane). Then V is a singular cubic fourfold.

3.2.1.1 The involution ϕ1

Cubic fourfolds with the involution of type ϕ1 were studied intensely in [LPZ18]; admitting

such an involution is equivalent to the existence of an Eckardt point p ∈ V . In particular, a

cubic fourfold of this kind contains the cone over a cubic surface S. The authors identify

generators of the algebraic cohomology as cones over the 27 lines on a cubic surface.

Theorem 3.2.3. [LPZ18] For a cubic fourfold with an involution (V, ϕ1) as in [LPZ18], the

following hold:

1. V is geometrically equivalent to a pair (Y,H) where Y is a cubic threefold, H a

hyperplane in P4.

2. V contains 27 planes Πi passing through the Eckardt point p, corresponding to the 27

lines on the cubic surface Y ∩H;

3. The primitive algebraic cohomology A(V )prim ∼= E6(2) (spanned by classes [Πi]− [Πj]);

4. The transcendental cohomology of V is T ∼= (D4)
3 ⊕ U2.

From Lemma 3.2.1, we see 5 pairs of planes corresponding to the singular points of the

discriminant curve CP = L∪Q. Indeed, the plane P corresponds to a line on the cubic surface,

and each pair of planes corresponds to the residual lines of a tritangent plane containing this

line.

3.2.1.2 The involution ϕ3

We wish to prove a similar theorem to Theorem 3.2.3 for cubic fourfolds with the anti-

symplectic involution ϕ3. The situation is this case is slightly more delicate - although the

primitive algebraic cohomology is spanned by differences of classes of planes over Q, this is

no longer true as integral cohomology.

Let V ⊂ P5 be a smooth cubic fourfold, ϕ := ϕ3 an antisymplectic involution. Denote

by P ⊂ V the unique point-wise fixed plane, and {Fi, F
′
i}9i=1 the 9 pairs of planes occurring
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as the fibers of π : VP → P2 over the singular points of the discriminant curve CP = C ∪D.

Let the corresponding classes in H4(V,Z) be denoted by [P ], [Fi], [F
′
i ] ∈ A(V ) for i = 1, . . . 9.

Notice that

ηV ∼ [P ] + [Fi] + [F ′
i ].

Proposition 3.2.4. Let V be a cubic fourfold with involution ϕ3. Then:

1. V contains at least 19 invariant distinct planes P, {Fi, F
′
i}9i=1, where additionally P is

point-wise fixed by ϕ3.

2. The classes {ηV , [P ], [F1], . . . [F9]} ⊂ H2,2(V ) span A(V )⊗Q.

Proof. One can check that ϕ3 leaves each plane Fi, F
′
i invariant be considering equations for

these planes.

We have identified 11 linearly independent algebraic classes, thus rankA(V ) ≥ 11. By

Corollary 3.1.4, we see this must be equality. Thus A(V ) is determined up to finite index by

these classes.

The identification of the lattices A(V ), A(V )prim and T (V ) is done in §3.2.2. In contrast

to the previous case, the lattice spanned by the differences of two planes forms an index 2

sublattice of A(V )prim.

3.2.2 The algebraic lattice of (V, ϕ3)

We will prove Theorem 3.0.1 by identifying the lattices A(V ), L+
∼= A(V )prim, and T (V ) for

a general such cubic. We briefly outline the strategy. We first consider the lattice spanned by

planes contained in V . We show that the primitive lattice spanned by differences of planes K̃

is an index 2 sublattice of A(V )prim. In particular, we will show that a class y =
[P ]+

∑9
i=1[Fi]

2

belongs to A(V ). In §3.2.2.1 we show that the lattice spanned by ⟨ηV , [F1], . . . [F9], y⟩ is

in fact isomorphic to A(V ). This allows us to identify the lattice A(V )prim and T (V ) in §3.2.2.2.

For convenience, we collect the lattice invariants for A(V ), A(V )prim and T (V ) below -

these follow from results in §3.1.1.

Lemma 3.2.5. Let V be a cubic fourfold with the involution ϕ := ϕ3. Then:

1. A(V ) is an odd, positive definite, 2-elementary lattice of rank 11 and discriminant

group AA(V )
∼= (Z/2Z)a, where 1 ≤ a ≤ 10.
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2. A(V )prim is a positive definite even lattice of rank 10, with discriminant group AA(V )prim
∼=

Z/3Z⊕ (Z/2Z)a.

3. T (V ) is a 2-elementary lattice of signature (10, 2), with discriminant group AT (V )
∼=

(Z/2Z)a.

By Proposition 3.2.4, the lattice A(V ) ⊗ Q is generated by the cohomology classes

{ηV , [P ], [F1], . . . [F9]}. We first wish to compute the intersection products of these classes, in

order to identify the lattice they generate. We will use the following lemma:

Lemma 3.2.6. [Voi86] Let P1, P2 be planes contained in V , and denote by pi = [Pi] ∈
H4(V,Z). Then:

1. ηV · p = 1,

2. p2 = 3,

3. p1 · p2 =


0 if P1 ∩ P2 = ∅,

1 if P1 ∩ P2 = a point ,

−1 if P1 ∩ P2 = a line.

This has the following important consequence:

Corollary 3.2.7. Let p ∈ H4(V,Z) such that p2 = 3, and p · ηV = 1. Then p is represented

by a unique plane.

Using these results as well as our geometrical descriptions for the planes, we can compute

the intersection numbers directly.

Lemma 3.2.8. The intersection products of the classes {ηV , [P ], [F1], . . . [F9]} above are given

as follows:

1. [P ] · [P ] = [Fi] · [Fi] = ηX · ηX = 3 for 1 ≤ i ≤ 9,

2. ηX · [P ] = ηX · [Fi] = 1,

3. [P ] · [Fi] = −1,

4. [Fi] · [Fj] = 1 for 1 ≤ i ̸= j ≤ 9.

Proof. One can compute the intersections using Lemma 3.2.6.
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Remark 3.2.9. Consider the lattice N = ⟨ηV , [P ], [F1], . . . [F9]⟩ ⊂ A(V ). This has determinant

212, and rank 11. By Lemma 3.2.5, N cannot be isomorphic to A(V ). Indeed, if N ∼= A(V ),

then the number of generators l(T (V )) = a of the discriminant group of T (V ) satisfies

l(T (V )) > 10; this contradicts Corollary 3.1.4.

Proposition 3.2.10. Consider the lattice K spanned by the classes αi = [Fi]−[Fi+1], 1 ≤ i ≤ 8

and α9 = [P ] + [F8] + [F9] − ηV . Then K is a sublattice of A(V )prim and is isomorphic to

D9(2).

Proof. Clearly αi ∈ A(V )prim for 1 ≤ i ≤ 9; we compute the intersection matrix for the lattice

spanned by the {αi} using Lemma 3.2.8. In particular, we see that for 1 ≤ i ≤ j ≤ 9 :

αi · αj =



4 if i = j,

−2 if j = i+ 1, i ̸= 8

−2 if i = 7, j = 9

0 otherwise.

In other words, we see the lattice spanned by {αi}9i=1 is isomorphic to D9(2).

Consider the class δ := ηV − 3[P ]; we see that δ ∈ A(V )prim, and the lattices ⟨δ⟩
and K ∼= D9(2) are mutually orthogonal in A(V )prim. Thus A(V )prim is an overlattice of

⟨δ⟩ ⊕D9(2) :

⟨δ⟩ ⊕D9(2) ⊂ A(V )prim.

We can calculate that δ2 = 24; it follows that K̃ := ⟨δ⟩ ⊕ D9(2) ∼= ⟨24⟩ ⊕ D9(2). The

discriminant group of K̃ is

AK̃ = Aδ ⊕ AD9(2)
∼= Z/24Z⊕ Z/8Z⊕ (Z/2Z)8,

whereas AA(V )prim = Z/3Z⊕(Z/2Z)a. By Proposition 2.1.1, A(V )prim is a nontrivial overlattice

of K̃, corresponding to a nontrivial isotropic subgroup H ⊂ AK̃ . Since D9(2) ↪→ A(V )prim is

a primitive embedding with D9(2)
⊥ ∼= ⟨δ⟩, we see that the projections

H → Aδ
∼= Z/24Z

H → AD9(2)
∼= Z/8Z⊕ (Z/2Z)8

are also embeddings (see 2.2 for a discussion). It follows that H ∼= Z/4Z, or Z/8Z.

Lemma 3.2.11. There exists a non trivial isotropic subgroup H ∼= Z/4Z of AK̃ corresponding

to an overlattice K̃ ⊂ M ⊂ A(V )prim.
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Proof. The discriminant group of ⟨δ⟩ is generated by ξ = [ηV −3P
24

], and qδ(ξ) =
1
24
. Let GD

be the Gram matrix for D9(2) with respect to the basis {αi}9i=1. To find explicit generators

of the discriminant group AD9(2), we proceed as follows: first consider the inverse matrix

G−1
D , given below. We consider the linear combinations of α1, . . . α9 with coefficients given

by the columns of G−1
D . Denote them by α∗

1, . . . α
∗
9, and their image in AD9(2) by [α∗

i ]. We

see that β := [α∗
9] has order 8, thus we can consider β as a generator of Z/8Z. Note that

qD9(2)(β) =
9
8
.

G−1
D =



1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

1
4

1
2

1 1 1 1 1 1 1
2

1
2

1
2

1 3
2

3
2

3
2

3
2

3
2

3
4

3
4

1
2

1 3
2

2 2 2 2 1 1

1
2

1 3
2

2 5
2

5
2

5
2

5
4

5
4

1
2

1 3
2

2 5
2

3 3 3
2

3
2

1
2

1 3
2

2 5
2

3 7
2

7
4

7
4

1
4

1
2

3
4

1 5
4

3
2

7
4

9
8

7
8

1
4

1
2

3
4

1 5
4

3
2

7
4

7
8

9
8


Let H = Z/4Z = ⟨6ξ + 2β⟩; indeed one can see that q(6ξ + 2β) = 0 mod 2Z, hence H is

an isotropic subgroup, and thus corresponds to some overlattice K̃ ⊂ M ⊂ A(V )prim.

Proposition 3.2.12. Notations as above.

1. The class

x =
α1 + α3 + α5 + α7 + [F9]− [P ]

2

belongs to M ⊂ A(V )prim; in particular x is an integral algebraic class in A(V ).

2. The Gram matrix of M (denoted GM) with respect to the basis {x, αi}9i=1 is given below.
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In particular, the discriminant group of M is Z/3Z⊕ (Z/2Z)10.

GM =



6 2 −2 2 −2 2 −2 2 −2 0

2 4 −2 0 0 0 0 0 0 0

−2 −2 4 −2 0 0 0 0 0 0

2 0 −2 4 −2 0 0 0 0 0

−2 0 0 −2 4 −2 0 0 0 0

2 0 0 0 −2 4 −2 0 0 0

−2 0 0 0 0 −2 4 −2 0 0

2 0 0 0 0 0 −2 4 −2 −2

−2 0 0 0 0 0 0 −2 4 0

0 0 0 0 0 0 0 −2 0 4



.

Proof. For the first claim, we have that M is the overlattice of K̃ corresponding to the

isotrivial subgroup given by H = ⟨6ξ + 2β⟩ ⊂ AK̃ . We see that

6ξ + 2β =
ηX − 3[P ] + 2(α1 + α3 + α5 + α7)− α8 + α9

4

=
2(α1 + α3 + α5 + α7) + 2[F9]− 2[P ]

4

=
α1 + α3 + α5 + α7 + [F9]− [P ]

2
mod K̃

It follows that class x belongs to M ; in particular, x ∈ A(V )prim.

For the second claim, we can calculate the intersection matrix with respect to the basis

{x, αi}9i=1 using Lemma 3.2.8. Let GM be the matrix with respect to this basis. We see that

detGM = 3×210; in order to compute the discriminant group, we compute the inverse matrix

G−1
M , and consider the column vectors x∗, α∗

i . It is clear to see that there are no elements of

order 4; thus the discriminant group of AM
∼= Z/3Z⊕ (Z/2Z)10.

Remark 3.2.13. Consider the linear combination y := x+[F2]+ [F4]+ [F6]+ [F8]+ [P ] ∈ A(V ).

We see that

y :=
[P ] + [F1] + [F2] + [F3] + [F4] + [F5] + [F6] + [F7] + [F8] + [F9]

2

is thus an element of the integral lattice A(V ).

We are now ready to identify the lattices A(V ), A(V )prim, T (V ); more specifically we prove

the following:
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Theorem 3.2.14. Let N be the lattice generated by {ηV , y, [F1], . . . [F9]}; and M be the lattice

generated by {x, αi} for 1 ≤ i ≤ 9. Then:

1. The lattice of algebraic cycles A(V ) is isomorphic to N .

2. The lattice A(V )prim ∼= L+ is isomorphic to the lattice M .

3. The lattice T (V ) is isomorphic to the lattice E8(2)⊕ A1 ⊕ A1(−1)⊕ U .

This will conclude the proof of Theorem 3.0.1.

3.2.2.1 The lattice A(V )

Consider the lattice A(V ) ⊂ H4(V,Z); this is an odd, 2-elementary lattice of rank 11. Let

N be the lattice spanned by ηX , y, [F1], . . . [F9], where y is the class as in Remark 3.2.13; we

claim that N = A(V ). Let GN be the Gram matrix of N (with respect to ηV , y, [F1], . . . [F9]),

with entries calculated according to Lemma 3.2.8. The inverse matrix is given below. Denote

by η∗, y∗, [F1]
∗, . . . [F9]

∗ the dual basis of N∗, given as linear combinations of the elements

{ηX , y, [F1], . . . [F9]} with coefficients given by the column vectors of G−1
N . By abuse of

notation, η∗, y∗, [F1]
∗, . . . [F9]

∗ also denote the corresponding elements in AN = N∗/N . It

is straightforward to check that AN is isomorphic to (Z/2Z)10 and {η∗, [F1]
∗, . . . [F9]

∗} is a

basis.

