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Abstract of the Dissertation

Monopoles, Singularities and Hyperkähler Geometry

by

Saman Habibi Esfahani

Doctor of Philosophy

in

Stony Brook University

2022

The main subjects of this thesis are monopoles. They are solutions to the Bogomolny
equations on 3-manifolds, Calabi-Yau 3-folds and G2-manifolds. Monopoles, conjecturally, can
be used to define invariants of manifolds [21]. We prove the existence of non-trivial monopoles
with Dirac singularities on rational homology 3-spheres, via a gluing construction. Furthermore,
we will introduce some generalized Bogomolny equations in higher dimensions. The main
difficulty in defining invariants of manifolds with special holonomy groups using these gauge-
theoretic equations comes from the non-compactness of the moduli spaces of monopoles, which
are governed by a first order differential operator, called the Fueter operator. The Fueter operator
is a non-linear generalization of the Dirac operator over 3- and 4-manifolds, where the spinor
bundle is replaced by a non-linear hyperkähler bundle. We prove partial compactness results
by examining the different sources of non-compactness of the spaces of the Fueter sections and
proving some of them, in fact, do not occur.

Donaldson proposed the possibility of studying G2-manifolds from the viewpoint of coas-
sociative fibrations and the adiabatic limit [14]. This approach is expected to be helpful in
understanding the non-compactness problems. The adiabatic picture led Donaldson and Scaduto
to conjecture the existence of certain associative submanifolds in G2-manifolds with a coassocia-
tive K3-fibration near the adiabatic limit [20], which reduces to the question of the existence of
certain asymptotically cylindrical special Lagrangians in certain Calabi-Yau 3-folds. We propose
a strategy to prove this conjecture using the method of continuity and take several steps in that
direction.
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Introduction

The study of the gauge-theoretic equations, emerging from theoretical-physics, and the discovery
of invariants defined by ‘counting’ the solutions to these equations revolutionized the field of low-
dimensional topology [19, 24]. Donaldson and Thomas proposed generalizing these invariants
to higher-dimensional manifolds, in particular, manifolds with special holonomy groups [22].
Donaldson and Segal hinted at the idea of defining invariants of Calabi-Yau 3-folds and G2-
manifolds by counting monopoles on these manifolds [21]. In this writing, we address some of
the key questions, specially relevant to the existence and compactness problems, in both low and
higher dimensions.

Chapter 1: Singular Monopoles on 3-Manifolds

Monopoles on 3-manifolds appear as dimensional reduction of instantons on 4-manifolds. A
monopole on a principal G-bundle P → M on an oriented Riemannian 3-manifold (M, g) is
a pair (A,Φ) of a connection A on P and a section Φ of the adjoint bundle which satisfies the
Bogomolny equation,

∗FA = dAΦ,

where ∗ denotes the Hodge star operator of the Riemannian metric g, FA is the curvature 2-form
of the connection A, and dAΦ is the covariant derivative of Φ with respect to the connection A.

Every smooth monopole on a closed Riemannian 3-manifold, when G is a compact Lie group,
satisfies a stronger condition,

∗FA = dAΦ = 0.

In order to get solutions to the Bogomolny equation which do not satisfy this stronger condition,
one can consider monopoles with Dirac singularities at isolated points, where close to a singular
point p ∈M , we have

|Φ| = k

2r
+m+O(r),

where k is a positive integer, called the charge of the monopole at p, m is a constant, called the
mass of the monopole at p, and r denotes the geodesic distance from the singular point p.

We prove the existence of non-trivial singular SU(2)-monopoles on rational homology 3-
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spheres. This is partially motivated by the problem of the existence of monopoles in higher
dimensions. This existence result is proven with the use of a gluing construction. The gluing
constructions originate from the works of Taubes where he used them to construct irreducible
smooth SU(2)-monopoles on R3 [90] and Yang-Mills instantons on non-self-dual 4-manifolds
[90]. The gluing construction requires careful analysis of the linearized problem and the use of
certain weighted Sobolev spaces, studied by Biquard [9], and in the monopole case by Foscolo
[33, 30].

Chapter 2: Monopoles in higher dimensions

Donaldson and Segal proposed to define invariants of Calabi-Yau 3-folds and G2-manifolds by
‘counting’ monopoles on these manifolds. Let P → Z be a principal G-bundle over a Calabi-Yau
3-fold (Z, g, ω,Ω). A pair (A,Φ) of a connection A on P and a section Φ of the adjoint bundle
is called a Calabi-Yau monopole if it satisfies the Calabi-Yau-Bogomolny equations,

∗(FA ∧ Im(Ω)) = dAΦ,

FA ∧ ω2 = 0.

In this section, we consider their dimensional reduction to U(1)-bundles over hyperkähler
4-manifolds and derive Bogomolny equations on these 5-dimensional manifolds. We show they
satisfy some similar formal properties as monopoles in other dimensions.

Moreover, we introduce the complexified gauge-theoretic equations on manifolds with special
holonomy groups. Similar to the lower-dimensional cases, there are two ways to complexify
these equations, which we call the Haydys type and the Kapustin-Witten type. We show the
moduli spaces of solutions to the these Haydys type gauge-theoretic equations on manifolds with
special holonomy groups can be understood as a Kähler manifold. Moreover, the solutions to
the Kapustin-Witten type gauge-theoretic equations on manifolds with special holonomy groups
satisfy certain vanishing properties.

Chapter 3: Fueter Sections and Monopoles

As conjectured by Donaldson and Segal, monopoles on Calabi-Yau 3-folds and G2-manifolds
are closely related to the calibrated submanifolds, more specifically, the special Lagrangians in
the Calabi-Yau case and the coassociatives in the G2 case [21]. This is similar to the Taubes’
theorem, which relates the Seiberg-Witten and Gromov invariants of symplectic 4-manifolds [86].
A major role in this conjecture is played by a non-linear generalization of the Dirac operator,
called the Fueter operator.

Fueter sections, which are harmonic spinors with respect to the Fueter operators on 3- and
4-manifolds, are also interesting independent of their relevance to the gauge theory in higher
dimensions, and potentially, can be used to define invariants of 3- and 4-manifolds. Let (M, g) be
an oriented Riemannian 3-manifold. Let π : X→M be a fiber bundle whose fibers are modeled
on a hyperkähler manifold (X, gX , I, J,K), with an isometric bundle identification

I : STM → b(X),
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where STM is the unit tangent bundle of M and b(X) is the sphere bundle of the complex
structures of the fibers of X. Let ∇ be the covariant derivative of a connection on this bundle. A
section f ∈ Γ(X) is called a Fueter section if

F∇(f) := I(∂x1)∇∂x1f + I(∂x2)∇∂x2f + I(∂x3)∇∂x3f = 0,

where (∂x1, ∂x2, ∂x3) is a local orthonormal frame on M . The operator F∇ is called a Fueter
operator.

The main difficulty in defining the monopole invariants in higher dimensions comes from the
non-compactness problems. The non-compactness of these moduli spaces are governed by the
Fueter operators. In our case, the fibers of the hyperkähler bundles are modeled on the moduli
spaces of monopoles on R3.

We prove partial compactness results for Fueter sections of the monopole bundles, examining
the different sources of non-compactness of the spaces of Fueter sections, and proving some
of them, in fact, do not occur. The analysis follows the same line of thought as in the study of
singularities of harmonic maps, which originates from the work of Schoen and Uhlenbeck [83].

Chapter 4: On the Donaldson-Scaduto Calibrated Submanifolds

Donaldson proposed the possibility of studyingG2-manifolds from the viewpoint of coassociative
fibrations and the adiabatic limit, where the diameters of the fibers shrink to zero [20]. It is
expected that this approach would be helpful in understanding the formation of singularities and
the compactness problems. The adiabatic picture led Donaldson and Scaduto to conjecture the
existence of certain associative submanifolds in G2-manifolds with a coassociative K3-fibration
near the adiabatic limit [20]. This problem can be reduced to the question of the existence of
certain asymptotically cylindrical special Lagrangians in X × C, where X is a multi-Eguchi-
Hanson hyperkähler manifold.

We propose a strategy to prove this conjecture using the method of continuity. We will show,
under the hyperkähler deformation of X , the existence of these asymptotically cylindrical special
Lagrangians is an open condition. Moreover, by considering a Hamiltonian action of U(1) on
X ×C, we will reduce this existence problem to the question of existence of certain non-compact
holomorphic curves with boundary in R4, with respect to a non-standard singular almost complex
structure, where this existence problem is described by a singular Monge-Ampère equation.
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Chapter 1

Singular Monopoles on 3-Manifolds

The theory of Yang-Mills connections and, in particular, instantons revolutionized the study of
4-manifolds [19, 15, 18, 68]. The Bogomolny monopoles appear as the dimensional reduction
of instantons to 3-manifolds. Let (M, g) be an oriented Riemannian 3-manifold, P → M a
principal G-bundle for a Lie group G, and gP the associated adjoint bundle. A pair (A,Φ) of a
connection A on P and a section Φ of the adjoint bundle is called a monopole if it satisfies the
Bogomolny equation,

∗FA = dAΦ,

where ∗ denotes the Hodge star operator of the Riemannian metric g, FA is the curvature 2-form
of the connection A, and dAΦ is the covariant derivative of Φ with respect to the connection A.

The theory of monopoles on non-compact 3-manifolds is very rich and interesting. Jaffe and
Taubes proved the existence of non-trivial SU(2)-monopoles on R3, using a gluing construction
[49]. The gluing constructions, originating from the works of Taubes, have been used to construct
solutions to various differential equations [90, 29, 85, 54, 26, 60, 48, 16, 95, 76, 30, 64]. From
the gluing construction of monopoles, one can read the dimension of the moduli spaces of
monopoles on R3. This can also be proven using a variation of the Atiyah-Singer index theorem,
called the Callias index theorem, which is an index theorem for Dirac operators on non-compact
odd-dimensional manifolds [4, 59]. Furthermore, there exists an explicit parametrization of the
moduli spaces of monopoles on R3 in terms of rational maps, due to Donaldson [17, 47].

The moduli spaces of monopoles on R3 are ALF hyperkähler manifolds, which have been ex-
tensively studied, originating from the works of Atiyah and Hitchin [4]. Floer studied monopoles
on asymptotically Euclidean 3-manifolds [28], more recently, Oliveira studied monopoles on
asymptotically conical 3-manifolds and stated that there exists a (4k − 1)-dimensional family
of non-trivial irreducible smooth SU(2)-monopoles on any asymptotically conical 3-manifold
(M, g) with b2(M) = 0 [76]. It is proven by Kottke that the expected dimension of the moduli
space of monopoles on an asymptotically conical 3-manifold, whose ends are asymptotic to a
cone on Σ, is 4k + 1

2b
1(Σ)− b0(Σ) [59].

The theory of monopoles on compact 3-manifolds is quite different from the ones on non-
compact manifolds. When the structure group G is compact, every smooth monopole on a closed
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oriented Riemannian 3-manifold satisfies a stronger condition,

∗FA = dAΦ = 0,

and therefore, A is a flat connection and Φ is a covariantly constant section. These monopoles are
sometimes referred to as trivial monopoles.

There is another class of monopoles on compact 3-manifolds, which is quite interesting.
These monopoles are smooth on the complement of finitely many points with prescribed Dirac
singularities at these points. Pauly studied the deformation of these singular monopoles with the
structure group SU(2) [78], and using the Atiyah-Singer index theorem and exploiting a theorem
of Kronheimer [61] — which states that close to the points with Dirac singularities, monopoles
up to gauge, can be understood as smooth S1-invariant instantons on a 4-dimensional space —
proved that the expected dimension of the moduli space of singular monopoles with charge k ∈ N
on a compact Riemannian 3-manifold (M, g) is equal to 4k. However, this argument does not
imply that the moduli spaces are non-empty.

In this chapter, we prove the existence of SU(2)-monopoles with Dirac singularities on
rational homology 3-spheres. The proof is based on a gluing construction. Furthermore, this
construction gives a geometric interpretation to Pauly’s dimensional formula for the moduli
spaces of singular monopoles on rational homology 3-spheres. The strategy of the proof follows
the gluing argument of Taubes [49, 90], Foscolo’s proof of the existence of singular monopoles on
R2 × S1 [30], and Oliveira’s work on smooth monopoles on asymptotically conical 3-manifolds
[76].

Proposition 1 (Existence of Singular Monopoles). Let (M, g) be an oriented rational homology 3-
sphere equipped with a Riemannian metric g. For any k ∈ N, there exists a non-trivial irreducible
SU(2)-monopole with Dirac singularities with charge k on a principal SU(2)-bundle P →M .

Outline of This Chapter Section 1.1 contains background material on monopoles. In Section
1.2.1, we study the basic properties of Dirac monopoles on closed 3-manifolds. In section 1.2.2
we present the construction of Dirac monopoles on rational homology 3-spheres. In sections
1.2.3 and 1.2.4, we construct an approximate irreducible SU(2)-monopole. In section 1.2.5, we
set up the framework to solve the Bogomolny equation to find a genuine SU(2)-monopole near
the constructed approximate monopole. In section 1.2.7.1, we solve the linearized Bogomolny
equation near the points where the BPS-monopoles are located. In section 1.2.7.4, we solve
the longitudinal part of the linear equation away from the glued BPS-monopoles and in section
1.2.7.8 the transverse part. Finally in section 1.2.8, we consider the quadratic terms, solve the
Bogomolny equation and complete the proof of the main existence theorem.

1.1 Dimensional Reductions and Singularities

In this section, we review the basics of the theory of monopoles, their relations to instantons on
4-manifolds, and singular solutions to these equations. For more detailed account consult with
[49], [4] and [33].

The monopoles, i.e., solutions to the Bogomolny equation, are the central topic of this thesis.
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Definition 1 (The Bogomolny Monopole). Let (M, g) be an oriented Riemannian 3-manifold.
Let G be a compact Lie group. Let P → M be a principal G-bundle and gP the associated
adjoint bundle. Let A be a connection on P and Φ a section of gP . The Bogomolny equation for
a pair (A,Φ) is

∗FA = dAΦ, (1.1.1)

where ∗ is the Hodge star operator on the gP -valued differential forms on M , defined using the
Riemannian metric g and the orientation on M .

A pair (A,Φ) which satisfies equation 1.1.1 is called a monopole.

The Bogomolny equation on 3-manifolds is closely related to the anti-self-duality equation
on 4-manifolds.

Definition 2 (Anti-Self-Dual Instanton). Let (N,h) be an oriented Riemannian 4-manifold. Let
G be a compact Lie group. Let P → N be a principal G-bundle. A connection A on P is called
an anti-self-dual instanton if

F+
A := FA + ∗FA = 0, (1.1.2)

where ∗ is the Hodge star operator on N induced by the Riemannian metric h and the orientation
on N .

The Bogomolny equation on 3-manifolds can be understood as a dimensional reduction of
anti-self-duality equation on 4-manifolds.

Lemma 1 (Dimensional Reduction of Instantons). Let (M, g) be an oriented Riemannian 3-
manifold with volume form volg. Let P → M be a principal G-bundle for a Lie group G. Let
X = M × R — or X = M × S1 — equipped with the product Riemannian metric h = g + dt2,
where t denotes the coordinate on the R-factor. Let volh = dt ∧ π∗(volg) be the volume form on
X , where π : X →M is the projection map onto M . Any connection A on the pull-back bundle
π∗P → X , invariant under the translation in the R-direction, can be written as

A = π∗A+ (π∗Φ)dt,

for a connection A on P and a section Φ of the adjoint bundle gP .
The pair (A,Φ) is a monopole if and only if A is an anti-self dual instanton.

Proof. The curvature of A is given by

FA = π∗FA − dt ∧ π∗(dAΦ),

and therefore,

F+
A = (π∗FA)+ − (dt ∧ π∗(dAΦ))+.
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We denote the Hodge star operators on M and X by ∗3 and ∗4, respectively. For any 1-form
α ∈ Ω1(M), we have

dt ∧ π∗α = ∗4π∗(∗3α).

This equation extends to 1-forms on M with values in any vector bundle, and therefore,

F+
A = (π∗FA)+ − (∗4π∗(∗3dAΦ))+ = (π∗FA)+ − (π∗(∗3dAΦ))+ = (π∗(FA − ∗3dAΦ))+.

This shows if the pair (A,Φ) is a monopole, then A is an anti-self dual instanton.
Conversely, suppose A is an anti-self-dual connection,

F+
A = (π∗(FA − ∗3dAΦ))+ = 0.

For any 2-form β ∈ Ω2(M) — and therefore, for any 2-form on M with values in any vector
bundle — we have

(π∗(β))+ = 0⇒ β = 0.

To see this, note that on any sufficiently small open neighbourhood in M , with local coordinates
(x, y, z), if β = βzdxdy + βxdydz + βydzdx, we have

0 = (π∗(β))+ =
1

2
((π∗βz)(dxdy + dtdz) + (π∗βx)(dydz + dtdx) + (π∗βy)(dzdx+ dtdy)),

hence, π∗βx = π∗βy = π∗βz = 0, which implies β = 0 on every coordinate ball, and therefore,
everywhere on M .

Although sometimes it is useful to think about monopoles as 3-dimensional counterparts of
instantons, there are important differences between them too.

Lemma 2 (Trivial Monopole). Let (M, g) be a closed, oriented, Riemannian 3-manifold and G
a compact Lie group. Any smooth monopole (A,Φ) on a principal G-bundle P →M satisfies
the following equations,

∗FA = dAΦ = 0. (1.1.3)

A pair (A,Φ) satisfying 1.1.3 is sometimes referred to as a trivial monopole.

Proof. The Bogomolny equation implies

∆AΦ = d∗AdAΦ = ∗dAFA = 0,

where the last equality follows from the Bianchi identity. Therefore, Φ is a harmonic section with
respect to the connection A. Since G is a compact Lie group, there is an adjoint-invariant inner
product on its Lie algebra g, and therefore, on the adjoint bundle gP , denoted by 〈−,−〉. With
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respect to this inner product, we have the following pointwise equations,

0 = 〈∆AΦ,Φ〉 = 〈d∗AdAΦ,Φ〉 = 〈dAΦ, dAΦ〉 = |dAΦ|2,

and therefore, ∗FA = dAΦ = 0.

The following corollary is an immediate consequence of Lemma 1 and Lemma 2.

Corollary 1. Let (M, g) be a closed Riemannian 3-manifold. LetX = M×R — orX = M×S1

— be the product Riemannian manifold and A an instanton on π∗P → X , invariant under the
R-translation, with the same assumptions as in Lemma 1. Then A is a flat connection,

FA = 0.

Lemma 2 suggests that on closed 3-manifolds, in order to have monopoles which do not
satisfy the stronger equations 1.1.3, we should consider monopoles with singularities. One
approach is to consider monopoles with Dirac singularities. These monopoles fit well with the
idea of understanding monopoles as a dimensional reduction of instantons.

In this direction, Kronheimer introduced a second way to see monopoles as dimensional
reduction of instantons [61], which incorporates the notion of Dirac singularity. Roughly speaking,
monopoles on B3 ⊂ R3 with Dirac singularity at the origin are dimensional reduction of U(1)-
invariant instantons on B4 ⊂ R4 = C2, as we will explain below.

Let π : B4 \ {0} → B3 \ {0} be the principal U(1)-bundle, where the U(1)-action on
B4 \ {0} is given by

eiθ · (z1, z2) = (eiθz1, e
−iθz2),

for all θ ∈ U(1), and the bundle map π is the radial extension of the Hopf map S3 → S2. We
can extend the map π to get a smooth map π : B4 → B3 with π−1(0) = 0. Let (x1, x2, x3, x4)
be the coordinates on B4. Let z1 = x1 + ix2 and z2 = x3 + ix4. Let (u1, u2, u3) be coordinates
on B3. The map π is given by the following formulas,

u1 = 2 Re(z1z2) = 2(x1x3 − x2x4), (1.1.4)

u2 = 2 Im(z1z2) = 2(x1x4 + x2x3), (1.1.5)

u3 = |z1|2 − |z2|2 = x2
1 + x2

2 − x2
3 − x2

4. (1.1.6)

Let P → B3 \ {0} be a principal G-bundle and let π∗P → B4 \ {0} be the pull-back bundle.
Any U(1)-invariant connection A on π∗P , in a U(1)-invariant gauge, can be written as

A = π∗A+ (π∗Φ)ξ, (1.1.7)

for a connection A on P , a section Φ of the adjoint bundle gP , and

ξ = 2(−x2dx1 + x1dx2 + x4dx3 − x3dx4),

which is a U(1)-invariant 1-form on B4 dual to the vector field generated by the infinitesimal
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action of the Lie algebra u(1) ∼= R on B4.
We equip B3 and B4 with the Euclidean metrics and volume forms volB3 = du1du2du3 and

volB4 = −dx1dx2dx3dx4, respectively. Then

FA = π∗FA + (π∗Φ)dξ − ξ ∧ π∗(dAΦ)⇒ (FA)+ = (π∗FA)+ − (ξ ∧ π∗(dAΦ))+,

since dξ = 4(dx1dx2 + dx3dx4) is an anti-self dual 2-form. A similar argument as the one we
saw in Lemma 1 proves the following.

Lemma 3 (Dimensional Reduction ofU(1)-Invariant Instantons). A pair (A,Φ) on P → B3\{0}
is a monopole if and only if the connection A on π∗P → B4 \ {0}, given in 1.1.7, is an anti-self-
dual instanton.

This lemma can be generalized in two ways. First, following Kronheimer, one can replace
the Euclidean metric on R4 by a Taub-NUT metric, and second, one can replace the Euclidean
metric on B3 with an arbitrary one, which is done by Pauly.

Lemma 4 (Kronheimer [61]). Let (X, gX , I, J,K) be a Taub-NUT space given by the Gibbons-
Hawking Ansatz1, defined by positive harmonic map V : R3 \ {0} → R and a connection 1-form
on θ on π : X → R3 \ {0}. Let P → R3 \ {0} be a principal G-bundle. A U(1)-invariant
connection A on the pull-back bundle π∗P → X can be written as A = π∗(A) − π∗( ΦV )θ,
for a pair (A,Φ) of a connection A on P → R3 \ {0} and a section Φ of the adjoint bundle.
Furthermore, A is an instanton on (X, gX) if and only if (A,Φ) is a monopole with respect to the
Euclidean metric on R3 \ {0}.

An important feature of Kronheimer’s theorem is that the anti-self-dual connection A and
the bundle it is defined on — in a suitable U(1)-invariant gauge — extend smoothly over the
π−1(0), even if the monopole itself cannot be extended over 0 ∈ R3, which is indeed the case
for monopoles with Dirac singularities. This follows from Uhlenbeck’s removable singularity
theorem for Yang-Mills connections; in particular, instantons [94].

Definition/Lemma 5 (Dirac Singularity). Let P → B3 \ {0} be a principal SU(2)-bundle. Let
(A,Φ) be a monopole with singularity at 0 ∈ B3 on P → B3 \ {0}. Let A be the instanton on
π∗P → B4 defined in 1.1.7. Suppose

1

2

∫
B4

|FA|2volB4 <∞.

Then close to the singular point, we have

|Φ| = k

2r
+m+O(r), (1.1.8)

where the norm is defined with respect to the adjoint-invariant inner product on the adjoint bundle
gP , k ∈ N is a positive integer, called the charge of the monopole at the singular point, and m is
a constant, called the mass of the monopole at the singular point. The pair (A,Φ) is called a
monopole with a Dirac singularity.

1For detailed description of the Gibbons-Hawking Ansatz see Section 4.1.1.3.
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WhenG = U(1), we can define the signed charge k ∈ Z\{0}, as opposed to the non-Abelian
case where k > 0. This is because in the Abelian case, close to the singular point, one can think
about the section as a real-valued function,

Φ = − k

2r
+m+O(r). (1.1.9)

Note that unlike 1.1.8, the left-hand-side is the section itself and not its norm. Here we used
the identification u(1) ∼= R, in order to have R-valued Higgs fields and connections, rather than
iR-valued.

As proven by Pauly [78], the local correspondence between singular monopoles on B3 \ {0}
with Euclidean metric and anti-self-dual connections on B4 \ {0} with Euclidean or Taub-NUT
metric can be generalized to the case where the metric on B3 is an arbitrary one. He proved if B3

is equipped with a Riemannian metric g3, one can recover Theorem 4 by replacing the Taub-NUT
metric with

g4 = V π∗(g3) + V −1θ2
0,

which is not necessarily a hayperkähler metric anymore. Here, again close to a singular point the
Higgs field of the monopole is of the form 1.1.8, and in the Abelian case 1.1.9, where r denotes
the geodesic distance from the singular point.

Although this local picture is very convenient, because of topological reasons it does not
extend to a global picture over smooth manifolds. Let {p1, . . . , pn} be n points on a Riemannian
3-manifold (M, g). Pauly showed there is no Riemannian 4-manifold (X,h) with a U(1)-action
that is free everywhere onX except n fixed points {q1, . . . , qn}, a smooth projection π : X →M ,
which is a principal U(1)-bundle on X \ {q1, . . . , qn} → M \ {p1, . . . , pn} with π(qi) = pi,
and a smooth U(1)-invariant 1-form ξ ∈ Ω1(X) such that (A,Φ) is a monopole on (M, g) if and
only if A = π∗A+ (π∗Φ)ξ is an anti-self-dual instanton on (X,h) [78].

In the following section, we will prove an existence theorem for these monopoles with Dirac
singularities on rational homology 3-spheres.

1.2 The Gluing Construction

The main aim of this chapter is to construct irreducible SU(2)-monopoles with Dirac singu-
larities on compact Riemannian 3-manifolds (M, g) with H2(M,Q) = 0. In fact, this gluing
construction produces open subsets of the moduli spaces of monopoles with Dirac singularities.
The Proposition 1 follows from the following.

Theorem 1 (Gluing Construction). Let (M, g) be an oriented rational homology 3-sphere
equipped with a Riemannian metric g. Let Sp = {p1, . . . , pn} and Sq = {q1, . . . , qk} be
two sets of disjoint points in M . Let k1, . . . , kn be n negative integers, where k +

∑n
i=1 ki = 0.

Then there exists an irreducible SU(2)-monopole (A,Φ) with Dirac singularities with charge
|ki| at pi for all i ∈ {1, . . . , n} on a principal SU(2)-bundle P →M \ Sp such that

(A,Φ) = (A0, Φ0) + (a, ϕ),
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where (A0, Φ0) is equal to a scaled BPS-monopole on a small neighbourhood Bεj (qj) of each
point qj for j ∈ {1, . . . , k} and is equal to the lift of a U(1)-Dirac monopole with charge ki at
pi for i ∈ {1, . . . , n} on M \ ∪kj=1B2εj (qj). Moreover, the pair (a, ϕ) ∈ W 1,2

α1,α2 for suitable
values of α1 and α2, where W 1,2

α1,α2 is a weighted Sobolev space, defined in Definition 8.

The proof of Theorem 1 is based on a gluing construction.

• The first step is to produce an Abelian Dirac monopole on (M, g) with some singular
points pi with negative charges and some singular points qj with charge +1 such that the
total charge of the monopole is zero.

• The second step is to smooth out the singularities with charge +1. The smoothing process
is carried over by gluing model SU(2)-monopoles — called the scaled BPS-monopoles —
to the singular points with charge +1 and leaving out the rest of the singular points not
smoothed-out. In fact, it would be impossible to smooth out all of the singularities, as we
know there is no smooth monopole on closed 3-manifolds with a non-flat connection. The
gluing construction at each singular point depends on the choice of framing, which can be
described by an element of U(1).

• The third step is the deformation. The resulting configuration from the previous step is an
approximate monopole and it does not necessarily satisfy the Bogomolny equation, but in
a suitable norm, it is close to a solution and should be deformed into a genuine monopole.

Figure 1.1: Gluing Construction

Remark 1. Let p1, . . . , pn be n points in M . Let k1, . . . , kn be n negative integers. The gluing
construction for SU(2)-monopoles with Dirac singularities at the points pi with charges |ki|
depends on 4k-parameters, where k = −

∑n
i=1 ki. This is equal to the expected dimension of

the moduli space of singular SU(2)-monopoles with charge k, as computed by Pauly. 3k of this
number is accounted by the position of the highly concentrated BPS-monopoles, k − 1 of this
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number by choices of the framings at these points2, and 1 degree of freedom in changing the
average mass of the monopole.

1.2.1 Dirac Monopoles on Closed 3-Manifolds

In this section, we study the local model of Dirac monopoles close to the singular points, as a
preparatory part to the next section, where we will present a construction of these monopoles.

Let (AD, ΦD) be a U(1)-monopole with a Dirac singularity at p ∈ M with signed charge
k ∈ Z \ {0}, defined on a small neighbourhood of p in M . As mentioned earlier, a Dirac
monopole is a monopole with isolated singularities on a bundle with structure group U(1). Close
to a singular point p, the Higgs field ΦD has the following form,

ΦD = − k

2r
+m+O(r), (1.2.1)

where r denotes the geodesic distance from p and k is the signed charge at p.
The Bianchi identity shows that the curvature 2-form of a U(1)-connection is closed. Further-

more, from the Chern-Weil theory we know that the 2-form

FAD
2π

=
∗dΦD

2π
,

presents c1(L), the first Chern class of a line bundle L where the monopole is defined on.
Restricting the bundle to a sufficiently small punctured neighbourhood of a singular point p with
charge k, the line bundle L|Bε(p)\{p} → Bε(p) \ {p} is isomorphic to Hk

p , where Hp is the Hopf
line bundle centered at p, with the first Chern number c1

c1 = lim
ε→0

1

2π

∫
∂Bε(p)

∗dΦD = lim
ε→0

1

2π

∫
∂Bε(p)

(
k

2ε2
+O(1))vol∂Bε(p) = k.

The model connection A of a Dirac monopole on R3 close to a singular point 0 ∈ R3 with
charge k is an SO(3)-invariant connection defined on the line bundle Hk

0 → R3 \ {0}. Let S2
0(1)

be the unit 2-sphere centred at the origin in R3. We can cover S2
0(1) by U+ and U−, where

U+ = S2
0(1) \ {(0, 0,−1)} and U− = S2

0(1) \ {(0, 0, 1)}. In spherical coordinates (ρ, θ, ϕ), the
connection A on U+ and U− is given by the following 1-forms,

A|U− = k
(1− cos(ϕ))

2
dθ, A|U+

= k
(−1− cos(ϕ))

2
dθ,

with the transition function eikθ. Note that on U− ∩ U+

A|U− −A|U+
= kdθ.

We extend the connection radially to Hk
0 → R3 \ {0} to get A.

2There are k points which we can fix the frames there; however, 1 parameter vanishes after taking the action of the
gauge group into account.
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Using geodesic normal coordinates, we can define a diffeomorphism

η : Bε(0) ⊂ R3 → Bε(p) ⊂M,

between a small neighbourhood of the origin in R3 and a small neighbourhood of a point p ∈M .
Furthermore, by choosing a bundle isomorphism, covering η, we can identify the bundles above
these open neighbourhoods and pull back the connection AD to a punctured neighbourhood of
the origin in R3.

Lemma 6. The connection of the Dirac monopole with charge k, denoted by AD, close to a
singular point p ∈M , up to a gauge transformation, can be written as the following,

η∗AD = A+ a, with |a| = O(r), (1.2.2)

where the gauge transformation — which is just addition by an exact 1-form — corresponds to
tensoring Hk

p by a flat line bundle.

Proof. The pair (η∗AD, η
∗ΦD) is not necessarily a monopole with respect to the Euclidean

metric on Bε(0) ⊂ R3; however, it is a monopole with respect to the pull-back metric η∗g, and
therefore, η∗ΦD = − k

2r + m + O(r), where r is the geodesic distance from the origin with
respect to η∗g.

A is the connection of a monopole with a Higgs field Φ = − k
2r0

+m0 +O(r0), where r0 is
the distance to the origin with respect to the Euclidean metric, and therefore,

| ∗0 d(η∗AD −A)|g0 = |d(η∗ΦD − Φ)|g0 = |d(
k

2r
− k

2r0
)|g0 +O(1).

Moreover,

|r − r0| = max{Ri,j,k,l}O(r3
0) +O(r4

0),

where Ri,j,k,l is the Riemann curvature tensor of η∗g, and therefore,

|d(η∗AD −A)|η∗g = O(1),

which shows in a suitable gauge, |a|η∗g = O(r).

1.2.2 Construction of Dirac Monopoles

In this section, we construct a Dirac monopole (AD, ΦD) with prescribed charges and singularities
on a rational homology 3-sphere (M, g).

Theorem 2 (Existence of Dirac Monopoles). Let (M, g) be an oriented rational homology
3-sphere equipped with a Riemannian metric g. Let p1, . . . , pn be n distinct points in M with
non-zero integer-valued charges k1, . . . , kn, respectively, where

∑n
i=1 ki = 0. Then there exists

a monopole (AD, ΦD) with Dirac singularities with charge ki at pi on a principal U(1)-bundle
P →M \ {p1, . . . , pn}. This monopole, up to gauge transformations and adding a constant to
the Higgs field, is unique.
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Proof. From the monopole equation it can be seen that on the complement of the singular
points we have ∆Φ = 03, and therefore, Φ is a harmonic section of the adjoint bundle on
M \{p1, . . . , pn}. A Dirac monopole singular at the points p1, . . . , pn with corresponding signed
charges k1, . . . , kn is a solution to the equation

∆ΦD =
n∑
i=1

kiδpi , (1.2.3)

on a compact Riemannian 3-manifold (M, g), in the sense of currents, where δpi is the Dirac
delta function centered at the point pi. The Dirac delta function can also be understood as a map
δpi : C∞(M)→ R, defined by δpi(f) = f(pi), or as a 3-dimensional cohomology satisfying the
equation

∫
M fδpi = f(pi) for any smooth function f . By a slight abuse of notation, we would

denote any of them by δpi .
The equation 1.2.3 has a solution if and only if

n∑
i=1

ki = 0. (1.2.4)

This can be seen as a generalization of the well-known fact that on a closed, oriented, Riemannian
manifold (M, g), the equation ∆f = h, for a smooth function h, has a solution if and only if∫
M hvolg = 0, to the case where h is not a smooth function but a distribution.

To see this, let Φi(x) = kiGpi(x), where Gpi is the Green’s function based at the point
pi, which means it satisfies the equation ∆Gpi(x) = δpi(x), defined on 2εi-neighbourhood of
pi, for a sufficiently small εi [7, Theorem 4.17]. On a sufficiently small neighbourhood of pi,
Gpi(x) = − 1

2ri
+mi+O(ri), where ri denotes the geodesic distance from the point pi. On a small

neighbourhood of pi, Φi is a solution to the equation ∆Φi = kiδpi . Let ΦD =
∑n

i=1 ξiΦi + φ,
where ξi is a cut-off function based at pi, which is supported on B2εi(pi) and equal to 1 on
Bεi(pi). It can be arranged to have

∫
M

∑n
i=1 ∆(ξiΦi)volg = 0, with suitable choices of the

cut-off functions when
∑n

i=1 ki = 0. The equation 1.2.3 for φ becomes

∆φ =
n∑
i=1

(kiδpi −∆(ξiΦi)). (1.2.5)

The point of this equation is that the right-hand-side is smooth everywhere on M . Note that in a
neighbourhood of the points pi, the right-hand-side is identically zero. Moreover,∫

M

n∑
i=1

(kiδpi −∆(ξiΦi))volg = 0,

and therefore, there is a smooth φ satisfying the equation 1.2.5.
As mentioned before, another way to think about the Dirac delta function is in terms of

differential forms. Let δpi be a 3-form representative of the Poincaré dual of the 0-cycle {pi}.
3In this writing, we use the convention ∆ = (d + d∗)2.
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The equation ∆Φ̃D =
∑

i kiδpi has a solution if and only if δ =
∑

i kiδpi is an element of the
orthogonal complement of harmonic 3-formsH3. From the Hodge decomposition theorem we
have,

Ω3(M) = dΩ2(M)⊕H3.