G−1
N :=



3
2

−5
2

1 1 1 1 1 1 1 1 1

−5
2

6 −5
2

−5
2

−5
2

−5
2

−5
2

−5
2

−5
2

−5
2

−5
2

1 −5
2

3
2

1 1 1 1 1 1 1 1

1 −5
2

1 3
2

1 1 1 1 1 1 1

1 −5
2

1 1 3
2

1 1 1 1 1 1

1 −5
2

1 1 1 3
2

1 1 1 1 1

1 −5
2

1 1 1 1 3
2

1 1 1 1

1 −5
2

1 1 1 1 1 3
2

1 1 1

1 −5
2

1 1 1 1 1 1 3
2

1 1

1 −5
2

1 1 1 1 1 1 1 3
2

1

1 −5
2

1 1 1 1 1 1 1 1 3
2


Lemma 3.2.15. The discriminant group AN of N is isomorphic to (Z/2Z)10. The discrimi-

nant bilinear form

bN : AN × AN → Q/Z
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is given by the matrix with every entry equal to 1/2 (with respect to the basis {η∗, [F1]
∗, . . . [F9]

∗}
of AN).

Proposition 3.2.16. The lattice N generated by ηV , y, [F1], . . . [F9] is saturated in A(V ) =

H4(V,Z) ∩H2,2(V ).

Proof. Assume the natural embedding N ⊂ A(V ) is not saturated. Then it factors as

N ⊊ Sat(N) = A(V ) ⊂ H4(V,Z), where Sat(N) denotes the saturation of N in H4(V,Z).
Thus, Sat(N) is a nontrivial overlattice of N and corresponds to a nontrivial isotropic

subgroup of (AN , bN : AN ×AN → Q/Z). Elements in AN are given by linear combinations of

η∗, [F1]
∗, . . . [F9]

∗ with coefficients either 0 or 1; isotropic elements must have an even number

of non-zero coefficients. There are 9 cases to consider. For example, let us suppose that

[Fi]
∗ + [Fj]

∗ is contained in the isotropic subgroup. From the expression of G−1
N it is easy

to see that [Fi]
∗ + [Fj]

∗ ≡ 1
2
([Fi] + [Fj]) mod N . It follows that the element 1

2
([Fi] + [Fj])

belongs to A(V ) (i.e [Fi] + [Fj] is divisible by 2). The other cases are similar. In conclusion,

N ̸= Sat(N) if and only if at least one of the following elements is 2-divisible in A(V ) :

1. [Fi] + [Fj]

2. [Fi] + [Fj] + [Fk] + [Fl]

3. [Fi] + [Fj] + [Fk] + [Fl] + [Fm] + [Fn]

4. [Fi] + [Fj] + [Fk] + [Fl] + [Fm] + [Fn] + [Fp] + [Fq]

5. η + [Fi]

6. η + [Fi] + [Fj] + [Fk]

7. η + [Fi] + [Fj] + [Fk] + [Fl] + [Fm]

8. η + [Fi] + [Fj] + [Fk] + [Fl] + [Fm] + [Fn] + [Fp]

9. η + [F1] + [F2] + [F3] + [F4] + [F5] + [F6] + [F7] + [F8] + [F9].

for 1 ≤ i, j, k, l,m, n, p, q ≤ 9 distinct. Let us do a case by case analysis.

1. Write [Fi] + [Fj ] = 2σ for some σ ∈ A(V ). It is easy to see that σ2 = 2; by [Voi86, Sect.

4 Prop. 1], this implies that V is a singular cubic fourfold, clearly a contradiction.
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2. Write [Fi] + [Fj ] + [Fk] + [Fl] = 2σ, and consider the element 2σ − 2[Fj ]− [2Fl] ∈ A(V ).

This is clearly divisible by 2; write 2σ̃ = 2σ − 2[Fj] − 2[Fl]. Then σ̃2 = 2, again a

contradiction.

3. Write [Fi] + [Fj ] + [Fk] + [Fl] + [Fm] + [Fn] = 2σ, and consider the element 2σ− 2[Fj ]−
2[Fl]− 2[Fn] ∈ A(V ). This is clearly divisible by 2; write 2σ̃ = 2σ− 2[Fj ]− 2[Fl]− 2[Fn].

It is easy to see that ηV · σ̃ = 0, implying that σ̃ is even. On the other hand, σ̃2 = 3, a

contradiction.

4. Let r be the index such that {i, j, k, l,m, n, p, q, r} = {1, . . . 9}. Write [Fi] + [Fj ] + [Fk] +

[Fl] + [Fm] + [Fn] + [Fp] + [Fq] = 2σ; note that 2y − 2σ = ([P ] + [Fr]). Thus [P ] + [Fr]

is divisible by 2; write [P ] + [Fr] = 2σ̃. It is easy to see that σ̃ · ηV = 1 = σ̃2. Then V

is a special cubic fourfold labeled by the rank 2 lattice generated by ηV and σ̃. The

corresponding discriminant is d = 2. By [Has00, Sect 4.4] this cannot happen for the

smooth cubic V .

5. Write η + [Fi] = 2σ for some σ ∈ A(V ). Again, σ2 = 2, a contradiction.

6. Write η + [Fi] + [Fj] + [Fk] = 2σ. It is easy to see that ηV · σ = 3, σ2 = 6. Then V is a

special cubic fourfold labeled by the rank 2 lattice generated by ηV , σ, with determinant

d = 9. Since d ̸= 0, 2 mod 6, no such V exists, by [Has00].

7. Write η + [Fi] + [Fj] + [Fk] + [Fl] + [Fm] = 2σ. Let n, p, r, s be the indices such that

{i, j, k, l,m, , n, p, r, s} = {1, . . . 9}. Consider the element

2σ − 2y + 2[Fs] = η − [P ]− [Fn]− [Fp]− [Fr] + [Fs];

we see that η − [P ]− [Fn]− [Fp]− [Fr] + [Fs] must be divisible by 2. Write η − [P ]−
[Fn]− [Fp]− [Fr] + [Fs] = 2σ̃. We see that ηV · σ̃ = 0, and σ̃2 = 2, again a contradiction.

8. Let r, s be the indices such that {i, j, k, l,m, , n, p, r, s} = {1, . . . 9}, and write η +

[Fi] + [Fj] + [Fk] + [Fl] + [Fm] + [Fn] + [Fp] = 2σ. Consider the element 2σ − 2y =

η − [Fr] − [Fs] − [P ] ∈ A(V ). Thus η − [Fr] − [Fs] − [P ] is divisible by 2; write

η − [Fr]− [Fs]− [P ] = 2σ̃. One can check that ηV · σ̃ = 0, implying that σ̃ is even. On

the other hand, σ̃2 = 1, a contradiction.

9. Write η + [F1] + [F2] + [F3] + [F4] + [F5] + [F6] + [F7] + [F8] + [F9] = 2σ. Then

2σ − 2y = η − [P ]; thus η − [P ] is divisible by 2. Write 2σ̃ = η − [P ]. It is clear that

η · σ̃ = 1 = σ̃2, again a contradiction as in (4).
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Corollary 3.2.17. We have that A(V ) ∼= N where N is the lattice given above. In particular,

AA(V )
∼= (Z/2Z)10.

3.2.2.2 The primitive algebraic cohomology

The above description of A(V ) allows us to identify the discriminant group of A(V )prim, and

in turn the lattice almost immediately.

Proposition 3.2.18. The discriminant group of A(V )prim is isomorphic to Z/3Z⊕ (Z/2Z)10.
Further, the lattice A(V )prim is isomorphic to the lattice M .

Proof. By definition, A(V )prim = ⟨ηV ⟩⊥ ⊂ A(V ) ∼= N . Since AN
∼= (Z/2Z)10 and A⟨η⟩ ∼=

Z/3Z, the first claim follows by Proposition 2.1.1. For (2); if M ̸= A(V )prim, then A(V )prim is

a non-trivial overlattice of M , corresponding to a non-trivial isotropic subgroup H ⊂ AM ≡
Z/3Z⊕ (Z/2Z)10 by Proposition 2.1.1. This would imply that AA(V )prim

∼= H⊥
AM

/H, which is

impossible.

3.2.2.3 The transcendental cohomology

Next we study the transcendental lattice T (V ) ∼= L−. Recall that for a 2-elementary lattice

S, we define the invariant δ(S) ∈ {0, 1} to be 0 if qS : AS → Q/2Z takes values in Z, and 1

otherwise.

Lemma 3.2.19. The invariants of the transcendental lattice T (V ) are computed as follows:

1. T (V ) is an even lattice of rank 12. The signature is (10, 2).

2. AT (V )
∼= (Z/2Z)10. In particular, T (V ) is 2-elementary and discr(T (V )) = 1024.

3. T (V ) has δ(T (V )) = 1.

The lattice T (V ) is isomorphic to the orthogonal direct sum E8(2)⊕ A1 ⊕ A1(−1)⊕ U .

Proof. The first claim follows from Lemma 3.2.5. Recall that AA(V )prim = Z/3Z⊕ (Z/2Z)10,
and that A(V )prim ↪→ A2 ⊕ U3 ⊕ E2

8 primitively. By Lemma 2.2.1, this is equivalent to

qA(V )prim|Z/3Z ∼= qA2 ,

qA(V )prim|(Z/2Z)10 ∼= −qT (V );
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in particular AT (V )
∼= (Z/2Z)10. We see that δ(T (V )) = 1 by computing the values of

qT = −qA(V )prim|(Z/2Z)10 .
The indefinite, 2-elementary lattice T (V ) is classified uniquely up to isomorphism by the

signature, δ(T (V )), and l(T (V )), where l(T (V )) = 10 is the minimum number of generators

of AT (Theorem 2.3.4). The lattice E8(2)⊕ A1 ⊕ A1(−1)⊕ U has the same invariants, and

thus they are isomorphic.

This concludes the proof of Theorem 3.0.1, in particular for the case of a cubic fourfold V

with the anti-symplectic involution ϕ3.

3.3 Geometry of symplectic involutions

A cubic fourfold V with the symplectic involution ϕ2 was studied briefly as part of [LZ22],

where they identified A(V )prim ∼= E8(2) via lattice theory. The geometry was not explored

- here we make a couple of complementary remarks, distinguishing this case from the anti-

symplectic situation. In particular, we prove that such a cubic cannot contain a plane, and

further the lattice A(V )prim is generated by classes that correspond to cubic scrolls contained

in V .

3.3.1 Non-existence of planes

Let V be a general cubic fourfold with a symplectic involution ϕ := ϕ2; we first show that V

contains no planes. We can detect the existence of a plane via the discriminant group of the

algebraic primitive cohomology.

Lemma 3.3.1. Let V be a cubic fourfold containing a plane P . Then P determines a non

trivial class δ̄ ∈ AA(V )prim of order 3. Moreover, any two planes P1, P2 determine the same

class, i.e δ̄1 = δ̄2 ∈ AA(V )prim.

Proof. Let p denote the class of the plane P in H4(V,Z). Consider the class δ := 3p− ηV ;

then δ ∈ A(V )prim with δ2 = 24. Let α ∈ A(V )prim; we have that α · (3p− η) = 3α · p. Thus
divA(V )prim(δ) = 3.

Note that δ is primitive: if δ = kw for some w ∈ A(V )prim, k ∈ Z, then k must divide

divA(V )prim(δ) = 3. On the other hand, k2 = 9 does not divide 24; thus k = 1.

Thus δ is primitive of divisibility 3, and so δ∗ = δ
3
∈ A(V )∗prim, where

A(V )∗prim = {y ∈ A(V )prim ⊗Q|y · x ∈ Z for all x ∈ A(V )prim}.
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Let δ̄ be the image of δ∗ in AA(V )prim ; then δ̄ is a nontrivial element of order three.

Now suppose V contains two planes; denote their cohomology classes by p1, p2. Then in

turn this determines δ∗1, δ
∗
2 as above. Note that δ∗1 − δ∗2 = p1 − p2 ∈ A(V )prim; it follows that

the images of δ∗1 and δ∗2 in AA(V )prim coincide.

Corollary 3.3.2. Let V be a general smooth cubic fourfold with the symplectic involution ϕ.

Then V does not contain a plane.

Proof. From [LZ22], the general such cubic has A(V )prim ∼= E8(2); the determinant is 28. In

particular, there are no non-trivial elements of AA(V )prim of order 3.

3.3.2 Existence of cubic scrolls

Let v ∈ A(V )prim ∼= E8(2) be an element with v2 = 4. Then K = ⟨ηV , v⟩ gives a labeling

of V with determinant 12; the lattice E8(2) has 240 such elements. Indeed, the elements v

correspond exactly to the roots of the unscaled lattice E8. Thus a general cubic fourfold with

a symplectic involution belongs to the Hassett divisor C12; this is the closure of the locus of

cubic fourfolds containing a cubic scroll. Equivalently, a general [V ] ∈ C12 has a hyperplane

section with at least 6 double points in linear position [HT10, Proposition 23]. We will show

that this is true for the general cubic with symplectic involution:

Theorem 3.3.3. Let V be a general cubic fourfold with the symplectic involution ϕ.

1. V contains 120 pairs of families of cubic scrolls {Ti, T
′
i}120i=1 whose cohomology classes

satisfy [Ti] + [T ′
i ] = 2ηV .

2. The lattice A(V )prim ∼= E8(2) is generated by classes αi := [Ti]− ηV .

In order to prove Theorem 3.3.3, we will need to investigate the geometry of such a cubic

fourfold V more closely. The involution ϕ fixes a line l ⊂ V , and a cubic surface S := Π ∩ V ,

where Π ∼= P3 is the complimentary subspace of P5 also point-wise fixed by the involution

(Proposition 3.1.3). Let π : BllV → Π be the linear projection from l to the disjoint linear

subspace Π; this is a conic fibration. The discriminant locus parametrising singular fibers is

given by:

det


l1(x0, . . . , x3) l2(x0, . . . , x3) 0

l2(x0, . . . , x3) l3(x0, . . . , x3) 0

0 0 g(x0, . . . x3)

 = 0,
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and is thus the union of the fixed cubic surface S = V (g) ⊂ Π and a quadric surface

Q = V (l1l3 − l22). Denote the intersection S ∩ Q = C; this is then a genus 4 space curve,

parametrising the fibers that are double lines.

Lemma 3.3.4. Let V be a cubic fourfold with symplectic involution ϕ, l the point-wise fixed

line contained in V . Let H ⊂ P5 be a general hyperplane containing l, and denote Y := H ∩V

the hyperplane section. Then Y is smooth, and the discriminant locus of the linear projection

of Y from l ⊂ Y is the union of a smooth conic Z and a smooth cubic plane curve E.

Proof. Notations as above. Since Π, l are complimentary linear subspaces, Γ := H ∩ Π ∼= P2.