On a closed oriented Riemannian 3-manifold, H3 is 1-dimensional, generated by the volume
form volg of the Riemannian metric g — note that the volume form of g is parallel and harmonic.
On the other hand

〈δ, volg〉 =
n∑
i=1

ki

∫
M
δpi ∧ ∗volg =

n∑
i=1

ki = 0,

and therefore, the equation ∆Φ̃D =
∑

i kiδpi has a solution. We can define the Higgs field of the
Dirac monopole by ΦD := ∗Φ̃D.

Furthermore, the solution to this equation is unique up to addition by a constant. For any two
solutions ΦD and Φ′D of the equation 1.2.3, we have

∆(ΦD − Φ′D) = ∆ΦD −∆Φ′D =
n∑
i=1

kiδpi −
n∑
i=1

kiδpi = 0,

and therefore, ΦD − Φ′D is a harmonic function on the closed manifold M ; hence, it is constant.
Also, note that the assumption on the total charge being zero is necessary. For any Φ with

∆Φ =
∑n

i=1 kiδpi , we have∫
M\{p1,...,pn}

∆Φvolg = lim
ε→0

∫
M\∪ni=1Bε(pi)

∆Φvolg = lim
ε→0

∫
M\∪ni=1Bε(pi)

d∗dΦvolg

= lim
ε→0

∫
M\∪ni=1Bε(pi)

d ∗ dΦ = lim
ε→0

∫
∪ni=1∂Bε(pi)

∗dΦ,

which is zero since ∆Φ = 0 on M \ {p1, . . . , pn}. On the other hand Φ = − ki
2ri

+mi +O(ri)
close to the point pi, and therefore,

∗dΦ =
ki

2r2
i

ι∂rivolg +O(1),

hence,

lim
ε→0

∫
∪ni=1∂Bε(pi)

∗dΦ = lim
ε→0

n∑
i=1

∫
∂Bε(pi)

(
ki

2r2
i

ι∂rivolg +O(1)) = lim
ε→0

n∑
i=1

∫
∂Bε(pi)

ki
2r2
i

vol∂Bε(pi)

= 2π

n∑
i=1

ki,
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and therefore, k :=
∑n

i=1 ki = 0. This is in contrast with the non-compact case, where some of
the charges can run into infinity.

Note that in the construction of ΦD, we have not used the assumption about the homology
groups of M , and the argument works on any closed oriented Riemannian 3-manifold (M, g).
In fact, it works on any closed, oriented, n-dimensional Riemannian manifold. The homology
assumption is related to the existence and uniqueness of the connection of a Dirac monopole. We
start with the uniqueness problem.

Suppose there exists a connection AD on a line bundle π : L → M \ {p1, . . . , pn} such
that FAD = ∗dΦD. For any other connection 1-form A′D satisfying this equation, since
H1
dR(M \ S) = 0 and d(AD −A′D) = 0, we have (AD −A′D) = π∗(df) for a smooth function

f ∈ C∞(M \ S). This implies that if such a connection exists, it is determined by the Higgs
field up to addition by an exact form, which corresponds to tensoring the line bundle which the
connection AD is defined on by a flat line bundle.

Now we focus on the existence problem for such a connection. Let FD be a 2-form defined by
FD := ∗dΦD. We should determine when we can realize this 2-form as the curvature 2-form of a
connection AD on a principal U(1)-bundle on M \ {p1, . . . , pn}. This would be the case if the
2-form FD has integer periods in H2(M,R). Recall the following lemma from the Chern-Weil
theory.

Lemma 7. For any integral closed 2-form F on a manifold X , there is a line bundle L → X ,
unique up to isomorphism, with a connection 1-form A with curvature 2-form F .

In our case, note that 1
2πFD is a closed 2-form on M \ {p1, . . . , pn}, and therefore, we can

consider the corresponding cohomology class [ 1
2πFD] ∈ H2(M \ {p1, . . . , pn},R). We need

to show that the cohomology class [ 1
2πFD] vanishes in H2(M \ {p1, . . . , pn},R/Z). However,

since M is a rational homology 3-sphere, H1(M,Z) is finite and H2(M,Z) = 0, and therefore,
H2(M \ {p1, . . . , pn},Z) is generated by 2-spheres ∂Bε(pi). We have

1

2π

∫
∂Bε(pi)

FD =
1

2π

∫
∂Bε(pi)

∗dΦD = ki ≡ 0 modulo Z,

and therefore, by Lemma 7, there is a principal U(1)-bundle L → M \ {p1, . . . , pn} and a
connection 1-form AD on L, where FD is the curvature of AD and ΦD is a section of the adjoint
bundle.

1.2.2.1 Mass of Monopoles

On non-compact manifolds with ends of suitable types, for instance asymptotically conical ones,
the mass of a monopole (A,Φ) with a sufficiently fast decaying curvature can be defined at the
ends of the manifold as the limit of the Higgs field limr→∞ |Φ|, where r denotes the geodesic
distance from a fixed point x0 ∈M . Similarly, we defined the mass of the monopole at a singular
point to be the constant m appearing in formula 1.1.8.

Let the vector −→m = (m1, . . . ,mn) ∈ Rn denote the masses of the monopole at the singular
points p1, . . . , pn on a closed manifold (M, g). For any Dirac monopole (AD, ΦD) with vector
mass−→m, the monopole (AD, ΦD + c) has the vector mass−→m+ c = (m1 + c, . . . ,mn+ c). In the
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asymptotically conical case, one can find a monopole with fixed charges and fixed masses at the
ends of the manifold; however, recall that in the case of compact manifolds, the Dirac monopole,
up to addition by a constant, is given by fixing the charges at the singular points, and we do not
have much freedom in the choices of the masses of the monopole at the singular points. We can
only add a constant to the mass vector, and therefore, we can only fix the position of the singular
points, the charges at (n− 1) of them and the mass in one of the singular points.

We define the average mass by m = m1+...+mn
n . The relative mass m′i at each singular point

pi is defined by mi = m+m′i. The relative mass at each point pi is a function of the charges and
the locations of the singular points, and as one moves these points around, these relative masses
change. Here, for our gluing construction to work, we would make the average mass sufficiently
large by adding a constant.

In the study of the moduli spaces of monopoles on R3, one can assume a normalizing
condition, to have mass 1 at infinity, since there is a natural identification between the moduli
spaces of monopoles with different masses. However, this is not true for the moduli spaces of
monopoles over other 3-manifolds, and there is no natural identification between the moduli
spaces of monopoles with different masses.

1.2.2.2 Lifting the Dirac Monopole

For carrying on our gluing construction, we should lift the Dirac monopole we constructed to
an SU(2)-bundle, so we can glue the scaled SU(2) BPS-monopoles to this lifted background
Dirac monopole. Consider the rank 2 vector bundle L⊕ L−1 →M \ {p1, . . . , pn}. Let ∇AD be
the covariant derivative of AD on L. This induces a covariant derivative on L ⊕ L−1, namely
∇AD ⊕ (−∇AD).

Moreover, close to a singular point pi, the adjoint bundle of the corresponding SU(2)-bundle
can be decomposed as R⊕Hki

pi , with the induced Higgs field ΦD ⊕ 0. Close to a singular point
pi with charge ki, the rank 2 bundle is isomorphic to Hki

pi ⊕H
−ki
pi .

We can fix a basis for su(2),

σ1 =

(
0 −i
−i 0

)
, σ2 =

(
0 −1
1 0

)
, σ3 =

(
−i 0
0 i

)
.

Suppose (AD, ΦD) is a U(1)-Dirac monopole, defined on a U(1)-bundle PU(1) with associated
line bundle L. The induced SU(2)-monopole is (ADσ3, ΦDσ3), which for simplicity and by an
abuse of notation we still denote this monopole by (AD, ΦD).

The other main ingredients of the gluing construction are the scaled BPS-monopoles on R3.
In the following section, we study the model monopoles which we glue to the background Dirac
monopole.

1.2.3 BPS-Monopoles on R3R3R3

In this section, we introduce the BPS-monopoles on R3 and recall a basic lemma about their
asymptotic behaviour.
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Let P → R3 be a principal SU(2)-bundle. Let A be a connection on P and Φ a section of the
adjoint bundle. For pairs (A,Φ) with suitable asymptotic decay, we can define the Yang-Mills-
Higgs action functional,

YMH(A,Φ) :=
1

2

∫
R3

(|FA|2 + |dAΦ|2)dxdydz,

where the norms are defined with respect to the adjoint-invariant inner product on the adjoint
bundle.

The critical points of Yang-Mills-Higgs action functional are the solutions to the following
equations,

d∗AFA = − ∗ [Φ, dAΦ],

d∗AdAΦ = 0.

Monopoles satisfy these equations, in fact, they are the minimizers of this action functional.
Monopoles with finite Yang-Mills-Higgs energy satisfy the following decay conditions,

|FA| = |dAΦ| = O(r−2), |Φ| → m, as r →∞, (1.2.6)

where the constant m = lim|x|→∞ |Φ(x)| is the mass of the monopole at infinity.
By a scaling, one can change the mass of a given monopole on R3. If (A,Φ) is a monopole

on R3 with mass m at infinity, then

(Aλ, Φλ)(x) := (A, λΦ)(λx),

is also a monopole on R3 with mass λm. This shows there are natural identifications between
the moduli spaces of monopoles with different positive masses, and therefore, one can assume a
normalizing condition, and let m = 1. More generally, we have the following lemma.

Lemma 8. Let (M, g) be a complete, oriented, Riemannian 3-manifold. Let

expλp : TpM →M, expλp(v) := expp(λv),

be the exponential map based at a point p ∈M , defined for any λ ∈ R+.
Let (A,Φ) be a monopole on a principal G-bundle P → M . Then the pair (Aλ, Φλ) :=

((expλp)∗A, λ(expλp)∗Φ) is a monopole on the pull-back bundle (expλp)∗P → TpM with respect
to the Riemannian metric gλ := λ−2(expλp)∗g.

Proof. This lemma can be seen as an instance of the conformal invariance of the anti-self-duality
equation on 4-dimensional manifolds, but can also be seen directly,

FAλ = d
(

(expλp)∗A
)

+
1

2
[(expλp)∗A ∧ (expλp)∗A] = (expλp)∗(dA+

1

2
[A ∧A]) = (expλp)∗FA.
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Furthermore,

dAλΦ
λ = d

(
λ(expλp)∗Φ

)
+ [(expλp)∗A, λ(expλp)∗Φ] = λ(expλp)∗(dΦ+ [A,Φ]) = λ(expλp)∗dAΦ.

Moreover, we have expλp = Id◦expp ◦mλ, wheremλ : TpM → TpM is defined bymλ(v) = λv.

(TpM, g3 := gλ = λ−2m∗λ ◦ exp∗pg)
Id−→ (TpM, g2 := m∗λ ◦ exp∗pg)
mλ−−→ (TpM, g1 := exp∗pg)

expp−−−→ (M, g0 := g).

The following maps are isometries,

mλ : (TpM, g2 = m∗λ ◦ exp∗pg)→ (TpM, g1 = exp∗pg),

expp : (TpM, g1 = exp∗pg)→ (M, g0 = g),

and therefore, we have m∗λ ◦ ∗g1 = ∗g2 ◦m∗λ and exp∗p ◦ ∗g0 = ∗g1 ◦ exp∗p.
The identity map

Id : (TpM, g3 = gλ = λ−2m∗λ ◦ exp∗pg)→ (TpM, g2 = m∗λ ◦ exp∗pg)

is not an isometry; however, it is a conformal map.
More generally, recall that on an oriented n-dimensional Riemannian manifold, under the

conformal change of the metric g̃ := e2fg, the Hodge star operator on p-forms changes according
to the formula ∗g̃ = e(n−2p)f∗g. In our case n = 3, p = 2 and f = − ln(λ), and therefore,
∗g3 ◦ Id∗ = λId∗ ◦ ∗g2 . We have

∗gλ ◦ (expλp)∗ = ∗gλ ◦ exp
∗
p ◦m∗λ ◦ Id∗ = λ(expλp)∗ ◦ ∗g,

and therefore,

∗gλFAλ = ∗gλ(expλp)∗(FA) = λ(expλp)∗ ∗g (FA) = λ(expλp)∗dAΦ = dAλΦ
λ.

On R3, the Euclidean metric is invariant under this transformation, gλ = g, and there-
fore, for every monopole (A,Φ) with mass m, we have a monopole (Aλ, Φλ) with mass
lim|x|→∞ |Φλ(x)| = λm. This scaling plays an important role in the gluing construction.

In the case G = SU(2), to any pair (A,Φ) on an SU(2)-bundle on R3, which is not
necessarily a monopole, with the decay conditions 1.2.6 and mass m, one can assign an integer
charge, defined by

k := lim
R→∞

1

4πm

∫
SR(0)

〈Φ,FA〉.

Note that this notion of charge is different from but closely related to the notion of charge at a
singularity. To differentiate these two, we might call this one the charge of the monopole and the
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one we defined earlier the charge of the monopole at a singularity.
A very important problem in the theory of monopoles, also related to the gluing constructions,

is to understand the moduli space of monopoles on R3 with charge k. The seminal work of
Taubes shows that for any charge k, there are SU(2)-monopoles with charge k on R3. Atiyah and
Hitchin showed that the moduli space of centered SU(2)-monopoles with charge k is a (4k − 4)-
dimensional smooth hyperkähler manifold [4]. In all of these constructions, the BPS-monopole
plays a crucial role. The BPS-monopole is an explicit charge +1 solution to the Bogomolny
equation which was discovered by Prasad and Sommerfield [80].

Definition/Lemma 9. There is a unique SU(2)-monopole on R3, centred at the origin with mass
1 at infinity and charge +1, called the BPS-monopole. Denoting this monopole by (ABPS , ΦBPS),
we have

ABPS(x) = (
1

sinh(r)
− 1

r
)(n× σ) · dx, ΦBPS(x) = (

1

tanh(r)
− 1

r
)n · σ,

where r = |x|, n = x
r , σ = (σ1, σ2, σ3) ∈ R3 ⊗ su(2), and

σ1 =

(
0 −i
−i 0

)
, σ2 =

(
0 −1
1 0

)
, σ3 =

(
−i 0
0 i

)
,

where · and × are formal inner and cross product on vectors with three components.
Although the BPS-monopole looks singular at {0}, it extends smoothly to the origin. We have

ΦBPS(0) = 0; moreover, this is the only zero of the Higgs field. Furthermore, |Φ(x)| < 1 for all
x ∈ R3 and lim|x|→∞ |Φ(x)| → 1.

1.2.4 Approximate Solutions

In this section, we construct an approximate SU(2)-monopole (A0, Φ0) on an SU(2)-bundle
P →M , with prescribed Dirac singularities at some isolated points pi for i ∈ {1, . . . , n}. The
pair (A0, Φ0) would not be a genuine monopole, but an approximate one.

We take the lifted Dirac monopoles we constricted in the Section 1.2.2 as the background
monopole. The monopoles we are gluing to these Dirac monopoles are defined by scalings of the
BPS-monopole on R3.

The idea of constructing an irreducible singular SU(2)-monopole with singular points
p1, . . . , pn with corresponding charges k1, . . . , kn, where ki ∈ N, is to start with an Abelian
Dirac monopole with singularities at the points pi with negative charges k′i such that k′i = −ki,
and some other well-separated singular points Sq = {q1, . . . , qk} all with signed charge +1, such
that

Total charge := k +

n∑
i=1

k′i = 0.

Since the total charge is zero, there exists a reducible Dirac monopole (AD, ΦD) on an
SU(2)-bundle with these prescribed singularities. We will glue the scaled BPS-monopoles with
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charge +1 to this background Dirac monopole at the points qj with charge +1 at the singularities.
The scaling is necessary since close to the singular points qj , |ΦD(x)| → ∞ as dist(x, qj)→ 0,
and therefore, near the singular points |ΦD| is quite large, which implies the Higgs field of the
SU(2)-monopole which we are gluing to the background monopole close to the point qj should
be large too. We change the mass of the BPS-monopole by a suitable scaling.

The Higgs field of the BPS-monopole (ABPS , ΦBPS) is non-zero on R3 \ {0}, and therefore,
it induces a decomposition of the adjoint bundle R ⊕ L, where R is the sub-bundle generated
by the image of the Higgs field ΦBPS and L is the orthogonal sub-bundle in the adjoint bundle.
Corresponding to this decomposition any section of the adjoint-bundle or any adjoint-bundle-
valued tensor f supported away from 0 ∈ R3 can be written as f = fL + fT , where fL and fT

are called the longitude and the transverse components, respectively. The following key lemma
follows from the work of Jaffe and Taubes [49, Section IV.1], also Lemma 2.13 in [30], which is
fundamental in the gluing construction.

Lemma 10. Let (a, ϕ) be a pair of a connection denoted by a on the SU(2)-bundle P → R3\{0}
and a section ϕ of the adjoint bundle, with finite Yang-Mills-Higgs energy, with charge k, and
mass 1 at infinity, which does not necessarily satisfy the Bogomolny equation. Then we have

|ΦLD − ϕL| = O(rν), |ΦTD − ϕT | = O(e−r), |AD − a| = O(e−r),

for some ν < 0.
Moreover, for the BPS-monopole with charge +1 and mass 1 centered at the origin, we have

|ΦLD − ΦLBPS | = O(e−r), |ΦTD − ΦTBPS | = O(e−r), |AD −ABPS | = O(e−r),

and therefore,

|ΦD − ΦBPS | = O(e−r), |AD −ABPS | = O(e−r).

From the Lemma 8, recall that if (A,Φ) is a monopole on R3 with mass m at infinity, then
(Aλ, Φλ)(x) := (A, λΦ)(λx) is also a monopole on R3 with the same charge, but with the mass
λm. The scaling by λ > 1 not only makes the mass larger, but also makes the convergence faster.
We have

|ΦλBPS − ΦλD| = O(λe−λr), |AλBPS −AλD| = O(λe−λr). (1.2.7)

The result of scaling Dirac monopoles on R3 is quite simple. The connection of the Dirac
monopole is radially invariant, AλD = AD. Furthermore, for the Higgs field of the Dirac
monopole we have

ΦλD(x) = λΦD(λx) = λ(1− 2k

λr
) = λ− 2k

r
= ΦD(x) + (λ− 1).

Therefore, this scaling just adds the constant (λ− 1) to the Higgs field of the Dirac monopole,

(AλD, Φ
λ
D)(x) = (AD, ΦD + (λ− 1))(x).
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Remark 2. As we increase the average mass of the SU(2)-monopole we get closer to the
boundary of the moduli space of monopoles. The Dirac monopoles can be understood as a part
of the boundary — or corner — of the moduli space of monopoles, so the strategy, similar to the
other gluing constructions, is to start from a boundary point of the moduli space and then move —
deform — towards inside.

By adding a positive large constant, if necessary, we can assume that the local description of
the Higgs field of the monopole, close to each singular point pi or qj , has the form

ΦD = − ki
2ri

+mi +O(ri),

with mi > 0. Close to the singular points with positive charges, the Higgs field goes to negative
infinity; however, for a fixed positive ε0, we can increase the mass of the Higgs field such that on
M \ ∪jBε0(qj) we have ΦD ≥ m/2, simply because M \ (∪iBε0(pi) ∪j Bε0(qj)) is compact
and the Higgs field goes to plus infinitiy at the points pi. Similar to the non-compact case, as
observed by Oliveira [76], a more relevant inequality would be of the type where ε0 depends on
the average mass, as in the following lemma.

Lemma 11. By increasing the mass of (AD, ΦD), if necessary, on K(ε0) := M \ ∪jBε0(qj) we
have ΦD ≥ m/2, where ε0 =

√
2/m.

Proof. Let ε > 0 be a sufficiently small positive number such that on ε-neighbourhood of singular
points pi or qj , ΦD = −ki/2ri+mi+O(ri) for a positivemi . By making ε smaller, if necessary,
we can assume ΦD + 1 > −ki/2ri +mi. Furthermore, by adding a constant to the Higgs field,
on M \ ∪jBε(qj), we would have ΦD ≥ m/2.

Now we need to show the same holds for ε0 < ri < ε. It is enough to show that on this
region we have −1/2ri +mi − 1 ≥ m/2 or, equivalently, m/2 +m′i ≥ 1/2ri + 1. By adding a
constant to the Higgs field, we assume m ≥ 2 and m ≥ 2m′i for all i, and therefore, it is enough
to have

ri ≥
1

2m− 2
. (1.2.8)

This holds if we let ε0 =
√

2
m , which is larger than 1

2m−2 when m is sufficiently large.

The singular points pi can be arbitrarily close to each other, but for fixed masses, the
construction breaks down as one moves the singular points qj very close to each other or to the
points pi. However, if we allow the average mass to increase, these points can be arbitrarily close.
For the gluing construction to work we increase the average mass such that

min
i,j
{disti 6=j(qi, qj), disti,j(qi, pj)} ≥ ε0 =

√
2

m
.

The approximate monopole we are constructing is equal to the Dirac monopole onM \∪jB2εj (qj)
with a large mass, and equal to the pull-back of an appropriately scaled BPS-monopole on each
Bεj (qj), where the scaling factor λj = mj is the mass of the Dirac monopole at qj . This can be
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done after identifying a small neighbourhood of qj with a neighbourhood of the origin in R3 and
the bundles above them.

Fix a diffeomorphism between 2εj-neighbourhood of the singular point qj and a neighbour-
hood of origin in R3 using the geodesic normal coordinates,

ηj : B2εj (qj) ⊂M → R3.

Moreover, we can fix an identification between the associated vector bundles above these neigh-
bourhoods covering ηj , which by an abuse of notation, we also denote this bundle map, called the
framing, by ηj ,

ηj : (R⊕Hqj )B2εj
(qj)\{qj} → su(2)

R3\{0}.

Using these identifications we can pull back the scaled BPS-monopoles to the 2εj-neighbourhood
of qj . Although the Dirac monopole is not defined at the point qj , the pull-back of the BPS-
monopole and the bundle it is defined on extend smoothly over qj . Different identifications can
result in different pairs on M \Sp, even up to gauge. Up to isomorphism there is a U(1)-freedom
in the choice of the framing for each qj , and assuming we have k such points we would get k
parameters for the choices of framings — up to gauge (k − 1) parameters.

Suppose for each qj , a framing ηj is fixed. Now we can pull back the bundles and the scaled
BPS-monopoles to B2εj (qj). We denote these local pairs by

(η∗j (A
λj
BPS), η∗j (Φ

λj
BPS)).

Using cut-off functions we can glue these local monopoles to the background monopole. Suppose
ξj is a cut-off function supported around qj such that

ξj =

{
1 on Bεj (qj)

0 on M \B2εj (qj),

and

ξ0 =

{
1 on M \ ∪jB2εj (qj)

0 on ∪j Bεj (qj),

where on εj ≤ rj ≤ 2εj we have ξ0 + ξj = 1 for each j ∈ {1, . . . , k}, and

|∇ξj | ≤ 2ε−1
j and |∇ξ0| ≤ 2 max

j∈{1,...,k}
{ε−1
j }.

The approximate monopole has the form

(A0, Φ0) = ξ0(AD, ΦD) +
k∑
j=1

ξj(η
∗
j (A

λj
BPS), η∗j (Φ

λj
BPS)).
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Note that the assumption ξ0 + ξj = 1 assures A0 is a connection.

1.2.4.1 Pointwise Approximation of the Error

This pair (A0, Φ0) is an approximate solution and does not necessarily satisfy the Bogomolny
equation. We define the error term by

e0 = ∗FA0 − dA0Φ0.

In this section, we estimate the error term e0 in different regions on M .
e0 is zero on M \ (∪jB2εj (qj)∪Sp), since on this region the approximate monopole is equal

to the Dirac monopole. The error term is non-zero on ∪jB2εj (qj). It is correct that on each
Bεj (qj) the approximate monopole is equal to the pull-back of the scaled BPS-monopole, but we
only know that the scaled BPS-monopole is a monopole with respect to the Euclidean metric and
not with respect to the arbitrary Riemannian metric g on M . The error term e0 is also non-zero
on the necks ∪j(B2εj (qj) \Bεj (qj)), both because g is not necessarily flat, and also because of
the use of the cut-off functions.

Lemma 12. Let εj = λ
− 1

2
j . Then when the average mass is sufficiently large, we have the

following pointwise error estimate,

(e0)|B2εj
(qj)

= O(1).

Proof. We denote the error coming from the manifold not being flat around qj by

eBPSj :=

(
∗F

η∗j (A
λj
BPS)

− d
η∗j (A

λj
BPS)

η∗j (Φ
λj
BPS)

)
|B2εj

(qj)

.

This error would vanish if the metric is flat on small neighbourhoods of the points qj ; however,
it is not true in the general case. On each B2εj (qj), the size of the error depends on how much
the metric g is different from the Euclidean metric. For the comparison between the metric
g on B2εj (qj) and the Euclidean metric, we should first pull back the Euclidean metric g0 to
B2εj (qj) using the same map that we used to pull back the scaled BPS-monopole to B2εj (qj).
We denote the Euclidean metric pulled back to B2εj (qj) and its Hodge star operator by g0 and ∗0,
respectively.

(eBPSj )|B2εj
(qj)

= ∗F
η∗j (A

λj
BPS)

− d
η∗j (A

λj
BPS)

η∗j (Φ
λj
BPS)

= (∗0F
η∗j (A

λj
BPS)

− d
η∗j (A

λj
BPS)

η∗j (Φ
λj
BPS)) + (∗F

η∗j (A
λj
BPS)

− ∗0F
η∗j (A

λj
BPS)

)

= ∗F
η∗j (A

λj
BPS)

− ∗0F
η∗j (A

λj
BPS)

= (∗ − ∗0)F
η∗j (A

λj
BPS)

.
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Note that

∗0F
η∗j (A

λj
BPS)

− d
η∗j (A

λj
BPS)

η∗j (Φ
λj
BPS) = 0,

since (A
λj
BPS , Φ

λj
BPS) is a monopole with respect to the Euclidean metric g0.

For each j, for sufficiently small εj , fix a local geodesic normal coordinate system on
B2εj (qj), denoted by (x1, x2, x3). We can think about the components of the Riemannian metric
gk,l in this coordinate system as real-valued functions defined on this neighbourhood of qj . We
can write down the Taylor series expansion of these functions around the origin, which here
corresponds to qj ,

gk,l(x) = δlk +
1

3

∑
m,n

Rklmnxmxn +O(|x|3),

gk,l(x) = δlk −
1

3

∑
m,n

Rklmnxmxn +O(|x|3),

where Rklmn is the (4, 0)-Riemann curvature tensor. Furthermore,

volg(x) =

(
1− 1

6

∑
m,n

Rm,nxmxn +O(|x|3)

)
dx1dx2dx3,

where Rm,n denotes the Ricci curvature tensor.
For any 2-form β ∈ Ω2(M), which in the given coordinates system β =

∑
cyclic i,j,k βidxjdxk,

we have

|β|2g =
∑
k,l

βkβlg
k,l = |β|2g0

− 1

3

∑
k,l,m,n

Rklmnβkβlxmxn +O(|x|3).

Similarly, if β ∈ Ω2(M,V ) is a V -valued 2-form for a vector bundle V equipped with a fiber-wise
inner product 〈−,−〉,

|β|2g =
∑
i,j

〈βk, βl〉gk,l = |β|2g0
− 1

3

∑
k,l,m,n

Rklmn〈βk, βl〉xmxn +O(|x|3).

On the other hand

〈β ∧ ∗β〉 = |β|2gvolg,

where 〈−∧−〉 is wedge product on the real differential form parts and inner product on V -valued
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parts, and therefore,

〈β ∧ ∗β〉 =

|β|2g0
−
∑
m,n

(
1

3

∑
k,l

Rklmn〈βk, βl〉+
1

6
|β|2g0

Rm,n)xmxn +O(|x|3)

 dx1dx2dx3

⇒ β ∧ (∗ − ∗0)β =

−∑
m,n

(
1

3

∑
k,l

Rklmn〈βk, βl〉+
1

6
|β|2g0

Rm,n)xmxn +O(|x|3)

 dx1dx2dx3

⇒ (∗ − ∗0)β = −
∑
k

(
1

3

∑
l,m,n

Rklmnβlxmxn +
1

6

∑
l,m,n

βlg
k,lRm,nxmxn)dxk +O(|x|3),

and therefore, pointwise and with respect to the metric g,

|(∗ − ∗0)β|g ≤ C|β|g|x|2,

where the constant C depends only on the curvature tensor of (M, g). Going back to the curvature
2-form F

η∗j (A
λj
BPS)

on B2εj (qj), the computations above show

|(∗0 − ∗)F
η∗j (A

λj
BPS)
|g ≤ C|F

η∗j (A
λj
BPS)
|g|x|2.

Following [49, Section IV.1], and using the same notations as in the Definition 9,

(dABPSΦBPS)L = (
1

sinh2(|x|)
− 1

|x|2
)(n · σ)n · dx,

(dABPSΦBPS)T = (
1

|x|
− 1

tanh(|x|)
)(

1

sinh(|x|)
)(σ − (n · σ)σ) · dx.

Although (dABPSΦBPS)L and (dABPSΦBPS)T look singular at the origin, they extend
smoothly to the origin. In fact, the maximum of both of these components are achieved at
the origin,

|(dABPSΦBPS)L|g0 ≤
1

3
, |(dABPSΦBPS)T |g0 ≤

1

3
.

Furthermore,

|d
A
λj
BPS

Φ
λj
BPS |g0 ≤

C

λ−2
j + |x|2

,

for a constant C > 0.
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For any 2-form β, with values in any vector bundle, we have

|β|2g − |β|2g0
=
∑
k,l

〈βk, βl〉(gk,l − gk,l0 ) = −1

3

∑
k,l,m,n

〈βk, βl〉Rklmnxmxn +O(|x|3)

≤ CR|β|2g0
|x|2,

whereC > 0 is a constant andR is the maximum of the Riemann curvature tensor of g. Therefore,

|β|2g ≤ |β|2g0
+ CR|β|2g0

|x|2,

Let β = (∗0 − ∗)F
η∗j (A

λj
BPS)

|(∗0 − ∗)F
η∗j (A

λj
BPS)
|2g ≤ C

(
|x|4

(λ−2
j + |x|2)2

+R
|x|6

(λ−2
j + |x|2)2

)
,

for a constant C, when λj is sufficiently large.
These sum up to

(eBPSj )|B2εj
(qj)
≤ C ′, (1.2.9)

for a positive constant C ′.
On the neck B2εj (qj)\Bεj (qj), the cut-off function is another source of error. On this region,

we have

e0 =

k∑
j=1

(
(∗F

η∗j (A
λj
BPS)

− d
η∗j (A

λj
BPS)

η∗j (Φ
λj
BPS))|Bεj (qj)

+ξ0(∗d
η∗j (A

λj
BPS)

(A
λj
D − η

∗
j (A

λj
BPS))− d

η∗j (A
λj
BPS)

(Φ
λj
D − η

∗
j (Φ

λj
BPS))

+ ∗ (dξ0 ∧ (A
λj
D − η

∗
j (A

λj
BPS)))− dξ0(Φ

λj
D − η

∗
j (Φ

λj
BPS))

+(ξ0(A
λj
D − η

∗
j (A

λj
BPS)))2 − ξ2

0 [AλD − η∗j (AλBPS), ΦλD − η∗j (ΦλBPS)]

)
,

where ∗ is the Hodge star of g on M .
First consider the case where the Riemannian metric g is flat, as we were to glue a scaled

BPS-monopole to a scaled Dirac monopole on R3. Then following Lemma 10, we would have

|ΦλjBPS − Φ
λj
D | = O(λje

−λjrj ), |AλjBPS −A
λj
D | = O(λje

−λjrj ).
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and therefore, on this region

|ξ0(∗d
η∗j (A

λj
BPS)

(A
λj
D − η

∗
j (A

λj
BPS))| ≤ c1(λ2

je
−λjrj ),

|d
η∗j (A

λj
BPS)

(Φ
λj
D − η

∗
j (Φ

λj
BPS))| ≤ c2(λ2

je
−λjrj ),

|(dξ0 ∧ (A
λj
D − η

∗
j (A

λj
BPS)))| ≤ c3(

λj
εj
e−λjrj ),

|dξ0(Φ
λj
D − η

∗
j (Φ

λj
BPS))| ≤ c4(

λj
εj
e−λjrj ),

|(ξ0(A
λj
D − η

∗
j (A

λj
BPS)))2| ≤ c5(λ2

je
−2λjrj ),

|ξ2
0 [AλD − η∗j (AλBPS), ΦλD − η∗j (ΦλBPS)]| ≤ c6(λ2

je
−2λjrj ),

for constants c1, . . . , c6, independent of εj and λj .
Here λj and εj should be understood as a very large and a very small number, respectively. As

we increase λj , we can make εj smaller. Although there is no unique choice for these parameters
for the gluing construction to work, sometimes there are choices which minimize the error of the
approximate solution.

Let’s let εj = λlj for some −1 < l < 0. For l outside of this interval the errors listed above
can be large. The appropriate value for l depends on the functional spaces we choose to work
with. For sufficiently large λj , the leading term of the bounds for the error eneckj , up to a constant,

would be λ2
je
−λj l+1

. These errors are exponentially small and favorable.
However, the case over arbitrary Riemannian 3-manifolds is different, since the Green’s

function on a neighbourhood of a point qj is not necessarily equal to − 1
2rj

+mj , but potentially
there are higher order terms, and therefore,

|ΦλjBPS − Φ
λj
D | = |Φ

λj
BPS − (− kj

2rj
+mj)|+ |(−

kj
2rj

+mj)− Φ
λj
D | = O(λje

−λjrj ) +O(rj),

and similarly,

|AλjBPS −A
λj
D | = O(λje

−λjrj ) +O(rj).

and therefore, for sufficiently large λj ,

|ΦλjBPS − Φ
λj
D | = O(rj), |AλjBPS −A

λj
D | = O(rj).
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hence, for l = −1
2 ,

|ξ0(∗d
η∗j (A

λj
BPS)

(A
λj
D − η

∗
j (A

λj
BPS))| ≤ c1,

|d
η∗j (A

λj
BPS)

(Φ
λj
D − η

∗
j (Φ

λj
BPS))| ≤ c2,

|(dξ0 ∧ (A
λj
D − η

∗
j (A

λj
BPS)))| ≤ c3(

rj
ε0

),

|dξ0(Φ
λj
D − η

∗
j (Φ

λj
BPS))| ≤ c4(

rj
ε0

),

|(ξ0(A
λj
D − η

∗
j (A

λj
BPS)))2| ≤ c5(r2

j ),

|ξ2
0 [AλD − η∗j (AλBPS), ΦλD − η∗j (ΦλBPS)]| ≤ c6(r2

j ),

where the constants c1, . . . , c6 are independent of εj and λj , and only depend on the geometry
of (M, g). We denote this error on the neck containing the terms AλjD − η∗j (A

λj
BPS) and ΦλjD −

η∗j (Φ
λj
BPS) by eneckj . We get

(e0)|B2εj
(qj)\Bεj (qj)

= O(1).

1.2.5 Solving the Equation

The goal is to show there is a solution to the Bogomolny equation near the constructed approximate
monopole (A0, Φ0). In other words, we are looking for a small (a, ϕ) — small in a suitable norm
— such that (A0 + a, Φ0 + ϕ) is a genuine monopole. In this section, we set up the equations for
(a, ϕ) and state the strategy to solve these equations.

We can write the equation for the pair (a, ϕ),

∗F (A0 + a)− dA0+a(Φ0 + ϕ) = 0⇒

(∗FA0 − dA0Φ0) + (∗dA0a− dA0ϕ− [a, Φ0]) + (∗ [a ∧ a]

2
− [a, ϕ]) = 0.

Let d(A0,Φ0)
2 : Ω1(M \ Sp, gP ) ⊕ Ω0(M \ Sp, gP ) → Ω1(M \ Sp, gP ) be the operator that

appeared in the linearization of the Bogomolny equation at (A0, Φ0),

d
(A0,Φ0)
2 (a, ϕ) = ∗dA0a− dA0ϕ− [a, Φ0], (1.2.10)

where Sp = {p1, . . . , pn}.
Although d(A0,Φ0)

2 (a, ϕ) depends on the pair (A0, Φ0), whenever there is no fear of confusion
we drop the subscript (A0, Φ0) and denote it by d2.

Let Q(a, ϕ) : Ω1(M \Sp, gP )⊕Ω0(M \Sp, gP )→ Ω1(M \Sp, gP ) be the operator defined
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by the quadratic part,

Q(a, ϕ) = ∗ [a ∧ a]

2
− [a, ϕ].

Equation 1.1.1 can be written as

(d2 +Q)(a, ϕ) = −e0. (1.2.11)

The Bogomolny equation is invariant under the action of the gauge group, and therefore, not
elliptic. In fact, it is elliptic modulo the action of the gauge group. The linearization of the gauge
group action is given by

d
(A0,Φ0)
1 : Ω0(M \ Sp, gP )→ Ω1(M \ Sp, gP )⊕ Ω0(M \ Sp, gP ),

d
(A0,Φ0)
1 ξ = (−dA0ξ,−[Φ0, ξ]).

Similar to d2, this operator also depends on the pair (A0, Φ0), but we drop this subscript when
there is no fear of confusion and denote it by d1.

The gauge fixing equation d∗1(a, ϕ) = 0 describes a local slice of the action of the gauge
group at (A0, Φ0), where

d∗1(a, ϕ) = −d∗A0
a− [Φ0, ϕ],

is the formal adjoint of d1 with respect to the L2-inner product. Let

D(A0,Φ0) : Ω1(M \ Sp, gP )⊕ Ω0(M \ Sp, gP )→ Ω1(M \ Sp, gP )⊕ Ω0(M \ Sp, gP ),

be the elliptic operator defined by

D := D(A0,Φ0) = d2 ⊕ d∗1.

This can be used to define an elliptic equation. Instead of d2(a, ϕ) = f , we can consider the
equation

D(a, ϕ) = (f, 0). (1.2.12)

Two important properties of 1.2.12: it is elliptic, and, for any small f , any solution of d2(a, ϕ) = f
can be gauged into a solution of 1.2.12.

These operators fit into a sequence

Ω0(M \ Sp, gP )
d1−→ Ω1(M \ Sp, gP )⊕ Ω0(M \ Sp, gP )

d2−→ Ω1(M \ Sp, gP ). (1.2.13)

Note that d2 ◦ d1ξ = ∗[(dA0Φ0 − ∗FA0) ∧ ξ], and therefore, d2 ◦ d1 = 0 when (A0, Φ0) is a
monopole. In fact, 1.2.13 is an elliptic complex when (A0, Φ0) is a monopole.
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The formal adjoint of d2 with respect to the L2-inner product is given by

d∗2 : Ω1(M \ Sp)→ Ω1(M \ Sp)⊕ Ω0(M \ Sp), d∗2u = (∗dA0u+ [u, Φ0],−d∗A0
u).

We look for solutions to the equation 1.2.11, which are of the form (a, ϕ) = d∗2u, and therefore,
the equation 1.2.11 can be written as

(d2d
∗
2 +Qd∗2)u = −e0. (1.2.14)

This equation is elliptic. In fact, d2d
∗
2 has the same symbol as the Laplacian on su(2)-valued

1-forms. A key step in solving this equation would be solving the linear equation

d2d
∗
2u = f. (1.2.15)

The method for solving this linear equation can be summarized into 4 steps:

• solving the linearized equation d2d
∗
2u = f on B3εj (qj) via a variational method;

• solving the linearized equation d2d
∗
2u = f on M \ (∪jB2εj (qj) ∪ Sp) via a variational

method;

• solving the linearized equation d2ξ = f on M \ Sp via an iteration method;

• solving the Bogomolny equation on M \ Sp using a fixed point theorem.

1.2.6 Analytic Preliminaries

In this section, we review the necessary background material to solve the linearized Bogomolny
equation.

We start with the monopole Weitzenböck formulas. These formulas follow from the standard
Weitzenböck formula for a connection on a vector bundle.

Lemma 13 (The Monopole Weitzenöck Formulas [28]). Let (A0, Φ0) be a pair of a connection
and a Higgs field on a principal bundle P → M where (M, g) is an oriented Riemannian
3-manifold — and (A0, Φ0) is not necessarily a monopole. Let e0 = ∗FA0 − dA0Φ0. Let
ad2(Φ0)ξ = [Φ0, [Φ0, ξ]] and u ∈ Ω1(M, gP ). The Monopole Weitzenböck formulas are

d2d
∗
2u = ∇∗A0

∇A0u− ad(Φ0)2(u) +Ric(u) + ∗[e0 ∧ u], (1.2.16)

DD∗(a, ϕ) = ∇∗A0
∇A0(a, ϕ)− ad(Φ0)2(a, ϕ) +Ric(a, ϕ) + ∗[e0 ∧ (a, ϕ)], (1.2.17)

D∗D(a, ϕ) = DD∗(a, ϕ) + 2〈dA0Φ0, (a, ϕ)〉. (1.2.18)

Variations of the Poincaré inequality are essential in the analysis of the linear problem.
The standard Poincaré inequality ‖u‖Lp(U) ≤ C‖∇u‖Lp(U) is stated for compactly supported
functions u ∈ W 1,p(U) where U ⊂ Rn is a bounded domain and C is a positive constant.
This inequality is also valid when U is a ball in a Riemmanian manifold (M, g) with a positive
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constant C which depends on the geometry of U . A variation of this inequality also holds for the
compactly supported functions on Rn, when n ≥ 2.

Lemma 14 (The Gagliardo-Nirenberg-Sobolev Inequality [43]). Let n ≥ 2 and 1 ≤ p < n. Let
p∗ be the Sobolev conjugate of p; i.e., p∗ satisfies 1

p∗ = 1
p −

1
n . Then

‖u‖Lp∗ (Rn) ≤ C‖∇u‖Lp(Rn),

for a constant C which depends on n and p and for all compactly supported functions u ∈
C1
c (Rn).

Moreover, this inequality holds when Rn is equipped with a metric g which is asymptotically
Euclidean rather than Euclidean, for a positive constant Cg.

The space of smooth compactly supported functions on Rn is dense in W 1,p(Rn), and
therefore, the following lemma is immediate.

Corollary 2 (W 1,p Gagliardo-Nirenberg-Sobolev Inequality). Let n ≥ 2, 1 ≤ p < n and p∗ the
Sobolev conjugate of p. Then

‖u‖Lp∗ (Rn) ≤ C‖∇u‖Lp(Rn),

for a constant C = Cn,p and any u ∈W 1,p(Rn).
Furthermore, this inequality extends to asymptotically Euclidean spaces.

Now we turn to weighted Poincaré inequalities. A one dimensional version of this inequality
states that if f : R→ R is a non-negative function, F (x) =

∫ x
0 f(t)dt, and p > 1, then∫ ∞

0

(
F (x)

x

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)pdx.

This inequality, which is called the Hardy’s inequality, was first proved by Hardy; however, the
constant ( p

p−1)p in this inequality, which is sharp, was later discovered by Landau. For a proof
consult with the beautiful book ‘Inequalities’ written by Hardy, Littlewood and Pólya [39, Section
9.8].

Lewis proved a higher-dimensional version of this inequality [63], which — a special case of
that — is stated below.

Lemma 15. Let g : Rn → R be in W 2,2(Rn). Then for all u ∈ C1
c (Rn) we have∫

Rn
|∆g(x)||u(x)|2volRn ≤ 2

∫
Rn
|∇g(x)||u(x)||∇u(x)|volRn

≤ 4

∫
Rn
|∆g(x)|−1|∇g(x)|2|∇u(x)|2volRn .

In particular, when n ≥ 2,∫
Rn
|x|β−2|u(x)|2volRn ≤

4

(β − 2 + n)2

∫
Rn
|x|β|∇u(x)|2volRn ,
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for all u ∈ C1
c (Rn).

Using Kato’s inequality, we can extend these results about real-valued functions on Rn to
su(2)–valued forms and their covariant derivatives.

Lemma 16. For all α 6= −1 and compactly supported section u ∈ C∞0 (R3, su(2)), we have∫
R3

|x|−2α−3|u|2volR3 ≤
1

(α+ 1)2

∫
R3

|x|−2α−1|∇Au|2volR3 . (1.2.19)

In fact, we will use a different version of this inequality. For a λ ≥ 0, let

w(x) =

{√
λ−2 + |x|2, |x| ≤ 1

2

1, |x| ≥ 1.
(1.2.20)

Corollary 3 ([30]). For all α 6= −1 and u ∈ C∞0 (R3, su(2)) we have∫
R3

w−2α−3|u|2volR3 ≤
1

(α+ 1)2

∫
R3

w−2α−1|∇Au|2volR3 . (1.2.21)

Moreover, this inequality is valid on asymptotically Euclidean manifolds, for a different positive
constant Cα, depending on α and the geometry of the manifold.

1.2.7 The Linear Equation

We break solving the linear equation into three parts. In the first part we analyze, and later solve,
the linear equation close to the points qj . In the second part we analyze and solve the linear
equation away from the points qj , and finally, in the third part we solve the linear equation on the
whole manifold.

In the following section, we start analyzing the linear equation on a small neighbourhood of
the points qj .

1.2.7.1 The Linear Equation overB3εj (qj)B3εj (qj)B3εj (qj)

In this section, we set up the framework for studying the linear equation d2d
∗
2u = f on B3εj (qj),

and transfer it to R3.
Suppose f is supported on B3εj (qj). We can localize the problem on this region. When the

metric is flat on a small neighborhood of the point qj , it is convenient to consider B3εj (qj) as a
subset of R3. This reduces the problem to solving the equation d2d

∗
2u = f on R3.

More generally, when the metric around qj is an arbitrary one, it is still useful to consider
B3εj (qj) as a subset of R3, but with a non-standard metric. Using a geodesic normal coordinate,
we fix a diffeomorphism

µ : B3εj (qj) ⊂M → U ⊂ R3.

We can pull back the Riemannian metric on B3εj (qj) via µ−1 to U ⊂ R3. Furthermore, one
can extend this metric defined on U to a Riemannian metric defined on the whole R3 such that
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it is flat outside of a slightly larger open subset V with geodesic radius 4εj containing U . To
prevent any confusion, we denote R3 with this non-standard metric with R3; however, note that
the metric need not to be product. By an abuse of notation, we denote both metrics on M , and
also the induced metric on R3 by g. The case where the metric is flat has been investigated in the
study of periodic singular monopoles by Foscolo [30].

Working with an arbitrary metric introduces two potential sources of difficulty. One is related
to the error of the approximate solution, since the BPS-monopole is not a genuine monopole with
respect to the arbitrary metric, as we observed earlier. The other difficulty is related to the Ricci
terms in the monopole Wietzenböck formulas in Lemma 13, which appear in the estimations in
the linear problem.

Let q ∈ Sq = {q1, . . . , qk}. Let (A0, Φ0) be the approximate monopole defined on B3ε(q)
by gluing the pull-back of the scaled BPS-monopole on R3 to the scaled Dirac monopole, both
with mass λ and centered at the origin, using a cut-off function ξ as before,

(A0, Φ0)(x) =

{
(η∗(AλBPS), η∗(ΦλBPS))(x) r ≤ λ−

1
2 ,

(AλD, Φ
λ
D)(x) r ≥ 2λ−

1
2 ,

(1.2.22)

where r denotes the geodesic distance to the origin and |∇ξ| ≤ λ
1
2 .

Using the diffeomorphism µ−1 one can pull back the pair (A0, Φ0) to U ⊂ R3. We can
extend this pair ((µ−1)∗(A0), (µ−1)∗Φ0) to a pair on R3, by gluing it to the standard Dirac
monopole scaled by the factor λ on R3 \ V = R3 \ V , using a cut-off function ξ̃ such that
|∇ξ̃| ≤ λ

1
2 . By an abuse of notation, we still denote this pair on R3 by (A0, Φ0).

The first step is to set up the suitable Sobolev spaces for the linear problem. In order to solve
1.2.15 on R3, naively, one might let d2d

∗
2 : W 2,2(Ω1(R3))→ L2(Ω1(R3)); however, this is not

a suitable choice, and one needs to use the weighted Sobolev spaces.

1.2.7.2 Function Spaces on R3R3R3

In this section, we introduce the appropriate weighted Sobolev spaces to study the linear operator
d2d
∗
2 on su(2)-valued 1-forms on R3, for a pair (A0, Φ0) with a large mass. These weighted

spaces have been investigated by Biquard [9, 10], and used in the case of monopoles by Foscolo
[31, 30], also related to the weighted norms in [1].

The weights used in the definition of our function spaces are designed for the linear operator
d2d
∗
2 to have a bounded right-inverse. The motivation for the specific choices of the weights,

follow from the observation that the termsFA0 and dA0Φ0 appearing in the monopole Weitzenböck
formula of d2d

∗
2 blow up as the scaling factor λ→∞ and r → 0.

Definition 3. Let

w(x) =

{√
λ−2 + r2, r ≤ 1

2

1, r ≥ 1,

where r : R3 → R≥0 denotes the geodesic distance from the origin.
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Let (A0, Φ0) be the approximate monopole we constructed earlier. Let α ∈ R. For all smooth
compactly supported su(2)-valued differential forms u ∈ Ω•(R3, su(2)), let

‖u‖L2
α(R3) = ‖w−α−

3
2u‖L2(R3),

‖u‖2
W 1,2
α (R3)

= ‖u‖2L2
α(R3) + ‖∇A0u‖2L2

α−1(R3) + ‖[Φ0, u]‖2L2
α−1(R3).

Let the spaces L2
α(R3) and W 1,2

α (R3) be the completion of C∞0 (R3) with respect to these norms.
Furthermore,

‖u‖2
W 2,2
α (R3)

:= ‖u‖2
W 1,2
α (R3)

+ ‖∇A0(d∗2u)‖2L2
α−2(R3) + ‖[Φ0, d

∗
2u]‖2L2

α−2(R3).

More generally, for any p > 1, we can define the norm

‖u‖Lpα(R3) = ‖w−α−
3
pu‖Lp(R3),

and Lpα(R3) as the completion of C∞0 (R3) with respect to this norm.

Remark 3. The integer 3 which appears in the exponent of w in the definition of the weighted
norms reflects the dimension of the base manifold. In fact, for sections of bundles over Rn, we
can define

‖u‖Lpα(Rn) = ‖w−α−
n
p u‖Lp(Rn).

These spaces satisfy similar properties as the ordinary Sobolev spaces.

Lemma 17. The weighted Sobolev spaces enjoy the following properties:

• Let k ∈ {0, 1, 2}. Let u ∈ W k,p
α,loc(R

3). Suppose W k,p
α (R3)-norm of u converges. Then

u ∈W k,p
α (R3).

• For any u ∈W 2,2
α (R3), we have d2d

∗
2u ∈ L2

α−2(R3), when λ is sufficiently large.

• C∞c (R3) is dense in W 1,2
α (R3), and therefore, the Corollary 3 holds for the elements of

W 1,2
α (R3).

The proofs are straightforward.

1.2.7.3 Solving the Linear Equation on R3R3R3

The main theorem of this section is the following. In the case where the Riemannian metric g is
the Euclidean metric, this is proposition 5.8. in [30].

Theorem 3. Let d2d
∗
2 : W 2,2

α (Ω1(R3, su(2))) → L2
α−2(Ω1(R3, su(2))). For all −1

2 ≤ α < 0
there exist δ > 0 such that if ‖we0(A0Φ0)‖L3(R3) < δ, then d2d

∗
2 is invertible. For δ > 0
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sufficiently small, there exists C > 0 such that for all f ∈ L2
α−2(Ω1(R3, su(2))), there exists a

unique solution u ∈W 2,2
α (Ω1(R3, su(2))) to d2d

∗
2u = f with

‖u‖
W 2,2
α (R3)

≤ C‖f‖L2
α−2(R3),

where the constant C is independent of λ, which appears in the definition of the approximate
monopole (A0, Φ0).

The proof is based on a direct variational method. We present the proof of the Theorem 3
in 10 steps, presented in a sequence of lemmas. The line of proof follows [30]. Since C∞c (R3)
is dense in W 2,2

α , we only need to prove the theorem when f is a smooth compactly supported
su(2)-valued 1-form on R3.

Before stating the proof, we want to assume a normalizing condition for the Riemannian
metric g on M . Note that (A,Φ) is a monopole on (M, g) if and only if (A, 1

cΦ) is a monopole
on (M, c2g) for any positive constant c, and therefore, there is a one-to-one correspondence
between monopoles on (M, g) and monopoles on (M, c2g). Therefore, without loss of generality,
by multiplying the metric g by a sufficiently small positive constant number c2, we can assume
supx∈M |Ric(x)| < 1

100 , and therefore, supx∈R3 |Ric(x)| < 1
100

Lemma 18 (Step 1). Suppose f is a smooth, compactly supported, su(2)-valued 1-form on R3.
Let α ∈ [−1

2 , 0). Let

E : W 1,2
α (Ω1(R3, su(2)))→ R, E(u) :=

1

2

∫
R3

|d∗2u|2volg − 〈u, f〉L2(R3). (1.2.23)

The functional E(u) is convergent when u ∈W 1,2
α (Ω1(R3, su(2))).

Proof. We first show ‖d∗2u‖2L2(R3) is finite. The key fact in proving this is the monopole Weitzen-
böck formula.

‖d∗2u‖2L2(R3) = ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) + 〈u,Ric(u)〉L2(R3) + 〈∗[e0 ∧ u], u〉L2(R3).

(1.2.24)

Note that since u ∈ W 1,2
α (Ω1(R3, su(2))), the asymptotic terms do not appear in the formula

above.
The first two terms on the right hand side of 1.2.24 are finite, since 1 ≤ w−α−

1
2 when

−1
2 ≤ α, and therefore,

‖∇A0u‖2L2(R3) ≤ ‖w
−α− 1

2∇A0u‖2L2(R3) = ‖∇A0u‖2L2
α−1(R3) ≤ ‖u‖

2
W 1,2
α (R3)

<∞,

‖[Φ0, u]‖2L2(R3) ≤ ‖w
−α− 1

2 [Φ0, u]‖2L2(R3) = ‖[Φ0, u]‖2L2
α−1(R3) ≤ ‖u‖

2
W 1,2
α (R3)

<∞.

Regarding the Ricci term we have

〈u,Ric(u)〉L2(R3) ≤ sup
R3

|Ric|‖u‖2L2(R3) ≤ sup
R3

|Ric|‖u‖2
W 1,2
α (R3)

<∞.
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R3 is flat outside of a compact subset, and therefore, supR3 |Ric| is finite.
As for the error term in 1.2.24, by applying the Hölder’s inequality twice, we get

|〈∗[e0 ∧ u], u〉L2(R3)|
= |〈∗[we0 ∧ u], w−1u〉L2(R3)| ≤ ‖[we0 ∧ u]‖L2(R3)‖w−1u‖L2(R3)

≤ 2‖(we)2‖
1
2

L
3
2 (R3)

‖u2‖
1
2

L3(R3)
‖w−1u‖L2(R3) = 2‖we‖L3(R3)‖u‖L6(R3)‖w−1u‖L2(R3)

≤ 2δ‖u‖L6(R3)‖w−1u‖L2(R3).

Regarding the term ‖u‖L6(R3), by the Sobolev inequality we have ‖u‖L6(R3) ≤ CSob‖u‖W 1,2(R3)

— where CSob is independent of λ — and since 0 < w ≤ 1 on R3 \ {0},

‖u‖2W 1,2(R3) = ‖u‖2L2(R3) + ‖∇A0u‖2L2(R3) ≤ ‖w
−α− 3

2u‖2L2(R3) + ‖w−α−
1
2∇A0u‖2L2(R3)

≤ ‖u‖2
W 1,2
α (R3)

<∞.

Regarding the term ‖w−1u‖L2(R3), following the Corollary 3, we have

‖w−1u‖L2(R3) ≤ C‖∇A0u‖L2(R3) ≤ C‖w−α−
1
2∇A0u‖L2(R3) = C‖∇A0u‖L2

α−1(R3)

≤ C‖u‖
W 1,2
α

<∞,

for a constant C which depends on α and the metric on R3, and therefore,

|〈∗[e0 ∧ u], u〉L2(R3)| ≤ 2δCCSob‖u‖2W 1,2
α (R3)

≤ C1‖u‖2W 1,2
α (R3)

,

for a constant C1 = 2δCCSob, and therefore,

‖d∗2u‖2L2(R3) ≤ ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) + C1‖u‖2W 1,2
α (R3)

+ sup
R3

|Ric|‖u‖2
W 1,2
α (R3)

≤ (2 + C1 + sup
R3

|Ric|)‖u‖2
W 1,2
α (R3)

<∞.

After observing that ‖d∗2u‖2L2(R3) is convergent, we should prove the same for 〈u, f〉L2(R3).
By the Cauchy–Schwarz inequality we have

〈u, f〉L2(R3) ≤ ‖u‖L2(R3)‖f‖L2(R3) ≤ ‖u‖L2
α(R3)‖f‖L2(R3) ≤ ‖u‖W 1,2

α (R3)
‖f‖L2(R3) <∞,

and therefore, we have a well-defined action functional E : W 1,2
α (Ω1(R3, su(2)))→ R.

Lemma 19 (Step 2). Let f be a smooth, compactly supported, su(2)-valued 1-form on R3. Let
α ∈ [−1

2 , 0). The functional E : W 1,2
α (Ω1(R3, su(2)))→ R is continuous.

Proof. We should show the following functions are continuous,

‖d∗2 − ‖2L2(R3) : W 1,2
α (Ω1(R3, su(2)))→ R, 〈−, f〉L2(R3) : W 1,2

α (Ω1(R3, su(2)))→ R.
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To prove ‖d∗2 − ‖2L2(R3) is continuous we should show

‖d∗2ui‖2L2(R3) → ‖d
∗
2u‖2L2(R3), when ui → u in W 1,2

α (Ω1(R3, su(2))). (1.2.25)

By the monopole Weitzenböck formula we know

‖d∗2ui‖2L2(R3) = ‖∇A0ui‖2L2(R3) + ‖[Φ0, ui]‖2L2(R3) + 〈Ric(u), u〉L2(R3)

+ 〈∗[e0 ∧ ui], ui〉L2(R3).

It follows directly from the definition of W 1,2
α (Ω1(R3, su(2))) that

‖∇A0ui‖2L2(R3) + ‖[Φ0, ui]‖2L2(R3) → ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3),

when ui → u in W 1,2
α (Ω1(R3, su(2))).

Regarding the Ricci term,

|〈Ric(u), u〉L2(R3) − 〈Ric(ui), ui〉L2(R3)|
= |〈wRic(u), w−1u〉L2(R3) − 〈wRic(ui), w−1ui〉L2(R3)|
≤ |〈wRic(u− ui), w−1u〉L2(R3)|+ |〈wRic(ui), w−1(u− ui)〉L2(R3)|
≤ ‖wRic‖L3‖u− ui‖L6‖w−1u‖L2 + ‖wRic‖L3‖ui‖L6‖w−1(u− ui)‖L2

≤ ‖wRic‖L3‖u− ui‖L6‖w−1u‖L2 + ‖wRic‖L3(‖u‖L6 + 1)‖w−1(u− ui)‖L2

≤ C (‖wRic‖L3‖u− ui‖W 1,2‖∇A0u‖L2 + ‖wRic‖L3(‖∇A0u‖L2 + 1)‖u− ui‖W 1,2) ,

which goes to zero as i→∞.
Furthermore, when i is sufficiently large,

|(|〈 ∗ [e0 ∧ u], u〉L2(R3)| − |〈∗[e0 ∧ ui], ui〉L2(R3)|)|
= |(|〈∗[we0 ∧ u], w−1u〉L2(R3)| − |〈∗[we0 ∧ ui], w−1ui〉L2(R3)|)|
≤ |〈∗[we0 ∧ u], w−1(u− ui)〉L2(R3)|+ |〈∗[we0 ∧ (u− ui)], w−1ui〉L2(R3)|
≤ ‖[we0 ∧ u]‖L2(R3)‖w−1(u− ui)‖L2(R3) + ‖[we0 ∧ (u− ui)]‖L2(R3)‖w−1ui‖L2(R3)

≤ 2δ‖u‖L6(R3)‖w−1(u− ui)‖L2(R3) + 2δ‖u− ui‖L6(R3)‖w−1ui‖L2(R3)

≤ 2δ‖u‖W 1,2(R3)‖w−1(u− ui)‖L2(R3) + 2δ‖u− ui‖W 1,2(R3)‖w−1ui‖L2(R3)

≤ 2δ‖u‖
W 1,2
α (R3)

‖u− ui‖W 1,2
α (R3)

+ 2δ‖u− ui‖W 1,2
α (R3)

‖ui‖W 1,2
α (R3)

≤ 2δ‖u‖
W 1,2
α (R3)

‖u− ui‖W 1,2
α (R3)

+ 2δ‖u− ui‖W 1,2
α (R3)

(‖u‖
W 1,2
α (R3)

+ 1),

which converges to 0 as i→∞, and therefore, 1.2.25 follows.
In order to prove 〈−, f〉L2(R3) : W 1,2

α (Ω1(R3, su(2)))→ R is continuous, note that this map
is linear, and since W 1,2

α (Ω1(R3, su(2))) is a Hilbert space, continuity is equivalent to being
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bounded.

〈u, f〉L2(R3) ≤ ‖u‖L2(R3)‖f‖L2(R3) ≤ ‖u‖W 1,2
α (R3)

‖f‖L2(R3),

and therefore, the operator norm

sup{〈u, f〉L2(R3) | u ∈W 1,2
α , ‖u‖

W 1,2
α

= 1} ≤ ‖f‖L2(R3) <∞,

which proves the linear map is bounded and continuous.

Lemma 20 (Step 3). Let f be a smooth, compactly supported, su(2)-valued 1-form on R3. Let
α ∈ [−1

2 , 0). E : W 1,2
α (Ω1(R3, su(2)))→ R is Gateaux-differentiable.

Proof. A direct computation shows

duE(v) =

∫
R3

〈d∗2u, d∗2v〉L2volg − 〈v, f〉L2(R3).

Note that for any u, v ∈W 1,2
α ,∫

R3

〈d∗2u, d∗2v〉L2volg ≤ ‖d∗2u‖L2(R3)‖d∗2v‖L2(R3) <∞,

and

〈v, f〉L2(R3) ≤ ‖v‖L2(R3)‖f‖L2(R3) <∞.

Lemma 21 (Step 4). Suppose f is a smooth, compactly supported, su(2)-valued 1-form on R3.
Let α ∈ [−1

2 , 0). There exists δ > 0 such that if ‖we0‖L3(R3) < δ, then the functional

E : W 1,2
α (Ω1(R3, su(2)))→ R, E(u) :=

1

2

∫
R3

|d∗2u|2volg − 〈u, f〉L2(R3), (1.2.26)

is strictly convex.

Proof. Since 〈u, f〉L2(R3) is linear in u, we only need to show ‖d∗2u‖2L2(R3) is strictly convex.

Let u, v ∈W 1,2
α (Ω1(R3, su(2))) where u1 6= u2. Let t ∈ (0, 1). We should prove

‖d∗2(tu1 + (1− t)u2)‖2L2(R3) < t‖d∗2u1‖2L2(R3) + (1− t)‖d∗2u2‖2L2(R3).

In fact, we only need to check this for t = 1
2 . The strict inequality

‖d∗2(
u1 + u2

2
)‖2L2(R3) <

1

2
‖d∗2u1‖2L2(R3) +

1

2
‖d∗2u2‖2L2(R3),
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is equivalent to ‖d∗2(u1 − u2)‖2L2(R3) > 0. Let u = u1 − u2. We should show

u ∈W 1,2
α , d∗2u = 0 ⇒ u = 0. (1.2.27)

The property 1.2.27 implies ‖d∗2 − ‖L2 is a norm on W 1,2
α . The key fact to prove this is the

Gagliardo–Nirenberg–Sobolev inequality. Suppose ‖d∗2u‖L2(R3) = 0,

0 = ‖d∗2u‖2L2(R3) = ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) + 〈Ric(u), u〉L2(R3)

+ 〈∗[e0 ∧ u], u〉L2(R3).

Using Corollary 3, we have

〈u,Ric(u)〉L2(R3) = 〈w−1u,wRic(u)〉L2(R3) ≤ ‖w−1u‖L2(R3)‖wRic(u)‖L2(R3)

≤ 5‖∇A0u‖L2(R3)‖wRic‖L3‖u‖L6(R3) ≤
1

4
‖∇A0u‖2L2(R3),

for ε small enough such that ‖wRic‖L3 < 1
20CSob

, which can be arranged when λ is sufficiently
large, since Ric(x) = 0 outside of B0(4ε). Moreover, in the inequality

‖w−1u‖L2(R3) ≤ Cg,α‖∇A0u‖L2(R3).

by taking ε > 0 small enough, we can take Cg,α < 5. In fact, when the metric g on R3 is flat,
this constant is 1/(1 + α)2. In our case, the metric on R3 coincide with the flat metric outside of
a small ball B4ε(0). By taking the ε > 0 sufficiently small, we can take the constant Cg,α to be
sufficiently close to 1/(α+ 1)2, and therefore, less than 5.

Furthermore,

|〈∗[we0 ∧ u], w−1u〉L2(R3)| ≤ 2‖we‖L3(R3)‖u‖L6(R3)‖w−1u‖L2(R3)

≤ 2C‖we‖L3(R3)‖∇A0u‖2L2(R3).

Pick δ < 1
8C ,

0 = ‖d∗2u‖2L2(R3)

= ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) + 〈Ric(u), u〉L2(R3) + 〈∗[e0 ∧ u], u〉L2(R3)

≥ ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) −
1

4
‖∇A0u‖2L2(R3) −

1

4
‖∇A0u‖2L2(R3)

=
1

2
‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3),

and therefore,∇A0u = 0 = [Φ0, u]. Therefore, u is a covariantly constant section in W 1,2
α , hence,

u = 0.

Lemma 22 (Step 5). Let f be a smooth, compactly supported, su(2)-valued 1-form on R3. Let
α ∈ [−1

2 , 0). The action functional E : W 1,2
α (Ω1(R3)) → R has a unique minimizer, and
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therefore, d2d
∗
2u = f has a unique solution.

Proof. The proof of this lemma is based on the following fact.
Let E : W → R be a convex, continuous and real Gateaux-differentiable functional defined

on a real reflexive Banach space W such that duE(u) > 0, for any u ∈W with ‖u‖W ≥ R > 0,
for a positive constant R. Then there exists an interior point u0 of {u ∈W | ‖u‖W < R} which
is the unique minimizer of E and du0E = 0.

LetW = W 1,2
α (R3) but equipped with the norm ‖d∗−‖L2(R3) — it follows from the proof of

Lemma 21 that this is a norm. Moreover, similar to the Sobolev space W 1,2, it is straightforward
to see W 1,2

α (R3) is reflexive too.
We should show there is a constant R > 0 such that we have duE(u) > 0 for any u ∈ W

with ‖u‖W ≥ R > 0. As in the proof of Lemma 21,

‖d∗2u‖2L2(R3) = ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) + 〈wRic(u), w−1u〉L2(R3) + 〈∗[e0 ∧ u], u〉L2(R3)

≥ ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) − sup
x∈R3

Ric(x)‖w−1u‖2L2(R3) −
1

4
‖∇A0u‖2L2(R3)

≥ ‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) −
1

4
‖∇A0u‖2L2(R3) −

1

4
‖∇A0u‖2L2(R3)

=
1

2
‖∇A0u‖2L2(R3) + ‖[Φ0, u]‖2L2(R3) ≥

1

2
‖∇A0u‖2L2(R3),

and therefore,

‖d∗2u‖2L2(R3) ≥
1

2
‖∇A0u‖2L2(R3).

This shows

duE(u) = ‖d∗2u‖2L2(R3) − 〈u, f〉L2(R3) = ‖d∗2u‖2L2(R3) − 〈w
−1u,wf〉L2(R3)

≥ ‖d∗2u‖2L2(R3) − ‖w
−1u‖L2(R3)‖wf‖L2(R3)

≥ ‖d∗2u‖2L2(R3) − C‖∇A0u‖L2(R3)‖f‖L2(R3)

≥ ‖d∗2u‖2L2(R3) −
√

2C‖d∗2u‖L2(R3)‖f‖L2(R3)

= ‖d∗2u‖L2(R3)(‖d∗2u‖L2(R3) −
√

2C‖f‖L2(R3)).

Let R = 1 +
√

2C‖f‖L2(R3), and therefore, ‖d∗2u‖L2(R3) > R implies

‖d∗2u‖L2(R3) −
√

2C‖f‖L2(R3) > 1,

hence

duE(u) > ‖d∗2u‖L2(R3) > R > 0,
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and therefore, E has a unique minimizer in W 1,2
α (R3), inside

{u ∈W 1,2
α (R3) | ‖d∗2u‖L2(R3) < 1 +

√
2C‖f‖L2(R3)}.

Φ0 is non-zero outside of a large ball V ⊂ R3, and therefore, it induces a decomposition of
the adjoint bundle to the longitudinal and transverse parts. Let uL and uT denote the longitudinal
and transverse components, respectively. Note that since the metric g is flat on R3 \ V , we have
R3 \ V = R3 \ V

Lemma 23 (Step 6). Let u be the unique solution of Lemma 22, and uL be its longitudinal
component with respect to the decomposition of the bundle over R3 \ V induced by Φ0. We have

|uL(x)| ≤ C

|x|
,

for a constant C.

Proof. Since f is compactly supported, if necessary we can enlarge V such that f|R3\V
= 0, and

therefore, uL satisfies the equation

∆uL = 0,

on R3 \ V , thus, uL is a harmonic real-valued 1-form outside of a compact subset of R3. Let
uL = uL1 dx1 + uL2 dx2 + uL3 dx3 on R3 \ V . With respect to the Euclidean metric, we have

∆uL = (∆uL1 )dx1 + (∆uL2 )dx2 + (∆uL3 )dx3,

and therefore, the 1-form uL is harmonic if and only if its coefficients are harmonic. This shows

∆uL1 = ∆uL2 = ∆uL3 = 0,

on R3 \ V , and therefore, they are harmonic functions on the complement of a compact subset of
R3. Functions of this type have been studied in [2], which we burrow the following fact from.

Let v be a subharmonic function defined over {x ∈ Rn | |x| > R} for a positive real number
R. Then there exist a non-constant subharmonic function s(x) defined over Rn, a real number
r > R, and a constant c ≤ 0 such that

v(x) = s(x) + c|x|2−n when |x| > r.

Letting v(x) = uLi (x) for i ∈ {1, 2, 3}, n = 3, and R large enough such that V ⊂ B0(R),
we get uLi (x) = si(x) + ci

|x| when |x| > r for some r > R and constants ci. Furthermore, a
similar statement holds for superharmonic functions, and therefore, in our case si(x) is harmonic
over entire R3.

uLi (x) is a harmonic section in W 1,2(R3 \ V ), and therefore, lim|x|→∞ u
L
i (x) = 0, hence,

lim|x|→∞ si(x) = 0. This shows si(x) is a bounded harmonic function on R3; thus si ≡ 0. This

42



implies uLi (x) = ci
|x| , and therefore,

uL =
3∑
i=1

ci
|x|
dxi,

on R3 \ V , which proves the lemma.