Note that ϕ induces an involution ϕ|H : H → H whose fixed locus is l∪Γ. The cubic threefold

Y is invariant under the involution, and from the equation of Y one can check that Y is

smooth. In particular, Y has equation

x2
4L1(x0, x1, x2) + 2x4x5L2(x0, x1, x2) + x5L3(x0, x1, x2) +G(x0, x1, x2) = 0,

where Li are linear and G has degree 3. Consider the restriction of π : BllV → Π to the

proper transform of Y ; we have a conic bundle πY : BllY → Γ, with discriminant curve

det


L1 L2 0

L2 L3 0

0 0 G

 = 0.

This is the union of the plane cubic E := V (G(x0, x1, x2)) = S ∩Γ and Z := V (L1L3−L2
2) :=

Q ∩ Γ; both are smooth for a general hyperplane H.

We claim that if we choose a hyperplane containing l ⊂ H ⊂ P5 such that the discriminant

locus of πY consists of curves E,Z that are tangent at a point p, then Y := V ∩H is singular.

Lemma 3.3.5. Let Y be a cubic threefold with an involution fixing a line l and consider the

discriminant locus E ∪Z of πY : BllY → P2 as above. Suppose that the conic Z is tangent to

the cubic curve E at a point p ∈ P2. Then Y has (at least) two nodes interchanged by the

involution.

Proof. Without loss of generality, assume that Z is given by x0x1 − x2
2 = 0, and suppose that

Z and E are tangent at the point p = [p0, p1, p2]. Note that this implies that:

∂G

∂x0

(p) = p1,
∂G

∂x1

(p) = p0,
∂G

∂x2

(p) = −2p2. (3.3.1)
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The equation for Y is given as

x2
4x0 + 2x4x5x2 + x5x1 +G(x0, x1, x2) = 0.

Taking partial derivatives, we see that Y has two nodes, interchanged by the involution, at

the points [p0, p1, p2,±
√
−p1,±

√
−p0].

Proposition 3.3.6. Let V be a general smooth cubic fourfold with a symplectic involution.

Then V contains 120 pairs of families of cubic scrolls Ti, T
′
i whose classes satisfy [Ti] + [T

′
i ] =

2ηX .

Proof. Notations as above. Let C ⊂ Π be the intersection of Q ∩ S ⊂ Π ⊂ P5, the genus 4

curve as above. Then there are 120 tritangent planes to C, denoted by Γi ⊂ Π ∼= P3 with

Γi
∼= P2. Since the intersection points of Γi ∩ C are the intersection points Γ ∩ Q ∩ S, we

must have that the conic Z := Γ∩Q is tangent to the cubic curve E := Γ∩ S in three points.

Let Hi = span{l,Γi} ⊂ P5; by Lemma 3.3.5, Yi := Hi ∩ V has three pairs of nodes {pi, qi}
with ι(pi) = qi. Using the involution, one can check that these nodes are in general position,

and so the existence of the cubic scrolls follows by [HT10, Proposition 23].

Remark 3.3.7. The existence of a cubic scroll implies the existence of a rational curve on the

Fano variety of lines F (V ) parametrising the lines in the ruling of Ti. The induced symplectic

involution on F (V ) was studied in [Cam12].

Proposition 3.3.8. Let M be the lattice spanned by {αi}120i=1, where αi := [Ti]− ηV . Then

the lattice M is isomorphic to A(V )prim ∼= E8(2).

In order to prove Proposition 3.3.8, we must first look at the possible intersection numbers

of two cubic scrolls contained in a cubic fourfold. Note two homologous cubic scrolls are

necessarily contained in the same hyperplane section (see [Has96, Lemma 2.11]).

Lemma 3.3.9. Let V ⊂ P5 be a smooth cubic fourfold containing two non-homologous cubic

scrolls T1, T2. Then [T1] · [T2] = τ for τ ∈ {1, 3, 5}.

Proof. The cubic fourfold V has a sublattice Kτ := ⟨ηV , T1, T2⟩ ⊂ A(V ), with Gram matrix:

ηX T1 T2

ηX 3 3 3

T1 3 7 τ

T2 3 τ 7
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for some τ ∈ Z depending on V . The lattice A(V ) is positive definite; it follows that the

discriminant of Kτ should be positive. We see that d(Kτ ) = 3(7− τ 2 + 6τ), the only values

ensuring this is positive are τ ∈ {0, 1, 2, 3, 4, 5, 6}.
Let α1 := ηV − T1, α2 := ηV − T2; this is a basis for ⟨ηV ⟩⊥Kτ

. Note that α2
i = 4, and

α1 · α2 = τ − 3. Let v = xα1 + yα2 with x, y ∈ Z. We will exclude τ = 0, 2, 4, 6 by exhibiting

either a short or long root in ⟨ηV ⟩⊥ ⊂ Kτ . We have that

v2 = 2(2x2 + 2y2 + xy(τ − 3)). (3.3.2)

Let τ = 0, then v = α1 +α2 has v2 = 2. Similarly for τ = 6, v = α1 −α2 is a short root. Now

let τ = 2; we see that v = α1 + α2 satisfies v2 = 6. Note that v = 2ηV − T1 − T2; it is easy

to check that v has divisibility 3, and is thus a long root. Similarly, for τ = 4 we see that

v = α1 − α2 is also a long root.

For the remaining values of τ , one can check that ⟨ηV ⟩⊥ ⊂ Kτ contains no long or short

roots by using standard Diophantine equation techniques.

3.4 Associated K3 surfaces, Hassett divisors, and

rationality

In this section we investigate the consequences of Theorem 3.0.1 in terms of rationality. In

§3.4.1 we investigate the existence of associated K3 surfaces; a cubic fourfold is conjectured to

be rational if and only if such an associated K3 surface exists. Next in §3.4.2 we investigate

whether a cubic with the anti-symplectic involution ϕ3 is trivially rational, i.e contains two

disjoint planes. Finally in §3.4.3 we show that such a cubic fourfold is Hassett maximal; in

particular such a cubic is rational.

3.4.1 Associated and twisted K3 surfaces

Let V be a smooth cubic surface with a labeling Kd ⊂ A(V ), as in Definition 3.1.2.

Definition 3.4.1. A polarised K3 surface (S, L) of degree d is associated to V if there

exists an isomorphism of Hodge structures

K⊥
d
∼= H2(S,Z)prim(−1),

where H2(S,Z)prim is orthogonal to L in H2(S,Z).
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A cubic fourfold V ∈ Cd has such an associated K3 surface if and only if d satisfies the

following condition [Has00]:

d even and not divisible by 4, 9 or any odd prime p ≡ 2 mod 3. (3.4.1)

Notice that this implies that as lattices T (S) ∼= T (V )(−1), and so a necessary condition

for the existence of an associated K3 surface is that T (V ) embeds primitively into the K3

lattice ΛK3
∼= U3 ⊕ E2

8 . It is conjectured that a cubic fourfold is rational if and only if there

exists an associated K3 surface [Has00, Kuz10a], we investigate the existence of such K3’s

for cubics with involutions.

Lemma 3.4.1. Let V be a general cubic fourfold with involution either ϕ1 or ϕ2. Then there

does not exist an associated K3 surface.

Proof. Consider the involution ϕ1; the statement is proved in [Laz21, Theorem 1.8]. In fact,

the lattice A(V )prim for such a cubic V is maximal in a certain sense.

Consider next the involution ϕ2; we show there does not exist a primitive embedding

T (V ) ↪→ ΛK3. Recall that in this case A(V )prim ∼= E8(2), and so T (V ) has signature (2, 12)

with discriminant group AT (V )
∼= (Z/2Z)8 ⊕ Z/3Z. We also have that qT (V )|Z/3Z = q|A2 , and

qT (X)|(Z/2Z)8 = −qE8(2).

Suppose that there exists such a primitive embedding. Since ΛK3 is the unique even

unimodular lattice with signature (3, 19), by [Nik79b, Prop 1.15.1] the existence of this

embedding is equivalent to the existence of an even lattice K of signature (1, 7), discriminant

group AK
∼= AT (V ) such that qK = −qT (X). Since (Z/2Z)8 ⊂ AK , by Lemma 2.3.6 the

lattice M := K(1/2) is a well-defined integral lattice. Now M is a rank (1, 7) lattice with

AM
∼= Z/3Z.
First, suppose that M is an odd lattice. Then by Lemma 2.3.8, there exists a generator

ξ ∈ Z/2Z ⊂ AK such that qK(ξ) ̸∈ Z/2Z. Since K⊥ = E8(2) is a 2-elementary lattice such

that qE8(2)(v) ∈ Z/2Z for all [v] ∈ AE8(2), this is a contradiction - thus M must be an even

lattice. By Theorem 2.3.9, M is an even 3-elementary lattice and is uniquely determined

by the rank and l(AM) = 1. Consider the lattice U ⊕ E6. This is a 3-elementary lattice

with the same invariants as M ; thus M ∼= U ⊕ E6. Hence K ∼= U(2) ⊕ E6(2); however

qM |(Z/3Z) ̸= −qA2 ; it follows that no such lattice K exists.

The Kuznetsov conjecture would then imply that a cubic fourfold V with involution ϕ1 or

ϕ2 is irrational. On the other hand, for V with involution ϕ3, we can construct a K3 surface

with transcendental lattice T (S) ∼= T (V )(−1) geometrically.
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Lemma 3.4.2. Let V be a general cubic fourfold with involution ϕ3. Then there exists a

primitive embedding T (V ) ↪→ ΛK3.

Proof. First, assume that ϕ = ϕ3. We show there exists such a primitive embedding by

exhibiting a K3 surface with transcendental lattice T (S) ∼= T (V )(−1). Let C ⊂ P2 be an

irreducible general sextic curve with 9 nodes. Let π : P̃2 → P2 be the blow up of P2 at the 9

nodes, and let r : S → P̃2 be the double cover ramified along the strict transform of C. Then

S is a K3 surface; we claim T (S) ∼= E8(−2) ⊕ U ⊕ A1 ⊕ A1(−1). Let h = r∗π∗(l), where l

is the class of a line in P2, and ei for i = 1, . . . 9 the pullback of the exceptional curves of

π. Let D ∈ P̃2 be the strict transform of C, and denote also by D the ramified curve on

S. In particular, 2D ∼ 6h−
∑9

i=1 2ei, and the NS(S) is spanned by the classes h, e1, . . . e9.

Notice that e2i = −2, h2 = 2 and h · ei = 0. Thus the lattice NS(S) is a 2-elementary lattice,

with signature (1, 9), l(ANS(S)) = 10, and δ = 1 (see Theorem 2.3.2). This determines NS(S)

uniquely, and NS(S) ∼= E8(2)⊕ A1 ⊕ A1(−1). Now by definition T (S) = (NS(S))⊥, and by

Lemma 2.2.2 has signature (2, 10), l(AT (S)) = 10, δ = 1. This uniquely determines T (S); in

particular, T (S) ∼= E8(−2)⊕ U ⊕ A1 ⊕ A1(−1).

Recently, Brakkee considered instead associated twisted K3 surfaces [Bra20]. Recall that

the Brauer group of a scheme S is the group of sheaves of Azumaya algebras modulo Morita

equivalence, with multiplication given by tensor product. For references, see [Huy05, Huy09].

For S a complex K3 surface, we have that

Br(S) ∼= H2(S,O∗
S)tors

∼= (Q/Z)22−ρ(X).

Any Brauer class α ∈ Br(S) is of the form exp(B0,2), where B ∈ H2(S,Q). We can

consider the linear map fα : T (S) → Q/Z given by intersecting with B. This map depends

only on α, and one can show that the identification α 7→ fα yields an isomorphism Br(S) ∼=
Hom(T (S),Q/Z).

Definition 3.4.2. A twisted K3 surface is a pair (S, α) where S is a K3 surface, α ∈ Br(S).

More precisely, consider the following condition:

d′ = dr2 for some d, r satisfying condition 3.4.1. (3.4.2)

Theorem 3.4.3. [Bra20, Theorem 2] A cubic fourfold V belongs to the divisor Cd′ for d′

satisfying (3.4.2) if and only if for every decomposition d′ = dr2, V has an associated polarized

twisted K3 surface (S, L, α) of degree d and order r.

50



Here r := order(α) ∈ Br(S) and the triple (S, L, α) is associated to V if there is a Hodge

isometry K⊥
d
∼= Kerfα.

Consider the case d = r = 2, so d′ = 8. The cubic fourfolds contained in C8 contain a

plane, and there is an associated twisted K3 surface (S, α). As discussed in [Kuz10b], there is

a geometric construction for (S, α) obtained by projecting the cubic fourfold from the plane,

and letting S be the double cover of P2 branched in the discriminant sextic. We call this

twisted K3 the visible twisted K3 surface associated to P ⊂ V . By Lemma 3.2.1, a cubic

fourfold with anti-symplectic involution contains a plane - we immediately see the existence

of such a K3 surface.

Corollary 3.4.4. Let V be a cubic fourfold with anti-symplectic involution ϕ. Then there

exists an associated visible twisted K3 surface (S, α) with order(α) = 2.

On the other hand, let V be a general cubic fourfold with the symplectic involution ϕ2.

By Corollary 3.3.2, we cannot associate to V a visible twisted K3 surface.

3.4.2 The divisor C8
The cubic fourfolds that contain a plane have been well studied and are central to the original

proof of the Torelli theorem [Voi86]. They have a quadric bundle structure, and rationality

would follow provided the bundle has a rational section. Here, we note that this is not the

case for cubics V with the involution ϕ3.

Definition 3.4.3. A cubic fourfold V containing a plane P is called trivially rational (see

[Gal17]) if the associated quadric bundle π : VP := BlPV → P2 has a rational section.

In particular, one sees immediately that if a cubic fourfold V contains two disjoint planes,

then we have such a section and V is trivially rational. The following theorem gives a criteria

for the existence of such a section.

Theorem 3.4.5. [Has99, Theorem 3.1] A cubic fourfold V containing a plane is trivially

rational if and only if there exists a class T ∈ A(V ) with T ·Q odd for a smooth fiber Q of π.

We can use this criteria in our situation; our complete description of the lattice A(V )

allows us to conclude no such class exists.

Corollary 3.4.6. Let V be a general cubic fourfold with the involution ϕ = ϕ3, and let [P ] be

the class of the plane as in §3.2.2. Then V is not trivially rational with respect to the quadric

fibration π : VP → P2.
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Proof. Let Q denote a general fiber of π, i.e a smooth quadric surface. The class [Q] in

H4(V,Z) satisfies [P ] + [Q] = ηV . One can easily see that a Z-linear combination of the

basis of A(V ) intersects the quadric [Q] evenly, using the intersection matrix in Proposition

3.2.16.