Lemma 24 (Step 7). uT = O(e−r) as r →∞.

Proof. The argument is completely similar to the step 3 of the proof of lemma 7.10 in [32].

Lemma 25 (Step 8). Let f be a smooth, compactly supported, su(2)-valued 1-form on R3. Let
α ∈ [−1

2 , 0). There exist sufficiently small δ > 0 and ε0 > 0 such that if ‖we0(A0Φ0)‖L3(R3) < δ
and ε < ε0, then the unique solution u(x) of Lemma 22 satisfies

‖u‖
W 1,2
α
≤ C‖f‖L2

α−2
, (1.2.28)

for a constant C independent of ε.

Proof. If ‖u‖
W 1,2
α

= 0, then 1.2.28 is trivial. Suppose ‖u‖
W 1,2
α
6= 0. Then 1.2.28 is equivalent to

‖u‖2
W 1,2
α
≤ C‖u‖

W 1,2
α
‖f‖L2

α−2
. (1.2.29)

By the integration by parts we have

‖f‖L2
α−2
‖u‖

W 1,2
α
≥ ‖f‖L2

α−2
‖u‖L2

α
= ‖w−α+ 1

2 f‖L2‖w−α−
3
2u‖L2 ≥

∫
R3

w−2α−1〈f, u〉volg

=

∫
R3

w−2α−1〈d2d
∗
2u, u〉volg =

∫
R3

w−2α−1(|∇A0u|2 + |[Φ0, u]|2)volg

+

∫
R3

w−2α−1〈Ric(u), u〉volg +

∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg − α(1 + 2α)‖u‖2L2
α
.

The previous two lemmas show u(x) = O(|x|−1) as |x| → ∞, and therefore,

d∗2u(x)u(x) = O(|x|−3),

hence, the asymptotic terms do not appear in the integration by parts.
Let

‖∇A0u‖2L2
α−1

= a‖∇A0u‖2L2
α−1

+ b‖∇A0u‖2L2
α−1

where a+ b = 1 and a, b > 0.

Using the Corollary 3,

‖∇A0u‖2L2
α−1

= a‖∇A0u‖2L2
α−1

+ b‖∇A0u‖2L2
α−1
≥ a

Cg,α
‖u‖2L2

α
+ b‖∇A0u‖2L2

α−1
.
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Let a/Cg,α = b. We get

a =
Cg,α

Cg,α + 1
, b =

1

Cg,α + 1
.

For instance, when g is flat and R3 = R3, we have Cg,α = 1/(α+ 1)2, and therefore,

a =
1

(α+ 1)2 + 1
, b =

(α+ 1)2

(α+ 1)2 + 1
.

Note that Cg,α → 1/(α+ 1)2 as ε→ 0.
For these specific choices for a and b, we get

‖∇A0u‖2L2
α−1
≥ 1

Cg,α + 1
‖u‖2

W 1,2
α
,

and therefore,

‖f‖L2
α−2
‖u‖

W 1,2
α
≥ 1

Cg,α + 1
‖u‖2

W 1,2
α
− |α(1 + 2α)|‖u‖2L2

α

+

∫
R3

w−2α−1〈Ric(u), u〉volg +

∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg

≥
(

1

Cg,α + 1
− |α(1 + 2α)|

)
‖u‖2

W 1,2
α

+

∫
R3

w−2α−1〈Ric(u), u〉volg +

∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg.

As ε→ 0,

1

Cg,α + 1
+ α(1 + 2α)→ bα :=

(α+ 1)2

(α+ 1)2 + 1
+ α(1 + 2α). (1.2.30)

Let ε1 > 0 be sufficiently small such that for any 0 < ε < ε1,

|
(

1

Cg,α + 1
+ α(1 + 2α)

)
− bα| ≤

1

1000
.

The equation bα = 0 has no solutions. In fact, bα > 0.18 > 0. Moreover, for any ε ∈ (0, ε1), the
solutions to the equation 1

Cg,α+1 +α(1+2α) > 0. Moreover, for all α ∈ [−1
2 , 0) and 0 < ε < ε1,(

1

Cg,α + 1
+ α(1 + 2α)

)
>

1

10
,

and therefore,

‖f‖L2
α−2
‖u‖

W 1,2
α
≥ 1

10
‖u‖2

W 1,2
α

+

∫
R3

w−2α−1〈Ric(u), u〉volg +

∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg.
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As mentioned, by scaling the metric on M and without loss of generality, we can assume
supx∈M |Ric(x)| ≤ 1

100 , and therefore, by Corollary 3,∫
R3

w−2α−1〈Ric(u), u〉volg ≤
1

100
‖u‖2L2

α−1
≤ 1

100
‖u‖2L2

α
≤ Cg,α

100
‖∇A0u‖2L2

α−1
≤ Cg,α

100
‖u‖2

W 1,2
α
.

hence,

‖f‖L2
α−2
‖u‖

W 1,2
α
≥ 1

10
‖u‖2

W 1,2
α

+

∫
R3

w−2α−1〈Ric(u), u〉volg +

∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg

≥ (
1

10
− Cg,α

100
)‖u‖2

W 1,2
α

+

∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg.

Moreover, 1/(α+ 1)2 ≤ 4 for α ∈ [−1
2 , 0). Let ε2 > 0 be sufficiently small such that

|Cg,α −
1

(α+ 1)2
| ≤ 1

10
,

and therefore, Cg,α ≤ 9
2 . This implies

‖f‖L2
α−2
‖u‖

W 1,2
α
≥ (

1

10
− Cg,α

100
)‖u‖2

W 1,2
α

+

∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg

≥ 1

20
‖u‖2

W 1,2
α

+

∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg.

Regarding the error term,∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg ≤ ‖we0‖L3‖u‖L2
α
‖w−α−

1
2u‖L6

≤ ‖we0‖L3‖u‖W 1,2
α
‖w−α−

1
2u‖L6 .

By the Sobolev inequality

‖w−α−
1
2u‖L6 ≤ CSob‖w−α−

1
2u‖W 1,2 ≤ C ′CSob‖u‖W 1,2

α
,

for a uniform constant C ′, and therefore,∫
R3

w−2α−1〈∗[e0 ∧ u], u〉volg ≤ δC ′CSob‖u‖2W 1,2
α
.

Taking δ small enough such that δ < 1
100C′CSob

, we get

‖f‖L2
α−2
‖u‖

W 1,2
α
≥ 1

25
‖u‖2

W 1,2
α
,
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and therefore,

‖u‖L2
α
≤ C‖f‖L2

α−2
.

We are progressing towards proving

‖u‖
W 2,2
α
≤ C‖f‖L2

α−2
.

The next lemma is a necessary estimation in this direction.

Lemma 26 (Step 9). Let (A0, Φ0) be the constructed approximate monopole. Then we have the
following pointwise approximation

|FA0 | = |dA0Φ0| ≤
C

λ−2 + r2
.

Proof. The proof in the case R3 = R3 can be found in [30, Proposition 4.14]. The essential
point is that this approximation holds everywhere on R3, where the pair (A0, Φ0) is equal to the
scaled BPS-monopole, where it is equal to the scaled Dirac monopole, and also over the region in
between.

Let g and g0 denote the Riemannian metrics on R3 and R3, respectively. Recall that for any
2-form β with valued in any vector bundle, we have

|β|g − |β|g0 =
∑
k,l

〈βk, βl〉(gk,l − gk,l0 ) = −1

3

∑
k,l,m,n

〈βk, βl〉Rklmnβkβlxmxn +O(|x|3)

≤ C1R|β|2g0
|x|2,

where C1 > 0 is a constant and R is the maximum of the Riemann curvature tensor of g.
Therefore,

|β|g ≤ |β|g0 + C1R|β|2g0
|x|2,

Let β = F
η∗j (A

λj
BPS)

,

|(∗0 − ∗)F
η∗j (A

λj
BPS)
|g ≤ C2(

1

λ−2
j + |x|2

+R
|x|2

λ−2
j + |x|2

) ≤ C2(
1 +Rε2

λ−2
j + |x|2

) ≤ C

λ−2
j + |x|2

,

for a constant C, when λj is sufficiently large.

The following lemma is the last step of proving Theorem 3.

Lemma 27 (Step 10). Let f be a smooth, compactly supported, su(2)-valued 1-form on R3. Let
α ∈ [−1

2 , 0). There exists a sufficiently small δ > 0 and ε0 such that if ‖we0(A0Φ0)‖L3(R3) < δ
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and ε < ε0, then the unique solution u(x) of Lemma 22 is an element of W 2,2
α and satisfies

‖u‖
W 2,2
α
≤ C‖f‖L2

α−2
,

for a constant C independent of λ.

Proof. We should find a uniform bound on

‖∇A0(d∗2u)‖L2
α−2

+ ‖[Φ0, d
∗
2u]‖L2

α−2
= ‖w−α+ 1

2∇A0(d∗2u)‖2L2 + ‖w−α+ 1
2 [Φ0, d

∗
2u]‖2L2 ,

in terms of ‖f‖L2
α−2

.
Let (a, φ) = D∗(u, 0) = d∗2u. By the monopole Weitzenböck formula we have

D∗D(d∗2u) = DD∗(d∗2u) + 2〈dA0Φ0, d
∗
2u〉

= ∇∗A∇A(d∗2u)− ad(Φ)2(d∗2u) + 〈Ric(x), d∗2u〉+ ∗[e0 ∧ d∗2u] + 2〈dA0Φ0, d
∗
2u〉,

By multiplying the formula by w−2α+1d∗2u and integrating over R3, we get

‖∇A(d∗2u)‖2L2
α−2

+ ‖[Φ, (d∗2u)]‖2L2
α−2

≤ ‖D(d∗2u)‖2L2
α−2

+ sup
x∈R3

|Ric(x)|‖d∗2u‖2L2
α−2

+

∫
R3

w−2α+1(|e0|+ 2|dA0Φ0|)|d∗2u|2volg

+ (−2α+ 1)

∫
R3

w−2α|∇w||d∗2u|(|∇A0(d∗2u)|+ |D(d∗2u)|)volg, (1.2.31)

where the last integral is the asymptotic term of the Stokes’ theorem.
We start by bounding ‖D(d∗2u)‖2

L2
α−2

. First note that

D(d∗2u) = DD∗(u, 0) = (f, ∗[e0 ∧ ∗u]).
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By multiplying this formula by w−α+ 1
2 and taking the L2-norm over R3, we get

‖D(d∗2u)‖2L2
α−2

= ‖f‖2L2
α−2

+ ‖[we0 ∧ ∗w−α−
1
2u]‖2L2

≤ ‖f‖2L2
α−2

+ ‖we‖2L3‖w−α−
1
2u‖2L6

≤ ‖f‖2L2
α−2

+ δ2CSob‖w−α−
1
2u‖2W 1,2

= ‖f‖2L2
α−2

+ δ2CSob

(
‖w−α−

1
2u‖2L2 + ‖∇A0(w−α−

1
2u)‖2L2

)
≤ ‖f‖2L2

α−2
+ δ2CSob

(
‖u‖2L2

α
+ ‖∇A0(w−α−

1
2u)‖2L2

)
≤ C ′‖f‖2L2

α−2
+ δ2CSob‖∇A0(w−α−

1
2u)‖2L2

≤ C ′‖f‖2L2
α−2

+ δ2CSob

(
(−α− 1

2
)2‖w−α−

3
2 |∇w|u‖2L2 + ‖∇A0u‖2L2

α−1

)
≤ C ′′‖f‖2L2

α−2
+ δ2CSob‖∇A0u‖2L2

α−1

≤ C‖f‖2L2
α−2

,

for positive constants CSob, C ′, and C ′′.
Regarding the term

sup
x∈R3

|Ric(x)|‖d∗2u‖2L2
α−2
≤ sup

x∈R3

|Ric(x)|‖d∗2u‖2L2
α−1

,

the Ricci curvature is bounded and ‖d∗2u‖2L2
α−1

can be bounded uniformly by ‖f‖2
L2
α−2

, as we
observed in the proof of Lemma 25.

Regarding the error term, using Lemma 12,∫
R3

w−2α+1|e0||d∗2u|2volg ≤ c‖d∗2u‖2L2
α−2
≤ c‖d∗2u‖2L2

α−1
≤ C‖f‖2L2

α−2
,

for positive constants c and C.
Regarding the term, ∫

R3

w−2α+1|dA0Φ0||d∗2u|2volg,

recall that following Lemma 26, the term |dA0Φ0| can be estimated,

|dA0Φ0| ≤
c

λ−2 + r2
→ w2|dA0Φ0| ≤

cw2

λ−2 + r2
≤ C ′,
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for a uniform constant C ′, and therefore,∫
R3

w−2α+1|dA0Φ0||d∗2u|2volg ≤ C ′
∫
R3

w−2α−1|d∗2u|2volg

= C ′‖d∗2u‖2L2
α−1
≤ C ′′‖f‖2L2

α−2
.

Therefore,

‖u‖
W 2,2
α
≤ C‖f‖L2

α−2
,

for a uniform constant C.

A key assumption in the Theorem 3 is that the error estimate ‖we0(A0Φ0)‖L3(R3) < δ for a
sufficiently small δ. The following theorem states ‖we0(A0Φ0)‖L3(R3) can be made as small as
necessary by increasing the masses λj .

Theorem 4. For any δ > 0, there exists a sufficiently large λj = ε−2
j > 0 such that the monopole

(A0, Φ0) defined in 1.2.22 with the parameters λj , satisfies

‖we0(A0, Φ0)‖L3(R3) < δ. (1.2.32)

Proof. For each j ∈ {1, . . . , k}, from the Lemma 12, we have

(eBPS0 )|B3εj
(qj)
≤ C.

and therefore,

‖weBPS0 ‖3L3(B3εj
(qj))

=

∫
B3εj

(qj)
|weBPS0 |3volg ≤ C1

∫
B3εj

(qj)
|w|3volg

= C1

∫
B3εj

(qj)
(λ−2
j + |x|2)

3
2 volg ≤ C2ε

3
j (λ
−2
j + ε2

j )
3
2 .

for a positive uniform constants C1 and C2, and therefore, it can be made as small as necessary.

1.2.7.4 The Linear Equation overM \ (∪jB2εj (qj) ∪ Sp)M \ (∪jB2εj (qj) ∪ Sp)M \ (∪jB2εj (qj) ∪ Sp)

In this section, we study the linearized equation d2d
∗
2u = f on M \ (∪jB2εj (qj) ∪ Sp), away

from the points where the scaled BPS-monopoles are located, and set the stage for solving this
linearized equation.

On this region the pair (A0, Φ0) is a reducible monopole with a non-zero Higgs field Φ0,
and therefore, it induces a decomposition of the adjoint bundle as gP = R⊕ L, where R is the
sub-bundle generated by the image of Φ0 and L is the orthogonal sub-bundle. Corresponding
to the bundle decomposition gP = R⊕ L, a section or a gP -valued tensor f supported on this
region can be written as f = (fL, fT ).
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This bundle decomposition is preserved by d2, d∗2, and d2d
∗
2. Hence the equation d2d

∗
2u = f

on this region reduces to two equations for uL and uT . The equation for uL is given by

∆uL = fL, (1.2.33)

and the equation for uT is

d2d
∗
2u
T = fT .

In the following section we will introduce the appropriate function spaces to solve these
equations.

1.2.7.5 Function Spaces onM \ (∪jB2εj (qj) ∪ Sp)M \ (∪jB2εj (qj) ∪ Sp)M \ (∪jB2εj (qj) ∪ Sp)

In this section, we set the stage to study the linearized equation over M \ (∪jB2εj (qj) ∪ Sp).
We start by defining the suitable weighted Sobolev spaces on su(2)-valued differential forms on
M \ (∪jB2εj (qj) ∪ Sp). These spaces can be used to solve the problem away from the points qj ,
following [9, 30].

Let δpi be the injectivity radius at pi. For each point pi ∈ Sp, let

wi(x) =

{
ri, ri ≤ δpi
1, ri ≥ 1,

(1.2.34)

where ri is the geodesic distance from pi.

Definition 4. Let U = M \ (∪jB2εj (qj) ∪ Sp) and Uext = M \ (∪jB2εj (qj) ∪i B2εi(pi)). Let
α ∈ R. For all smooth compactly supported su(2)-valued differential forms u ∈ Ω•(U, su(2)),
let

‖u‖2L2
α(U) = ‖u‖2L2(Uext)

+
n∑
i=1

‖uT ‖2L2(B2εi
(pi))

+
n∑
i=1

‖w−α−
3
2

i uL‖2L2(B2εi
(pi))

.

Furthermore,

‖u‖2
W 1,2
α (U)

= ‖u‖2L2
α(U) + ‖∇A0u‖2L2

α−1(U).

Moreover,

‖u‖2
W 2,2
α (U)

= ‖u‖2
W 1,2
α (U)

+ ‖∇A0(d∗2u)‖2L2
α−2(U).

The spaces W k,2
α (U) are defined as the completion of C∞0 (U) with respect to the corresponding

norms for k ∈ {0, 1, 2}. Furthermore, one can define similar norms and weighted Sobolev spaces
W k,p
α (U) for any p ≥ 2 and k ∈ {0, 1, 2}.

50



1.2.7.6 The Longitudinal Component and the Lockhart-McOwen Theory

In this section, we study the weighted Sobolev spaces of the sections of the longitudinal com-
ponent, and set the necessary background to solve ∆uT = fT . The main goal of this section
is to show that these weighted Sobolev spaces on the longitudinal component are suitable for
studying elliptic operators, more specifically, the Laplacian. These spaces are closely related to
the Lockhart-McOwen Sobolev spaces on asymptotically cylindrical manifolds [65].

The following example gives a good picture of the real-valued sections in these weighted
Sobolev spaces.

Example 1. Let (M, g) be a closed, Riemannian, n-dimensional manifold. Let p ∈M . Let δp be
the injectivity radius at p and r : M → R a smooth function such that

r(x) =

{
geodesic distance from p on Bδ(p),

1 on M \B2δ(pi).

Then rδ ∈ Lpα(M) if and only if δ > α.

To understand the longitudinal part of these weighted Sobolev spaces, using a conformal
mapping, one can transform them into the weighted Sobolev spaces over asymptotically cylin-
drical manifolds. The punctured ball Bε(0) \ {0} ⊂ R3 can be identified with the cylinder
(− log(ε),+∞)× S2, using a map L0 : Bε(0) \ {0} → (− log(ε),+∞)× S2, defined by

(t, θ, ϕ) := L0(r, θ, ϕ) = (− log(r), θ, ϕ), (1.2.35)

where (r, θ, ϕ) denotes the spherical coordinates on Bε(0) ⊂ R3.
Equip the punctured ball with the flat metric g0 = dx2 + dy2 + dz2, which in spherical

coordinates can be written as g0 = dr2 + r2gS2 = dr2 + r2(dθ2 + sin2 θdϕ2), and the cylinder
with the standard product metric gCyl = dt2 + gS2 . The map L0 takes the flat metric on the
punctured ball to e−2t(dt2 + gS2) on (− log(ε),+∞)× S2, which is conformally equivalent to
the cylindrical metric gcyl = dt2 + gS2 .

The Riemannian metric g on each ball Bεi(pi) using the exponential map and in geodesics
normal coordinates can be written as g = dr2 +ψ(r, θ)gS2 , where ψ is a smooth positive function
such that limr→0 ψ(r, θ) → 1. Let µ(t, θ) = r−2ψ(r, θ) = e−2tψ(e−t, θ). One can define the
diffeomorphism Li : Bεi(pi)→ (− log(εi),+∞)× R, similar to 1.2.35, that takes the metric g
to e−2t(dt2 + µ(t.θ)gS2), which is conformally equivalent to

g̃ = dt2 + µ(t, θ)gS2 ,

where µ(t, θ)→ 1 as t→∞. The metric g̃ is asymptotically cylindrical

Definition 5 (Asymptotically Cylindrical Manifold). Let (X, gX) be a non-compact, n-dimensional,
Riemannian manifold, and X0 ⊂ X a compact submanifold with boundary. Let (Σ, gΣ) be a
closed (n− 1)-dimensional manifold with l connected components, Σ = Σ1 ∪ . . . ∪ Σl, with a

51



diffeomorphism

Ψ : X \X0 → (1,∞)× Σ. (1.2.36)

Let (1,∞)× Σ be equipped with the cylindrical Riemannian metric gCyl = dt2 + gΣ, where t is
the coordinates on (1,∞).

(X, gX) is called an asymptotically cylindrical manifold with rate β < 0 if

|∇jgCyl(Ψ∗(gX)− gCyl)| = O(eβt), ∀j ∈ {0, 1, . . .},

where∇gCyl is the Levi-Civita connection of the Riemannian metric gCyl.

By gluing the maps Li to the identity map on M \ ∪iB2εi(pi) and extend it smoothly to the
necks ∪i(B2εi(pi) \Bεi(pi)), we get a diffeomorphism

L : M \ Sp →MCyl := (M \ ∪ni=1Bεi(pi))
⋃

(∪i(−log(εi),+∞)× S2),

where MCyl is equipped with an asymptotically cylindrical metric. Furthermore, L takes the
vector bundle of differential forms on M to asymptotically translation-invariant asymptotically
cylindrical bundles over MCyl.

Definition 6 (Asymptotically Cylindrical Vector Bundle). Let ECyl → (1,∞)× Σ be a vector
bundle invariant under translations in the (1,∞)-direction equipped with a translation-invariant
fiber metric hCyl and a translation-invariant connection ∇ECyl compatible with hCyl. Let
E → X be a vector bundle over asymptotically cylindrical Riemannian manifold (X, gX), where
E is equipped with fiber metric h and a connection∇E compatible with h. The triple (E, h,∇E)
is an asymptotically cylindrical vector bundle, asymptotic to (ECyl, hCyl,∇ECyl) with rate β < 0,
if there exists a bundle identification

Ψ̃ : E|X\X0
→ ECyl|(1,∞)×Σ

,

covering Ψ in 1.2.36, such that

Ψ̃∗(h) = hCyl +O(eβt), Ψ̃∗(∇E) = ∇ECyl +O(eβt).

In order to have the Fredholm property for the elliptic differential operators like Laplacian or
d+ d∗ on asymptotically cylindrical manifolds, one should use suitable classes of Banach spaces
as domain and co-domain, as introduced by Lockhart and McOwen [65].

Definition 7 (Lockhart-McOwen Sobolev Spaces). Let (X, gX) be an n-dimensional asymp-
totically cylindrical Riemannian manifold. Let ρ : X → R be a smooth function such that on
X \X0 it agrees with the geodesic distance from a point x0 ∈ X . Let (E, hE ,∇E) → X be
an asymptotically cylindrical bundle. Let p ≥ 1, k ≥ 0, and β ∈ R. For any smooth compactly
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supported section u ∈ Γ(E), let

‖u‖p
Wk,p
Cyl,β(E)

=
k∑
j=0

∫
X
|e−βρ∇jEu|

p
hE
volgX .

Let W k,p
Cyl,β(X,E) denote the completion of C∞0 (X,E) with respect to this norm.

These weighted Sobolev spaces over asymptotically cylindrical manifolds are closely related
to the weighted spaces defined in Definition 8.

Lemma 28. Let L0 be the map defined in 1.2.35. Let f be a section of a vector bundle above
Bε(0) \ {0} ⊂ R3. We have

f ∈W k,p
α (Bε(0))⇐⇒ (L−1

0 )∗f ∈W k,p
Cyl,−α((− log(ε),+∞)× S2).

Moreover,

‖f‖
Wk,p
α (Bε(0))

= ‖(L−1
0 )∗f‖

Wk,p
Cyl,−α((− log(ε),+∞)×S2)

,

and therefore, ‖f‖
Wk,p
α (M\Sp)

and ‖(L−1
0 )∗f‖

Wk,p
Cyl,−α(MCyl)

are equivalent norms.

Proof. Let LpCyl and W k,p
Cyl denote the ordinary Sobolev spaces on the cylinder with respect to its

cylindrical Riemannian metric gCyl.
Let k = 0. By a change of variable we have

‖f‖Lpα(Bε(0)) = ‖eαt(L−1
0 )∗f‖LpCyl((− log(ε),+∞)×S2) = ‖(L−1

0 )∗f‖LpCyl,−α((− log(ε),+∞)×S2).

Let k > 0. Let ∇ be the Levi-Civita connection on Bε(0) with respect to the standard
euclidean metric and∇Cyl be the Levi-Civita connection on (− log(ε),+∞)× S2 with respect
to the cylindrical metric. We have the pointwise equality

|e−jt∇jf | = |∇jCyl(L
−1
0 )∗f |,

and therefore,

‖r−α−
3
2

+j∇jf‖Lp(Bε(0)) = ‖eαt∇jCyl(L
−1
0 )∗f‖LpCyl((− log(ε),+∞)×S2)

= ‖∇jCyl(L
−1
0 )∗f‖LpCyl,−α((− log(ε),+∞)×S2).

By summing over j,

‖f‖
Wk,p
α (Bε(0))

= ‖eαt(L−1
0 )∗f‖

Wk,p
Cyl((− log(ε),+∞)×S2)

= ‖(L−1
0 )∗f‖

Wk,p
Cyl,−α((− log(ε),+∞)×S2)

.

One can also transform the Laplacian and d+d∗ to the cylindrical space, on the more familiar
weighted spaces of Lockhart and McOwen. Let d∗ and ∆ denote the corresponding differential
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operators over Bεi(pi), and d∗Cyl and ∆Cyl denote the corresponding differential operators over
the cylinder (− log(ε),+∞)× S2, with respect to the cylindrical metric.

Lemma 29. Let

d∗ : Ω∗(Bεi(pi))→ Ω∗(Bεi(pi)),

d∗Cyl : Ω∗((− log(ε),+∞)× S2)→ Ω∗((− log(ε),+∞)× S2).

Let α ∈ Ω1(Bεi(pi)). We have

d∗α = e2t
(
− ∗Cyl (dt ∧ ∗Cyl(L

−1
0 α)) + d∗Cyl(L

−1
0 α)

)
.

Let β ∈ Ω2(Bεi(pi)). We have

d∗β = e2t
(
∗Cyl(dt ∧ ∗Cyl(L

−1
0 β)) + d∗Cyl(L

−1
0 β)

)
.

Let ∆ : Ω1(Bεi(pi))→ Ω1(Bεi(pi)). We have

∆α = e2t
(
∆Cyl(L

−1
0 α) + F (α)

)
,

where F : Ω1(Bεi(pi))→ Ω1(Bεi(pi)) is a 1st order differential operator, given by

F (α) = −2dt ∧ (∗Cyl(dt ∧ ∗CylL−1
0
∗(α)))− d(∗Cyl(dt ∧ ∗CylL−1

0
∗(α)))

+ ∗Cyl (dt ∧ ∗CylL−1
0
∗(dα)).

Proof. Let ∗k and ∗kCyl be the Hodge star operator on differential k-forms on Bε(0) \ {0} and
(− log(ε),+∞)× S2, respectively. These two Hodge star operators are related by the following
formulas,

∗0f = −e−3t ∗0Cyl (L−1
0 )∗f, for all f ∈ Ω0(Bε(0) \ {0}),

∗1α = −e−t ∗1Cyl (L−1
0 )∗α, for all α ∈ Ω1(Bε(0) \ {0}),

∗2β = −et ∗2Cyl (L−1
0 )∗β, for all β ∈ Ω2(Bε(0) \ {0}),

∗3γ = −e3t ∗3Cyl (L−1
0 )∗γ, for all γ ∈ Ω3(Bε(0) \ {0}).

Let (d∗)k and (d∗Cyl)k denote the formal adjoint of d on differential k-forms on Bε(0) \ {0} and
(− log(ε),+∞)× S2, respectively.

Let α ∈ Ω1(Bεi(pi)). Then

(d∗)1α = ∗3d ∗1 α = ∗3d
(
−e−t ∗1Cyl L−1

0
∗(α)

)
= e−t ∗3

(
dt ∧ ∗1CylL−1

0
∗(α)− d(∗1CylL−1

0
∗(α)

)
= e2t

(
− ∗3Cyl (dt ∧ ∗1CylL−1

0
∗(α)) + ∗3Cyl(d(∗1CylL−1

0
∗(α)))

)
= e2t

(
− ∗3Cyl (dt ∧ ∗1CylL−1

0
∗(α)) + (d∗Cyl)1L

−1
0
∗(α)

)
.
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Let β ∈ Ω2(Bεi(pi)). Then

(d∗)2β = ∗2d ∗2 β = ∗2d
(
−et ∗2Cyl (L−1

0 )∗β
)

= −et ∗2
(
dt ∧ ∗2CylL−1

0
∗(β) + d(∗2CylL−1

0
∗(α)

)
= e2t

(
∗2Cyl(dt ∧ ∗2CylL−1

0
∗(β)) + ∗2Cyl(d(∗2CylL−1

0
∗(α))

)
= e2t

(
∗2Cyl(dt ∧ ∗2CylL−1

0
∗(β)) + (d∗Cyl)2(L−1

0
∗(β))

)
.

Let ∆ : Ω1(Bεi(pi))→ Ω1(Bεi(pi)). Then

∆α = d(d∗)1α+ (d∗)2dα = d
(
e2t
(
− ∗3Cyl (dt ∧ ∗1CylL−1

0
∗(α)) + (d∗Cyl)1L

−1
0
∗(α)

))
+ e2t

(
∗2Cyl(dt ∧ ∗2CylL−1

0
∗(dα)) + (d∗Cyl)2(L−1

0
∗(dα))

)
= e2t(2dt ∧ (− ∗3Cyl (dt ∧ ∗1CylL−1

0
∗(α)))

− d(∗3Cyl(dt ∧ ∗1CylL−1
0
∗(α))) + ∗2Cyl(dt ∧ ∗2CylL−1

0
∗(dα)))

+ e2t∆Cylα = e2t(F (α) + ∆Cylα),

where F : Ω1(Bεi(pi))→ Ω1(Bεi(pi)) is a 1st order differential operator given by

F (α) = −2dt ∧ (∗Cyl(dt ∧ ∗CylL−1
0
∗(α)))− d(∗Cyl(dt ∧ ∗CylL−1

0
∗(α)))

+ ∗Cyl (dt ∧ ∗CylL−1
0
∗(dα)).

The key property of these weighted Sobolev spaces is described in the following lemma.

Lemma 30. On real-valued 1-forms, ∆ : W 2,2
α (Ω1(M \Sp))→ L2

α−2(Ω1(M \Sp)) is Fredholm,
for α outside of a discrete subset of R, denoted by D(∆).

The lemma follows from Corollary 3.2.13, Lemma 3.3.4, Lemma 3.3.6 in [33].

Lemma 31. Let ∆ : W 2,2
α (Ω1(M \Sp))→ L2

α−2(Ω1(M \Sp)), whereM is a rational homology
3-sphere. Let α /∈ D(∆). Then

ker ∆ = {0}.

The proof is similar to the lemma 4.4 in [11] and lemma 3.4.4 in [33].

Proof. To show ∆ is Fredholm, one can construct an inverse for this operator, by taking the
inverse of the Laplacian away from the singular points M \ ∪iBεi(pi) — which can be done
since H1(M \ ∪iBεi(pi),R) = 0 — and glue it to the inverse of the Laplacian on the weighted
Sobolev spaces defined on the neighbourhood of the singular points. These local inverses close to
the singular points can be constructed by solving the Dirichlet problem, similar to the proposition
3.3.11 in [33].
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1.2.7.7 Solving the Longitudinal Part overM \ (∪jB2εj (qj) ∪ Sp)M \ (∪jB2εj (qj) ∪ Sp)M \ (∪jB2εj (qj) ∪ Sp)

In this section, we solve the linear equation over M \ (∪jB2εj (qj) ∪ Sp). In the Theorem 5, we
solve the longitudinal component of the linear problem, and in the Theorem 6, the transverse one.

Theorem 5. Let −1
2 ≤ α < 0 such that α,−α− 1 are not in D(∆). Let fL ∈ L2

α−2(M \ Sp).
Then there exists a solution to the equation ∆uL = fL, where uL ∈W 2,2

α (Ω1(M \ Sp)), and

‖uL‖
W 2,2
α (M\Sp)

≤ C‖fL‖L2
α−2(M\Sp),

for a constant C, independent of λ.

Proof. Pick α ∈ [−1
2 , 0) \D(∆). Therefore, ∆ : W 2,2

α (Ω1(M \ Sp))→ L2
α−2(Ω1(M \ Sp)) is

Fredholm. We have

L2
α−2 = ∆(W 2,2

α )⊕ ker ∆
W 2,2
−α−1

.

On the other hand,

ker ∆
W 2,2
−α−1

∼= H1(M \ Sp,R) = 0,

and therefore, ∆ : W 2,2
α (Ω1(M \ Sp))→ L2

α−2(Ω1(M \ Sp)) is surjective. Furthermore, since
it is a Fredholm operator, there is a constant C such that

‖uL‖
W 2,2
α
≤ C‖∆uL‖L2

α−2
.

1.2.7.8 The Transverse Component

In this section, we solve the transverse part of the linear equation, away from the points where
the scaled BPS-monopoles are located. Recall that on the transverse component our norms agree
with the standard Sobolev norms W k,p on the transverse component on M \ (∪jB2εj (qj) ∪ Sp).
For all smooth compactly supported L-valued differential forms uT ∈ Ω•(U, su(2)), we have

‖uT ‖2L2
α(U) = ‖uT ‖2L2(U),

‖uT ‖2
W 1,2
α (U)

= ‖uT ‖2W 1,2(U) := ‖uT ‖2L2(U) + ‖∇A0u
T ‖2L2(U),

‖uT ‖2
W 2,2
α (U)

= ‖uT ‖2W 2,2(U) := ‖uT ‖2W 1,2(U) + ‖∇A0(d∗2u
T )‖2L2(U).

The main theorem of this section is the following. The essential assumption is that the
monopole has a very large mass.

Theorem 6. Let U = M \ (∪jB2εj (qj) ∪ Sp). Let d2d
∗
2 : W 2,2(Ω1(U,L)) → L2(Ω1(U,L)).

Let fT ∈ L2(Ω1(U ;L)) such that fT|∪jB2εj
(qj)

= 0. For a sufficiently large average mass m,
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there exists a unique solution ξT ∈W 1,2(Ω1(U,L)) to d2ξ
T = fT of the form ξT = d∗2u

T , and

‖uT ‖W 2,2(U) ≤ C‖fT ‖L2(U),

where the constant C is independent of λ, which appears in the definition of the approximate
monopole (A0, Φ0).

The proof of this theorem is presented in a series of lemmas. Since the set of smooth
compactly supported 1-forms Ω1

c(U,L) is dense in the subset of L2(Ω1(U,L)) where the 1-forms
vanish on ∪jB2εj (qj), we only to prove the lemma for the case where fT is a smooth compactly
supported element in Ω1

c(U,L).

Lemma 32 (Step 1). Suppose fT is a smooth compactly supported L-valued 1-form on U . Let

E : W 1,2(Ω1(U,L))→ R,

E(uT ) :=
1

2

∫
U
|d∗2uT |2volg − 〈uT , fT 〉L2(U),

Then E(uT ) is convergent for all uT ∈W 1,2(Ω1(U,L)).

Proof. First we show ‖d∗2uT ‖2L2(U) is finite. Again, the key fact in proving this is the monopole
Weitzenböck formula. Note that on this region e0 = 0.

‖d∗2uT ‖2L2(U) = ‖∇A0u
T ‖2L2(U) + ‖[Φ0, u

T ]‖2L2(U) + 〈uT , Ric(uT )〉L2(U)

≤ (1 + 2‖Φ0‖2L2(U) + sup
x
|Ric(x)|)‖uT ‖2W 1,2(U) <∞.

Note that Φ0 is continuous and bounded on Uext, and therefore, it has finite L2-norm on Uext.
Moreover, on each B2εi(pi),

‖Φ0‖2L2(B2εj
(pj))
≤ C1

∫
B2εi

(pi)

1

r2
volg ≤ C2εi,

and therefore, ‖Φ0‖2L2(U) <∞.
By the Cauchy–Schwarz inequality we have

〈uT , fT 〉L2(U) ≤ ‖uT ‖L2(U)‖fT ‖L2(U) ≤ ‖uT ‖W 1,2(U)‖fT ‖L2(U) <∞,

and therefore, the action functional E(uT ) is convergent for all uT ∈ Ω1(U,L).

Lemma 33 (Step 2). The functional E : W 1,2(Ω1(U,L))→ R is continuous.

Proof. We should show the following functions are continuous,

‖d∗2 − ‖2L2(U) : W 1,2(Ω1(U,L))→ R, 〈−, fT 〉L2(U) : W 1,2(Ω1(U,L))→ R.
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To prove ‖d∗2 − ‖2L2(U) is continuous we should show

‖d∗2uTi ‖2L2(U) → ‖d
∗
2u
T ‖2L2(U), when uTi → uT in W 1,2(Ω1(U,L)).

By the Weitzenböck formula we know

‖d∗2(uT − uTi )‖2L2(U) = ‖∇A0(uT − uTi )‖2L2(U) + ‖[Φ0, (u
T − uTi )]‖2L2(U)

+ 〈Ric((uT − uTi )), (uT − uTi )〉L2(U)

≤ ‖(uT − uTi )‖2W 1,2(U) + ‖[Φ0, (u
T − uTi )]‖2L2(U)

+ sup
x
|Ric(x)|‖uT − uTi ‖L2(U),

which goes to zero as i→∞.
In order to prove 〈−, fT 〉L2(U) : W 1,2(Ω1(U,L))→ R is continuous, note that this map is

linear, and since W 1,2(Ω1(U,L)) is a Hilbert space, continuity is equivalent to being bounded.

〈uT , fT 〉L2(U) ≤ ‖uT ‖L2(U)‖fT ‖L2(U) ≤ ‖uT ‖W 1,2(U)‖fT ‖L2(U),

and therefore, the operator norm

sup{〈uT , fT 〉L2(U) | uT ∈W 1,2, ‖uT ‖W 1,2 = 1} ≤ ‖f‖L2(U) <∞,

which proves the linear map is bounded and continuous.

Lemma 34 (Step 3). E : W 1,2(Ω1(U,L))→ R is Gateaux-differentiable.

Proof. A direct computation shows

dTuE(vT ) =

∫
U
〈d∗2uT , d∗2vT 〉L2volg − 〈vT , fT 〉L2(U).

Note that for any uT , vT ∈W 1,2,∫
U
〈d∗2uT , d∗2vT 〉L2volg ≤ ‖d∗2uT ‖L2(U)‖d∗2vT ‖L2(U) <∞,

and

〈vT , fT 〉L2(U) ≤ ‖vT ‖L2(U)‖fT ‖L2(U) <∞.

Lemma 35 (Step 4). The functional

E : W 1,2(Ω1(U,L))→ R, E(uT ) :=
1

2

∫
U
|d∗2uT |2volg − 〈uT , fT 〉L2(U).

is strictly convex, when m is sufficiently large.
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Proof. 〈uT , fT 〉L2(U) is linear in u and we only need to show ‖d∗2uT ‖2L2(U) is strictly convex.
This reduces to showing that ‖d∗2(uT1 − uT2 )‖2L2(U) > 0 when uT1 , u

T
2 ∈ W 1,2(Ω1(U,L)) and

uT1 6= uT2 . Let uT = uT1 − uT2 . We should show

uT ∈W 1,2(Ω1(U,L)), d∗2u
T = 0 ⇒ uT = 0.

In fact, this shows ‖d∗2 − ‖L2 is a norm on W 1,2(Ω1(U,L)).

0 = ‖d∗2u‖2L2(R3) ≥ ‖∇A0u
T ‖2L2(U) + (

m2

4
− sup

x
|Ric(x)|)‖uT ‖2L2(U)

≥ ‖∇A0u
T ‖2L2(U) + ‖uT ‖2L2(U),

when m is large enough such that

m2

4
− sup

x
|Ric(x)| ≥ 1,

and therefore, uT = 0.

Lemma 36 (Step 5). E : W 1,2(Ω1(U,L))→ R has a unique minimizer, when m is sufficiently
large, and therefore, d2d

∗
2u
T = fT has a unique solution.

Proof. In order to prove this, we use the following fact.
Let E : W → R be a convex, continuous, real-Gateaux-differentiable functional defined on

a real reflexive Banach space W such that duE(u) > 0 for any u ∈ W with ‖u‖W ≥ R > 0.
Then there exists an interior point u0 of {u ∈W | ‖u‖W < R} which is the unique minimizer of
E and du0E = 0.

Let W = W 1,2(Ω1(U,L)) equipped with the norm L2 defined by ‖ − ‖L2(U). Then

‖d∗2uT ‖2L2(U) = ‖∇A0u
T ‖2L2(U) + ‖[Φ0, u

T ]‖2L2(U) + 〈Ric(uT ), uT 〉L2(U)

≥ ‖∇A0u
T ‖2L2(U) + (

m2

4
− sup

x
|Ric(x)|)‖uT ‖2L2(U)

≥ ‖∇A0u
T ‖2L2(U) + ‖uT ‖2L2(U),

when

m2

4
− sup

x
|Ric(x)| ≥ 1.
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Let R = 1 + ‖fT ‖L2(U). Then ‖uT ‖L2(U) > 1 + ‖fT ‖L2(U). Therefore,

dTuE(uT ) = ‖d∗2uT ‖2L2(U) − 〈u
T , fT 〉L2(U)

≥ ‖∇A0u
T ‖2L2(U) + ‖uT ‖2L2(U) − ‖u

T ‖L2(U)‖fT ‖L2(U)

= ‖∇A0u
T ‖2L2(U) + ‖uT ‖L2(U)(‖uT ‖L2(U) − ‖fT ‖L2(U))

≥ ‖∇A0u
T ‖2L2(U) + ‖uT ‖L2(U) > R > 0,

when

‖uT ‖L2(U) > R = 1 + ‖fT ‖L2(U) and m >
√

1 + 4 sup
x
|Ric(x)|.

Therefore, E has a unique minimizer uT where ‖uT ‖L2(U) < 1 + ‖fT ‖L2(U).

Lemma 37 (Step 6). For m sufficiently large, the unique solution uT of the previous lemma is in
W 1,2(U,L), and satisfies

‖uT ‖W 1,2(U) ≤ C‖f‖L2(U),

for a uniform constant C.

Proof. We have

‖fT ‖2L2 = ‖d2d
∗
2u
T ‖2L2 ≥ ‖∇AuT ‖2L2 + (

m2

4
− sup |Ricx|)‖uT ‖2L2 ,

assuming m is sufficiently large, we get

‖fT ‖2L2 ≥ C‖uT ‖2W 1,2 ,

for a positive constant C.

Lemma 38 (Step 7). Suppose m is sufficiently large. Then the unique solution uT of Lemma 36
is in W 2,2(U,L), and satisfies

‖uT ‖W 2,2(U) ≤ C‖fT ‖L2(U),

for a positive constant C.

Proof. We should find a uniform bound on ‖∇A0d
∗
2u
T ‖L2 in terms of ‖fT ‖L2 . Let (aT , ϕT ) =

D∗(uT , 0) = d∗2u
T in the Weitzenböck formula for DD∗. By multiplying this formula by d∗2u

T ,
and integrating over U , we get

‖∇A(d∗2u
T )‖2L2 ≤ ‖∇A(d∗2u

T )‖2L2 + ‖[Φ, (d∗2uT )]‖2L2

≤ ‖D(d∗2u
T )‖2L2 + sup

x
|Ric(x)|‖d∗2uT ‖2L2 . (1.2.37)
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We start by bounding ‖D(d∗2u
T )‖2L2 . Recall that

D(d∗2u
T ) = DD∗(uT , 0) = (fT , ∗[e0 ∧ ∗uT ]) = (fT , 0).

By taking the L2-norm over U , we get

‖D(d∗2u
T )‖2L2 = ‖fT ‖2L2 ,

The term ‖d∗2uT ‖2L2 can be bounded uniformly by ‖fT ‖2L2 , and therefore,

‖∇A0(d∗2u
T )‖2L2(U) ≤ ‖D(d∗2u

T )‖2L2 + sup
x
|Ric(x)|‖d∗2uT ‖2L2 ≤ (1 + sup

x
|Ric(x)|)‖fT ‖2L2 .

hence,

‖uT ‖W 2,2(U) ≤ C‖fT ‖L2(U),

for a uniform constant C.

1.2.7.9 The Function Spaces overM \ SpM \ SpM \ Sp

We start by setting up the suitable function spaces over M \ Sp by gluing the weighted function
spaces defined over R3 and the function spaces defined for the longitudinal component and
transverse component over U . Then we use these spaces to solve the linearized problem on
M \ Sp.

Let δqj and δpi be the injectivity radius at the points qj ∈ Sq and pi ∈ Sp, respectively. For
each qj ∈ Sq, let

wj(x) =

{√
λ−2
j + r2

j , rj ≤ δqj
1, rj ≥ 1,

(1.2.38)

and for each point pi ∈ Sp, let

wi(x) =

{
ri, ri ≤ δpi
1, ri ≥ 1,

(1.2.39)

where rj and ri are the geodesic distance from the points qi and pi, respectively.

Definition 8. Let Uext = M \ (∪iB2εi(pi) ∪j B2εj (qj)). For any smooth compactly supported
differential form u ∈ Ωc(M \ S, su(2)), let

‖u‖2L2
α1,α2

(M\Sp) = ‖u‖2L2(Uext)
+

k∑
j=1

‖w−α1− 3
2

j u‖2L2(B2εj
(qj))

+
n∑
i=1

‖uT ‖2L2(B2εi
(pi))

+

n∑
i=1

‖w−α2− 3
2

i uL‖2L2(B2εi
(pi))

.
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Furthermore,

‖u‖2
W 1,2
α1,α2

(M\Sp)
= ‖u‖2L2

α1,α2
(M\Sp) + ‖∇A0u‖2L2

α1−1,α2−1(M\Sp)

+

k∑
j=1

‖[Φ0, u]‖2L2
α2−1(B2εj

(qj))
.

Moreover,

‖u‖2
W 2,2
α1,α2

(M\Sp)
= ‖u‖2

W 1,2
α1,α2

(M\S)
+ ‖∇A0(d∗2u)‖2

W 1,2
α1−2,α2−2(M\Sp)

+
k∑
j=1

‖[Φ0, d
∗
2u]‖2

W 1,2
α2−2(B2εj

(qj))
.

The spaces W k,2
α1,α2 are defined as the completion of C∞0 with respect to the corresponding norms,

for k ∈ {0, 1, 2}. Furthermore, one can define similar norms and weighted Sobolev spaces
W k,p
α1,α2 for any p ≥ 2.

1.2.7.10 Solving the Linear Equation overM \ SpM \ SpM \ Sp and the Fixed Point Theorem

In this section, we solve the linear equation for an su(2)-valued 1-form f on M \ Sp. This can be
done by patching Theorems 3, 5 and 6. The idea is writing f = χ0f +

∑k
j=1 χjf , where χj is

a cut-off function which is equal to 1 on B2εj (qj), χj = 0 on M \ B3εj (qj), and χ0 + χj = 1
for all j ∈ {1, . . . , k}. Each equation d2d

∗
2uj = χjf can be solved using Theorem 3, and the

equation d2d
∗
2u0 = χ0f , using Theorems 5 and 6.

Then we would glue these solutions to get an approximate solution for the linear equation on
M \ Sp. Using an iteration argument one can see the linear equation has a solution. However,
in order to be able to use an iteration argument, we will need more subtle cut-off functions.
This is the 3-dimensional version of Lemma 7.2.10 in [19], which is about cut-off functions on
4-dimensional manifolds.

Lemma 39. There is a constant K and for any N and λ there is a smooth function β = βN,λ on
R3 with β(x) = 1 where |x| ≤ N−1λ

1
2 and β(x) = 0 where |x| ≥ Nλ

1
2 such that

‖∇β‖L3 ≤
K

(log(N))
2
3

.

Proof. This lemma is clearer in cylindrical coordinates. We can transfer the problem to a
cylindrical space since the Lp-norm on Ω1(M) is conformally invariant if and only if p =
dim(M). Therefore, L3 is conformally invariant on 1-forms on R3. Let L : R3 \ {0} ∼=
(−∞,+∞)× S2, be the identification defined by

L(r, θ, ϕ) = (− log(r), θ, ϕ),

where (r, θ, ϕ) denotes the spherical coordinates on R3.
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Let (t, θ, ϕ) denotes the cylindrical coordinates on (−∞,+∞)× S2. We are looking for a
cut-off function

β̃ : R× S2 → R,

such that

β̃(t, θ, ϕ) = 0, when t < −1

2
log(λ)− log(N),

β̃(t, θ, ϕ) = 1, when t > −1

2
log(λ) + log(N),

‖∇β̃‖L3 ≤
K

log(N)
.

Moreover, we ask β̃ to be only a function of t,

β̃(t, θ1, ϕ1) = β̃(t, θ2, ϕ2),

for all (θ1, ϕ1), (θ2, ϕ2) ∈ S2.
One can take β̃ to be a smooth function where

β̃(t, θ, ϕ) = 0, when t < −1

2
log(λ)− log(N),

β̃(t, θ, ϕ) = 1, when t > −1

2
log(λ) + log(N),

∂tβ̃ ≈ −
1

2 log(N)
, when − 1

2
log(λ)− log(N) < t < −1

2
log(λ) + log(N).

Then, we have

‖∇β̃‖L3 = ‖∂tβ̃‖L3 ≤
K

(log(N))
2
3

,

for a constant K.

Theorem 7. Let

d2 : W 1,2
α1−1,α2−1(Ω1(M \ Sp, gP )⊕ Ω0(M \ Sp, gP ))→ L2

α1−2,α2−2(Ω1(M \ Sp, gP )).

For any α1 ∈ [−1
2 , 0) and α2 outside of a discrete subset, and for sufficiently large m, the linear

equation d2ξ = f has a unique solution ξ ∈W 1,2
α1−1,α2−1, for each f ∈ L2

α1−2,α2−2. Moreover,

‖ξ‖
W 1,2
α1−1,α2−1(M\Sp)

≤ ‖f‖L2
α1−2,α2−2(M\Sp).
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Proof. Let χj be the cut-off function, centered at qj ,

χj =

{
1 if dist(x, qj) ≤ 2εj ,

0 if dist(x, qj) ≥ 3εj ,

χj for j ∈ {1, . . . , k} such that |∇χj | ≤ 2
εj

.
Let χ0 be the cut-off function, centered away from the points {q1, . . . , qk},

χ0 =

{
1 if dist(x, qj) ≥ 3εj for all j ∈ {1, . . . , k}
0 if dist(x, qj) ≤ 2εj for some j ∈ {1, . . . , k},

such that χ0 + χj = 1, and |∇χ0| ≤ maxj{2/εj}.
Let fj = χjf . For each j ∈ {1, . . . , k}, fj is supported close to a point qj , and as explained

before, we can localize the problem on B3εj (qj), and transfer it to R3. Note that

‖fj‖L2
α1−2

≤ ‖f‖L2
α1−2,α2−2

<∞,

and therefore, using theorem 3, there are uj ∈W 2,2
α such that on B3εj (qj) we have d2d

∗
2uj = fj ,

where

‖uj‖W 2,2
α1

(R3)
≤ C‖fj‖L2

α1−2,α2−2(R3) ≤ C‖f‖L2
α1−2,α2−2(M\Sp).

Let f0 = χ0f . The section f0 is supported on M \ (∪j=1B2εj (qj) ∪ Sp), and is in L2
α2−2.

Moreover, it vanishes on ∂(∪jB2εj (qj)). Using theorems 5 and 6, there is u0 ∈W 2,2
α2 (U) such

that

d2d
∗
2u0 = f0, ‖u0‖W 2,2

α2
(U)
≤ C‖f0‖L2

α2−2(U).

Let βj be the cut-off function introduced in Lemma 39, centered at qj ,

βj(x) = 1, if |x| < N−1λ
1
2 ,

βj(x) = 0, if |x| > Nλ
1
2 ,

‖∇βj‖L3 ≤
K

(log(N))
2
3

,

for all j ∈ {1, . . . , k}, for a constant K > 0, and any N > 0.
Let β0 the cut-off function supported away from the points qj such that β0 + βj = 1. Using

these cut-off functions we can transfer the solutions back to M and glue them together. Let

F : L2
α1−2,α2−2(Ω1(M \ Sp, gP ))→W 1,2

α1−1,α2−1(Ω1(M \ Sp, gP )⊕ Ω0(M \ Sp, gP )),
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be the map defined by

F (f) =
k∑
j=0

βjd
∗
2uj .

Note that F (f) ∈W 1,2
α1−1,α2−1. In fact,

‖F (f)‖L2
α1−1,α2−1

= ‖
k∑
j=0

βjd
∗
2uj‖L2

α1−1,α2−1
≤

k∑
j=0

‖d∗2uj‖L2
α1−1,α2−1

≤ C
k∑
j=0

‖uj‖W 1,2
α1,α2

≤ C ′
k∑
j=0

‖fj‖L2
α1−2,α2−2

≤ (k + 1)C ′‖f‖L2
α1−2,α2−2

.

Note that βjf = βjξjf = βjfj , when εj > 0 is sufficiently small. Moreover,

‖∇A0F (f)‖L2
α1−2,α2−2

= ‖
k∑
j=0

∇A0(βjd
∗
2uj)‖L2

α1−2,α2−2

≤
k∑
j=0

(‖∇βj · d∗2uj‖L2
α1−2,α2−2

+ ‖βj∇A0(d∗2uj)‖L2
α1−2,α2−2

)

≤
k∑
j=0

(‖∇βj‖L3‖d∗2uj‖L6
α1−2,α2−2

+ ‖∇A0(d∗2uj)‖L2
α1−2,α2−2

)

≤
k∑
j=0

(
K

(log(N))
2
3

+ 1

)
‖d∗2uj‖W 1,2

α1−2,α2−2

≤ C
k∑
j=0

(
K

(log(N))
2
3

+ 1

)
‖fj‖L2

α1−2,α2−2

≤ C(k + 1)

(
K

(log(N))
2
3

+ 1

)
‖f‖L2

α1−2,α2−2
,

where in the second inequality we have used

‖fg‖L2
α1−2,α2−2

≤ ‖f‖L3‖g‖L6
α1−2,α2−2

,

which follows from the Hölder’s inequality. Also in the third inequality we have used

‖h‖L6
α1−2,α2−2

≤ ‖h‖
W 1,2
α1−2,α2−2

,

which follows from the Sobolev inequality.
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Moreover, we have

‖[Φ,F (f)]‖L2
α1−2,α2−2

≤
k∑
j=0

‖[Φ, d∗2uj ]‖L2
α1−2,α2−2

≤
k∑
j=0

‖d∗2uj‖W 1,2
α1−1,α2−1

≤ C
k∑
j=0

‖fj‖L2
α1−2,α2−2

≤ C(k + 1)‖f‖L2
α1−2,α2−2

,

and therefore,

‖F (f)‖
W 1,2
α1−1,α2−1

≤ C ′‖f‖L2
α1−2,α2−2

,

for a positive constant C ′.
The map F is close to being a right-inverse of d2.

‖f − d2F (f)‖L2
α1−2,α2−2

= ‖
k∑
j=0

∇βj · d∗2uj‖L2
α1−2,α2−2

≤
k∑
j=0

‖∇βj‖L3‖d∗2uj‖W 1,2
α1−1,α2−1

≤ C

(log(N))
2
3

‖f‖L2
α1−2,α2−2

.

This shows, the map (Id− d2 ◦ F ) is a contraction on L2
α1−2,α2−2, when N is sufficiently large,

and therefore, by the method of iteration, we get a map which is the right-inverse of d2.

The next step is to solve the full non-linear Bogomolny equation.

1.2.8 The Quadratic Term and the Fixed Point Theorem

In this section, we complete the construction of a family of solutions to the Bogomolny equation
by the use of a fixed point theorem. In the previous section, we saw that there is a solution to the
linearized equation. The remaining part of the equation is quadratic, which we will consider in
this section.

Let

Q : W 1,2
α1−1,α2−1

(
Ω1(M \ Sp, gP )⊕ Ω0(M \ Sp, gP )

)
→ L2

α1−2,α2−2

(
Ω1(M \ Sp, gP )

)
,

be the map defined by the quadratic part of the Bogomolny equation, given by

Q(a, ϕ) = ∗ [a ∧ a]

2
− [a, ϕ].

The equation 1.1.1 can be written as

(d2 +Q)(a, ϕ) = −e0.
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Following Theorem 7, let d−1
2 be a right-inverse of d2.

Let f = d2(a, ϕ). Let ξ be a solution to the equation d2ξ = f , and therefore, ξ = (a, ϕ). Let

q(f) := Q ◦ d−1
2 (f),

and therefore, we have

f + q(f) = −e0.

The proof of the existence of the solution to the Bogomolny equation is based on the following
lemma from [19].

Lemma 40 (Donaldson-Kronheimer). Let B be a Banach space and q : B → B a smooth map
such that for all f, f ′ ∈ B,

‖q(f)− q(f ′)‖ ≤ K(‖f‖+ ‖f ′‖)‖f − f ′‖, (1.2.40)

for a constant K. Then, if ‖e‖ ≤ 1
10K there is a unique solution f to the equation

f + q(f) = e,

where ‖f‖ ≤ 2‖e‖.

Following this lemma, let the Banach space B = L2
α1−2,α2−2(Ω1(M \ Sp, gP )), and let

e = −e0. We should show the assumptions of Lemma 40 holds in our case.

Lemma 41. The error estimate ‖e0‖L2
α1−2,α2−2

can be made sufficiently small.

Proof. Note that e0 = 0 on M \ (∪jB2εj (qj) ∪ Sp). On each B2εj (qj), following Lemma 12,

‖e0‖L2
α1−2(B2εj

(qj))
=

∫
B2εj

(qj)
w−2α+1
j |e0|2volg ≤ C

∫
B2εj

(qj)
w−2α+1
j volg ≤ Cε4

j ,

for a constant C > 0, and therefore, it can be made as small as necessary.

To complete the proof, we should show q(f) = Q ◦ d−1
2 (f) satisfies 1.2.40 for some K,

which is the content of the following lemma.

Lemma 42. There exists a constant K such that

‖q(f)− q(f ′)‖L2
α1−2,α2−2

≤ K‖f + f ′‖L2
α1−2,α2−2

‖f − f ′‖L2
α1−2,α2−2

.

Let

q̃(f, f ′) :=
1

2
(q(f + f ′)− q(f)− q(f ′)).

The proof of Lemma 42 is based on the following lemma.
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Lemma 43. The map

q̃ : W 1,2
α1−1,α2−1(Ω1(M \ Sp))×W 1,2

α1−1,α2−1(Ω1(M \ Sp))→ L2
α1−2,α2−2(Ω1(M \ Sp)),

is continuous. Moreover

‖q̃(f, f ′)‖L2
α1−2,α2−2

≤ C‖f‖
W 1,2
α1−1,α2−1

‖f ′‖
W 1,2
α1−1,α2−1

, (1.2.41)

for a positive constant C.

Proof of Lemma 42 using 43. We have

‖q(f)− q(f ′)‖L2
α1−2,α2−2

= ‖q̃(f + f ′, f − f ′)‖L2
α1−2,α2−2

≤ C‖f + f ′‖
W 1,2
α1−1,α2−1

‖f − f ′‖
W 1,2
α1−1,α2−1

.

Proof of Lemma 43. One only need to show

‖q(f)‖2L2
α1−2,α2−2

≤ C‖f‖2
W 1,2
α1−1,α2−1

.

The Lemma 43 can be localized over different regions of M \ Sp. Suppose f is supported on
B2εj (qj) for some j ∈ {1, . . . , k}. Similar to the study of the linearized equation on this region,
we can transform the problem to R3. We should show

‖q(f)‖2L2
α1−2(R3) ≤ C‖f‖

2
W 1,2
α1−1(R3)

.

By the Hölder’s inequality, when λj is sufficiently large,

‖q(f)‖2L2
α1−2(R3) =

∫
R3

w−2α1+1
j |q(f)|2volg ≤ C1ε

2α1
j

∫
R3

w−4α1+1
j |f |4volg

≤ C1ε
2α1
j ‖w

−α1− 1
2

j f‖L2‖w−α1+ 1
2

j f‖3L6 ,

for a positive constant C1.
By the Sobolev inequality we have

‖w−α1+ 1
2

j f‖L6 ≤ CSob‖w
−α1+ 1

2
j f‖W 1,2 ≤ C2‖f‖W 1,2

α1−2
≤ C2‖f‖W 1,2

α1−1
,

for a positive constant C2, and therefore,

‖q(f)‖2L2
α1−2(R3) ≤ C1C2ε

2α1
j ‖f‖

4
W 1,2
α1−1

,
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hence on this region, 1.2.41 holds with

C = C1C2ε
2α1
j .

Second, suppose f is supported on U = M \ (∪jB2εj (qj) ∪ Sp). Let f = fL + fT .

q(f) = q̃(f, f) = q̃(fL + fT , fL + fT ) = q̃(fL, fL) + q̃(fL, fT ) + q̃(fT , fL) + q̃(fT , fT ).

We have

q̃(fL, fL) = q(fL) = Q ◦ d−1
2 (fL).

The linear maps d2 and d−1
2 , preserve the bundle decomposition induced by a Higgs fields Φ0,

and therefore, (aT1 , ϕ
T
1 ) = d−1

2 (fL) is a section of longitudinal part. However, the Lie bracket
vanishes when restricted to the longitudinal sub-bundle,

Q ◦ d−1
2 (fL) = 0,

and therefore,

q(f) = (q̃(fL, fT ) + q̃(fT , fL)) + q̃(fT , fT ),

where (q̃(fL, fT ) + q̃(fT , fL)) is the transverse component and q̃(fT , fT ) is the longitudinal
one.

For the transverse component 1.2.41 becomes

‖q̃(fL, fT )‖L2(U) ≤ C‖fL‖W 1,2
α2−1(U)

‖fT ‖W 1,2(U). (1.2.42)

By the Hölder’s inequality, we have

‖q̃(fL, fT )‖L2(U) ≤ C‖fL‖L3‖fT ‖L6 ≤ C‖w−α2− 1
2 fL‖L3‖fT ‖W 1,2

≤ C‖w−α2− 1
2 fL‖W 1,2‖fT ‖W 1,2 ≤ C‖fL‖W 1,2

α2−1
‖fT ‖W 1,2 ,

where C is a uniform constant.
For the longitudinal component 1.2.41 becomes

‖q(fT )‖L2
α2−2(U) ≤ C‖fT ‖2W 1,2(U). (1.2.43)

By the Hölder’s and Sobolev inequalities we have

‖q(fT )‖L2
α2−2(U) = ‖w−α2+ 1

2 q(fT )‖L2(U) ≤ C‖w−α2+ 1
2 fT ‖L3‖fT ‖L6

≤ C‖fT ‖L3‖fT ‖L6 ≤ C‖fT ‖2W 1,2 ,

for a uniform constant C.
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This completes the gluing construction of irreducible SU(2)-monopoles with Dirac singulari-
ties on rational homology 3-spheres.
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1.3 Monopoles on Asymptotically Cylindrical 3-Manifolds

In this section, we address the problem of the existence of monopoles, both smooth and singular,
on asymptotically cylindrical 3-manifolds. However, since the problem is very similar to the
compact case, we will be very brief.

Let (M, g) be an asymptotically cylindrical 3-manifold. Let (Σ, gΣ) be the cross-section of
the 3-manifold at infinity, where Σ = Σ1 ∪ . . . ∪ Σl and l = b0(Σ). Let ti : M → R be a radius
function on the ith end of the manifold.

There are two interesting classes of monopoles to consider on asymptotically cylindrical
3-manifolds.

• Singular Monopoles. Monopoles with Dirac singularities and asymptotic conditions

lim
ti→∞

|dAΦ| = 0, lim
ti→∞

|Φ| = Mi, (1.3.1)

where Mi > 0 is a constant, called the mass of the monopole on the ith end.

• Smooth Monopoles. Smooth monopoles (without singularities) such that on each end of
the manifold

lim
ti→∞

|Φ| = Ki

Vol(Σi)
ti +Mi +O(t−1

i ), (1.3.2)

where Ki ∈ N and Mi > 0 are called the charge of the monopole and the mass of the
monopole on the ith end, respectively.

A natural condition to consider is to ask the monopole to have finite Yang-Mills-Higgs energy.
This would imply

FA → 0, dAΦ→ 0, |Φ| →Mi, as ti →∞. (1.3.3)

This assumption implies the asymptotic conditions 1.3.1. Similar to the case of monopoles
on closed 3-manifolds, smooth monopoles on asymptotically cylindrical 3-manifolds with the
asymptotic condition 1.3.3 satisfy stronger conditions.

Lemma 44. Let (M, g) be a asymptotically cylindrical Riemannian 3-manifold. Let G be a
compact Lie group. Any smooth monopole (A,Φ) on a principal G-bundle P → M with the
asymptotic condition 1.3.3 satisfies the following equations,

∗FA = dAΦ = 0. (1.3.4)

Proof. Let t : M → (0,∞) denote the distance from a fixed point x ∈M . Let MT = t−1(0, T ]
for any T ∈ R+. The Bogomolny equation implies

∆AΦ = d∗AdAΦ = ∗dAFA = 0, (1.3.5)
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and therefore,

0 = 〈∆AΦ,Φ〉MT
= 〈d∗AdAΦ,Φ〉MT

=

∫
MT

|dAΦ|2volg −
∫
∂MT

(∗dAΦ)Φ.

As we take limit T →∞, the integrand (∗dAΦ)Φ→ 0, and the area of the slice ∂MT converges
to a constant, and therefore,

0 = 〈∆AΦ,Φ〉M = ‖dAΦ‖2L2(M),

thus, ∗FA = dAΦ = 0.

Note that with the asymptotic conditions 1.3.1 the total charge of a singular monopole at the
Dirac singularities vanishes.

Lemma 45. Let (M, g) be a asymptotically cylindrical Riemannian 3-manifold. Let (A,Φ) be a
monopole with Dirac singularites on a principal U(1)-bundle P →M \ {p1, . . . , pn} with the
asymptotic condition

lim
ti→∞

|Φ(x)| = Mi +O(t−1
i ), (1.3.6)

and Dirac singularities with charge ki ∈ N at pi for i ∈ {1, . . . , n}. Then

n∑
i=1

ki = 0. (1.3.7)

Proof. Let t : M → R denote the distance from a fixed point x0 ∈M . Let MT = t−1[0, T ] for
any T ∈ R+. The Bogomolny equation implies

∆AΦ = d∗AdAΦ = ∗dAFA = 0, (1.3.8)

on M \ {p1, . . . , pn}, and therefore, by the Stokes’ theorem and for any T > 0, we have

0 =

∫
MT \∪i{pi}

(∆AΦ)volg =

n∑
i=1

∫
∂Bε(pi)

∗dΦ−
∫
t−1(T )

∗dΦ = 2π

n∑
i=1

ki −
∫
t−1(T )

∗dΦ.

On the other hand, the asymptotic condition 1.3.6 on an asymptotically cylindrical manifold
implies

lim
T→∞

∫
t−1(T )

∗dΦ = 0,

and therefore,
∑n

i=1 ki = 0.

In fact, as mentioned earlier we can consider a more generalized asymptotic conditions 1.3.2.
The asymptotic conditions 1.3.3 imply Ki = 0. With the asymptotic conditions 1.3.2 some of the

72



charges can run into infinity. In this case, the sum of the charges at the singular points and at the
ends of the manifold vanishes, with the similar proof as the lemma above.

Singular Monopoles on Asymptotically Cylindrical 3-Manifolds. Let (M, g) be an ori-
ented asymptotically cylindrical Riemannian 3-manifold with b2(M) = 0. For any k ∈ N, there
exists an irreducible monopole with Dirac singularities with charge k and asymptotic conditions
1.3.1 on a principal SU(2)-bundle P →M \ {p1, . . . , pn}.

The proof of this statement follows the same line of thought as the existence theorem of
singular monopoles on closed 3-manifolds. Since the proof is similar to the closed case, we only
sketch the proof here without going into the details.

• The first step is to produce an Abelian Dirac monopole with singularities on (M, g), where

lim
ti(x)→∞

|Φ(x)| = Mi +O(t−1
i ), (1.3.9)

with Dirac singularities at points p1, . . . , pn with integer charges k1, . . . , kn such that∑n
i=1 ki = 0 such that some of them are of charge +1. The proof is similar to the

construction of the Dirac monopoles on closed 3-manifolds, as we saw in section 1.2.2.

• The second step is to smooth out some of the singularities with charge +1 by gluing scaled
BPS SU(2)-monopoles and leave out the rest of the singular points not smoothed-out to
construct an approximate singular monopole similar to what we did in section 1.2.4 for
approximate monopoles over closed 3-manifolds.

• The third step is the deformation. The resulting configuration from the step two is an
approximate monopole and it does not necessarily satisfy the Bogomolny equation, but in
a suitable norm, it is close to a solution and should be deformed into a genuine monopole.
To solve the linear problem, we should combine the weighted Sobolev spaces we defined
earlier with the Lockhart-McOwen Sobolev spaces on asymptotically cylindrical manifolds.

Smooth Monopoles on Asymptotically Cylindrical 3-Manifolds. Let (M, g) be an ori-
ented asymptotically cylindrical Riemannian 3-manifold with b2(M) = 0. For any k ∈ N,
there exists a smooth irreducible monopole with charge k and asymptotic conditions 1.3.2 on a
principal SU(2)-bundle P →M .

The proof is similar to the previous gluing constructions we studied in this chapter. In order
to prove the existence of smooth monopoles,

• The first step is to produce an Abelian Dirac monopole with singularities on (M, g), where

lim
ti(x)→∞

|Φ| = Ki

V ol(Σi)
ti +Mi +O(t−1

i ), (1.3.10)

with Dirac singularities at points p1, . . . , pn with charge +1 such that

n−
b0(Σ)∑
i=1

Ki = 0.
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• The second step is to smooth out all of the singular points p1, . . . , pn with charge +1 by
gluing scaled BPS SU(2)-monopoles and construct an approximate monopole.

• The third step is deforming the approximate monopole to a genuine one.

1.3.1 Monopoles and Connected Sum

A relevant problem to our gluing argument is the construction of monopoles on connected sum
manifolds. Let (M1, g1) and (M2, g2) be two compact oriented Riemannian 3-manifolds with
b2(Mi) = 0 for i ∈ {1, 2}. Let P1 → M1 and P2 → M2 be two principal SU(2)-bundles.
Let (Ai, Φi) be a singular SU(2)-monopole on Pi for i ∈ {1, 2}. In this section, very briefly,
we address the problem of constructing a monopole on the connected sum M1#M2 using the
monopoles (A1, Φ1) and (A2, Φ2).

Suppose (A1, Φ1) and (A2, Φ2) are two monopoles with Dirac singularities and large mass,
similar to the ones we constructed in this chapter. Suppose pi ∈Mi is a point which is a Dirac
singularity of (Ai, Φi) for i ∈ {1, 2}. Moreover, assume these monopoles have a common signed
charge k at these points. By adding a constant, let’s assume the mass of (A1, Φ1) at p1 is equal
to the mass of (A2, Φ2) at p2, where this common value is denoted by m. One can construct a
monopole (A,Φ) on a principal SU(2)-bundle P → M1#M2 which, up to gauge, is close to
(Ai, Φi) on Pi →Mi for i ∈ {1, 2}.