Let V ∈ C8, and suppose that the discriminant curve CP associated to VP → P2 is smooth.

Following Voisin [Voi86], we let (S, α) be associated visible K3 surface, where α ∈ Br(S)[2].

This in turn defines a 2-torsion Brauer class αV ∈ Br(X); we have the following result of

Kuznetsov [Kuz16, Sect. 4.3].

Lemma 3.4.7. Let V be a cubic fourfold containing a plane P as above. The following are

equivalent:

1. there exists a rational section of the quadric fibration π : VP → P2;

2. the associated Brauer class is trivial, i.e. αV = 1 ∈ Br(V ).

Moreover, the conditions above imply that V is rational.

Corollary 3.4.8. Let V be a cubic fourfold with anti-symplectic involution ϕ3. Then the

associated Brauer class is non-trivial.

3.4.3 Hassett maximal cubic fourfolds

Cubic fourfolds with involutions ϕ1 or ϕ2 have no associated K3 surfaces, and are conjecturely

irrational. On the other hand, a cubic fourfold V with the involution ϕ3 has transcendental

lattice coming from a K3 surface, and is potentially rational. Despite the rationality not

following from the obvious quadric bundle structure, we will establish that V is indeed

rational by investigating which Hassett divisors such an V belongs to. Recall the following

definition:

Definition 3.4.4. We say that a cubic fourfold V is Hassett maximal if

V ∈
⋂
d>6

d≡0,2 (mod 6)

Cd.

We denote the locus of Hassett maximal cubic fourfolds by Z.

Lemma 3.4.9. A Hassett maximal cubic fourfold is rational.
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Proof. A Hassett maximal cubic fourfold necessarily belongs to the divisor C14, which is the

closure of the Pfaffian locus. We can conclude that such a cubic is rational by results of

[BD85] and the fact that rationality specialises in families [KT19].

In this section we prove the following result:

Theorem 3.4.10. Let Mϕ3 be the moduli space of cubic fourfolds with the involution of type

ϕ3. Then Mϕ3 is contained in the Hassett maximal locus Mϕ3 ⊂ Z In particular, V ∈ Mϕ3

is rational.

It is known that Z is non-empty; it contains the Fermat cubic fourfold [YY21, Theorem

1.2]. Further, the authors show that dimZ ≥ 13, by illustrating a lattice M of rank 7 such

that the moduli of M -polarized cubic fourfolds MM is non-empty, and M contains a labeling

of determinant d for every d > 6, d ≡ 0, 2 mod 6. We adapt the method in [YY21] to our

situation.

In order to prove Theorem 3.4.10, we will need the following classical results of number

theory.

Lemma 3.4.11. (Lagrange’s 4-square theorem) Any positive integer can be expressed in the

form x2 + y2 + z2 + u2 for some integers x, y, z, u.

Lemma 3.4.12. (Ramanujan) Any positive integer except for 1 and 17 can be expressed in

the form 2x2 + 2y2 + 2z2 + 3u2 for some integers x, y, z, u.

Proof of Theorem 3.4.10. We will exhibit a primitive sublattice ηX ∈ Kd ↪→ A(V ) with

determinant d for every d > 6, d ∼= 0, 2 mod 6. Recall that a basis for A(V ) is given by

{ηV , y, [F1], [F2], . . . [F9]}

keeping notations of §3.2.2. Denote by α1 = [F1]− [F2], α3 = [F3]− [F4], α5 = [F5]− [F6], α7 =

[F7]− [F8], β = [ηV ]− [P ]− [F9], and γ = y − [F5]− [F6]− [F7]− [F8]− [F9]. It is easy to see

that the sublattice lattice ⟨ηx, α1, α3, α5, α7, β, γ⟩ ⊂ A(V ) is primitive; indeed, writing each

class in the basis of A(V ) we see they are linearly independent.

Suppose that v = x1α1 + x3α3 + x5α5 + x7α7 + sβ + tγ for integers x1, . . . x7, s, t. One

can see that ηX · v = s, and

v2 = 4x2
1 + 4x2

3 + 4x2
5 + 4x2

7 + 3s2 + 6t2.

Consider the rank two sublattice ⟨ηV , v⟩ ⊂ A(V ): its discriminant is given by:

d = 3(4x2
1 + 4x2

3 + 4x2
5 + 4x2

7 + 6t2) + 8s2.

53



We will show we can obtain every d ≡ 0, 2 mod 6.

Case 1: d = 6k, for k ≥ 2. Let s = 0. We need to find suitable integers such that

k = 2x2
1 + 2x2

3 + 2x2
5 + 2x2

7 + 3t2.

• If k = 2m, let x1 = 1. Then the lattice ⟨ηV , v⟩ is primitive, and by Ramanujan’s

theorem we can find suitable integers such that

2(m− 1) = 2x2
3 + 2x2

5 + 2x2
7 + 3t2.

• If k = 2m + 1, let t = 1. Then the lattice ⟨ηV , v⟩ is primitive, and by Lagrange’s

4-square theorem we can find suitable integers such that

m− 1 = x2
1 + x2

3 + x2
5 + x2

7.

Case 2: d = 6k + 2. Since we know [V ] ∈ C8 (V contains a plane), we can assume that

k ≥ 2. Let s = 1. The lattice ⟨ηV , v⟩ is primitive, and we need to find suitable integers such

that

k − 1 = 2x2
1 + 2x2

3 + 2x2
5 + 2x2

7 + 3t2.

For k ≥ 3 this reduces to Case 1 - we deal with k = 2 below.

Case 3: d = 14. Consider the class v = y − [F2] − [F4] − [F6] − [F8]; then v2 = 5 and

ηV · v = 1. Thus the lattice ⟨ηV , v⟩ is primitive and of determinant d = 14. It is well known

that any [V ] ∈ C14 is rational [BD85].

3.4.4 Low degree classes

We have seen that a cubic V with the involution ϕ3 is rational by showing it belongs to the

Hassett maximal locus. In particular, such a cubic belongs to C14, the closure of the locus

of Pfaffian cubic fourfolds. The Pfaffian locus has been well studied; Beauville and Donagi

[BD85] showed that Pfaffian cubic fourfolds are rational. Further, the Pfaffian condition is

equivalent to V containing a smooth degree 5 del Pezzo surface [Bea00]. In this section, we

show that such a cubic does indeed belong to the Pfaffian locus inside of C14. Our argument

is lattice theoretic; it would be interesting to realise the rationality of a cubic fourfold V with

the involution ϕ3 geometrically.

The complement of the Pfaffian locus has been studied by Auel in [Aue21]. More precisely,

the complement of the Pfaffian locus inside C14 is contained in the irreducible locus of cubic

fourfolds containing two disjoint planes. Using this, description we can prove our next result:
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Proposition 3.4.13. Let V be a general cubic fourfold with the involution ϕ = ϕ3. Then V

is Pfaffian.

Proof. Suppose that such a cubic fourfold V is not Pfaffian. Then by [Aue21, Theorem 1], V

contains two disjoint planes P, P ′. Consider the class v = [P ] − [P ′]; clearly v ∈ A(V )prim.

Thus we can write v = a0x+
∑9

i=1 aiαi, where {x, α1, . . . , α9} is a basis for A(V )prim ∼= M

as in Theorem 3.2.14. Let w ∈ A(V )prim; we can also write w = b0x +
∑9

i=1 biαi. Notice

that x · w and αi · w are even, by using the intersection matrix in Proposition 3.2.12. Thus

v · α ∈ 2Z for all α ∈ A(V )prim.

Consider the element δ := 3[P ]− ηV , we see δ ∈ A(V )prim. Since P and P ′ are disjoint,

[P ] · [P ′] = 0 and so v · δ = 3[P ]2 = 9, a contradiction. Thus no two planes are disjoint.

The cubic fourfolds V admitting the involution ϕ3 thus belong to the intersection of

C8 ∩ C14, first studied in [ABBVA14] and later in [BRS19]. In particular, C8 ∩ C14 has 5

irreducible components, indexed by the value [P ] · [T ] ∈ {−1, 0, 1, 2, 3}, where P ⊂ V is a

plane and [T ] is the class of a small OADP surface (for a general point in P5 there exists a

unique secant line to T ; see [BRS19, Def. 1.5]) such that [T ]2 = 10 and [T ] · ηV = 4 [BRS19,

Theorem 3.4].

Corollary 3.4.14. [BRS19, Corollary 3.5] Let V ∈ C14, and [T ] ∈ H2,2(V,Z) such that

[T ] · ηV = 4 and [T ]2 = 10. Then [T ] is represented by a small OADP surface T contained in

V .

Theorem 3.4.15. Let V be a cubic fourfold with an involution ϕ := ϕ3. Then V contains a

smooth quartic rational normal scroll.

Proof. Let [T ] = 2ηV − y + [F7] + [F8] + [F9]. One can easily compute that [T ] · ηV = 4

and [T ]2 = 10; thus [T ] is represented by a small OADP surface. By the proof of [BRS19,

Theorem 3.4], there are three possibilities for T :

1. T = S ∪ P ′ where S is a cubic rational normal scroll and P ′ is a plane;

2. T contains only irreducible components of degree less than or equal to 2;

3. T is an irreducible smooth quartic rational normal scroll.

Let [P ] be the class of any plane in V ; thus [P ] is equivalent to a Z-linear combination of

the basis of A(X) given in Proposition 3.2.16. One can compute that [P ] · T = 2k for some

integer k. We will use this to rule out (1) and (2) above.

55



1. Suppose that T = S ∪ P ′. Since T is a small OADP, the surfaces S and P ′ intersect

along a line; thus [S] · [P ′] = 0. Hence we see that [P ′] · [T ] = [P ′]2 = 3, a contradiction.

2. Suppose that T contains only irreducible components of degree less than or equal to

2. By the proof of [BRS19, Theorem 3.4], this implies that V contains a pair of skew

planes. One can compute that for one such plane [P ] · [T ] = −1, again a contradiction.

Thus [T ] is represented by a smooth quartic rational normal scroll.

Remark 3.4.16. In fact, it follows that a cubic fourfold V with an involution ϕ3 is contained

in the intersection of two of these components. Indeed, for the fixed plane P ⊂ V , we see

that [P ] · [T ] = 2, where as [F1] · [T ] = 0.

3.5 An associated IHS variety

We saw in §1.3.3 two examples of constructions of IHS manifolds associated to a smooth

cubic fourfold V ⊂ P5. In this section, we return to the setting of a cubic fourfold with

symplectic involution ϕ := ϕ2, and show that such a pair (V, ϕ) determines a IHS variety of

a specific type, a so-called Matteini orbifold. More precisely, in [Mat16] Matteini constructs

an IHS orbifold from the data of a K3 surface equipped with a non-symplectic involution

whose quotient is a cubic surface. Such an IHS orbifold is singular; there does not exist a

symplectic resolution, and the dimension of the moduli space parametrising IHS varieties of

the same deformation type is 13 dimensional. A pair (V, ϕ) determines such an IHS orbifold -

we thus describe a codimension 1 family of IHS orbifolds of this type.

In §3.5.1, we first describe how the pair (V, ι) determines such a K3 double cover. Next, we

outline the construction of the six dimensional IHS variety P in §3.5.2; we follow [Mat16]. The

construction follows the strategy of [MT07], where the authors constructed a four dimensional

example of an IHS variety in a similar manner. In particular, both examples are relative

compactified Prym varieties, and are equipped with a Lagrangian fibration in Prym varieties.

These constructions were generalised in [ASF15]. We describe the locus of IHS varieties P
that are obtained from a cubic fourfold V ⊂ P5 with a symplectic involution.

3.5.1 Determining a K3 surface

Let V ⊂ P5 be a smooth cubic fourfold with symplectic involution ϕ := ϕ2. First, we notice

that the pair (V, ϕ) is equivalent to the data of a K3 surface Z with anti-symplectic involution
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τ , such that S := Z/⟨τ⟩ is a cubic surface. The associated double cover Z → S is branched

in the intersection of the cubic surface S with a quadric cone.

Proposition 3.5.1. Let (V, ϕ) be a cubic fourfold with symplectic involution. Then V

determines a K3 double cover Z → S, where S ⊂ V is the point-wise fixed cubic surface, and

the double cover is branched in the intersection of S with a quadric cone.

Conversely, such a double cover determines a cubic fourfold with a symplectic involution.

Proof. Recall that such a pair (V, ϕ) can be written (after a change of co-ordinates) with

equation

g(x0, . . . x3) + x2
4l1(x0, . . . x3) + 2x4x5l2(x0, . . . x3) + x2

5l3(x0, . . . x3) = 0,

where ϕ : x4, x5 7→ −x4,−x5. We have that Fix(ϕ) = L⊔S where S is a smooth cubic surface,

L the line determined by x0 = . . . x3 = 0.

Consider the linear projection of f : BlLV → Π from the line L onto the disjoint linear

subspace Π ∼= P3; this induces a conic fibration structure. The discriminant locus is the union

of the fixed cubic surface S and a quadric cone Q ⊂ P3, where Q has equation

q := det

(
l1 l2

l2 l3

)
= 0.

The fiber of f over a smooth point of S ∪Q is a pair of lines, and the fiber of a point on the

intersection S ∩Q = Γ is a double line. Since the cubic fourfold was general, the curve Γ is a

smooth genus 4 space curve (the cubic surface does not contain the cone point of Q).

Let L := OS(1), and notice that q = 0 restricted to S defines a section of OS(2), vanishing

on Γ. Since L⊗2 ∼= OS(Γ), the data (S,Γ,L, q) determines a double cover

µ : Z → S

branched along Γ. One can verify that Z is a smooth K3 surface, and the covering involution

is necessarily an anti-symplectic involution of Z. Notice this is the discriminant double cover

restricted to S.

Conversely, the data of a double cover µ : Z → S branched in the intersection of the

cubic surface S with a quadric cone Q is equivalent to the pair (S,Q). Choose co-ordinates

on P3 such that Q has equation l1l2 − l23 = 0, and write S = V (g). One can reconstruct the

equation of V , and notice that V admits a symplectic involution ϕ. It is easy to see that

such a cubic fourfold V is smooth.
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3.5.2 Determining a Matteini orbifold

Let Z be a K3 surface with an antisymplectic involution τ such that Z/τ = S is a cubic

surface. In particular,

µ : Z → S

is a double cover branched along B ⊂ S a genus 4 curve. Note that B ∈ |− 2KS|, and is thus

the intersection B = S ∩Q for a quadric surface Q. The moduli space of such K3 surfaces is

13 dimensional.