Suppose an identification of a small ball around p1 with a small ball around p2 is fixed,

f : Bε(p1)→ Bε(p2),

such that f(p1) = p2.
Moreover, suppose a bundle identification above these open balls is chosen such that it covers

f : Bε(p1)→ Bε(p2). This can be used to construct a connected sum bundle P →M1#M2. On
this small open ball, we have

|(A1, Φ1)− (A2, Φ2)| = O(me−mr),

where r denotes the geodesic distance from the point p1 = p2.
We can define the approximate connected sum monopole by letting

(A,Φ) = ξ1(A1, Φ1) + ξ2(A2, Φ2),

where ξ1 and ξ2 are the functions where

ξi =

{
1 on M \Bε(pi)
1
2 on Bε/2(pi),

and ξ1 + ξ2 = 1.
This is an approximate connected sum monopole with Dirac singularities on M1#M2. Let

e0 = ∗FA − dAΦ. By increasing the mass m, we can make e0 sufficiently small and satisfy the
assumption of our gluing method, which we used to construct monopoles on rational homology
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3-spheres, and therefore, this approximate singular monopole can be deformed to a genuine
singular monopole on the connected sum space.

The picture is clearer over asymptotically cylindrical manifolds. Let (Ai, Φi) be a singular
SU(2)-monopole on an asymptotically cylindrical 3-manifold (Mi, gi) for i ∈ {1, 2} with the
asymptotic conditions 1.3.1, with the common mass m at infinity. One can follow the same line
of thought to construct a monopole on the manifold with long neck constructed by gluing M1 and
M2. In this case, rather than increasing the mass m, one can extend the neck of the base manifold
to decrease the error term.

Figure 1.2: Connected Sum Monopole

1.4 Monopoles with Singularities Along Knots

One can study solutions to the Bogomolny equation on 3-manifolds with other types of singulari-
ties. One interesting example has been studied by Sun [84], where he investigates monopoles
on R3 with singularity along a knot K ⊂ R3. In this section, we investigate a framework to
generalize this idea to study monopoles with knot singularity on closed 3-manifolds.

Sun studied pairs (AK , ΦK), defined on a principal SU(2)-bundle P → R3 \ K, which
satisfy the Bogomolny equation, and the connection A has monodromy γ around K. Suppose an
arc length parametrization of the knot K is fixed, which by an abuse of notation, it is denoted by
K : [0, l]→ R3, where l = length(K). Let NK be the normal bundle of the knot K in R3 and
e1, e2 : [0, l]→ NK an orthonormal frame of NK . The points on a tubular neighbourhood of the
knot K can be parametrized by

(s, x, y)→ K(s) + xe1(s) + ye2(s) ∈ R3. (1.4.1)

On a tubular neighbourhood of the knot K, the model singular solution (A,Φ) is given by

(AK , ΦK) = (γσdθ,mσ), (1.4.2)

where σ ∈ su(2), dθ is only defined on an ε-neighbourhood of the knot for sufficiently small ε
by the equation eiθ = x+ iy, and m is a constant.

By the monopoles with singularity along a knot K, we refer to monopoles defined on the
complement of K, which on a small neighbourhood of K, they agree with the model solution
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1.4.2 up to higher order terms in r, where r denotes the geodesic distance from K.
Sun extends this monopole to the entire R3 \K with different charges by gluing some BPS-

monopoles to (AK , ΦK). Moreover, he shows a neighbourhood of a solution to the Bogomolny
equations on R3 with this prescribed knot singularity in the moduli space of these monopoles has
an analytical structure.

Similar to Sun’s work, one would hope to study solutions to the Bogomolny equation on other
Riemannian 3-manifolds with singularity along a knot, or more generally, a link. An interesting
case is when this 3-manifold is closed. However, a monopole with a knot singularity on a closed
3-manifold has a vanishing curvature.

Theorem 8. Let (M, g) be a closed, oriented, Riemannian 3-manifold. Let G be a compact Lie
group. Let (AK , ΦK) be a monopole on a principal G-bundle P →M \K with the model knot
singularity 1.4.2 along a knot K ⊂M . Then on M \K the pair (AK , ΦK) satisfies the stronger
equations

∗FAK = dAKΦK = 0.

Proof. On the complement of the knot ∆AKΦK = 0. We have

lim
r→0
|ΦK | = m,

where m is a positive constant and r is the geodesic distance from the knot, and therefore,

0 = 〈∆AKΦK , ΦK〉L2(M\NK(ε)) = ‖dAKΦK‖
2
L2(M\Bε(K)) −

∫
∂BK(ε)

∗(dAKΦK)ΦK ,

where ∂NK(ε) is the boundary of the ε-tubular neighbourhood of the knot.
However, as ε → 0, both the area of ∂BK(ε) and ∗(dAKΦK)ΦK converge to zero, and

therefore, by taking limit and letting ε→ 0, we have

0 = 〈∆AKΦK , ΦK〉L2(M\K) = ‖dAKΦK‖
2
L2(M\K),

hence, ∗FAK = dAKΦK = 0.

This shows monopoles with knot singularity on closed 3-manifolds are essentially just flat
connections with singularity along a knot. Flat connections on knot complements can be used to
study knots and links. Using the SU(2)-flat connections on 3-manifolds with knot singularities,
Kronheimer and Mrowka defined an instanton Floer homology for knots in 3-manifolds [62].
In order to get monopoles on closed 3-manifolds with knot singularities and with non-flat
connections, one can consider monopoles with mixed singularities.

Definition 9 (Monopoles with Mixed Singularities). Let (M, g) be an oriented, closed, Rieman-
nian 3-manifold. Let p1, . . . , pn be n distinct points in M with corresponding positive charges
k1, . . . , kn. Let K ⊂M be a knot. Let G be a Lie group. Let P →M \ (K ∪ {p1, . . . , pn}) be
a principal G-bundle. Let A be a connection on P and Φ a section of the adjoint bundle. We call
a pair (A,Φ) a monopole with mixed singularities if
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• (A,Φ) satisfies the Bogomolny equation on M \ (K ∪ {p1, . . . , pn}).

• (A,Φ) has a Dirac singularity with charge ki at pi.

• (A,Φ) has a knot singularity along K.

We expect to have monopoles with mixed singularities on closed 3-manifolds.

Conjecture 1 (Existence of Monopoles with Mixed Singularities). Let (M, g) be a closed,
oriented, Riemannian 3-manifold with b2(M) = 0. Let p1, . . . , pn be n points in M with
corresponding charges k1, . . . , kn. Let K ⊂M be a knot in M . We expect to have a irreducible
non-trivial monopole on a principal SU(2)-bundle P → M \ (K ∪ {p1, . . . , pn}) with Dirac
singularities with charge ki at pi and knot singularity along K.

We expect it would be possible to solve this conjecture using a gluing construction. For
simplicity suppose there exists a small open ball B ⊂ M where the Riemannian metric g
restricted to B is flat and K ⊂ B. The analysis of the Bogomolny equation around the knot, is
similar to the Euclidean case, which is carried over by Sun. Let (AK , ΦK) be the model solution
with singularity along K defined on B ⊂M ,

(AK , ΦK) = (γσdθ,mσ).

Let p1, . . . , pn be well-separated points in M away from the knot K with corresponding negative
integers charges −k1, . . . ,−kn and another set of points q1, . . . , qk with charges equal to +1
such that k −

∑n
i=1 ki = 0.

Let (AD, ΦD) be a monopole with Dirac singularities at the points pi with corresponding
charges ki. Moreover, by adding a constant if necessary, we can assume the average mass of
this Dirac monopole on the small ball B is a sufficiently large number m. Let (Aj , Φj) be the
appropriately scaled BPS-monopoles transformed to a neighbourhood of the points qj , similar to
what we did in the case of singular monopoles on closed 3-manifolds.

We can define the approximate monopole with mixed singularities by

(A0, Φ0) = ξ0(AD, ΦD) +
k∑
j=1

ξj(Aj , Φj) + ξK(AK , ΦK), (1.4.3)

for suitable cut-off functions ξ0, ξK and ξj for j ∈ {1, . . . , k}, where

ξ0 + ξj = 1, ξ0 + ξK = 1.

This pair has the prescribed singularity on a neighbourhood of the knot and the singular
points, and it is a monopole on M \ (∪jB2εj (qj) ∪ B2ε(K) ∪ Sp) where Sp = {p1, . . . , pn}.
However, similar to the previous gluing constructions we studied, this pair is not a monopole on a
neighbourhood of the points q1, . . . , qk, and more generally, when the metric on B is not flat, it is
also not necessarily a monopole on the neighbourhood of the knot K.

The next step is to deform this approximate monopole with mixed singularities to a genuine
one. To do this, we should define the appropriate Sobolev spaces to set up the deformation
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problem. We expect this would be possible by combining the function spaces we defined in
the previous sections, in the study of monopoles with Dirac singularities on closed 3-manifolds
and the function spaces Sun defined to study the deformation of monopoles on R3 with knot
singularities.
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Chapter 2

Monopoles in Higher Dimensions

An interesting feature of the Bogomolny equation is that it can be generalized to certain higher-
dimensional spaces. The most interesting examples appear on Calabi-Yau 3-folds and G2-
manifolds. It is proposed by Donaldson and Segal that one can define invariants of non-compact
Calabi-Yau 3-folds and G2-manifolds with suitable ends, by a count of monopoles [21].

In this chapter, we study these higher-dimensional Bogomolny equations and show their
relevance to the 3-dimensional monopoles and Fueter operators which are non-linear generaliza-
tions of the Dirac operator. Furthermore, we introduce a monopole equation on U(1)-bundles
over 4-dimensional hyperkähler manifolds. Moreover, we introduce the complexification of
gauge-theoretic equations on manifolds with special holonomy group, and study their basic
properties.

2.1 Preliminaries:
Gauge Theory on Manifolds with Special Holonomy Groups

In this section, we recall the basic definitions and results about the geometry of manifolds with
special holonomy groups, more specifically, Calabi-Yau 3-folds, G2- and Spin(7)-manifolds.
Moreover, we review the instanton and the Bogomolny equations on these manifolds. Our review
is quite brief. For a more detailed account on manifolds with special holonomy groups you can
consult with the book by Dominic Joyce [53]. This book mainly focuses on the construction of
Riemannian metrics with exceptional holonomy groups on compact manifolds. For more detailed
introduction to gauge theory on manifolds with special holonomy groups, you can see [22, 21,
98, 77].

2.1.1 Manifolds with Special Holonomy Groups

The classification of manifolds based on their holonomy groups has a long history, which goes
back to the works of Élie Cartan. In the case of symmetric Riemannian manifolds, the holonomy
groups can be classified completely using the theory of Lie groups, as done by Cartan in 1925 [13].
In the case of non-symmetric spaces, 30 years later, the celebrate theorem of Berger illustrated
the situation.
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Theorem 9 (Berger [8]). Suppose (M, g) is a simply-connected, irreducible, non-symmetric,
n-dimensional Riemannian manifold. Then exactly one of the following seven cases holds.

(i) Generic. Hol(g) = SO(n).

(ii) Kähler. n = 2m with m ≥ 2 and Hol(g) = U(m) ⊂ SO(2m).

(iii) Calabi-Yau. n = 2m with m ≥ 2 and Hol(g) = SU(m) ⊂ SO(2m).

(iv) Hyperkähler. n = 4m with m ≥ 2 and Hol(g) = Sp(m) ⊂ SO(4m).

(v) Quaternionic Kähler. n = 4m with m ≥ 2 and Hol(g) = Sp(m)Sp(1) ⊂ SO(4m).

(vi) G2.G2.G2. n = 7 and Hol(g) = G2 ⊂ SO(7).

(vii) Spin(7).Spin(7).Spin(7). n = 8 and Hol(g) = Spin(7) ⊂ SO(8).

It was recognized by Hitchin that all manifolds with covariantly constant spinors appear in
the list of Berger. More specifically, they are Calabi-Yau, hyperkähler, 7-dimensional G2− or
8-dimensional Spin(7)-manifolds [44].

Manifolds with special holonomy groups also play an important role in String Theory and
M-Theory. As observed by Candelas, Horowitz, Strominger and Witten, in the 10-dimensional
spacetime of String Theory, Calabi–Yau manifolds are the spaces that satisfy the requirement for
being the six unseen spatial dimensions. You can find more about this in the expository account
by S.T. Yau [100]. In M-theory, where the spacetime is 11-dimensional, G2-manifolds can be the
hidden 7-dimensional space [6].

2.1.1.1 Calabi-Yau Manifolds

We start with the definition of Calabi–Yau manifold.

Definition 10 (Calabi-Yau n-Fold). A Calabi–Yau n-fold is a quadruple (M, g, ω,Ω) where
(M, g, ω) is a 2n-dimensional Kähler manifold with the compatible integrable almost complex
structure J and with a nonzero (n, 0)-form Ω on M, called the holomorphic volume form, which
satisfies

ωn

n!
= (−1)

n(n−1)
2 (

i

2
)nΩ ∧ Ω.

There are a distinguished class of real n-dimensional submanifolds of Calabi-Yau n-folds,
called special Lagrangians. They are calibrated with respect to the real n-form Re(Ω), in the
sense of Harvey and Lawson [40]. They are important in String Theory, and also play a key
role in the mathematical theory of Mirror Symmetry [35]. Moreover, they are closely related to
the gauge theory on Calabi-Yau manifolds. We will discuss calibrated submanifolds, and more
specially, special Lagrangians in much more detail in Chapter 4.

Definition 11 (Calibration). Let (M, g) be an n-dimensional Riemannian manifold. Let α ∈
Ωk(M) be a differential k-form for some 0 ≤ k ≤ n. The k-form α is called a calibration on M
if

80



• α is closed: dα = 0;

• for any x ∈M and any oriented k-dimensional subspace V ⊂ TxM , we have

α|V = λvolV with λ ≤ 1,

where volV is the volume form of V defined with respect to the restriction of the Riemannian
metric g to V .

A k-dimensional submanifold N ⊂ M is called a calibrated submanifold with respect to the
calibration α, if

αTxN = volTxN ,

for all x ∈ N .

Definition 12 (Special Lagrangian). Let (M, g, ω,Ω) be a Calabi-Yau n-fold. Re(Ω) is a cali-
bration, and calibrated submanifolds with respect to Re(Ω) are called special Lagrangians.

The following lemma explains why these submanifolds are called special Lagrangians.

Lemma 46 (Special Lagrangian Equations [40]). Let L be a real n-dimensional submanifold of
a Calabi-Yau n-fold (M, g, ω,Ω). Then L admits an orientation making it a special Lagrangian
submanifold if and only if

ω|L = 0, and Im(Ω)|L = 0.

The condition ω|L = 0 states L is a Lagrangian submanifold and Im(Ω)|L = 0 asserts it is a
special one.

2.1.1.2 G2G2G2-Manifolds

G2-manifolds provide another class of manifolds which one can study a Bogomolny type equation
on. What makes dimension 7 stand out is that it is the only dimension other than 3, where it can
be equipped with a cross product. Moreover, on R7, similar to R3, one can use the cross product
and the Riemannian metric to define a triple product.

Definition 13 (Associative Form). On R7 one can use the cross and inner products to define a
map

φ0 : R7 × R7 × R7 → R : (u, v, w)→ g(u× v, w).

φ0 is an alternating 3–form, called the associative form, which can be written as

φ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where eijk = ei ∧ ej ∧ ek, and e1, . . . , e7 is the dual basis for e1, . . . , e7.

The exceptional group G2 can be defined as the stabilizer of this 3-form.
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Definition/Lemma 47 (Exceptional Group G2). G2 is the subgroup of GL(7,R) that preserves
φ0,

G2 := {g ∈ GL(7,R) | g∗φ0 = φ0}.

G2 is a compact, connected, simply connected, 14-dimensional, simple Lie group. Moreover,
G2 ⊂ SO(7).

φ0 is non-degenerate in the following sense.

Definition 14 (Non-Degenerate 3-Form). A 3–form φ on a 7–dimensional vector space V is
called non-degenerate or positive if for each v ∈ V \ {0} the induced 2–form ivφ on V/〈v〉 is a
symplectic form.

A 3-form φ ∈ Ω3(M) is called a G2-structure if at each point x ∈M it looks like the model
φ0 on R7.

Definition 15 (G2-Structure). Let M be a smooth 7-dimensional manifold. A G2-structure on
M is a non-degenerate 3-form φ ∈ Ω3(M) such that at every p ∈ M there exists a linear
isomorphism TpM ∼= R7 with respect to which φ ∈ Λ3(T ∗pM) corresponds to φ0 ∈ Λ3(R7)∗.
The 3-form φ induces a Riemannian metric and an orientation on M such that

ιuφ ∧ ιuφ ∧ φ = −6gφ(u, v)volφ.

We can define the coassociative 4-form by

ψ = ∗gφφ.

We suppress the subscript φ of the Riemannian metric, volume form and the Hodge star operator,
when there is no fear of confusion.

The following theorem shows there are many 7-dimensional manifolds which admit a G2-
structure.

Lemma 48 (Existence of G2-Structure [34]). A smooth 7-dimensional manifold M admits a
G2-structure if and only if M is both orientable and spinnable, and therefore, if and only if the
first and second Stiefel-Whitney classes vanish.

A G2-structure φ on M induces a Riemannian metric g, which uniquely determines a Levi-
Civita connection∇ on M . Using this connection one can define the torsion of the G2-structure.

Definition 16 (G2-Manifold). A G2-manifold (M,φ) is a 7-dimensional manifold with a positive
G2-structure φ such that the torsion of theG2-structure T (φ) := ∇gφφ = 0; i.e., φ is parallel. By
a theorem of Fernández and Gray [27], a G2-structure is torsion-free if and only if dφ = 0 = dψ.
In this case, Hol(gφ) ⊆ G2 ⊂ SO(7).

On a 7-dimensional manifold M with a G2-structure φ, there are orthogonal decompositions
of the bundles ΛkT ∗M into irreducible representations of G2, which induces decomposition of
the spaces of differential k-forms.
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Lemma 49. Let V be a 7-dimensional vector space equipped with a non-degenerate 3-form φ.
Then Λ∗V ∗ splits into irreducible representations of G2 as follows,

Λ1(V ) = Λ1
7(V ), Λ2(V ) = Λ2

7(V )⊕ Λ2
14(V ),

Λ3(V ) = Λ3
1(V )⊕ Λ3

7(V )⊕ Λ3
27(V ), Λ4(V ) = Λ4

1(V )⊕ Λ4
7(V )⊕ Λ4

27(V ),

Λ5(V ) = Λ5
7(V )⊕ Λ5

14(V ), Λ6(V ) = Λ6
7(V ),

where the indices denote the rank of the bundles and

Λ2
7(V ) = {β ∈ Λ2(V ) | ∗ (φ ∧ β) = −2β} = {∗(α ∧ ψ) | α ∈ Λ1(V )}

= {ιuφ | u ∈ Γ(V )} ∼= Λ1
7(V ),

Λ2
14(V ) = {β ∈ Λ2(V ) | β ∧ ψ = 0} = {β ∈ Λ2(V ) | ∗ (φ ∧ β) = β} ∼= g2,

Λ3
1(V ) = 〈φ〉,

Λ3
7(V ) = {∗(α ∧ φ) | α ∈ Λ1(V )} = {ιuψ | u ∈ Γ(V )} ∼= Λ1

7(V ),

Λ3
27(V ) = {γ ∈ Λ3(V ) | γ ∧ φ = 0 = γ ∧ ψ},

and

Λkd(V ) ∼= Λ7−k
d (V ), ∀k ∈ {1, 2, 3}.

We denote the corresponding projection maps by πd : Λk(V )→ Λkd(V ).

A proof can be found in [81, Theorem 8.5].

Definition 17 (Associative and Coassociative Submanifolds). Let (M,φ) be a 7-dimensional
manifold with a positive G2-structure φ. The associative form φ is a calibration, and the
3-dimensional submanifolds calibrated with respect to φ are called associative. Moreover,
the coassociative form ψ = ∗φ is also a calibration on M , and 4-dimensional submanifolds
calibrated with respect to ψ are called coassociative.

2.1.1.3 Spin(7)Spin(7)Spin(7)-Manifolds

We start with the linear model.

Definition 18 (Admissible 4-Form). A 4-form Ω on an 8-dimensional vector space V is called
admissible if there exists a basis of V in which Ω is identified with the 4-form Ω0 on R8, given by

Ω0 = e1 ∧ e2 ∧ e5 ∧ e6 + e1 ∧ e2 ∧ e7 ∧ e8 + e3 ∧ e4 ∧ e5 ∧ e6

+ e3 ∧ e4 ∧ e7 ∧ e8 + e1 ∧ e3 ∧ e5 ∧ e7 − e1 ∧ e3 ∧ e6 ∧ e8

− e2 ∧ e4 ∧ e5 ∧ e7 + e2 ∧ e4 ∧ e6 ∧ e8 − e1 ∧ e4 ∧ e5 ∧ e8

− e1 ∧ e4 ∧ e6 ∧ e7 − e2 ∧ e3 ∧ e5 ∧ e8 − e2 ∧ e3 ∧ e6 ∧ e7

+ e1 ∧ e2 ∧ e3 ∧ e4 + e5 ∧ e6 ∧ e7 ∧ e8.
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Definition/Lemma 50 (Exceptional Group Spin(7)). Spin(7) is the subgroup of GL(8,R) that
preserves Ω0,

Spin(7) = {g ∈ GL(8,R) | g∗Ω0 = Ω0}.

Spin(7) is a compact, connected, simply connected, 21-dimensional, simple Lie group. Moreover,
Spin(7) ⊂ SO(8).

Definition 19 (Almost Spin(7)-Manifold). A Spin(7)-structure on a smooth 8-dimensional
manifold M is an admissible 4-form Ω ∈ Ω4(M). The pair (M,Ω) is called an almost Spin(7)-
manifold.

Definition 20 (Spin(7)-manifold). Let (M,Ω) be an almost Spin(7)-manifold. (M,Ω) is called
a Spin(7)-manifold if the Spin(7)-structure is torsion-free,

T (Ω) := ∇gΩΩ = 0,

where ∇gΩ is the Levi-Civita connection of the Riemannian metric induced by the Spin(7)-
structure Ω.

Definition 21 (Cayley Submanifold). Let (M,Ω) be a Spin(7)-manifold. Ω is a calibration on
M . A 4-dimensional submanifold calibrated with respect to Ω is called a Cayley submanifold.

2.1.2 Donaldson-Thomas Program

Donaldson and Thomas, and later Donaldson and Segal, proposed studying manifolds with special
holonomy groups from the viewpoint of gauge theory. They proposed defining numerical, or
more ambitiously, homological invariants of manifolds with special holonomy groups by a count
of instantons, monopoles, and Calibrated submanifolds. In this section, we briefly review the
definition of instantons and monopoles on these manifolds.

2.1.2.1 Spin(7)Spin(7)Spin(7)-Instantons

We start with the Spin(7)-instantons on Spin(7)-manifolds.

Definition 22 (Spin(7)-Instanton). Let G be a compact Lie group. Let P →M be a principal
G-bundle above a Spin(7)-manifold (M,Ω). A connection A on this bundle is called a Spin(7)-
instanton if it satisfies the following equation,

∗(FA ∧ Ω) = −FA.

The following theorem of Walpuski gives a good picture of Spin(7)-instantons on certain
closed Spin(7)-manifolds.

Theorem 10 (Walpuski [96]). Let (M,Ω) be a compact, irreducible, Spin(7)–manifold. Let
Q ⊂ M be a Cayley submanifold, diffeomorphic to the smooth 4-manifold underlying any
K3-surface and with self-intersection number zero, whose induced metric is sufficiently close
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to a hyperkähler metric. Moreover, suppose that the induced connection on the normal bundle
ν(Q)→ Q is almost flat. Then there exists a 5–dimensional family of Spin(7)–instantons on an
SU(2)–bundle P →M with c2(P ) = PD[Q]. Furthermore, letQ1, . . . , Qk be k disjoint Cayley
submanifolds as above. Then there exists a (8k − 2)-dimensional family of Spin(7)-instantons
on an SU(2)–bundle P →M with c2(P ) =

∑k
i=1 PD[Qi].

Dimensional reduction of Spin(7)-instantons leads to a theory of monopole onG2-manifolds.

2.1.2.2 G2G2G2-Monopoles

Here is the definition of G2-monopole.

Definition 23 (G2-Monopole). Let (M,φ) be a G2-manifold and ψ = ∗φ, where ∗ is the Hodge
star of gφ. A pair (A,Φ) of a connection A on a principal G-bundle P →M and a section Φ of
the adjoint bundle is called a G2-monopole if it satisfies the G2-Bogomolny equation,

∗(FA ∧ ψ) = dAΦ.

Example 2. Let M = R7 equipped with the standard Euclidean metric g0 =
∑7

i=1 dx
2
i , the

volume form vol0 = dx1 ∧ . . . ∧ dx7, and the standard G2-structure on R7, given by

φ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356,

ψ0 = e4567 − e2367 − e2345 − e1357 + e1346 − e1256 − e1247.

Let π : R7 = R4 × R3 → R3 be the projection on the last three components. Let P → R3 be
a principal G-bundle and (A,Φ) a monopole on P . The pair (π∗A, π∗Φ) is a G2-monopole on
π∗P → R7 since

∗7(F(π∗A) ∧ ψ0) = ∗7(π∗(FA) ∧ ψ0) = ∗7(π∗(∗3dAΦ) ∧ ψ0),

where ∗7 and ∗3 are the Hodge star of the Euclidean metric on R7 and R3, respectively. More
generally, for any 2-form β ∈ Ω2(R3;V ) with values in any vector bundle V → R7, we have

∗7(π∗(β) ∧ ψ0) = π∗(∗3β),

and therefore, ∗7(F(π∗A) ∧ ψ0) = ∗7(π∗(∗3dAΦ) ∧ ψ0) = π∗(dAΦ) = dπ∗(A)π
∗(φ).

G2-monopoles can be understood as a dimensional reduction of Spin(7)-instantons, similar
to the 3-dimensional monopoles, which are dimensional reduction of anti-self-dual instantons on
4-manifolds. The proof is also similar to the low-dimensional case.

Lemma 51 (Dimensional Reduction of Spin(7)-Instantons). Let (M,φ) be a G2-manifold. Let
N = M × R be an 8-dimensional manifold with the Spin(7)-structure Ω, given by

Ω = dt ∧ π∗(φ) + π∗(ψ),

where π : N →M is the obvious projection map and t is the coordinate on the R-factor.
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Let P →M be a principalG-bundle. Any t-translation-invariant connection A on π∗P → N ,
in a translation-invariant gauge, can be written as

A = π∗(A) + dt ∧ π∗(Φ),

for a connection A on P →M and a section Φ on the adjoint bundle.
The connection A is an Spin(7)-instanton if and only if the pair (A,Φ) is a G2-monopole.

G2-monopoles on closed G2-manifolds satisfy a stronger condition.

Lemma 52. Let (M,φ) be a closed G2-manifold. Any smooth G2-monopole (A,Φ) on a princi-
pal G-bundle, for a compact Lie group G, satisfies the equations

∗(FA ∧ ψ) = dAΦ = 0. (2.1.1)

Proof. The proof is similar to the 3-dimensional case 2. The G2-Bogomolny equation implies

∆AΦ = d∗AdAΦ = ∗dA(FA ∧ ψ) = ∗(dAFA ∧ ψ + FA ∧ dψ) = 0,

where the last equality follows from the Bianchi identity and the fact that ψ is closed. Therefore,
Φ is a harmonic section with respect to the connection A. Since G is a compact Lie group, there
is an adjoint-invariant inner product on its Lie algebra g, and therefore, on the adjoint bundle gP ,
denoted by 〈−,−〉. With respect to this inner product, we have the following pointwise equations,

0 = 〈∆AΦ,Φ〉 = 〈d∗AdAΦ,Φ〉 = 〈dAΦ, dAΦ〉 = |dAΦ|2,

and therefore, ∗(FA ∧ ψ) = dAΦ = 0.

This lemma motivates the definition of G2-instantons.

2.1.2.3 G2G2G2-Instantons

Here is the definition of G2-instanton.

Definition 24 (G2-Instanton). A connection A on a principal G-bundle P → M over a G2-
manifold (M,φ) is called a G2-instanton if

FA ∧ ψ = 0,

where ψ = ∗φ or, equivalently,

∗(FA ∧ φ) = −FA.

Example 3. Let π : R7 = R3 × R4 → R4 be the projection on the last 4-components. The
pullback of an anti-self-dual instanton over R4 to R7 is a G2–instanton. The proof is similar to
Example 2.

One can go one dimension lower.
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2.1.2.4 Calabi-Yau Monopoles

We start with the definition of complex monopole.

Definition 25 (Complex Monopole). Let (M, g, ω,Ω) be a compact Calabi-Yau 3-fold. Let G be
a compact Lie group. Let PG →M and PGC be a principal G-bundle and its complexification,
respectively. Let gPG and gPGC

be the adjoint bundle of PG and its complexification, respectively.
LetA be a connection on PG and Φ = Φ1 + iΦ2 a section of the complexified adjoint bundle gPGC

.
The pair (A,Φ) is called a complex monopole if it satisfies the complex Bogomolny equations,

∗(FA ∧ Ω) = 2∂AΦ, ΛFA = 2i[Φ,Φ],

where Λβ = ∗(β∧ω2) for any β ∈ Ω2(M,C) and ∗ is the complex linear extension of the Hodge
star operator.

An interesting class of complex monopoles appears when Φ2 = 0.

Definition 26 (Calabi-Yau Monopole). Let (M, g, ω,Ω) be a Calabi-Yau 3-fold. Let P → M
be a principal G-bundle, where G is a compact Lie group. A pair (A,Φ) of a connection A
on P and a section Φ of the adjoint bundle is called a Calabi-Yau monopole if it satisfies the
Calabi-Yau Bogomolny equations,

∗(FA ∧ Ω1) = dAΦ,

ΛFA = 0,

where Ω = Ω1 + iΩ2 and Λβ = ∗(β ∧ ω2) for any 2-form β.

Example 4. Let M = C3 = R6 with zj = xj + iyj for j ∈ {1, 2, 3}, the standard Euclidean
metric g0, the volume form vol0 = dz1∧dz2∧dz3, the holomorphic volume form Ω = dz1dz2dz3

with the real part

Ω1 = dx1dx2dx3 − dy1dy2dx3 − dy1dx2dy3 − dx1dy2dy3,

and the symplectic form ω = dx1dy2 + dx2dy2 + dx3dy3.
Let π : R6 → R3

y be the projection

(z1, z2, z3)→ (y1, y2, y3).

Note that the 3-plane

R3
y = {(0, y1, 0, y2, 0, y3) | y1, y2, y3 ∈ R},

is a special Lagrangian subspace,

ω|R3
y

= Ω1|R3
y

= 0.
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Let P → R3
y be a principal G-bundle and (A,Φ) a monopole on P . The pair (π∗A, π∗Φ) is a

Calabi-Yau monopole on π∗P → R6 since

∗6(F(π∗A) ∧ Ω1) = ∗6(π∗(FA) ∧ Ω1) = ∗6(π∗(∗3dAΦ) ∧ Ω1),

where ∗6 and ∗3 are the Hodge star of the Euclidean metric on R6 and R3, respectively. More
generally, for any 2-form β ∈ Ω2(R3;V ) with values in any vector bundle V → R3, we have

π∗(β) ∧ Ω1 = ∗6π∗(∗3β),

and therefore, F(π∗A) ∧ Ω1 = ∗6π∗(dAΦ) = ∗6dπ∗(A)π
∗(φ). Furthermore, it is straightforward

to see ΛFπ∗(A) = Λπ∗(FA) = 0.

Similar to the 3-dimensional and G2 cases, smooth Calabi-Yau monopoles on closed Calabi-
Yau-manifolds satisfy a stronger equations.

Lemma 53. Let (M, g, ω,Ω) be a closed Calabi-Yau 3-fold. Any smooth Calabi-Yau monopole
(A,Φ) on a principal G-bundle, for a compact Lie group G, satisfies the stronger equations

FA ∧ Ω1 = ∗dAΦ = 0. (2.1.2)

The proof is similar to the G2 case, which we saw in Lemma 52.
Calabi-Yau monopoles can be understood as dimensional reduction of G2-instantons.

Lemma 54. Let (Z, g, ω,Ω) be a Calabi-Yau 3-fold. Let M = Z × R be the 7-dimensional
manifold equipped with the G2-structure φ, given by

φ = dt ∧ ω + Re(Ω),

where t denotes the coordinate on the R-factor.
Let P → Z be a principalG-bundle. Any t-translation invariant connection A on π∗P →M ,

in a translation invariant gauge, can be written as

A = π∗(A) + dt ∧ π∗(Φ),

for a connection A on P → Z and a section Φ on the adjoint bundle.
The connection A is a G2-instanton if and only if the pair (A,Φ) is a Calabi-Yau monopole.

The proof is similar to the lower-dimensional case 1.
One can consider the dimensional reduction of Calabi-Yau monopoles to 5-dimensional

spaces.

2.2 5-Dimensional Monopoles on U(1)-bundles over
Hyperkähler Manifolds

Here is the definition of 5-dimensional monopole.
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Definition 27 (5-Dimensional Monopole). Let (X, gX , I, J,K) be a hyperkähler 4-manifold
with the triple of kähler structures ω1, ω2 and ω3. Let (M, gM , α, β, θ1, θ2) be the 5-dimensional
manifold, given as a U(1)-bundle above X equipped with the geometric structure given by
differential forms θ1 ∈ Ω3(M), θ2 ∈ Ω2(M), α ∈ Ω1(M) and β ∈ Ω2(M), where

θ2 = ω2, β = ω1. (2.2.1)

and in a local trivialization,

θ1 = dt ∧ ω3, α = dt,

for a local coordinate t on the fibers.
Let G be a compact Lie group. Let P →M be a principal G-bundle. The triple (A,ψ, Φ) is

called a 5-dimensional monopole if

∗(FA ∧ θ1) = [ψ,Φ], (2.2.2)

∗(FA ∧ θ2 − dAψ ∧ θ1) = dAΦ, (2.2.3)

FA ∧ α ∧ β = −dAψ ∧ β2. (2.2.4)

5-dimensional monopoles can be seen as dimensional reduction of Calabi-Yau monopoles. In
the following example, we consider the linear case.

Example 5 (5-Dimensional Monopoles on R5). LetM = R5 equipped with the Euclidean metric
g0. Let θ1 ∈ Ω3(R5), θ2 ∈ Ω2(R5), α ∈ Ω1(R5) and β ∈ Ω2(R5) be differential forms, given by

θ1 = −dx1 ∧ dx3 ∧ dx4 − dx1 ∧ dx2 ∧ dx5, θ2 = dx2 ∧ dx4 − dx3 ∧ dx5,

α = dx1, β = dx2 ∧ dx3 + dx4 ∧ dx5.

Let C3 = R6 = Rt×R5 equipped with the standard Calabi-Yau structure. Let π : Rt×R5 → R5

be the obvious projection map. Let P → R5 be a principal G-bundle and π∗P → R6 the
pull-back bundle. Any t-translation-invariant pair (Ã, Φ̃) on π∗P can be written as

Ã = π∗A+ (π∗ψ)dt and Φ̃ = π∗Φ,

for a connection A on P and sections ψ and Φ of the adjoint bundle.
The pair (Ã, Φ̃) is a Calabi-Yau monopole if and only if (A,ψ, Φ) is a 5-dimensional

monopole.
To see this, note that

Ω1 = θ1 + dt ∧ θ2,

where Ω1 is the real part of the holomorphic volume form on C3, and therefore,

F
Ã
∧ Ω1 = (π∗(FA) + π∗(dAψ) ∧ dt) ∧ (θ1 + θ2dt)

= π∗(FA) ∧ θ1 + (π∗(FA) ∧ θ2 − π∗(dAψ) ∧ θ1) ∧ dt,
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moreover,

∗6dÃΦ̃ = π∗(∗5dAΦ) ∧ dt+ π∗(∗5[ψ,Φ]),

where ∗6 and ∗5 are the Hodge star operators on R6 and R5, respectively.
By equating the terms containing dt we can see that the equation ∗d

Ã
Φ̃ = F

Ã
∧ Ω1 is

equivalent to the following equations on P → R5,

FA ∧ θ1 = ∗5[ψ,Φ], and FA ∧ θ2 − dAψ ∧ θ1 = ∗5dAΦ.

Moreover, notice

ω = dt ∧ α+ β,

and therefore, ΛF
Ã

= 0 is equivalent to

FA ∧ α ∧ β + dAψ ∧ β2 = 0, FA ∧ β2 = 0.

More generally, we have the following lemma.

Lemma 55. Let M be a U(1)-bundle over a hyperkähler manifold (X, gX , I, J,K). Let Z =
Rt ×M be a cylindrical Calabi-Yau manifold. Let π : Z → M be the projection map. Let
P → M be a principal G-bundle, and π∗P → R6 the pull-back bundle. The pair (Ã, Φ̃) is a
translation-invariant Calabi-Yau monopole if and only if (A,ψ, Φ) is a 5-dimensional monopole,
where

Ã = π∗A+ (π∗ψ)dt and Φ̃ = π∗Φ.

The proof is similar to the linear case, we studied earlier.
Anti-self-dual instantons give rise to some examples of 5-dimensional monopoles.

Example 6. Let R5 = Rt × R4
(x1,x2,x3,x4). Let π : R5 → R4

(x1,x2,x3,x4) be the projection map.
Let P → R4 be a principal G-bundle. Let A be an anti-self-dual connection on P . The triple
(π∗(A), 0, 0) is a 5-dimensional monopole on π∗P → R5.

To see this, note that

θ1 = dt ∧ (dx1 ∧ dx4 + dx2 ∧ dx3) = dt ∧ ω3, θ2 = dx1 ∧ dx3 + dx4 ∧ dx2 = ω2,

α = dt, β = dx1 ∧ dx2 + dx3 ∧ dx4 = ω1,

where (ω1, ω2, ω3) are self-dual 2-forms, forming a hyperkähler structure on R4, and therefore,

Fπ∗(A) ∧ θ1 = 0, Fπ∗(A) ∧ θ2 = 0, Fπ∗(A) ∧ α ∧ β = 0.

We finish this section with a question and a conjecture.

Question 56. Is there any 5-dimensional monopole on R5 which is not pull-back of an instanton
on R4?
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The positive answer to this question suggests that there is an interesting theory of monopoles
on — potentially singular — U(1)-bundles over hyperkähler 4-manifolds. Negative answer to
this question would imply that all translation-invariant Calabi-Yau monopoles on R6 come from
the instantons on R4. We expect the answer to the question 56 to be positive.

An interesting case occurs when in the 5-dimensional Bogomolny equations we have ψ = 0.

Definition 28 (Pure 5-Dimensional Monopole). Let (X, gX , I, J,K) be a hyperkähler 4-manifold.
Let (M, gM , α, β, θ1, θ2) be a U(1)-bundle above X . Let P →M be a principal G-bundle. The
triple (A,Φ) is called a pure 5-dimensional monopole if

FA ∧ θ1 = 0, FA ∧ α ∧ β = 0, ∗(FA ∧ θ2) = dAΦ.

One can consider the case where Φ = ψ = 0, to get an instanton theory on these 5-manifolds.

Definition 29 (5-Dimensional Instanton). Let (X, gX , I, J,K) be a hyperkähler 4-manifold. Let
(M, gM , α, β, θ1, θ2) be a U(1)-bundle above X . Let P → M be a principal G-bundle. A
connection A on P is called a 5-dimensional instanton if

FA ∧ θ1 = 0, FA ∧ α ∧ β = 0, FA ∧ θ2 = 0.

Example 7 (5-Dimensional Instanton). Let (X, gX , I, J,K) be a hyperkähler 4-manifold. Let
M be a U(1)-bundle above X . Let P → X be a principal G-bundle. Let A be an anti-self-dual
connection on P . Then π∗A is a 5-dimensional instanton on π∗P →M .

Conjecture 2. There are 5-dimensional instantons onM which are not pull-back of any instanton
on X .

2.3 Singular Monopoles in Higher Dimensions

As we saw in Lemmas 52 and 53, G2− and Calabi-Yau monopoles on closed manifolds satisfy
stronger conditions. Similar to the 3-dimensional case, in order to have monopoles in higher
dimensions which do not satisfy these conditions, one should allow singularities. In this direction,
Oliveira proposed the study of monopoles with singularities along certain calibrated submanifolds
[75]. In the Calabi-Yau case, one could study monopoles with Dirac singularities along special
Lagrangians.

Definition 30 (Singular Calabi-Yau Monopole [75]). Let (M, g, ω,Ω) be a Calabi-Yau 3-fold.
Let L = L1 ∪ . . . ∪Lk, whereLi are disjoint, compact, connected, embedded special Lagrangian
submanifolds. A pair (A,Φ) is called a Calabi-Yau monopole with Dirac singularity along L if

• It satisfies the Calabi-Yau-Bogomolny equations on M \ L.

• For each i ∈ {1, . . . , k} there exists ki ∈ Z+ such that

lim
ri→0

ri|Φ| = lim
ri→0

r2
i |FA| =

ki
2
,
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where ri is the geodesic distance from Li, defined in a small tubular neighbourhood of Li.
ki is called the charge of the monopole along Li. In particular, when the structure group
G = U(1), one can define the signed charge ki ∈ Z, where

−2 lim
ri→0

riΦ = ki.

Similarly, one can consider G2-monopoles with Dirac singularity along certain codimension
3, calibrated submanifolds.

Definition 31 (Singular G2-Monopole [75]). Let (M,φ) be a closed G2-manifold. Let N =
N1 ∪ . . .∪Nk, whereNi are disjoint, compact, connected, embedded coassociative submanifolds.
A pair (A,Φ) is called a G2-monopole with Dirac singularity along N if

• It satisfies the G2-Bogomolny equation on M \N .

• For each i ∈ {1, . . . , k} there exists ki ∈ Z+ such that

2 lim
ri→0

ri|Φ| = 2 lim
ri→0

r2
i |FA| = ki

where ri is the geodesic distance from Ni in a small tubular neighbourhood of Ni.

ki is called the charge of the monopole along Ni. In particular, when the structure group
G = U(1), one can define the signed charge ki ∈ Z, where

−2 lim
ri→0

riΦ = ki.

There is a 5-dimensional version of this theory.

Lemma 57. Let (X, gX , I, J,K) be a closed hyperkähler 4-manifold. Let (M, gM , α, β, θ1, θ2)
be a U(1)-bundle above X . Let G be a compact Lie group. Let P →M be a principal G-bundle.
Let (A,Φ) be a pure 5-dimensional monopole on P . Then dAΦ = 0 and A is a 5-dimensional
instanton.

Proof. The pull-back of the 5-dimensional monopole to the Calabi-Yau 3-fold M × S1 is a
Calabi-Yau monopole, and Calabi-Yau monopoles on the closed Calabi-Yau manifolds satisfy the
following equations,

FA ∧ (θ1 + dt ∧ θ2) = 0, dAΦ = 0.

These equations imply

FA ∧ θ2 = 0, FA ∧ θ1 = 0, dAΦ = 0.

Similar to the Calabi-Yau and G2 cases, one can define 5-dimensional monopoles with
Dirac singularities on U(1)-bundles over a 4-dimensional hyperkähler manifolds. The Dirac
singularities of monopoles appear along certain calibrated submanifolds with codimension 3.
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Definition 32 (Singular 5-Dimensional Monopole). Let M be a U(1)-bundle over a hyperkähler
manifold (X, gX , I, J,K). Let N = N1 ∪ . . . ∪Nk, whereNi are disjoint, compact, connected,
embedded surfaces satisfying the equations

β|Ni
= θ2|Ni = 0. (2.3.1)

A pair (A,ψ, Φ) is called a 5-dimensional monopole with Dirac singularity along N if

• It satisfies the 5-dimensional-Bogomolny equations on M \N .

• For each i ∈ {1, . . . , k} there exists ki ∈ Z+ such that

2 lim
ri→0

ri|Φ| = lim
ri→0

r2
i (|FA|+ |dAψ|) = ki

where ri is the geodesic distance from Ni in a small tubular neighbourhood of Ni.

Note that, in the product case M = X ×U(1), the holomorphic curves Σ×{x} ⊂ X ×{x},

ω1|L = ω2|L = 0,

satisfy the equations 2.3.1.
One hopes to prove the existence of singular monopoles on closed manifolds in higher

dimensions, similar to what we did in Chapter 1 over 3-manifolds. Under suitable topological
assumptions, Oliveira proved the existence of these singular G2-monopoles when the structure
group G = U(1).

Lemma 58 (Oliveira [75]). Suppose (X,φ) is a closed G2-manifold with full holonomy group
G2 and N = N1 ∪ . . . ∪Nn a union of disjoint, compact, connected, embedded, coassociative
submanifolds. For every α ∈ H2(X \ N,Z), there exists a line bundle L → X \ N with
c1(L) = α and a Dirac G2-monopole (A,Φ) on L → X \N . Moreover, the charge of (A,Φ)
along Ni, ki = evi(α), where evi : H2(X \N,Z)→ Z is defined by integrating a 2-form over
any fiber of the unit 2-sphere bundle of Ni in X \N .

Furthermore, Oliveira found examples of non-Abelian singular G2-monopoles on the Bryant-
Salamon G2-manifolds; however, a systematic proof of the existence of irreducible non-Abelian
G2-monopoles with Dirac singularities is still missing.

2.4 Adiabatic Limits and Fueter Sections

In this section, we see how monopoles in higher dimensions, in the adiabatic limit, are related to
the 3-dimensional monopoles on R3. Moreover, we will show how a non-linear generalization
of the Dirac operator, called the Fueter operator, appears in the study of these monopoles. This
section mainly serves as a motivating section to the next chapter, which we will study Fueter
sections on hyperkähler bundles.

We consider the product case, where the picture is clearer.
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2.4.1 Monopoles in Higher Dimensions and Fueter Sections

Let (Y, φ) be non-compact asymptotically conical G2-manifold. Let P → Y be a principal
SU(2)-bundle. To any pair (A,Φ) of a connection A on P and section Φ of the adjoint bundle,
one can assign an the intermediate energy, as defined by Oliveira in [77],

E(A,Φ) =

∫
Y

(|FA ∧ ψ|2 + |dAΦ|2)volg,

where g is the G2-metric and ψ = ∗gφ.
As mentioned by Donaldson and Segal [21], and proved by Fadel, Nagy and Oliveira [25],

to any G2-monopole (A,Φ) on (Y, φ) with finite intermediate energy, one can assign a mass at
infinity, which is defined by

m := lim
|x|→∞

|Φ(x)|.

Let {(Ai, Φi)}∞i=1 be a sequence of G2-monopoles on P → Y with finite intermediate energy
and masses {mi}∞i=1 where mi → ∞ as i → ∞. It is conjectured by Donaldson and Segal
that such sequence of G2-monopoles with large mass will concentrate along coassociatives
N = N1 ∪ . . . ∪Nn ⊂ Y .

At each point t ∈ N , one can decompose the G2-Bogomolny equation into two equations.
Suppose t0, t1, t2, t3 denote local coordinates on N around t ∈ N and x1, x2, x3 the coordinates
on the normal direction. As mentioned in [21], the Bogomolny equations schematically can be
written as

∇xΦ = Fxx + Ftt, ∇tΦ = Ftx. (2.4.1)

We call the first equation in 2.4.1, the transverse Bogomolny equation, and the second one,
the mixed Bogomolny equation. At each t ∈ N , the leading terms of the G2-Bogomolny
equation, for pairs with large mass, in the direction normal to N at t ∈ N , define a 3-dimensional
Bogomolny equation on (TtN)⊥ ∼= R3. Moreover, the mixed G2-Bogomolny equation is given
by a non-linear Dirac operator.

Let’s consider the linear model. Let Y = R4
t × R3

x. Let ω1, ω2, ω3 be the anti-self-dual
2-forms on R4

t , given by

ωi = dt0 ∧ dti + dtj ∧ dtk,

for a cyclic permutation of i, j, k.
The G2-structure φ is given by

φ =

3∑
i=1

ωi ∧ dxi − dx1 ∧ dx2 ∧ dx3,
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with the induced G2-metric g =
∑4

i=0 dt
2
i +

∑3
i=1 dx

2
i and the orientation given by

volg = −dt0 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dx1 ∧ dx2 ∧ dx3.

The coassociative 4-form is given by

ψ = ∗φ =

3∑
i=1

ωi ∧ dxj ∧ dxk + dt0 ∧ dt1 ∧ dt2 ∧ dt3.

Note that the submanifold N = {t0} × R3
x ⊂ Y for any t0 ∈ R3

x is a coassociative submanifold,
since we have φ|N = 0.

For each ε > 0, let Tε : R4
t × R3

x → R4
t × R3

x be the diffeomorphism, given by

Tε(t0, t1, t2, t3, x1, x2, x3) = (ε−1t0, ε
−1t1, ε

−1t2, ε
−1t3, x1, x2, x3).

For any ε > 0, we can define the G2-structure, given by

φε = T ∗ε φ = ε−2
3∑
i=1

ωi ∧ dxi − dx1 ∧ dx2 ∧ dx3,

ψε = T ∗ε ψ = ε−2
3∑
i=1

ωi ∧ dxj ∧ dxk + ε−4dt0 ∧ dt1 ∧ dt2 ∧ dt3,

gε = T ∗ε g = ε−2
3∑
i=0

dt2i +

3∑
i=1

dx2
i ,

volgε = T ∗ε volg = −ε−4dt0 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dx1 ∧ dx2 ∧ dx3.

For any ε > 0, the 3-form φε is a positive 3-form. However, the 3-form φ0, defined by letting
ε = 0, is not a positive form, but we still can define the G2-Bogomolny equation with respect to
this structure. This can be thought of as an adiabatic limit for the G2-Bogomolny equation, as in
[21]. By setting ε = 0, we get the following.

Theorem 11. The adiabatic limit of the G2-Bogomolny equation in the direction transverse to
N at each t ∈ N is the 3-dimensional Bogomolny equation on (TtN)⊥ ∼= R3.

Proof. We start by considering the linear case Y = R4
t × R3

x equipped with the coassociative
4-form ψ = ψ2,2 + ψ4,0 where

ψ2,2 =

3∑
i=1

ωi ∧ dxj ∧ dxk, ψ4,0 = dt0 ∧ dt1 ∧ dt2 ∧ dt3.

Let A = At + Ax, where At =
∑3

i=0Bidti and Ax =
∑3

j=1Ajdxj . Schematically, let
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FA = Ft,t + Fx,x + Ft,x, where

Ft,t =
∑

0≤i<j≤3

(∂tjBi − ∂tiBj)dtj ∧ dti,

Fx,x =
∑

1≤i<j≤3

(∂xjAi − ∂xiAj)dxj ∧ dxi,

Ft,x =
∑

0≤i≤3
1≤j≤3

(∂tiAj − ∂xjBi)dti ∧ dxj .

Therefore

FA ∧ ψε = (ε−4Fx,x ∧ dt0 ∧ dt1 ∧ dt2 ∧ dt3 + ε−2Ft,t ∧
3∑
i=1

ωi ∧ dxj ∧ dxk)

+ (ε−2Ft,x ∧
3∑
i=1

ωi ∧ dxj ∧ dxk).

Moreover,

dAΦ = dAtΦ+ dAxΦ =
3∑
i=0

(∂tiΦ+ [Bi, Φ])dti +
3∑
j=1

(∂xjΦ+ [Aj , Φ])dxj .

Let ∗gε and denote the Hodge star operator with respect to the metric gε.

∗gεdAΦ = ε−2
3∑
i=0

(∂tiΦ+ [Bi, Φ])d̂ti + ε−4
3∑
j=1

(∂xjΦ+ [Aj , Φ])d̂xj ,

where d̂t1 = dt2dt3dx0 . . . dx3 and d̂x1 = dt1dt2dt3dx0dx2dx3, and the rest are defined with
cyclic permutations.

For any ε > 0, by multiplying the G2-Bogomolny equation for φε by ε4 we get

(Fx,x ∧ dt0 ∧ dt1 ∧ dt2 ∧ dt3 + ε2Ft,t ∧
3∑
i=1

ωi ∧ dxj ∧ dxk)

+ (ε2Ft,x ∧
3∑
i=1

ωi ∧ dxj ∧ dxk)

= ε2
3∑
i=0

(∂tiΦ+ [Bi, Φ])d̂ti +

3∑
j=1

(∂xjΦ+ [Aj , Φ])d̂xj .
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Let’s let ε = 0. We get

Fx,x ∧ dt0 ∧ dt1 ∧ dt2 ∧ dt3 =
3∑
i=1

(∂xjΦ+ [Aj , Φ])d̂xj ,

and therefore, by letting the coefficients of dt0 ∧ dt1 ∧ dt2 ∧ dt3 equal on the both sides we get
the standard 3-dimensional Bogomolny equation on (TxN)⊥ ∼= R3.

The proof in the more general setting is similar, essentially because at each t ∈ N , in a
suitable coordinates ψ = ψ2,2 + ψ4,0 +O(|x|), where

ψ2,2 :=

3∑
i=1

ωi ∧ dtj ∧ dtk, ψ4,0 := dx0 ∧ dx1 ∧ dx2 ∧ dx3,

for coordinates t0, t1, t2, t3 on N around t ∈ N and x1, x2, x3 in the normal direction.

In the non-linear case, where there is no identification between monopoles with different
masses, the affect of scaling the metric the way we observed above is similar to changing the
mass of the monopole, and rather than sending ε → 0, one can send mass m → ∞, and still
G2-monopoles will concentrate along coassociatives, and in the transverse directions at each
point along the coassociative submanifolds, a G2-monopole with a large mass is approximately a
3-dimensional monopole.

Now we consider the mixed Bogomolny equations. Let (Y, φ) be an asymptotically conical
G2-manifold. Let N ⊂ Y be a coassociative submanifold. Let (A,Φ) be a G2-monopole on
P → Y with a large mass. Considering the dominant part of the G2-Bogomolny equation in the
transverse direction, at each point t ∈ N we have an approximate 3-dimensional monopole on
(TtN)⊥, and therefore, in the adiabatic limit, there is a 4-dimensional family of 3-dimensional
monopoles, parametrized by the points of N . This can be understood as a section of a bundle
above N , with fibers modeled on the moduli spaces of centered monopoles on R3. The mixed G2-
Bogomolny equation asserts that this section satisfies a non-linear Dirac operator on a hyperkähler
bundle.

Again for simplicity, consider the linear case Y = T4 × R4 with the G2-structure φε. Let
N = T4 × {x0} for a x0 ∈ R4. Let f : T4 × {x0} →Mk, where Mk denotes the moduli space
of centered k-monopoles on R34. Let f(x) = (Af (x), Φf (x)). Moreover, for any k, we have

Λk(T4 × R4) = ⊕p+q=k(ΛpT4 ⊗ ΛqR4).

Corresponding to this decomposition, for any k-form α we can write α =
∑

p+q=k αp,q. Then
the G2-Bogomolny equation reads as

0 = (dAfΦf )1,0 − ∗(F 1,1
Af
∧ ψ2,2) = dΦf −

3∑
i=1

I(∂ti)d(Af )i,

4For detailed description of the moduli spaces of monopoles on R3 see Section 3.4.1.
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where the expression on the right-hand side is a non-linear Dirac operator applied to f . In
the non-linear case, the map f is a section of the centered monopole bundle on an oriented
Riemannian 4-manifold N , studied in more details in the next chapter.

Over the Calabi-Yau manifolds, the Calabi-Yau monopoles with large mass concentrate along
special Lagrangians. Similar to the G2 case, the Calabi-Yau monopole equation, in the adiabatic
limit, reduces to the 3-dimensional Bogomolny equation in the transverse directions to the special
Lagrangian. The mixed equations read as a Fueter equation on 3-manifolds. These equations will
be studied in more detail in the next chapter.

2.5 Complex Gauge Theory in Higher Dimensions

We can complexify gauge theories, and they turn out to be quite interesting. For instance, it
is conjectured by Witten that a certain complexification of the instantons can be used to give
a gauge-theoretic definition of the Jones polynomial and Khovanov homology of knots and
links in 3-manifolds [99, 70]. There exists a different complexification of instantons, introduced
by Haydys [41]. Same thing can be done for the Bogomolny equation on 3-manifolds. These
complex Bogomolny equations have been introduced and studies by Nagy and Oliveira [73, 74].
In this section, we do the same for gauge-theoretic equations defined on manifolds with special
holonomy groups.

2.5.1 Preliminaries

We start by introducing the basic framework of the complexified gauge theories.

2.5.1.1 Complexification

The first step of defining these complexified gauge theories is to complexify the Lie groups and
Lie algebras.

Definition 33 (Complex Lie Group). A complex Lie group G is a Lie group and a complex
manifold where the group multiplication m : G×G→ G and the inverse map i : G→ G, given
by

m(g, h) = gh, i(g) = g−1,

are holomorphic. There is a natural induced complex structure on the Lie algebra g of a complex
Lie group, with a complex bilinear Lie bracket [−,−] : g× g→ g.

Definition 34 (Complexification of Lie Groups: Definition by the Universal Property). A complex
Lie group GC is a complexification of a Lie group G if there exists a continuous injective group
homomorphism ι : G→ GC such that for any complex Lie group H and any continuous group
homomorphism f : G→ H there is a unique unique holomorphic homomorphism fC : GC → H ,
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such the following diagram is commutative,

G GC

H

ι

f
fC

Remark 4. In the definition above, although it is asked for the existence of fC for any continuous
group homomorphism f , it should noted that any continuous group homomorphism between Lie
groups is, in fact, (real) analytic.

Example 8. GL(n,C), SL(n,C) and PSL(n,C) are complex Lie groups for any n ∈ N. In
fact,

(U(n))C ∼= GL(n,C), (SU(n))C ∼= SL(n,C), (PU(n))C ∼= PSL(n,C).

Theorem 12 (Existence and Uniqueness). Every compact Lie group admits a complexification.
Furthermore, the complexification is unique up to isomorphism.

A proof of this theorem can be found in [38, Section 7.1].

Remark 5. There are non-compact Lie groups which do not admit a complexification.

One can also complexify a Lie algebra simply by letting gC = g ⊗ C. Lie algebra of the
complexification of a Lie group is the same as complexification of the Lie algebra of the Lie
group.

One important difference between the complex Lie groups and the non-complex ones in
example 8 is that the non-complex ones are compact, whereas the complex ones are non-compact.

Theorem 13. Every connected complex Lie group, which is not a complex torus, is non-compact.

The main difficulty for studying gauge theory, when the structure group is non-compact,
is the compactness problems. For instance, the Uhlenbeck compactness theorem applies to
connections on bundles with compact structure group. There are different forms of generalizations
of Uhlenbeck compactness theorem to the principal SL(2,C)- and PSL(2,C)-bundles, due to
Taubes [88, 91, 87].

The key fact about compact Lie groups, which is essential in the Uhlenbeck compactness
theorem, is that the Lie algebra of a compact Lie group admits an adjoint invariant inner product,
which here it means the Yang-Mills functional is invariant under the action of gauge group.
However, that is not necessarily the case for non-compact Lie groups, including the examples
appearing in 8.

The next step is to complexify bundles.

Definition 35 (Complexification of Bundles). Let PG →M be a principal G-bundle for a Lie
groupG, with complexificationGC. This bundle induces a principalGC-bundlePGC = PG×GGC
over M , which is called the complexified principal bundle. The associated adjoint bundle of PGC

is the complexification of the adjoint bundle of PG; i.e., gP ⊗ C = gP ⊕ igP .

This sets the stage to study the complex gauge theories.
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2.5.2 Complex Gauge Theories in Low Dimensions

In this section, we briefly review the complex gauge theories on 3- and 4-manifolds, including
complex instantons and monopoles. There are two ways to complexify the gauge-theoretic
equations, we call one of the Haydys type and the other of the Kapustin-Witten type.

2.5.2.1 Complex Flat Connections

Haydys studied the moduli space of stable flat PSL(2,C)-connections on Riemannian 3-
manifolds. These connections are related to the non-compactness phenomenon in the study
of the higher rank Seiberg-Witten equations.

Definition 36. Let PGC be a complexified principal bundle. A connection A on this bundle can be
written as A1 + iA2, where A1 is a connection on a principal G-bundle PG and A2 is a 1-forms
with values in the adjoint bundle gP .

FA = (FA1 −
1

2
[A2 ∧A2]) + idA1A2.

A is a flat connection if and only if

FA1 −
1

2
[A2 ∧A2] = 0, dA1A2 = 0. (2.5.1)

These equations are under-determined. One can get an elliptic system of equation by introducing
a new condition. A flat PSL(2,C) connection A = A1 + iA2 is called stable if

d∗A1
A2 = 0. (2.5.2)

A section Φ of the adjoint bundle gPGC
can be written as Φ = Φ1 + iΦ2, and

dAΦ = (dA1Φ1 − [A2, Φ2]) + i(dA1Φ2 + [A2, Φ1]),

and therefore, Φ is parallel with respect to A if

dA1Φ1 − [A2, Φ2] = 0, dA1Φ2 + [A2, Φ1] = 0. (2.5.3)

The point about the equations 2.5.1 and 2.5.3 is that they are written on a bundles with a real
structure group.

2.5.2.2 Complex Instantons

In order to complexify the monopole and instanton equations, both in low- and also higher
dimensions, one should extend the Hodge star operator to complex-valued differential forms.
This basically boils down to deciding what the constant c should be in the equation ∗i = ci∗.

∗(1) = ∗(−i2) = ci ∗ (−i) = −c2i2 ∗ (1) = c2 ∗ (1),
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and therefore, c = 1 or −1. The first case, c = 1 corresponds to the linear extension of the
Hodge star operator to the complex-valued differential forms. We denote this operator by ∗C. The
second case, c = −1, corresponds to the conjugate linear (anti-linear) extension of the Hodge
star operator. We denote this operator by ∗C.

∗C and ∗C : Ωk(M, gPGC
)→ Ωn−k(M, gPGC

).

Haydys introduced complex instantons with respect to the complex linear Hodge star operator
[41], Kapustin and Witten introduced complex instantons with respect to the conjugate linear
Hodge star [58], and Nagy and Oliveira studied the dimensional reduction of both of these
equations on 3-manifolds [73, 74]. We review these works and then generalize them to the
higher-dimensional gauge theories.

Definition 37 (Haydys Instanton). Let PGC be a complexified principal bundle over an oriented
Riemannian 4-manifold (M, g). Let A be a connection on PGC . A is called a complex anti-self-
dual connection if it is anti-self-dual with respect to the complex linear Hodge star operator
∗C,

∗CFA = −FA.

The complex anti-self-duality equation for A = A1 + iA2 reduces to the real equations,

(F (A1)− 1

2
[A2 ∧A2])+ = 0, (dA1A2)+ = 0. (2.5.4)

The equations 2.5.4 with the symmetry breaking condition d∗A1
A2 = 0, modulo real gauge group

G, form an elliptic system of equations,

(F (A1)− 1

2
[A2 ∧A2])+ = 0, (dA1A2)+ = 0, d∗A1

A2 = 0. (2.5.5)

The solutions to these equations are called Haydys instantons.

The complex equation ∗CFA + FA = 0 is invariant under the action of the complex gauge
group, GC = Aut(PGC), and therefore, the real equations 2.5.4, although they are written on a
G-bundle, they are invariant under GC . These equations, even modulo the real gauge group G, are
underdetermined and not elliptic. One hopes to get an elliptic system, modulo G, by adding an
extra equation. This equation should be invariant under the action of G, but not GC. The equation
d∗A1

A2 = 0 is such. This is a gauge symmetry breaking, similar to the stability condition in the
study of complex flat connections.

The space of complex connections is an infinite-dimensional flat Kähler manifold with a
Hamiltonian action of the real gauge group G. The equation d∗A1

A2 = 0 describes the zero-set of
the moment map.

Theorem 14 (Haydys [41]). Let (M, g) be a closed oriented Riemannian 4-dimensional manifold.
Denote the moduli space of Haydys instantons on PGC and the moduli space of (real) instantons
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on PG byMC andM, respectively. We have

virdimMC = 2virdimM.

AssumingM andMC are smooth manifolds of expected dimensions,MC is Kähler. Furthermore,
suppose (M,JM , ωM ) is a 4-dimensional Kähler manifold. ThenMC is hyperkähler andM is
a complex Lagrangian submanifold ofMC.

Complex instantons, with respect to conjugate linear Hodge star operator, have quite different
behaviours. The prototype of these equations are the Kapustin-Witten equations.

Definition 38 (Kapustin-Witten Instanton). Let (M, g) be an oriented Riemannian 4-manifold.
Let PGC →M be a complexified principal bundle. Let A be a connection on PGC . We call A a
complex conjugate anti-self-dual instanton if it satisfies the following equation,

∗CFA = −FA,

where ∗C is the complex conjugate extension of the Hodge star operator.
For gP -valued pair (A1, A2) where A = A1 + iA2, this equation reduces to

(F (A1)− 1

2
[A2 ∧A2])+ = 0, (dA1A2)− = 0. (2.5.6)

A connection A = A1 + iA2 is called a stable complex conjugate anti-self-dual instanton if

(F (A1)− 1

2
[A2 ∧A2])+ = 0, (dA1A2)− = 0, d∗A1

A2 = 0. (2.5.7)

One interesting feature of these equations is that they fit into a larger family of equations. The
Kapustin-Witten equations, with phase eiθ, are

(cos(θ)(F (A1)− 1

2
[A2 ∧A2])− sin(θ)dA1A2)+ = 0,

(sin(θ)(F (A1)− 1

2
[A2 ∧A2]) + cos(θ)dA1A2)− = 0,

d∗A1
A2 = 0.

The Kapustin-Witten connections are the Kapustin-Witten instantons with θ = π
4 ,

F (A1)− 1

2
[A2 ∧A2] = ∗dA1A2, d∗A1

A2 = 0.

Smooth Kapustin-Witten instantons on closed 4-manifolds satisfy a stronger condition. We
have the following theorem, from Gagliardo and Uhlenbeck [36].

Theorem 15 (The Vanishing Theorem). The Kapustin-Witten instantons with θ 6= 0, π2 , on
compact 4-manifolds, potentially with boundary, are complex flat connections,

F (A1)− 1

2
[A2 ∧A2] = ∗dA1A2 = 0, d∗A1

A2 = 0.
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2.5.2.3 Complexification of Monopoles

Nagy and Oliveira introduced complex monopoles on oriented Riemannian 3-manifolds [73,
73], as dimensional reduction of Haydys and Kapustin-Witten instantons. We start with the
definitions.

Definition 39 (Haydys Monopole [73]). Let PGC be a complexified principal bundle over an
oriented Riemannian 3-manifold (M, g). Let (A,Υ) be a pair of a connection A on PGC and a
section Υ of the complexified adjoint bundle. Let ∗C be the complex Hodge star operator. The
complex Bogomolny equation for a pair (A,Υ) is

∗CFA = dAΥ.

Let A = A1 + iA2 and Υ = Φ1 + iΦ. The complex Bogomolny equation for A1, A2, Φ1 and Φ2

reduces to

∗(FA1 −
1

2
[A2 ∧A2])− dA1Φ2 + [A2, Φ2] = 0, (2.5.8)

∗dA1A2 − dA1Φ2 − [A2, Φ1] = 0. (2.5.9)

The complex Bogomolny equations are invariant under the action of the complex gauge group
GC. This shows the complex Bogomolny equations for quadruplet (A1, A2, Φ1, Φ2), even modulo
real gauge group G, are not elliptic. The equations can be made elliptic by introducing a new
equation

d∗A1
A2 + [Φ1, Φ2] = 0. (2.5.10)

The quadruplets satisfying the complex Bogomolny equations and 2.5.10 are called Haydys
monopoles.

These equations can be understood as dimensional reduction of Haydys instantons.

Lemma 59. Let (M, g) be an oriented Riemannian 3-manifold. Let N = M × Rt, or N =
M × S1

t , equipped with the product metric h = g + dt2 where t is the variable in the R-
direction. Let π : N → M be the projection map. Let PG → M be a principal G-bundle and
π∗PG → N the pull-back bundle. A pair of translation-invariant connections (Ã1, Ã2), in a
translation-invariant gauge, can be written as

Ãi = π∗(Ai) + π∗(Φi)dt,

for a connection Ai on PG, a section Φi of the adjoint bundle, and i ∈ {1, 2}.
A pair (A1, A2) is a Haydys instanton if and only if the quadruplet (A1, A2, Φ1, Φ2) is a

Haydys monopole.

The proof is similar to the proof of Lemma 1.
Assuming maximal symmetry breaking, Nagy and Oliveira showed that the moduli space of

finite energy Haydys monopoles on R3 is a hyperkähler manifold in 3-different ways and contains
the ordinary Bogomolny moduli space as a complex Lagrangian submanifold.
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Theorem 16 (Nagy-Oliveira [73]). LetM = R3 equipped with the Euclidean metric g0. LetG be
a compact Lie group. LetM andMC the moduli spaces of Bogomolny and Haydys monopoles.
M embedds naturally intoMC by letting A2 = 0 = Φ2.

• There are finite energy Haydys monopoles that are not Bogomolny monopoles.

• MC carries an Cl(4)-structure, which means there are 3 different hyperkähler structures,
denoted by (I1, I2, I3), (J1, J2, J3), and(K1,K2,K3), all compatible with the L2-metric
on the moduli space. Furthermore, I1 = J1 = K1 and I2, J2 and K2 pairwise anti-
commute. Moreover, e1 = I1, e2 = I2, e3 = J2, and e4 = K4 are algebraically inde-
pendent, anti-commuting complex structures, and therefore, giving the tangent bundle the
structure of a Cl(4)-module.

• M is a complex Lagrangian submanifold of MC with respect to the either of the 3
hyperkähler structures. Moreover, it is complex with respect to complex structures I2, J2

and K2. Furthermore, it is Lagrangian with respect to the Kähler structures induced by
the other complex structures.

Similar to the case of instantons, one can extend the Hodge star to the complex-valued forms
by letting ∗Ci = −i∗C. These monopoles are called the Kapustin-Witten monopoles.

Definition 40 (Kapustin-Witten Monopole [74]). Let PGC be a complexified principal bundle
over an oriented Riemannian 3-manifold (M, g). Let (A,Υ) be a pair of a connection A on PGC
and a section Υ of the complexified adjoint bundle. Let ∗C be the complex conjugate Hodge star
operator. The complex conjugate Bogomolny equation for a pair (A,Υ) is

∗CFA = dAΥ.

Let A = A1 + iA2 and Υ = Φ1 + iΦ. The complex conjugate Bogomolny equation for A1, A2, Φ1

and Φ2 reduces to

∗(FA1 −
1

2
[A2 ∧A2])− dA1Φ2 + [A2, Φ2] = 0, (2.5.11)

∗dA1A2 + dA1Φ2 + [A2, Φ1] = 0. (2.5.12)

The complex conjugate Bogomolny equations are invariant under the action of the complex
gauge group GC. This shows the complex conjugate Bogomolny equations for quadruplets
(A1, A2, Φ1, Φ2), even modulo real gauge group G, are not elliptic. The equations can be made
elliptic by introducing the equation

d∗A1
A2 + [Φ1, Φ2] = 0. (2.5.13)

The quadruplet satisfying the complex conjugate Bogomolny equations and 2.5.13 are called
Kapustin-Witten monopoles.