From this data, Matteini constructs a six dimension IHS variety P of dimension 6, with

a Lagrangian fibration P → P3 whose general fiber is a (1, 1, 2) polarised abelian variety

[Mat16]. We briefly recall the construction.

Let C ∈ µ∗| −KS| be a generic curve on Z. We consider the sub-linear system |C| ⊂
|µ∗(−KS)| of curves on S. Let J := Jac(|C|) be the compactified Jacobian of the linear

system |C|. One can construct J equivalently as a moduli space of semistable sheaves on

the K3 surface Z; we refer to [Mat16] for references and more details. In particular, J is

symplectic, with a Lagrangian fibration J → P3 ∼= |C|, whose general fiber is the compactified

Jacobian over the curve. The covering involution τ induces a regular involution τ ∗ on J .

Matteini defines the relative compactified Prym variety P as a connected component of the

fixed part of an involution η on J ; here η restricts to −τ ∗ on the smooth fibers of J → |C|.
In particular, he has the following result:

Theorem 3.5.2. [Mat16] P is an irreducible holomorphic symplectic orbifold of dimension

6, with π : P → |C| ∼= P3 a Lagrangian fibration whose general fiber is an abelian threefold

with polarisation of type (1, 1, 2). The singularities of the variety P are explicitly described,

and χ(P) = 2283.

We call such a variety a Matteini orbifold. For a smooth curve D ∈ |C|, the fiber of

π over D is the Prym variety Prym(D/D′), where D → D′ is the double cover obtained by

restricting µ : Z → S to D ⊂ Z.

Corollary 3.5.3. Let (V, ι) be a cubic fourfold with symplectic involution ι. Then one can

construct a unique associated Matteini orbifold PV → P3.

Proof. By Proposition 3.5.1, the pair (V, ι) is equivalent to a K3 double cover µ : Z → S

branched in the intersection S ∩ Q where Q is the quadric cone. We apply the Matteini

construction to obtain π : P → P3. Note that the base of this fibration is isomorphic to

P(|OS(1)|). For each hyperplane H section of S, we obtain a double cover of curves µ : C̃ → C
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where C = H∩S, and the cover is branched in the six points of H∩S∩Q. The corresponding

fiber of π : P → P(|OS(1)|) is isomorphic to Prym(C̃, C).

Remark 3.5.4. The moduli space of cubic fourfolds with a symplectic involution is 12 dimension

- we obtain a codimension 1 subfamily of Matteini orbifolds.
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Chapter 4

Symplectic birational involutions of

IHS manifolds of OG10 type

As discussed in the introduction, one strategy to discover new deformation classes of IHS

manifolds is to study the fixed locus (or closure of the fixed locus) of birational symplectic

transformations of a known IHS manifold. As the first step, one can classify possible birational

symplectic transformations, by classifying the action on the second cohomology.

In this Chapter, we investigate this question for IHS manifolds of OG10 type. We restrict

ourselves to the case of involutions: in this setting, the associated moduli space of OG10

manifolds with an involution of a given type is a type IV period domain. In this way we

obtain variations of Hodge structures of K3 type - this is strong evidence that the fixed locus

is at least an IHS variety. This does not occur for higher order cyclic groups (see [YZ20],

[LPZ18]). We will obtain a full classification of possible symplectic birational involutions of

IHS manifolds of OG10 type.

Let X be manifold of OG10 type, f ∈ Bir(X) a symplectic birational involution. As

discussed in §1.2.1, we obtain an induced involution on the second cohomology, determining two

sublattices H2(X,Z)+, H2(X,Z)−, the invariant and the coinvariant lattice respectively. Vice

versa, specifying such sublattices (subject to certain lattice theoretic conditions) determines

a symplectic birational transformation of some manifold of OG10 type via the Global Torelli

Theorem (Theorem 1.2.3). Our main theorem is a classification of symplectic birational

involutions of manifolds of OG10 type.
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Theorem 4.0.1. Let X be a manifold of OG10 type, f ∈ Bir(X) a symplectic birational

involution.

1. Assume that f acts trivially on the discriminant group. Then the pair H2(X,Z)−, H2(X,Z)+
appears below:

H2(X,Z)− H2(X,Z)+
E8(2) U3 ⊕ E8(2)⊕ A2

D+
12(2) E6(2)⊕ U2(2)⊕ A1 ⊕ A1(−1)

2. Assume that f acts non-trivially on the discriminant group, and such that rank(H2(X,Z)−) <
12. Then the pair H2(X,Z)−, H2(X,Z)+ appears below:

H2(X,Z)− H2(X,Z)+
E6(2) U3 ⊕D3

4

M E8(2)⊕ A1 ⊕ A1(−1)⊕ U2

Here M is the unique index two overlattice of D9(2)⊕ ⟨−24⟩ as described in §3.2.12.

3. Assume that f acts non-trivially on the discriminant group, and such that rank(H2(X,Z)−) ≥
12. Then the pair H2(X,Z)−, H2(X,Z)+ appears below:

H2(X,Z)− H2(X,Z)+
G12 ⟨2⟩3 ⊕ ⟨−2⟩9
G16 ⟨2⟩3 ⊕ ⟨−2⟩5

The lattices G12, G16 are explicitly described in terms of their Gram matrix, and are of

rank 12, 16 respectively.

Moreover, each involution listed above exists.

We approach the proof of this classification from three distinct vantage points. First we

classify symplectic birational involutions acting trivially on the discriminant group by using

the same techniques of [Huy16],[Mon16]; we relate these involutions to involutions of the

Leech lattice. This recovers the Nikulin type involution with coinvariant lattice E8(2), and

more interestingly, we obtain an involution with coinvariant lattice D+
12(2) that cannot be

realised in the case of K3 surfaces. Thus we obtain the two involutions listed in (1).

Secondly, we begin our classification of symplectic birational involutions acting non-

trivially on the discriminant group by studying involutions that are obtained from cubic
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fourfolds. We have already seen a Hodge theoretic classification of involutions for a cubic

fourfold in Chapter 3. Using the observation of Saccá [Sac21, §3.1] (see also [LPZ18]), one

can see that an involution of a cubic fourfold V induces a birational transformation of

the corresponding compactified intermediate Jacobian X := JV , a manifold of OG10 type

constructed via the method described in §1.3.5. Using the results of Chapter 3, we first

exhibit three symplectic birational involutions geometrically. In fact more is done: we use

these results to classify all the involutions with the assumptions of (2).

Finally, it remains to be seen whether there exists birational symplectic involutions that

act both non-trivially on the discriminant group, with rank(H2(X,Z)−) ≥ 12. In joint work

with Stevell Muller, we show that there are two such possibilities, completing the classification

in (3) [MM23a]. The proof is computer aided; we provide brief details here and refer the

interested reader to [MM23a, Appendix].

The results contained in this chapter can be found also in [MM23a]. Let us briefly outline

the content. We recall the relevant definitions and previous results in §4.1. In §4.2 we begin

the proof of Theorem 4.0.1 by considering birational symplectic involutions of an IHS manifold

X of OG10 type acting trivially on the discriminant group of H2(X,Z) ∼= Λ. We embed the

lattice Λ− into the Leech lattice L and use the classification of involutions of L [HL90]. Using

a corollary of Theorem 1.2.3, we obtain the classification in Theorem 4.0.1 (1). In §4.3.1 we

make the relationship between involutions of a cubic fourfold and that of manifolds of OG10

type more precise. We obtain a classification of birational symplectic involutions that fix

a copy of U . In §4.3.3, we identify a criteria for when this occurs, completing the proof of

Theorem 4.0.1(2). In §4.4, we briefly discuss the remaining two involutions, concluding the

proof of Theorem 3.

Remark 4.0.2. Throughout this chapter, all ADE lattices are assumed to be negative

definite, for ease of notation.

4.1 Preliminaries

Let X be an IHS manifold of OG10 type, f ∈ Bir(X) a symplectic involution. We denote

the induced action on

Λ := (E8)
2 ⊕ U3 ⊕ A2

by ι, via the fixed marking η : H2(X,Z) ∼= Λ; more precisely, ι := η∗(f) ∈ O(Λ) as in §1.2.1.
We denote by Λ± the invariant and coinvariant sublattices of Λ respectively. Since f is

symplectic, we see that via the marking Λ− ⊂ NS(X); we say such a pair (X, f) is general
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if Λ− ∼= NS(X). We consider the moduli space of pairs as a moduli space of lattice polarised

manifolds of OG10 type.

Recall that we define the set of vectors, corresponding to the stably prime exceptional

divisors (see Proposition 1.2.1):

Wpex := {v ∈ Λ | v2 = −2} ∪ {v ∈ Λ | v2 = −6, divΛ(v) = 3}.

Via the marking of X, these vectors correspond to stably prime exceptional divisors of X,

which cut out the birational Kähler cone by Theorem 1.2.2. Using the group theoretic version

of the Global Torelli Theorem 1.2.3, we have the following Lemma for the structure of Λ−.

Lemma 4.1.1. Let X be an irreducible holomorphic symplectic manifold of OG10 type. Let

f ∈ Bir(X) be a birational symplectic involution. Then let ι := η∗(f) ∈ O(Λ) be the induced

action. Then the coinvariant lattice Λ− has the following properties:

1. Λ− is negative definite.

2. Λ− does not contain any short or long roots; i.e Λ− ∩Wpex = ∅.

Proof. The first statement follows from the fact that f is symplectic, and that Λ+⊗R contains

a big and nef class κ+ ι(κ) for κ a Kähler class.

We prove (2): suppose that Λ− contains such a class v ∈ Wpex. The isometry ι preserves

the birational Kähler cone (see [Deb20, Prop 3.15] for a more detailed discussion). Let

x ∈ BK(X). Then x+ ι(x) is also in the interior of BK(X) ⊂ Λ+. Thus since Λ+ ⊥ Λ−, we

have that ((x+ ι(x)), v) = 0; this implies that x+ ι(x) belongs to a wall. By Theorem 1.2.2,

this is a contradiction.

Theorem 4.1.2. An involution ι ⊂ O(Λ) is induced by a symplectic birational transformation

if and only if Λ− is negative definite and

Λ− ∩Wpex = ∅.

Proof. By Lemma 4.1.1, the conditions are sufficient. Suppose that Λ− is negative definite

and Λ−∩Wpex = ∅. By Lemma [GOV20, Lemma 2.13], there exists a signed Hodge structure

on Λ such that Λ1,1 ∩ Λ = Λ− and ι ⊂ O+
sp(Λ). Since Λ1,1 ∩ Wpex = Λ− ∩ Wpex = ∅,

the decomposition 1.2.2 is trivial, and C(X) is the Kähler chamber. Therefore, O+
sp(Λ) =

O+
sp(Λ, C(X)). We conclude by Theorem 1.2.3.
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In order to classify symplectic birational involutions of manifolds of OG10 type, we will

consider two cases corresponding to the induced action of ι ∈ O(Λ) on the discriminant group

AΛ := Λ∗/Λ ∼= Z/3Z.

It follows that an involution acts by ι|AΛ
= ±idAΛ

.

Proposition 4.1.3. Let f ∈ Bir(X) be a symplectic birational involution, and let ι = η∗(f) ∈
O(Λ) the induced isometry of f . Then Λ− is a negative definite lattice of rank r ≤ 21, with

Λ− ∩WOG10 = ∅, and the following hold:

1. If ι acts trivially on AΛ, then Λ− is a 2-elementary, negative definite even lattice

determined by the invariants (r, l(AΛ−), δ).

2. If ι acts by −id|AΛ
on AΛ, then Λ+ is a 2-elementary lattice with signature (3, 21− r).

Proof. The negative definiteness and the claim that Λ− ∩ WOG10 = ∅ follows from 4.1.1.

To prove claim (1), we consider a unimodular lattice L such that Λ ↪→ Λ is a primitive

embedding - for instance, we could take L ∼= B ⊕ U where B is the Borcherds lattice. Let

K = Λ⊥; since ι acts trivially on the discriminant group AΛ, we can extend ι to an isometry

ι̃ ∈ Ø(L) acting as the identity on K. It follows that L− ∼= Λ− is 2-elementary by Lemma

2.3.1. Claim (2) is similar: instead consider ι′ := −ι; it follows that Λ+ is 2-elementary.

4.2 Involutions acting trivially on the discriminant

Throughout, we let (X, η) be a marked IHS manifold of OG10 type. In this section we

describe all possible symplectic birational involutions of for such an IHS manifold X. More

precisely, we will prove the following:

Theorem 4.2.1. Let X be an IHS manifold of OG10 type, and f ∈ Bir(X) be a symplectic

birational involution. Suppose that η∗(f) acts trivially on the discriminant group AΛ. Then

one of the following holds:

1. H2(X,Z)− ∼= E8(2) and H2(X,Z)+ ∼= U3 ⊕ E8(2)⊕ A2; or

2. H2(X,Z)− ∼= D+
12(2) and H2(X,Z)+ ∼= E6(2)⊕ U2(2)⊕ A1 ⊕ A1(−1).

Moreover, both involutions exist.
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The strategy to prove Theorem 4.2.1 is as follows: we first consider arithmetic involutions

ι ∈ O(Λ) such that ι acts trivially on AΛ, and Λ− is negative definite. We then use techniques

of Kondō and Mongardi to embed the covariant lattice Λ− into the Leech lattice L. Next, we
extend the involution ι to one of the Leech lattice L, and use the classification of involutions

[HL90] to obtain three candidates. We then discuss case by case and show that only E8(2)

and D+
12(2) are realised as coinvariant lattices Λ− for an involution of Λ. We then show that

they contain no short or long roots, i.e Λ− ∩Wpex = ∅, and conclude by Theorem 4.1.2 that

such an involution ι is induced by a geometric symplectic birational involution f ∈ Bir(X) of

a manifold X of OG10 type.

4.2.1 The Leech Lattice

We reduce the classification of involutions ι ∈ O(Λ) acting trivially on AΛ to classifications

of involutions of the Leech lattice L. The following result is originally due to [GHV12]; the

argument was then reproduced by Huybrechts [Huy16, §2.2].

Proposition 4.2.2. Let ι ∈ O(Λ) be an involution acting trivially on AΛ and such that

Λ− is negative definite and does not contain any short roots. Then there exists a primitive

embedding of Λ− into the Leech lattice L.

Proof. This is the same argument as in [Huy16, Prop. 2.2]. By Proposition 4.1.3, Λ−

is a negative-definite 2-elementary lattice, with rank r ≤ 21, and l(AΛ−) = a, with a ≤
min{r, 24 − r}. Our strategy is to first primitively embed Λ− into Π1,25, the unique even

unimodular lattice of signature (1, 25). By [Nik79b, Cor.1.12.3], such a primitive embedding

exists if a < 24− r. In the case a = 24− r, we still have such an embedding provided that Λ−

splits off an A1 summand (see [Nik79b, Theorem 1.12.2]). This in general is hard to check;

instead we follow [GHV12] and [Huy16] and apply this criteria to the lattice

S := Λ− ⊕ A1.

Note that l(S) = a+ 1 ≤ 25− r = 26− (r + 1), where S has rank r + 1. Again by [Nik79b,

Theorem 1.12.2], this gives us a primitive embedding

Λ− ↪→ S ↪→ Π1,25 =: Γ.

Since ι acts trivially on the discriminant group AΛ− , we can extend to an action ι on Γ

by acting as the identity on (Λ−)
⊥
Γ by using [Nik79b, Cor. 1.5.2]. Then Γ+ = Λ⊥

− is a

nondegenerate even lattice of signature (1, 25− r).
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Consider the positive cone C ⊂ Γ⊗R. Let ∆Γ be the set of (−2)-vectors of Γ, and consider

the wall-chamber decomposition of C with respect to ∆Γ. We claim that Γ+ ⊗ R intersects

one of these chambers. Indeed, if not Γ+ must be contained in a wall, and there exists a

vector δ ∈ ∆Γ such that Γ+ ⊂ δ⊥. This implies that δ ∈ (Γ+)
⊥ = Λ−, a contradiction.

Fix an isomorphism Γ ∼= L⊕U , where L is the Leech lattice, and let w ∈ Γ be a standard

isotropic generator of U . Call the set of (−2)-vectors with δ · w = 1 the Leech roots. Then

the Weyl group of Γ is generated by the standard reflections sδ for each Leech root δ. Thus

there exists a chamber C0 ⊂ C defined by δ · C0 > 0 for all Leech roots δ.

Applying the Weyl group to the embedding Λ− ↪→ Γ if needed, we can assume that C0 is

fixed by ι.

Let Co∞ denote the subgroup of O(Γ) that fix C0. Clearly ι ∈ Co∞, and it is known that

Co∞ fixes w ∈ Γ, thus w ∈ Γ+.

Thus we see that we get a primitive embedding Λ− ↪→ L as the composition:

Λ− ↪→ w⊥ ↠ w⊥/Z · w ∼= L.

Corollary 4.2.3. Assumptions as in Prop. 4.2.2. Then there exists an involution of the

Leech lattice L such that L− ∼= Λ−.

Proof. Consider the primitive embedding Λ− ↪→ L. We apply [Nik79b, Cor. 1.5.2] to extend

ι: indeed, since ι acts trivially on AΛ− , we can extend ι to an involution of L, with L− ∼= Λ−,

acting by the identity on Λ⊥
− = L+.

The non-trivial involutions ι ∈ O(L) are classified [HL90]:

Proposition 4.2.4. There exists three conjugacy classes of non-trivial involutions of the

Leech lattice L. They are classified by specifying the invariant/anti-invariant sublattices:

1. L− ∼= E8(2), L+
∼= BW16;

2. L− ∼= BW16, L+
∼= E8(2);

3. L− ∼= D+
12(2), L+

∼= D+
12(2).

We have three possible candidates for Λ− as above. It remains to be seen whether there

exists an involution ι ∈ O(Λ) whose coinvariant lattice is the given candidate. By Lemma

2.3.3, this is equivalent to the existence of a primitive embedding Λ− ↪→ Λ. We consider each

case in Proposition 4.2.4 in turn.
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4.2.2 Case (1)

We can easily see the existence of a primitive embedding E8(2) ↪→ Λ, and exhibit an involution

of Λ with Λ− ∼= E8(2). Consider the involution defined by interchanging the two copies of

E8, and identity elsewhere. Then Λ− ∼= E8(2) and we have the following result (see [Mor84]).

Proposition 4.2.5. There exists a primitive embedding E8(2) ↪→ Λ. In particular, there

exists an involution of Λ such that Λ− = E8(2).

Proof. We can explicitly define an involution ι ∈ O(Λ) with Λ− ∼= E8(2) following Morrison

[Mor84]. Let ϕ : E2
8 ↪→ Λ := A2 ⊕ U3 ⊕ E2

8 be the primitive embedding. Let {cij} with

i = 1, 2, 1 ≤ j ≤ 8 be a basis of E2
8 , such that c1j ∈ E8 ⊕ (0) and c2j ∈ (0)⊕ E8.

Define an involution ι by:

ι(ϕ(c1j)) = ϕ(c2j)

ι(ϕ(c2j)) = ϕ(c1j)

and ι(e) = e for all elements e ∈ (ϕ(E2
8))

⊥. This is well defined since ϕ is a primitive

embedding, and E8 is unimodular. The coinvariant lattice Λ− is generated by {ϕ(c1j − c2j)}8j=1,

and thus Λ− ∼= E8(2).

4.2.3 Case (2)

For the two remaining cases, we will use Lemma 2.3.5 to establish whether or not there exists

a primitive embedding of Λ− into Λ.

Proposition 4.2.6. There does not exist a primitive embedding BW16 ↪→ Λ. In particular,

there is no involution of Λ such that Λ− ∼= BW16.

Proof. The Barnes-Wall lattice BW16 is an even 2-elementary lattice of signature (0, 16),

a = 8 and δ = 0. Suppose there exists such an embedding. By above, this is equivalent to

the existence of an even lattice N of signature (3, 5), AN = (Z/2Z)8 ⊕ Z/3Z, with qN |(Z/2Z)8
taking values in Z/2Z. We also have that qN |Z/3Z = qA2 .

Since (Z/2Z)8 ⊂ AN , we can deduce that K := N(1/2) is a well-defined integral lattice

by Lemma 2.3.6. Notice that K has signature (3, 5), and AK = Z/3Z.
We claim that K is even; indeed, suppose that K was odd. Then by Lemma 2.3.7, there

exists an element ξ ∈ Z/2Z ⊂ AN such that q(ξ) ̸∈ Z/2Z, contradicting our assumption on

N .
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Thus K is an even lattice with AK = Z/3Z, and (AK , qK) ∼= (AE6 , qE6). Since qK = qE6 =

−qA2 and AK
∼= AA2 , by [Nik79b, Prop 1.15.1] there exists a primitive embedding of K into

some even unimodular lattice Γ of signature (3, 7). By Milnor’s theorem on unimodular forms,

we see that no such even unimodular lattice Γ exists. Thus such an N cannot exist.

4.2.4 Case (3)

Here we show the somewhat surprising result that the lattice D+
12(2) does primitively embed

into Λ. Recall that the lattice D+
12(2) is an even, 2-elementary lattice with signature

(0, 12), a = 12 and δ = 1.

Proposition 4.2.7. There exists a primitive embedding D+
12(2) ↪→ Λ. In particular, there

exists an involution of Λ such that Λ− ∼= D+
12(2).

Proof. By Lemma 2.3.5, this is equivalent to the existence of a lattice N with signature (3, 9),

satisfying the conditions of the Lemma. We will show such a lattice exists. Consider the

lattice

N = E6(2)⊕ U2(2)⊕ A1 ⊕ A1(−1).

This lattice satisfies condition (1) of Lemma 2.3.5; it remains to show the conditions (2), (3)

hold. More specifically, we need to show that

1. qN |Z/3Z ∼= qΛ = qA2 , and that

2. qN |(Z/2Z)12 ∼= −qD+
12(2)

.

In order to do so, we will calculate the values of the discriminant form for both AD+
12(2)

and

AN . We will use the fact that N is also isomorphic to E6(2)⊕ U(2)⊕ (A1 ⊕ A1(−1))2, by

Nikulin’s classification of 2-elementary lattices.

First, note that AE6(2) = Z/6Z⊕ (Z/2Z)5. Let α1, . . . α6 be a basis for K := E6(2), with

Gram matrix:

GE6(2) :=



−4 2 0 0 0 0

2 −4 2 0 0 0

0 2 −4 2 0 2

0 0 2 −4 2 0

0 0 0 2 −4 0

0 0 2 0 0 −4


The inverse matrix below allows us to compute the dual lattice K∗ and the discriminant

group AK = K∗/K. More specifically, we consider the linear combinations of α1, . . . α6 with
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coefficients given by the columns of G−1
E6(2)

. Denote them by α∗
1, . . . α

∗
6, and their image in

AK by [α∗
i ].

G−1
E6(2)

:=



−2
3

−5
6

−1 −2
3

−1
3

−1
2

−5
6

−5
3

−2 −4
3

−2
3

−1

−1 −2 −3 −2 −1 −3
2

−2
3

−4
3

−2 −5
3

−5
6

−1

−1
3

−2
3

−1 −5
6

−2
3

−1
2

−1
2

−1 −3
2

−1 −1
2

−1


Notice that [α∗

1], [α
∗
2], [α

∗
4] and [α∗

5] all have order 6. Let β := [α∗
1]; then ⟨β⟩ ∼= Z/6Z.

We look for generators of (Z/2Z)5; order two elements not contained in ⟨β⟩. We find the

following generators:

γ1 := [3α∗
2] =

[
α1

2

]
; γ4 := [3α∗

5 − α∗
3] =

[
α4

2

]
;

γ2 := [α∗
3] =

[
α6

2

]
; γ5 := [α∗

6 − 3α∗
2 − 3α∗

4] =
[
α3

2

]
.

γ3 := [3α∗
4] =

[
α5

2

]
;

Thus 2β is a generator of Z/3Z, and we calculate that qN(2β) = −8
3
≡ −2

3
mod 2Z. Note

that qA2(γ) = −2
3
for a generator γ of AA2 , and so we have shown that N satisfies (1).

Next, we need to show that qN |(Z/2Z)12 = −q|D+
12(2)

. We see that qN (γi) = 1. Let v, w be a

basis for AU(2) with v2 = w2 = 0. Then [v
2
], [w

2
] are generators for U(2) with

qN([
v

2
]) = qN([

w

2
])) = 0.

Let e, f be a basis for A1 ⊕ A1(−1) with e2 = −2, f 2 = 2 and e · f = 0. Then [ e
2
], [ e+f

2
]

generate AA1⊕A1(−1) = Z/2Z⊕ Z/2Z, with

qN([
e

2
]) = −1

2
, qN([

e+ f

2
]) = 0.

We now look at the discriminant form of D+
12(2). Let F1, . . . F12 be a basis for D+

12(2),

where:

F 2
i = −4 for i ̸= 12,

F 2
12 = −6;

Fi · Fi+1 = 2 for i = 2, . . . 10;

F1 · F3 = −2,

F1 · F12 = 2.
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Calculating the inverse matrix provides a basis {F ∗
i }12i=1 for the dual lattice, where each

column is viewed as the coefficients for F ∗
i written as a linear combination of F1, . . . F12. This

allows us to find generators for AD+
12(2)

= (Z/2Z)12. We calculate the value of the discriminant

form on each generator below.

qD+
12(2)

([F ∗
1 ]) =

1
2

qD+
12(2)

([F ∗
5 ]) = 0 qD+

12(2)
([F ∗

9 ]) = 0

qD+
12(2)

([F ∗
2 ]) =

1
2

qD+
12(2)

([F ∗
6 ]) = 1 qD+

12(2)
([F ∗

10]) = 1

qD+
12(2)

([F ∗
3 ]) = 1 qD+

12(2)
([F ∗

7 ]) = 1 qD+
12(2)

([F ∗
11]) = 1

qD+
12(2)

([F ∗
4 ]) = 0 qD+

12(2)
([F ∗

8 ]) = 0 qD+
12(2)

([F ∗
12]) = 0

Using the generators described above we see that qN |H = −qD+
12(2)

, where H = (Z/2Z)12.
Thus N satisfies all the conditions of Lemma 2.3.5 and so the existence of the embedding

D+
12(2) ↪→ Λ follows. The existence of the involution follows by Lemma ??

Remark 4.2.8. Note that one can complete the above calculations using the Hecke computer

algebra package [FHHJ17] as described in [MM23a], however we prefer to include the original

calculations.

4.2.5 Proof of Theorem 4.2.1

We have exhibited involutions ι ∈ O(Λ) acting trivially on AΛ with Λ− isomorphic to either

E8(2) or D+
12(2). In order to conclude that both involutions are induced by symplectic

birational involutions of a manifold X of OG10 type we must show that neither contain long

or short roots.

Lemma 4.2.9. Let ι ∈ O(Λ) be an involution and suppose that Λ− contains a long root.

Then AΛ− contains an element of order 3.

Proof. Let v ∈ Λ− be a long root; i.e v2 = −6 and divΛ(v) = 3. Then 3 divides the divisibility

of v in Λ−. We can write divΛ−(v) = 3k for some positive integer k. Then [v∗] = v
3k

defines a

non-zero element of AΛ− ; in particular, kv∗ is a non-trivial element of order 3.

Proof of Theorem 4.2.1. The discriminant group of both E8(2) and D+
12(2) contains no ele-

ments of order three; by Lemma 4.2.9 neither contains any long roots. The maximal norm

of both lattices is −4, and so they do not contain short roots. Thus in both cases Λ− is
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a negative definite lattice with Λ− ∩ Wpex = ∅; we have also shown these are the only

possible negative definite coinvariant lattices for an involution ι ∈ O(Λ) acting trivially on

the discriminant group. By Theorem 4.1.2 the two involutions are induced by symplectic

birational involutions of a manifold of OG10 type. The classification of the corresponding

invariant sublattices follow from the proofs of Proposition 4.2.5 and 4.2.7.

4.3 Involutions induced from a cubic fourfold

We have classified in the previous section possible symplectic birational involutions that act

trivially on the discriminant group AΛ. It remains to be seen whether geometric involutions

can act non-trivially. In this section we will prove the following:

Theorem 4.3.1. Let X be an irreducible holomorphic symplectic manifold of OG10 type,

and f ∈ Bir(X) a symplectic birational involution, such that the induced action η∗(f) is

non-trivial on the discriminant group of Λ. Assume further that

rankΛ− < 12.

Then one of the following holds:

1. H2(X,Z)− ∼= E6(2), H
2(X,Z)+ ∼= U2 ⊕D3

4;

2. H2(X,Z)− ∼= M , H2(X,Z)+ ∼= E8(2)⊕A1 ⊕A1(−1)⊕U2 where M is the unique rank

10 lattice obtained as an index 2 overlattice of D9(2)⊕ ⟨24⟩.

Further, both involutions exist and can be geometrically realised via the LSV construction

of §1.3.5.

The key insight in proving this classification is to utilise Theorem 3.0.1; the classification

of involutions of a cubic fourfold. Let us briefly outline the strategy. In §4.3.1 we first use

a lattice theoretic argument to show the existence of two involutions acting as in Theorem

4.3.1, using the knowledge of involutions on the smaller lattice A2 ⊕ E2
8 ⊕ U2, via Theorem

3.0.1. Next, we approach from a geometric point of view in §4.3.2, and consider induced

symplectic birational involutions on the compactified intermediate Jacobian starting from

a cubic fourfold with an involution. We note that in all of the cases considered above the

invariant sublattice contains a U summand, i.e Λ+ = Γ⊕ U for some lattice Γ. In §4.3.3 we

investigate lattice theoretic criteria for this to be satisfied, and in particular show it is always

the case assuming that rankΛ− < 12. This completes the proof of Theorem 4.3.1, and further

exhibits a geometric realisation of each case. This completes the proof of Theorem 4.0.1(2).
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4.3.1 Existence of symplectic involutions via cubic fourfolds

Recall that all ADE lattices are assumed to be negative definite. In particular for a root

lattice R, the lattice R(−1) is positive definite.

Let V ⊂ P5 be a smooth cubic fourfold. Recall that H4(V,Z) ∼= L(−1) where L :=

A2 ⊕ E2
8 ⊕ U2; in particular

Λ ∼= L⊕ U.

We will use the arithmetic classification of involutions of a cubic fourfold to prove the following

theorem.

Theorem 4.3.2. There exist symplectic birational involutions f ∈ Bir(X) of an irreducible

holomorphic symplectic manifold X of OG10 type with either:

1. H2(X,Z)− ∼= E6(2), H
2(X,Z)+ ∼= U2 ⊕D3

4;

2. H2(X,Z)− ∼= M , H2(X,Z)+ ∼= E8(2)⊕A1 ⊕A1(−1)⊕U2 where M is the unique rank

10 lattice obtained as an index 2 overlattice of D9(2)⊕ ⟨24⟩.

Moreover, the induced involution of Λ act non-trivially on the discriminant group in both

cases.

Proof. Consider an antisymplectic involution ϕ of a cubic fourfold V . The action on

H4(V,Z)prim ∼= L(−1) has been classified by Theorem 3.0.1; either L− ∼= E6(2) or L− ∼= M .

We can extend the involution to an involution ι of Λ ∼= L⊕ U , acting by the identity on the

remaining copy of U . Notice now that Λ− ∼= L− and Λ+
∼= L+ ⊕ U .

In both cases, the coinvariant lattice Λ− is negative definite, and

Λ− ∩Wpex = ∅.

Indeed, we know L− contains no short or long roots since it is the coinvariant lattice for

an involution of a smooth cubic. Hence by Theorem 4.1.2, ι is induced geometrically by a

symplectic birational transformation f ∈ Bir(X) for some manifold X of OG10 type. Further

we see that such an involution necessarily acts by −id on the discriminant group AΛ; if ι

acted trivially, then Λ− would be 2-elementary, a contradiction by Proposition 4.1.3. The

classification of Λ+ in both cases follows.

It is worth stressing that the existence of such symplectic birational involutions of a

manifold of OG10 type seems to be in direct contrast with OG6 type manifolds. For manifolds

of OG6 type, symplectic automorphisms act trivially on the second cohomology, and further
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birational symplectic transformations of finite order act trivially on the corresponding

discriminant group [GOV20]. We note however that there exists examples of symplectic

birational involutions of manifolds of K3[n] type acting non-trivially on the discriminant, as

described in [Mar13, §11].

4.3.2 Geometric observations

We notice in the previous section that for both examples of birational symplectic involutions

f ∈ Bir(X), the invariant lattice H2(X,Z)+ ∼= Λ+ contains a U summand. The compactified

intermediate Jacobians of cubic fourfolds are examples of manifolds of OG10 type with

a U polarisation; it is natural to consider involutions that appear via this construction.

In particular, we show that involutions of a cubic fourfold produce symplectic birational

involutions of the associated compactified intermediate Jacobian with this property.

Theorem 4.3.3. Let X be an irreducible holomorphic symplectic manifold of OG10 type. Let

f ∈ Bir(X) be a symplectic birational involution of X, and suppose that H2(X,Z)+ ∼= Γ⊕ U

for some lattice Γ. Then there exist a smooth cubic fourfold V with an involution ϕ whose

action is determined by f . In particular, one of the following holds:

H2(X,Z)− ∼=


E6(2),

E8(2),

M.

Conversely, an involution ϕ of a smooth cubic fourfold V induces a birational symplectic

involution f on the compactified associated Intermediate Jacobian JV , that leaves a copy of

U invariant and whose action is determined by ϕ.

Proof. Denote by ι := η∗(f) ∈ O(Λ) the induced involution on Λ, and let U1 := U be such

that Λ+ = Γ ⊕ U1 ↪→ Λ. Denote by L = (U⊥
1 )Λ; then L is an even, indefinite lattice with

signature (2, 20) and discriminant group AL
∼= Z/3Z ∼= AA2 . By [Nik79b, Cor. 1.13.3], L is

unique; thus we see that

L ∼= U2 ⊕ E2
8 ⊕ A2.

Since ι acts as the identity on Γ⊕ U1, ι restricts to an isometry of L with

L+
∼= Γ and L− ∼= Λ−.
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Note that Λ− is negative definite of rank r ≤ 20, and Γ has signature (2, 20− r). We can

choose a Hodge structure H on L of type (0, 1, 20, 1, 0) such that

H2,2 ∩ L = Λ−.

Notice this implies H3,1 ⊂ L+. By assumption, Λ− contains no prime exceptional vectors

(Prop. 4.1.1); in particular it contains no long or short roots. The Global Torelli Theorem

for cubic fourfolds (Theorem 1.3.3) implies that there exists a smooth cubic fourfold V with

H4(V,Z)prim ∼= H(−1) as Hodge structures.

Let ηV ∈ H4(V,Z) be the square of the hyperplane class. We wish to extend ι to an

isometry of H4(V,Z) fixing ηV . We have

L(−1)⊕ ⟨ηX⟩ ⊂ H4(V,Z);

in order to extend ι, ι must act trivially on AL(−1)
∼= Z/3Z ∼= A⟨ηV ⟩. Note that O(AL(−1)) ∼=

Z/2Z; thus ι can act as ±idAL(−1)
.

Suppose first that ι acts by idAL(−1)
. Then ι⊕ id⟨ηV ⟩ extends to an isometry of H4(V,Z),

denoted by ιV . Thus ιV ∈ AutHS(V, ηV ), and by the Strong Global Torelli Theorem 1.3.3 there

exists a unique automorphism ϕ ∈ Aut(V ) such that ιV = ϕ∗. Notice that by construction, ϕ

is necessarily a symplectic involution of V , and by Theorem 3.0.1

(H4(V,Z)prim)− = L−(−1) ∼= E8(−2)

(see also [LZ22, Theorem 1.2 (1)]). Thus necessarily Λ− ∼= E8(2).

Next suppose that ι acts by −idAL(−1)
Set σ := −ι; notice now that for the action of σ on

H4(V,Z)prim we have:

H4(V,Z)− = L+(−1) ∼= Γ(−1), and H4(V,Z)+ = L−(−1) ∼= Λ−(−1).

Now σ ⊕ id⟨ηV ⟩ extends to an isometry of H4(V,Z); let us denote this by σV . Thus

σV ∈ AutHS(V, ηV ), and again by the Strong Global Torelli theorem there exists a unique

automorphism ϕ ∈ Aut(V ) such that σV = ϕ∗. Notice that σV acts non-trivially on H3,1; the

involution ϕ is anti-symplectic, and by Theorem 3.0.1

Λ− ∼= (H4(V,Z)prim)+(−1) =

E6(2),

M.

Conversely, suppose we have an involution ϕ ∈ Aut(V ) of a smooth cubic fourfold V ⊂ P5;

let σ := ϕ∗ be the induced involution on H4(V,Z)prim. By ([LSV17], [Sac21, Theorem 1.6]),
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we can associate to V an irreducible holomorphic symplectic manifold JV of OG10 type, with

a Lagrangian fibration π : JV → P5 that compactifies the intermediate Jacobian fibration of

V . Note that the compactification JV is not unique; the cubic fourfold V is a special cubic

fourfold containing either a plane or a cubic scroll [Mar23], and so may have many birational

compactifications, as discussed in [Sac21]. Let Θ denote the relative theta-divisor of JV ;

then the sublattice ⟨Θ, π∗O(1)⟩ is isomorphic to the hyperbolic lattice U [Sac21, Lemma 3.5,

communicated by K.Hulek, R.Laza].

To obtain an involution of JV , we follow [Sac21, Sect. 3.1]. The automorphism ϕ ∈ Aut(V )

acts on the universal family of hyperplane sections of V , and thus on the Donagi-Markman

fibration JU → U, where U ⊂ (P5)∗ parametrises smooth hyperplane sections of V [Sac21,

Section 3.1]. We thus obtain in this way a birational transformation f : JV 99K JV , that

leaves the sublattice ⟨Θ, π∗O(1)⟩ ∼= U invariant. If ϕ ∈ Aut(V ) is symplectic (i.e acts trivially

on H3,1(V )), then the induced birational involution f ∈ Bir(JV ) is symplectic, by [Sac21,

Lemma 3.2]. If not, there exists a regular anti-symplectic involution τ ∈ Aut(JV ) given

geometrically by sending x 7→ −x on the fibers of JV → P5. Further this involution τ

commutes with the induced anti-symplectic involution f ∈ Bir(JV ). It follows that τ ◦ f is a

non-trivial symplectic birational involution of JV . Set f̃ := f if f is symplectic, f̃ := τ ◦ f
otherwise. Note that f̃ leaves ⟨Θ, π∗O(1)⟩ invariant in both cases.

Finally, note that if ϕ and thus f is anti-symplectic, then the symplectic birational

involution f̃ acts by −id|AΛ
on the discriminant group of Λ.

Remark 4.3.4. The proof of the previous theorem classifies the invariant and coinvariant

lattices for a symplectic birational involution such that H2(X,Z)+ ∼= Γ ⊕ U ; we see that

Γ necessarily is either the coinvariant or invariant sublattice for the induced involution ϕ

on H4(V,Z). Moreover, such involutions exist by Theorem 4.3.2. To complete the proof of

Theorem 4.3.1, it remains to show the assumption rankΛ− < 12 implies that Λ+ contains a

U summand.

4.3.3 Criteria for splitting a U summand

The aim of this subsection is to identify a lattice theoretic criteria to complete the proof of

Theorem 4.3.1.

Assume that f ∈ Bir(X) is a symplectic birational involution of a manifold X of OG10-

type, such that ι := η∗(f) ∈ O(Λ) is an involution that acts by −id on AΛ. By Lemma 4.1.1,
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Λ− is negative definite of rank 1 ≤ r ≤ 21, and Λ− ∩WM = ∅. By Proposition 4.1.3, Λ+ is a

2-elementary lattice. We establish a numerical criteria for Λ+ to split of a U summand.

Lemma 4.3.5. Let r = rankΛ−, a, δ as above. Then Λ+ splits of a U summand if and only

if:

1. r ≤ 20, and a ≤ 22− r,

2. If a = 22− r and δ = 0, then r ≡ 2 mod 8

Proof. Assume Λ+ splits of a U summand, i.e Λ+
∼= N ⊕U . Applying Nikulin’s classification

of 2-elementary lattices to the lattice N with invariants (2, 20− r), a, δ), we see the above

conditions are necessary for the existence of such a lattice N . Conversely, assume the

conditions in the theorem hold. Then again by the classification, there exists a 2-elementary

lattice N with invariants ((2, 20− r), a, δ). Then N ⊕ U has the same invariants as Λ+, and

thus are in the same genus. Since Λ+ is indefinite, it is unique and the claim holds.

Corollary 4.3.6. Let X be an irreducible holomorphic symplectic manifold of OG10 type,

and f ∈ Bir(X) a birational involution of X acting by −idAΛ
and such that the coinvariant

lattice Λ− has rank r < 12. Then Λ+
∼= Γ⊕ U for some lattice Γ, and Theorem 4.3.3 applies.

Proof. Since r < 12, then by assumption a ≤ r ≤ 22− r and the conditions of Lemma 4.3.5

are satisfied.

This completes the proof of Theorem 4.3.1

4.4 Unexpected involutions

In joint work with S. Muller [MM23a], we complete the classification of birational symplectic

involutions of manifolds of OG10 type. In particular, we show that there exists two unexpected

involutions that act non-trivially on the discriminant group and are not induced from a cubic

fourfold. In particular, we show:

Theorem 4.4.1. Let X be an irreducible holomorphic symplectic manifold of OG10 type, and

f ∈ Bir(X) a symplectic birational involution such that the induced action η∗(f) is non-trivial

on the discriminant group of Λ. Assume further that rankΛ− ≥ 12. Then either

Λ− =

G12, or

G16

,
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where Gi has rank i and Gram matrix displayed in §4.4.3 . Moreover, each involution exists.

In particular, this implies Theorem 4.0.1 (3). To show the existence of these involutions,

we use lattice enumeration techniques. Under the hypothesis of Theorem 4.4.1, it is fairly easy

to identify possible lattices Λ+, however the corresponding lattices Λ− are no longer unique

in their genera. There are 12 possible genera for Λ+; we enumerate the possible lattices Λ−

in each genus, totaling over 13,000 lattices. In each case, we check for long and sort roots.

There are two lattices that do not contain any such roots, and thus two involutions induced

by geometric symplectic birational involutions of a manifold of OG10 type, by Theorem 4.1.2.

More details can be found in [MM23a, §6 and Appendix A.].

4.4.1 Genus of the remaining possible cases

We wish to classify the possible genera of the coinvariant lattice Λ− for an involution ι ∈ O(Λ)

with non-trivial action on AΛ, such that Λ− is negative definite, and such that Λ+ does not

split a U summand, i.e. Λ+ fails the criteria of Lemma 4.3.5.

Proposition 4.4.2. Let ι ∈ O(Λ) acting non-trivially on AΛ such that Λ− is negative definite.

Assume that Λ+ does not split a U summand. Let r := rankΛ−. Then one of the following

holds:

1. Λ+
∼= U(2)3 and r = 18;

2. Λ+
∼= U(2)3 ⊕D4 and r = 14;

3. Λ+
∼= ⟨2⟩3 ⊕ ⟨−2⟩21−r and r ≥ 12.

Proof. For ease of notation, let M := Λ+. Since M does not split of a U summand, we have

that r ≥ 12. Assume first that r ̸= 21, then M is an indefinite, 2-elementary lattice and is

classified uniquely by the invariants (r, a, δ). There are two cases to consider by Lemma 4.3.5:

either 22− r < a, or a = 22− r, δ = 0 and r ̸≡ 2 mod 8.

Case 1: Assume that 22 − r < a; we necessarily have that 22 − r < a ≤ 24 − r.

Since M is 2-elementary, we have that a ≡ r mod 2; we can exclude a = 23 − r. Thus

a = 24 − r = rk(M). The lattice N := M(1/2) is well defined by Lemma 2.3.6. Further,

AN = {1}, and so N is unimodular.

Assume that δ = 0; this implies that N is an even unimodular lattice (see for example

Lemma 2.3.8). By Milnor’s theorem on unimodular forms (see [Nik79b, Thm 0.2.1] for a
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precise statement), N exists if and only if

3 + r − 21 ≡ 0 mod 8;

r ≡ 2 mod 8.

Since r ≥ 12, we have that r = 18. Thus N has signature (3, 3), and hence N ∼= U3. Thus

M ∼= U(2)3.

Now assume that δ = 1. It follows that N is an odd indefinite unimodular lattice (see

for example Lemma 2.3.7). By Milnor’s theorem again, N exists and is isomorphic to

⟨1⟩3 ⊕ ⟨−1⟩21−r, thus

M ∼= ⟨2⟩3 ⊕ ⟨−2⟩21−r.

Case 2: Assume that a = 22− r, with δ = 0 and r ̸= 2 mod 8. Note again that r ≥ 12;

if r ≤ 11,, since 22− r = a ≤ r ≤ 22− r, we must have that r = 11. But since δ = 0, for M

to exist r ≡ 2 mod 4, a contradiction.

So r ≥ 12, and since r ≡ 2 mod 4, r ∈ {14, 18}. By assumption, r ̸= 2 mod 8, thus

r = 14. Hence M has signature (3, 7) with a = 8, δ = 0. Consider the lattice U(2)3 ⊕D4; it

has the same signature and invariants. Since indefinite 2-elementary lattices are unique up to

isomorphism, we necessarily have M ∼= U(2)3 ⊕D4.

Finally, assume that r = 21. In this case, M has signature (3, 0). Since a ≡ r mod 2,

a = 1 or 3. If a = 1, no such lattice exists by Theorem 2.3.4 ; thus a = 3. Again, the lattice

N := M(1/2) is well defined. Further, AN = {1}, so N is unimodular. If δ = 0, N is an even

unimodular lattice: once more, Milnor’s Theorem on unimodular forms gives an immediate

contradiction with the rank of N . Thus δ = 1 and N is an odd unimodular lattice, thus

N ∼= ⟨1⟩3, and M ∼= ⟨2⟩3.

The above result classifies the genus of the coinvariant lattice Λ−; the lattice Λ− is negative

definite of rank r, with discriminant group AΛ
∼= AΛ+ ⊕ AA2 , with quadratic form

qΛ− = (−qΛ+)⊕ qA2 .

Unfortunately, these invariants are not enough to classify Λ− uniquely; there are many

isometry classes of lattices with these invariants.

In order to conclude our classification of symplectic birational involutions of OG10 type,

we need to see whether an involution ι ∈ O(Λ) as in Proposition 4.4.2 is induced by a

birational symplectic involution. By Theorem 4.1.2, only the involutions with Λ−∩Wpex = ∅
are induced. One possible strategy is to classify the isometry classes Λ− for each case in
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Proposition 4.4.2, and check for the existences of vectors in Wpex, i.e. for short or long

roots. This turns out to be a difficult problem; these lattices have both large rank and

discriminant (the methods of Conway-Sloane have not been extended [CS88]), and have not

been enumerated. We illustrate this difficulty with an example.

Example 4.4.3. Consider (Λ)+) ∼= U(2)3. Then (Λ)− has rank 18, and discriminant group

A(Λ)−
∼= Z/3Z× (Z/2Z)6,

and q(Λ)−|Z/3Z = qA2 . There are two easily identifiable possibilities for (Λ)−:

A2 ⊕K;

A2 ⊕ E8 ⊕N,

where K is the Kummer lattice and N is the Nikulin lattice (see [Mor84] for a description of

these lattices). Both of these embed into the lattice Λ and are orthogonal to U(2)3. Although

both examples contain short roots and thus cannot be realised by a geometric birational

involution, there may be other lattices in the same genus without short or long roots.

Example 4.4.4. Consider (Λ)+ ∼= U(2)3 ⊕D4. Then (Λ)− has rank 14, and discriminant

group

A(Λ)−
∼= Z/3Z× (Z/2Z)8.

Thus (Λ)− is in the same genera as the lattice A2 ⊕N ⊕D4. Again this example contains

short roots.

4.4.2 Enumeration of lattices

By Proposition 4.4.2; there are 12 possible genera for the lattice Λ−. For each genus, we

must first enumerate all isometry classes of lattices in each genus - this enumeration was

undertaken joint with Stevell Muller and was computer aided. Our results of this enumeration

and analysis are summarised in Table 4.1; for more detail see the database [MM23b]. We

refer to [MM23a, §6, Appendix A] for more details on the techniques and implementation of

our enumeration algorithm.

We represent each isometry class of lattices obtained by the enumeration by their Gram

matrix, which are available in the files [MM23b]. Each of them represent a coinvariant lattice

Λ− for an involution ι ∈ O(Λ). It remains to verify whether they are induced from a geometric

involution or not.
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Let L be one the lattices enumerated; L is the coinvariant lattice for an involution

ι ∈ O(Λ). We verify whether L is induced by a geometric involution by verifying if L contains

a short or long root. We use the method short vectors on Hecke [FHHJ17], which allows us

to compute all vectors in L(−1) of a given norm. For each such vector y, we then compute

the positive generator d of the Z-ideal (y, L(−1)): if d = 3, then y is a long root in L. Finally,

if L contains no short or long roots, then by Theorem 4.1.2 the involution ι is induced, and

L is isometric to the co-invariant lattice associated to a symplectic birational involution on

an irreducible symplectic manifold of OG10 type.

4.4.3 Results

Table 4.1 contains a summary of our enumeration and analysis. For each possible genus, we

give the number N of isometry classes of lattices it contains. In the column with s.r. we

record the number of classes that have a representative with a short root. In the column

without s.r., with l.r. we record how many classes have a representative without any

short roots but with at least one long root. Finally, the last column geometric cases

presents all possible isometry classes that are induced by a symplectic birational involution of

a manifold X of OG10 type, and thus are isometric to H2(X,Z)−. This concludes the proof

of Theorem 4.4.1, and thus completes the Proof of Theorem 4.0.1(3).

The two lattices admitting a geometric realization from Table 4.1 are determined respec-

tively by the following Gram matrices:

G12 =



−4 2 −2 −2 −2 −2 2 −2 2 2 −2 −2

2 −4 2 0 2 0 −2 2 −2 −2 2 2

−2 2 −4 −2 −2 −2 2 −2 2 2 −2 −2

−2 0 −2 −4 −2 −2 0 0 0 0 0 0

−2 2 −2 −2 −4 −2 2 −2 2 2 −2 −2

−2 0 −2 −2 −2 −4 2 −2 2 2 −2 −2

2 −2 2 0 2 2 −4 2 −2 −2 2 2

−2 2 −2 0 −2 −2 2 −6 4 4 −2 −4

2 −2 2 0 2 2 −2 4 −6 −2 4 4

2 −2 2 0 2 2 −2 4 −2 −6 2 2

−2 2 −2 0 −2 −2 2 −2 4 2 −6 −2

−2 2 −2 0 −2 −2 2 −4 4 2 −2 −6



G16 =



−4 2 −2 2 −1 1 2 1 2 1 −2 1 −2 −2 1 −2

2 −4 0 −1 2 −2 0 −2 0 −2 0 −2 1 2 1 1

−2 0 −4 2 1 1 1 −1 2 −1 −1 1 −1 −1 2 −2

2 −1 2 −4 −1 −2 −2 −1 0 1 1 0 2 0 −2 1

−1 2 1 −1 −4 1 −1 2 1 2 1 2 1 −1 −2 0

1 −2 1 −2 1 −4 −1 −2 0 −1 −1 −2 1 1 −1 1

2 0 1 −2 −1 −1 −4 −1 0 0 2 1 2 1 −2 1

1 −2 −1 −1 2 −2 −1 −4 0 −2 −1 −1 1 0 1 0

2 0 2 0 1 0 0 0 −4 −1 0 −1 1 1 −1 2

1 −2 −1 1 2 −1 0 −2 −1 −4 0 −2 0 2 1 0

−2 0 −1 1 1 −1 2 −1 0 0 −4 −1 −1 −1 1 0

1 −2 1 0 2 −2 1 −1 −1 −2 −1 −4 −1 2 1 1

−2 1 −1 2 1 1 2 1 1 0 −1 −1 −4 0 2 −2

−2 2 −1 0 −1 1 1 0 1 2 −1 2 0 −4 0 −1

1 1 2 −2 −2 −1 −2 1 −1 1 1 1 2 0 −4 1

−2 1 −2 1 0 1 1 0 2 0 0 1 −2 −1 1 −4



They correspond respectively to the 3rd and the 472nd lattices in the respective files

c3r12 and c3r16 of our database, available in [MM23b].

80



without s.r.,
Case rank N with s.r.

with l.r.
geometric cases

(1) 18 430 430 0 None
(2) 14 21 21 0 None

12 5 4 0 1: G12

13 23 22 1 None
14 70 70 0 None
15 211 211 0 None
16 617 616 0 1: G16

17 1291 1291 0 None
18 2524 2524 0 None
19 3682 3682 0 None
20 3375 3375 0 None

(3)

21 1316 1316 0 None

Table 4.1: Genus enumeration and geometric cases of Theorem 4.4.1

4.5 The fixed locus: future directions

Our desire for classifying symplectic birational involutions was motivated by the search for

new examples of IHS varieties. The natural next step is to study the fixed locus for such an

involution; this becomes difficult unless we have an explicit geometric model for the action.

In this sense, the three symplectic birational involutions induced from a cubic fourfold have

the advantage; one can exploit the geometry of the associated intermediate Jacobian fibration

to study the fixed locus. We saw in §3.4 that a cubic fourfold with an involution that fixes a

plane point-wise (ϕ3 in the notation of §3) is rational, and has many associated K3 surfaces.

In contrast, the cubic fourfolds V with the other two involutions are potentially irrational,

and the transcendental cohomology T (V ) does not embed into the K3 lattice. From the

point of view of producing new examples of IHS varieties, these involutions have the best

chance of success - we do not expect IHS of K3[n] type to appear as components of the fixed

locus.

We focus on a symplectic involution induced from a cubic fourfold V ⊂ P5 with a

symplectic involution ϕ := ϕ2 as in Chapter 3. This is ongoing work which will appear

elsewhere - we briefly outline the strategy here. The goal is to exploit the structure of the

Lagrangian fibration π : X → B := (P5)∨ of a compactified intermediate Jacobian fibration

of V in order to obtain a description of the fixed locus. The involution ϕ acts on the ambient

P5; it fixes a line L and a linear space Π ∼= P3 point-wise. The line L is contained in V . Since

B ∼= (P5)∨, the involution ϕ also acts on the base B of the associated Lagrangian fibration,
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fixing point-wise two complimentary linear subspaces Ľ⊔ Π̌ ∼= P3 ⊔P1 ⊂ B. The image of the

fixed locus π(Fix(ι)) is contained in this locus - we obtain two disjoint varieties, fibered over

Ľ and Π̌. A point b ∈ Ľ ⊔ Π̌ corresponds to an invariant hyperplane section Yb := Hb ∩X;

the cubic threefold Yb obtains an induced involution ϕb. In turn, this involution acts on the

intermediate Jacobian J(Yb); in obtain to describe the fiber of the fixed locus over Ľ ⊔ Π̌,

one needs to identify the fixed abelian subvariety J(Yb)
ϕb ⊂ J(Yb).

Fortunately, the intermediate Jacobians of cubic threefolds Y with an involution have

been well studied. There are two possibilities for an involution ϕb of Yb; either Yb is an

Eckardt cubic, where ϕb fixes the Eckardt point and a disjoint hyperplane section, or the

involution ϕb fixes a line l ⊂ Yb point-wise. An involution of the second type is called a

non-Eckardt involution (see [CMMZ22, §1.1]). For a general point b ∈ Π̌, one can see that

Yb is a smooth Eckardt cubic, and the invariant subabelian variety J(Yb)
ϕb is isomorphic to

an elliptic curve associated to Yb (see [CMZ21]). On the other hand, a general point p ∈ Ľ

corresponds to a cubic with a non-Eckardt involution; indeed, the hyperplane section Yb

contains the point-wise fixed line L. In this case, J(Yb)
ι is a 3-dimensional abelian variety

with a (1, 2, 2) polarisation, as studied in [CMMZ22].

The difficulty with this study is the fact that the induced symplectic involution is strictly

birational. We define the Fix(ι) ⊂ X as the closure of the fixed locus of ι restricted to the

largest open subset where it is regular. It is clear the open locus of Fix(ι) is smooth, and

admits a holomorphic symplectic form, but taking the closure may introduce singularities.

The structure of the singularities and identifying the components is on going work.
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cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math., 301(14):703–706,
1985.

[Bea83] Arnaud Beauville. Variétés Kähleriennes dont la première classe de Chern est
nulle. J. Differential Geom., 18(4):755–782 (1984), 1983.

[Bea00] Arnaud Beauville. Determinantal hypersurfaces. volume 48, pages 39–64. 2000.
Dedicated to William Fulton on the occasion of his 60th birthday.

[BLM+21] Arend Bayer, Mart́ı Lahoz, Emanuele Macr̀ı, Howard Nuer, Alexander Perry,
and Paolo Stellari. Stability conditions in families. Publ. Math. Inst. Hautes
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