Nagy and Oliveira showed the Kapustin-Witten monopoles satisfy a vanishing theorem.
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Theorem 17 (Nagy-Oliveira [74]). Let M = R3 equipped with the Euclidean metric g0. Let
(A1, A2, Φ1, Φ2) be a Kapustin-Witten monopole on PSU(2) → R3 with finite energy. Then
(A1, Φ1) is a finite energy monopole and (A2, Φ2) = (0, 0).

In the following section, we will see a higher-dimensional generalizations of this theory.

2.5.3 Complex Gauge Theory and Manifolds with Special Holonomy Groups

In this section, we introduce the complexified gauge-theoretic equations, instantons and monopoles,
over manifolds with special holonomy groups.

Similar to the low dimensional case, one can consider the complex linear extension of the
Hodge star operator or the complex conjugate one. We call the equations defined with respect to
∗C of the Haydys type, and the equations defined with respect to ∗C of the Kapustin-Witten type.

We start by complexifying the Spin(7)-instanton equation on Spin(7)-manifolds.

2.5.3.1 Complex Spin(7)Spin(7)Spin(7)-Instantons

In this section, we introduce the stable complex Spin(7)-instantons, and show they form a Kähler
space, similar to the lower-dimensional case.

Definition 41 (Stable Complex Spin(7)-Instanton). Let (M,Ω) be a Spin(7)-manifold. Let
PGC → M be a complexified principal bundle. A connection A on PGC is called a complex
Spin(7)-instanton if satisfies the Spin(7)-instanton equation with respect to the complex linear
∗C,

∗C(FA ∧ Ω) = −FA.

The complex Spin(7)-instanton equations for A = A1 + iA2 reduces to the real equations,

∗
(

(FA1 −
1

2
[A2 ∧A2]) ∧ Ω

)
+ FA1 −

1

2
[A2 ∧A2] = 0, (2.5.14)

∗ ((dA1A2) ∧ Ω) + dA1A2 = 0, (2.5.15)

where ∗ is the Hodge star operator associated to the Spin(7)-metric on M .
We call solutions to the complex Spin(7)-instanton equations with the symmetry breaking

condition

d∗A1
A2 = 0, (2.5.16)

the stable complex Spin(7)-instantons.

Lemma 60. The complex Spin(7)-instanton equations with the symmetry breaking condition
2.5.16 form an elliptic system. Moreover,

virdimMC = 2virdimM,

105



where M and MC are the moduli space of Spin(7)-instantons and moduli space of stable
complex Spin(7)-instantons, respectively.

Proof. The linearized equations at A = A1 + iA2 are given by the operator

LA = (L1
(A1,A2), L

2
(A1,A2), L

3
(A1,A2)) : Ω1(M, gP )× Ω1(M, gP )

→ Ω2
7(M, gP )× Ω2

7(M, gP )× Ω0(M, gP ),

where L1
(A1,A2), L

2
(A1,A2) and L3

(A1,A2) are

L1
(A1,A2)(a1, a2) = ∗ ((dA1a1 − [A2 ∧ a2]) ∧ Ω) + dA1a1 − [A2 ∧ a2],

L2
(A1,A2)(a1, a2) = ∗ ((dA1a2 + [a1 ∧A2]) ∧ Ω) + dA1a2 + [a1 ∧A2],

L3
(A1,A2)(a1, a2) = d∗A1

a2 + ∗[a1 ∧ ∗A2].

Note the image of the linear maps L1
(A1,A2) and L1

(A1,A2) are subset of Ω2
7(M, gP ). Let

d(A1,A2) : Ω0(M, gP )→ Ω1(M, gP )× Ω1(M, gP ), d(A1,A2)(ξ) = (−dA1ξ,−dA2ξ).

We get the following deformation complex,

0→ Ω0(M, gP )
d(A1,A2)−−−−−→ Ω1(M, gP )× Ω1(M, gP )

L(A1,A2)−−−−−→ Ω2
7(M, gP )× Ω2

7(M, gP )× Ω0(M, gP )→ 0.

Note that

rank(Ω0(M, gP )) + rank(Ω2
7(M, gP )× Ω2

7(M, gP )× Ω0(M, gP )) = 16

= rank(Ω1(M, gP )× Ω1(M, gP )),

and the operator

D(A1,A2) := L(A1,A2) ⊕ d∗(A1,A2) :Ω1(M)× Ω1(M)

→ Ω2
7(M)× Ω2

7(M)× Ω0(M)× Ω0(M).

is elliptic.
Moreover,

TAMC = kerD(A1,A2).

Note that by setting A2 = 0 we get a natural embedding ofM intoMC. Moreover,

D(A1,0)(a1, a2) = (∗((da1) ∧ Ω) + da1, ∗((da1) ∧ Ω) + da2, 2d
∗a1, d

∗a2),
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and therefore

kerD(A1,0) = {(a1, a2) | ∗ ((da1) ∧ Ω) + da1 + d∗a1 = 0

and ∗ ((da2) ∧ Ω) + da2 + d∗a2 = 0} ∼= TA1M⊕ TA1M,

which implies virdimMC = 2virdimM at (A1, 0).

The following lemma is similar to the case of Haydys instantons in dimension four.

Theorem 18. SupposeM andMC are smooth manifolds of expected dimensions.MC is Kähler.

Proof. The space of complex connections AC form a flat infinite-dimensional Kähler manifold,
with almost complex structure given by

I(a1 + ia2) = −a2 + ia1,

g(a1 + ia2, b1 + ib2) =

∫
M
tr(a1 ∧ ∗b1 + a2 ∧ ∗b2),

ω(a1 + ia2, b1 + ib2) =

∫
M
tr(a1 ∧ ∗b2 − a2 ∧ ∗b1).

The action of the real gauge group is Hamiltonian with the moment map µ : AC → Lie(G)⊗R∗,
given by

µ(A1 + iA2) = d∗A1
A2.

We have,

MC = Stable complex Spin(7)-instantons /G
= (Complex Spin(7)-instantons /G) ∩ (µ−1(0)/G).

Assuming transversality, µ−1(0)/G is a Kähler manifold with the virtue of infinite-dimensional
Kähler reduction. Furthermore, we have

L1
(A1,A2)(J(a1, a2)) = L1

(A1,A2)(−a2, a1) = ∗ ((−dA1a2 − [A2 ∧ a1]) ∧ Ω)− dA1a2 − [A2 ∧ a1]

= −L2
(A1,A2)(a1, a2).

L2
(A1,A2)(J(a1, a2)) = L2

(A1,A2)(−a2, a1) = ∗ ((dA1a1 − [a2 ∧A2]) ∧ Ω) + dA1a1 − [a2 ∧A2]

= L1
(A1,A2)(a1, a2).

This shows the map L1
(A1,A2) ⊕ L

2
(A1,A2) is J-holomorphic, and therefore, the space complex

Spin(7)-instantons is a complex subvariety of AC, thus it is Kähler. Furthermore, G preserves
the Kähler structure, hence assuming transversal intersection,MC is Kähler.

Similar statements hold for complex G2-instantons on G2-manifolds. We mention them very
briefly.
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2.5.3.2 ComplexG2G2G2-Instantons

Definition 42 (Stable Complex G2-Instanton). Let (M,φ) be a G2-manifold. Let A be a connec-
tion on a complexified principal bundle PGC → M . We call a connection A on PGC a complex
G2-instanton if

∗C(FA ∧ φ) = −FA,

where ∗C is the complex linear extension of the Hodge star operator.
For g-valued pair (A1, A2), this equation reduces to

∗
(

(FA1 −
1

2
[A2 ∧A2]) ∧ φ

)
= −FA1 +

1

2
[A2 ∧A2], (2.5.17)

∗ ((dA1A2) ∧ φ) = −dA1A2. (2.5.18)

A connection A = A1 + iA2, is called a stable complex G2-instanton if

∗
(

(FA1 −
1

2
[A2 ∧A2]) ∧ φ

)
= −FA1 +

1

2
[A2 ∧A2], (2.5.19)

∗ ((dA1A2) ∧ φ) = −dA1A2, (2.5.20)

d∗A1
A2 = 0. (2.5.21)

Theorem 19. The stable complexG2-instanton equations, modulo the real gauge group G, form a
an elliptic system of equations. Furthermore, assuming the transversality, dimM7

C = 2 dimM7,
whereM7

C andM7 are the moduli spaces of stable complex G2-instantons and G2-instantons,
respectively.M7

C has a Kähler structure andM7 embeds intoM7
C as a Lagrangian submanifold.

The proof is similar to the Spin(7) case.

2.5.3.3 Kapustin-Witten Spin(7)Spin(7)Spin(7) andG2G2G2-Instantons

In this section, we consider the complex Spin(7) and G2-instantons with respect to the complex
conjugate Hodge star.

Definition 43 (Kapustin-Witten Spin(7)-Instanton). Let (M,Ω) be a Spin(7)-manifold. Let
PGC → M be a complexified principal bundle. A connection A on PGC is called a complex
conjugate Spin(7)-instanton if

∗C(FA ∧ Ω) = −FA,

where ∗C is the complex conjugate Hodge star operator.
The complex conjugate Spin(7)-instanton equation for A = A1 + iA2 reduces to

∗
(

(FA1 −
1

2
[A2 ∧A2]) ∧ Ω

)
= −FA1 +

1

2
[A2 ∧A2], (2.5.22)

∗ ((dA1A2) ∧ Ω) = dA1A2. (2.5.23)
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We call the solutions to these equations the stable complex-conjugate Spin(7)-instantons if they
also satisfy the symmetry breaking condition,

d∗A1
A2 = 0. (2.5.24)

These equations, fit into a larger class of equations,

∗
(

(cos(θ)(FA1 −
1

2
[A2 ∧A2])− sin(θ)(dA1A2)) ∧ Ω

)
= − cos(θ)(FA1 −

1

2
[A2 ∧A2]) + sin(θ)(dA1A2),

∗
(

(sin(θ)(FA1 −
1

2
[A2 ∧A2]) + cos(θ)(dA1A2)) ∧ Ω

)
= sin(θ)(FA1 −

1

2
[A2 ∧A2]) + cos(θ)(dA1A2),

d∗A1
A2 = 0.

We call solutions to the equations above, when θ = π
4 , the Kapustin-Witten Spin(7)-instantons,

∗
(

(FA1 −
1

2
[A2 ∧A2]

)
− (dA1A2) ∧ Ω) = −(FA1 −

1

2
[A2 ∧A2]) + (dA1A2),

∗
(

(FA1 −
1

2
[A2 ∧A2]) + (dA1A2) ∧ Ω

)
= (FA1 −

1

2
[A2 ∧A2]) + (dA1A2),

d∗A1
A2 = 0.

Similarly one can define the Kapustin-Witten G2-instantons, which on a complexified principal
bundle PGC → N , over a G2-manifolds (N,φ) are given by

∗
(

(FA1 −
1

2
[A2 ∧A2])− (dA1A2) ∧ φ

)
= −(FA1 −

1

2
[A2 ∧A2]) + (dA1A2),

∗
(

(FA1 −
1

2
[A2 ∧A2]) + (dA1A2) ∧ φ

)
= (FA1 −

1

2
[A2 ∧A2]) + (dA1A2),

d∗A1
A2 = 0.

We have the following conjecture.

Conjecture 3 (Vanishing Properties). The Spin(7)-Kapustin-Witten-instantons with θ 6= 0, π2 ,
on compact Spin(7)-manifolds, potentially with boundary, satisfy

(F (A1)− 1

2
[A2 ∧A2]− ∗dA1A2) ∧ Ω = 0, d∗A1

A2 = 0.

We expect the similar statement holds in the G2-case too.
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2.5.3.4 Complex Monopoles on Manifolds with Special Holonomy

Definition 44 (Complex G2-Monopole). Let (M,φ) be a G2-manifold with a complexified
principal bundle PGC →M . Let (A,Υ) be a connection A = A1+iA2 on PGC and Υ = Φ1+iΦ2

a section of the complexified adjoint bundle. We call (A,Υ) a complex G2-monopole if it satisfies
the G2-Bogomolny equation with respect to the complex linear Hodge star operator, which for a
quadruple (A1, A2, Φ1, Φ2) reduces to

∗
(

(FA1 −
1

2
[A2 ∧A2]) ∧ ψ) = dA1Φ1 − [A2, Φ2], (2.5.25)

∗ ((dA1A2) ∧ ψ) = dA1Φ2 + [A2, Φ1]. (2.5.26)

Similar to the case of complex instantons, these equations, even modulo the real gauge group, are
not elliptic. We impose the symmetry breaking equation

d∗A1
A2 − [Φ1, Φ2] = 0.

We call quadruples (A1, A2, Φ1, Φ2) satisfying the complex G2-monopole equations with the
symmetry breaking equation the stable complex G2-monopoles.

Theorem 20. The complex G2-monopoles are dimensional reduction of complex Spin(7)-
instantons. The complex G2-monopole equations,modulo the real gauge group G, are elliptic.
Furthermore, assuming the transversality, dimM7

C = 2 dimM7, whereM7
C andM7 are the

moduli spaces of stable complex G2-monopoles and G2-monopoles, respectively. M7
C has a

Kähler structure andM7 embeds intoM7
C as a complex Lagrangian submanifold.

The proof is similar to the case of Spin(7)-instantons.

Definition 45 (Kapustin-WittenG2-monopole). Let (M,φ) be aG2-manifold with a complexified
principal bundle PGC →M . Let (A,Υ) be a connection A = A1+iA2 on PGC and Υ = Φ1+iΦ2

a section of the complexified adjoint bundle. We call (A,Υ) a complex conjugate G2-monopole if
it satisfies G2-Bogomolny equation with respect to the conjugate complex Hodge star operator,
which for the quadruple (A1, A2, Φ1, Φ2) reduces to

∗
(

(FA1 −
1

2
[A2 ∧A2]) ∧ ψ

)
= dA1Φ1 − [A2, Φ2], (2.5.27)

∗ ((dA1A2) ∧ ψ) = −dA1Φ2 − [A2, Φ1]. (2.5.28)

We have the symmetry breaking equation

d∗A1
A2 − [Φ1, Φ2] = 0.

We call quadruples (A1, A2, Φ1, Φ2) satisfying the complex conjugate G2-monopole equations
with the symmetry breaking condition the Kapustin-Witten G2-monopoles.

Theorem 21. The Kapustin-Witten G2-monopoles are dimensional reduction of Kapustin-Witten
Spin(7)-instantons. Moreover, the Kapustin-Witten G2-monopole equations form an elliptic
system.

110



The proof is similar to the case of Spin(7)-instantons.
On closed G2-manifolds, we expect the Kapustin-Witten G2-monopoles satisfy stronger

conditions.

Conjecture 4. Suppose (A1, A2, Φ1, Φ2) is a Kapustin-Witten G2-monopole quadruple on a
closed G2-manifold (M,φ). Then we have

∗
(

(FA1 −
1

2
[A2 ∧A2]) ∧ ψ

)
= dA1Φ1 − [A2, Φ2] = 0,

∗ ((dA1A2) ∧ ψ) = dA1Φ2 − [A2, Φ1] = 0.
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Chapter 3

Fueter Sections and Monopoles

The Fueter operator is a non-linear generalization of the Dirac operator defined over orientable
Riemannian 3- and 4-manifolds, where the spinor bundle is replaced by a hyperkähler bundle
with fibers modeled on a non-linear hyperkähler manifold. In this section, we study the regularity
and singularities of Fueter sections, i.e., harmonic spinors with respect to this non-linear Dirac
operator, and show how singularities of these sections are related to the existence of certain
minimal spheres in the hyperkähler manifolds. Using this, we will prove a compactness theorem
for the spaces of Fueter sections of the bundles whose fibers are modeled on the moduli spaces of
monopoles on R3.

3.1 Preliminaries

We start by defining the Fueter sections on 3-manifolds.

3.1.1 Fueter Sections on 3-manifolds

Let (M, g) be an oriented Riemannian 3-manifold. Let π : X → M be a fiber bundle with
fibers modeled on a (compact or non-compact) hyperkähler manifold (X, gX , I, J,K) with an
isometric bundle identification

I : STM → b(X),

where STM is the unit tangent bundle of M and b(X) is the sphere bundle of the complex
structures of the fibers of X. We call π : X→M a hyperkähler bundle.

Definition 46 (3D Fueter Section). Let π : X → M be a hyperkähler bundle. Let ∇ be a
connection on this bundle. A section f ∈ Γ(X) is called a Fueter section if

F∇(f) := I(∂x1)∇∂x1f + I(∂x2)∇∂x2f + I(∂x3)∇∂x3f = 0 ∈ Ω0(M,f∗V X),

where V X := ker(dπ) : TX → TM is the vertical bundle and (∂x1, ∂x2, ∂x3) is a local
orthonormal frame on M . The operator F∇ is called a Fueter operator.
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Lemma 61. The Fueter operators on 3-manifolds are well-defined.

Proof. One can see this by a direct computation. Let (∂x1, ∂x2, ∂x3) and (∂y1, ∂y2, ∂y3) be
two oriented orthogonal basis at a point x ∈M , related by an orthogonal matrix A ∈ SO(TxM);
i.e., ∂xi =

∑3
j=1Ai,j∂yj . Then

∑3

i=1
I(∂xi) · df(∂xi) =

∑3

i=1
I(

3∑
j=1

Ai,j∂yi) · df(

3∑
k=1

Ai,k∂yi) =

∑3

j,k=1

3∑
i=1

(Ai,jAi,k)I(∂yj) · df(∂yk) =
∑3

i=1
I(∂yi) · df(∂yi).

It can also be seen by expressing the Fueter operator in a coordinate-free way. The isometric
bundle identification I and the Riemannian metric g induce a bundle homomorphism, which by
an abuse of notation, we still denote it by I,

I : T ∗M ⊗ V X→ V X.

This map is a generalization of the Clifford multiplication of the spinor bundles to the non-linear
case. The Fueter operator can be written as

F∇(f) = I(∇(f)),

which is independent of the chosen local frame on M .

Example 9. If the bundle X is trivial, X = X ×M , with trivial connection ∇ = d, we can think
of a Fueter section of this bundle as a map f : M → X such that

3∑
i=1

I(∂xi)∂xif = 0.

We call f a Fueter map.

Example 10. The Fueter operator is a non-linear generalization of Dirac operator. Let s be a
spin structure on M and X be the corresponding spinor bundle. Let ∆ be the induced Levi-Civita
connection and I the Clifford multiplication. The corresponding Fueter operator is the Dirac
operator associated with the spin structure s. This non-linear generalization has been introduced
in [89] and [3].

There is a 4-dimensional version of this theory.

3.1.2 Fueter Sections on 4-manifolds

Let V be a 4-dimensional vector space equipped with an inner product. Using the metric, we
can identify 2-forms on V with skew-symmetric endomorphisms of V . Let ι : Λ+V ∗ → so(V ).
Let (N,h) be an oriented Riemannian 4-manifold. Let π : X→ N be a fiber bundle, with fibers
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modeled on a hyperkähler manifold (X, gX , I, J,K), together with a fixed isometric bundle
identification

J : SΛ+(T ∗N)→ b(X),

where SΛ+(T ∗N) is the unit length sphere bundle of the self-dual 2-forms on N and b(X) is the
sphere bundle of the complex structures of the fibers of X.

Definition 47 (4D Fueter Section). A section f ∈ Γ(X) is called a Fueter section if

F̃∇(f) := ∇f −
3∑
i=1

J (ωi) ◦ (∇f) ◦ ι(ωi) = 0 ∈ Γ(f∗Hom(π∗TN, V X)),

for some local orthonormal frame (ω1, ω2, ω3) of Λ+(T ∗N) and a connection∇ on X. Similar
to the 3-dimensional case, it is independent of the chosen orthonormal frame.

Lemma 62. Fueter operators on 4-manifolds are well-defined.

Proof. Similar to the 3-dimensional case, one can see this by a direct computation. Let
(∂x1, ∂x2, ∂x3, ∂x4) and (∂y1, ∂y2, ∂y3, ∂y4) be two oriented orthogonal basis at a point x ∈ N ,
related by an orthogonal matrix A ∈ SO(TxN). Let ωi = dx1 ∧ dxi + dxj ∧ dxk and
ω̃i = dy1 ∧ dyi + dyj ∧ dyk, where {i, j, k} = {1, 2, 3} are cyclic. Since the matrix A preserves
the metric, it induces a linear map A∗ ∈ SO(Λ+

xN). We have

3∑
i=1

J (ωi) ◦ (∇f) ◦ ι(ωi) =

3∑
i=1

J (

3∑
j=1

A∗i,jω̃j) ◦ (∇f) ◦ ι(
3∑

k=1

A∗i,kω̃k) =

3∑
j,k=1

3∑
i=1

A∗i,jA
∗
i,kJ (ω̃j) ◦ (∇f) ◦ ι(ω̃k) =

3∑
j=1

J (ω̃j) ◦ (∇f) ◦ ι(ω̃j).

Remark 6. Let N = Rt ×M for some Riemannian 3-manifold (M, g) equipped with a Rieman-
nian metric h = dt2 + g, where t denotes the coordinates on R. Let π : N →M be the obvious
projection map. Let X→M be a hyperkähler fiber bundle and π∗X→ N the pull-back bundle.
Moreover, suppose the identification J : SΛ+(T ∗N) → b(X) is induced by an identification
I : STM → b(X), and the connection on π∗X is the pullback of a connection on X. Then the
4-dimensional Fueter equation can be written as

∂tu− Fu = 0,

with F denoting the 3-dimensional Fueter operator and ∂t the derivative in the R-direction.
This 4-dimensional Fueter operator appears in [46], in order to define the differentials of a
hyperkähler Floer theory.
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3.1.3 Group Actions on Hyperkähler Manifolds

With motivations coming from higher-dimensional gauge theory, generalized Seiberg-Witten
theory and a new — potentially — invariant of 3- and 4-manifolds, an interesting case to consider
is when we have a hyperkähler bundle with a certain G-action on the fibers, which is defined
below.

Note that on hyperkähler manifolds there exists an S2-family of complex and Kähler structures.
For any ζ = ζ1i+ ζ1j + ζ1k ∈ S2 ⊂ R3, we have corresponding complex structure and Kähler
form, defined by

Iζ = ζ1I + ζ1J + ζ1K, ωζ = ζ1ω1 + ζ1ω2 + ζ1ω3.

Let ω ∈ sp(1)∗ ⊗ Ω2(X) be the hyperkähler form, defined by

〈ω, ζ〉 = ωζ for any ζ = ζ1i+ ζ2j + ζ3k ∈ sp(1) ∼= Im(H).

A certain type of group actions, which appears naturally in the study of hyperkähler manifolds,
is the permuting hyperkähler action.

Definition 48 (Permuting Hyperkähler Action). Let (X, gX , I, J,K) be a hyperkähler manifold
with an SO(3)-action. This actions is called permuting if

• SO(3) acts isometrically.

• The induced action of SO(3) on the 2-sphere of complex structures — or, equivalently, on
Kähler structures — is the standard action of SO(3) on S2 ⊂ R3.

Similarly, an isometric action of SU(2) on M is called permuting, if the induced action on the
2-sphere of complex structures is the standard action of SU(2) factoring through SO(3) on
S2 ⊂ R3.

Example 11. SO(3) acts on R3, and therefore, on the moduli spaces of solution to the Bogomolny
equation on R3. These actions are permuting.

There is a strong obstruction for a hyperkähler manifold to have a permuting hyperkähler
action.

Lemma 63. [12, Proposition 1.1] Let (M, g, I, J,K) be a hyperkähler manifold with a permuting
SO(3) action. Then every symplectic form ωζ in the two-sphere family of symplectic structures is
exact, and therefore, M is non-compact.

Permuting actions can be used to construct hyperkähler bundles.

3.1.4 Hyperkähler Bundles

In this section, we define the main bundles where our Fueter sections are defined on.

115



Definition 49 (Permuting Hyperkähler SO(3)-Bundle over a 3-Manifold). Let (M, g) be an
oriented Riemannian 3-manifold with the oriented orthonormal frame bundle FrSO(3) → M .
Let (X, gX , I, J,K) be a hyperkähler manifold with a permuting SO(3)-action. The permuting
hyperkähler SO(3)-bundle X→M is defined by

X := FrSO(3) ×SO(3) X
π−→M.

Example 12. In particular, when X = Mon◦k is the moduli space of centered k-monopoles with
the natural induced SO(3)-action, we get a permuting hyperkähler bundle, called the monopole
bundle, denoted by Mon◦k →M .

An interesting aspect of permuting hyperkähler bundles is that, unlike the general case, these
bundles come with a natural identification I : STM → b(X) and the induced Levi-Civita
connection, which can be used to define the Fueter operator.

Definition 50 (Permuting Hyperkähler SU(2)-Bundle over a 3-Manifold). Let (M, g) be an
oriented Riemannian 3-manifold with a spin structure and a corresponding SU(2)-bundle
FrSU(2) →M . Let (X, gX , I, J,K) be a hyperkähler manifold with a permuting SU(2)-action.
Let X→M be the permuting hyperkähler SU(2)-bundle, defined by

X := FrSU(2) ×SU(2) X
π−→M.

Similar to the SO(3) case, there is a natural isomorphism between the unit sphere bundle
and the complex structures on X , and we can use the Levi-Citiva connection to define the Fueter
operator.

Definition 51 (Auxiliary Hyperkähler Bundle over a 3-Manifold). Let (M, g) be an oriented
Riemannian 3-manifold with the oriented orthonormal frame bundle FrSO(3) → M . Let
(X, gX , I, J,K) be a hyperkähler manifold with a permuting SO(3)-action. Furthermore, sup-
pose G is a Lie group with a hyperkähler action on X , and therefore, X is equipped with
an action of G × SO(3). Moreover, let Q → M be a principal G-bundle. The auxiliary
G× SO(3)-hyperkähler bundle X→M is defined by

X := (Q× Fr)×G×SO(3) X
π−→M.

Similarly we can define an auxiliaryG×SU(2)-hyperkähler bundle by replacing FrSO(3) by
a SU(2)-bundle corresponding to a spin structure and replacing X with a hyperkähler manifold
with a permuting SU(2)-action.

Similar constructions exist over Riemannian 4-manifolds. Let (N,h) be an oriented Rieman-
nian 4-manifold. The Hodge star of the Riemannian metric ∗ : Λ2(T ∗N)→ Λ2(T ∗N) induces a
bundle decomposition

Λ2(T ∗N) = Λ2
+(T ∗N)⊕ Λ2

−(T ∗N).

The self dual and anti-self dual 2-forms form vector bundles over N with structure group SO(3),
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with the following associated frame bundles

Fr±SO(3) → N.

Definition 52 (Permuting Hyperkähler SO(3)-Bundles over 4-Manifolds). Let (N,h) be an
oriented Riemannian 4-manifold with frame bundles Fr±SO(3) → N . Let (X, g, I, J,K) be
a hyperkähler manifold with a permuting SO(3)-action. The permuting hyperkähler SO(3)-
bundles X± → N are defined by

X± := Fr±SO(3) ×SO(3) X
π−→ N.

In the following section, we study the basic analysis of the Fueter sections.

3.2 The Fredholm Theory

A key property governing the analytical properties of Fueter sections is an energy identity.

3.2.1 The Energy Identity

In the Floer theory introduced by Hohloch, Noetzel and Salamon [46], the crucial role is played
by the hypersymplectic action functional, defined by

A : Map(M,X)→ R, A(f) := −
∫
M

3∑
i=1

αi ∧ f∗ωi,

where (M, g) is a quotient of S3 by a finite subgroup of SU(2), (α1, α2, α3) is a global frame
of the cotangent bundle dual to the Reeb vector fields, and (X, gX , I, J,K) is a hyperkähler
manifold.

Here, the framing is fixed globally on the manifold, and therefore, there is no question of
well-definedness. However, the same action functional can be defined in the gauge-theoretic
setting and is well-defined.

Lemma 64. Let X → M be a hyperkähler bundle over an oriented Riemannian 3-manifold
(M, g) with an isometric bundle identification I : STM → b(X) and a connection on X→M
with covariant derivative∇. The gauged hypersymplectic action functional, defined by

A : Γ(X)→ R, A(f) := −
∫
M

3∑
i=1

dxi ∧ f∗ωI(∂xi),

— where (∂x1, ∂x2, ∂x3) is a local oriented orthonormal frame, (dx1, dx2, dx3) is the dual frame
is well-defined, where f∗ωI(∂xi) is defined with the use of the connection.

Note that ωI(∂xi) is not a differential form on X. Let x ∈ M . Let Bx(ε) be a sufficiently
small open neighbourhood of x in M , with a fixed unit vector field ∂xi. ωI(∂xi) defines a
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fiber-wise 2-form on fibers above points in Bx(ε), and f∗ωI(∂xi) a 2-form on Bx(ε). However,∑3
i=1 dxi ∧ f∗ωI(∂xi) is a global well-defined 2-form on M , as we will see below.

Proof. Similar to the proof of well-definedness of the Fueter operator, let (∂x1, ∂x2, ∂x3) and
(∂y1, ∂y2, ∂y3) be two local orthogonal frames at a point x ∈M , related by a matrixA ∈ SO(3);
i.e., ∂xi =

∑3
j=1Ai,j∂yj , and therefore, dxi =

∑3
j=1Aj,idyj . Then

−
3∑
i=1

dxi ∧ f∗ωI(∂xi) = −
3∑
i=1

(
3∑
j=1

Aj,idyj) ∧ f∗ωI(
∑3
k=1 Ai,k∂yk)

= −
3∑

j,k=1

3∑
i=1

Aj,iAi,kdyj ∧ f∗ωI(∂yk)

= −
3∑
j

dyj ∧ f∗ωI(∂yj).

Hohloch, Noetzel and Salamon’s energy identity holds in the gauge-theoretic setting too, with
a similar proof.

Lemma 65. Let (M, g) be an oriented Riemannian 3-manifold. We have the following energy
identity, ∫

M
|∇f |2volM =

∫
M
|F(f)|2volM −

∫
M

3∑
i=1

dxi ∧ f∗ωI(∂xi). (3.2.1)

Proof. Let (∂x1, ∂x2, ∂x3) be a local orthonormal frame,∫
M
|∇f |2volg −

∫
M
|F(f)|2volg =

∫
M

3∑
i=1

|∇f(∂xi)|2volg −
∫
M
|F(f)|2volg

=−
∫
M

(I(∂x3)∇f(∂x1),∇f(∂x2)〉+ 〈(I(∂x1)∇f(∂x2),∇f(∂x3)〉

+ 〈(I(∂x2)∇f(∂x3),∇f(∂x1)〉)volg

=−
∫
M

(f∗ωI(∂x1)(∂2, ∂3) + f∗ωI(∂x2)(∂3, ∂1) + f∗ωI(∂x3)(∂1, ∂2))volg

=−
∫
M

(dx1 ∧ f∗ωI(∂x1) + dx2 ∧ f∗ωI(∂x2) + dx3 ∧ f∗ωI(∂x3))(∂x1, ∂x2, ∂x3)volg

=−
∫
M

(dx1 ∧ f∗ωI(∂x1) + dx2 ∧ f∗ωI(∂x2) + dx3 ∧ f∗ωI(∂x3)) = A(f).
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There exists a 4-dimensional version of the action functional defined above, which we call
hyperkähler action functional.

Lemma 66. Let X → M be a hyperkähler bundle over an oriented Riemannian 4-manifold
(N,h) with an isometric bundle identification J : SΛ+(T ∗N) → b(X) and a connection on
X→ N with covariant derivative∇. The gauged hyperkähler action functional, defined by

A : Γ(X)→ R, A(f) := −
∫
N

∑
i

Ωi ∧ f∗(ωJ (Ωi)),

— where (Ω1,Ω2,Ω3,Ω4) is a local oriented orthonormal frame for Λ+(N) corresponding to a
local frame (∂x1, ∂x2, ∂x3) and Ωi = dx1 ∧ dxi + dxj ∧ dxk — is well-defined.

The proof is similar to the 3-dimensional case.
There exists a 4-dimensional version of the energy identity 67. This is the gauged version of

proposition 2.7. in [42].

Lemma 67. Let (N,h) be an oriented Riemannian 4-manifold. We have the following energy
identity, ∫

N
|∇f |2volN =

∫
N
|F̃(f)|2volN −

∫
N

∑
i

Ωi ∧ f∗(ωJ (Ωi)), (3.2.2)

for some local orthonormal frame (Ω1,Ω2,Ω3) of Λ+(T ∗N).

The proof is essentially the same as proposition 2.7. in [42].
There is a major different between the hypersymplectic — and hyperkähler — action func-

tional for maps and sections in the gauge-theoretic setting. For maps, in the hypercontact setting,
the energy identity 67 shows that the energy of a Fueter map is a topological invariant, which
only depends on the homotopy class of the map. As mentioned in [97] it is rarely the case in the
gauge-theoretic setting. We can let

−
3∑
i=1

dxi ∧ f∗ωI(∂xi) = f∗(Λ),

for a 3-form Λ ∈ Ω3(X), which is not necessarily closed. If it is the case that this form is closed
we would get ∫

M
|∇f |2volg =

∫
M
|F(f)|2volg − 2〈[M ], f∗Λ〉. (3.2.3)

Note that if Λ is closed and f is a Fueter map, then 3.2.3 gives a bound on ‖∇f‖2L2 , which is
crucial in the study of compactness problems of Fueter sections. However, this might not be true
in general for Fueter sections.
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3.2.2 The Elliptic Theory

The Fueter operators are non-linear generalizations of Dirac operators. One crucial property of
the Dirac operators is that they are elliptic. The Fueter operators are non-linear elliptic operators.
A non-linear differential operator is elliptic at a section f if its linearization at f is elliptic in the
usual sense.

Lemma 68. The 3-dimensional Fueter operator is elliptic.

Proof. Let f ∈ Γ(X). Let Lf denote the linearization of the Fueter operator along the section f .
The operator Lf : W 1,2(M,f∗V X)→ L2(M,f∗V X) is given by

Lfξ =

3∑
i=1

I(∂xi)∇∂xiξ,

which shows Symbol(Lf)x(h, v) = iI(v)(h) for all x ∈ M,v ∈ TxM and h ∈ f∗V Xx, and
therefore, F is an Elliptic operator.

The similar statement is correct in the 4-dimensional case.

Lemma 69. The 4-dimensional Fueter operator is elliptic.

The proof is similar to the proof of the previous lemma.
The regularity theory of the Fueter sections is very similar to the case of Fueter maps, studied

in [46], with almost an identical proof.

Lemma 70. If p > 3 every Fueter section over a 3-dimensional manifold which belongs to W 1,p

is smooth. If p > 4 every Fueter section over a 4-dimensional manifold which belongs to W 1,p is
smooth.

Recall that elliptic operators on compact manifolds are Fredholm.

Corollary 4. If the base manifold is compact then the Fueter operator is Fredholm.

Since the Fueter operators are Fredholm, we can consider their Fredholm index. Note that the
index of a non-linear elliptic operator is the index of its linearization at each section f ∈ Γ(X).

Lemma 71. Let X→M be a permuting hyperkähler bundle over a closed oriented Riemannian
3-manifold (M, g). The linearization of Fueter operators over 3-manifolds at each section
f ∈ Γ(X) is self-adjoint.

Proof. Let ξ1, ξ2 ∈ Ω0(M,f∗V X),

〈Lf (ξ1), ξ2〉L2 =
3∑
i=1

〈I(∂xi)∇∂xiξ1, ξ2〉L2 = −
3∑
i=1

〈∇∂xiξ1, I(∂xi)ξ2〉L2

=

3∑
i=1

〈ξ1,∇∂xiI(∂xi)ξ2〉L2 =
3∑
i=1

〈ξ1, I(∂xi)∇∂xiξ2〉L2 = 〈ξ1,Lf (ξ2)〉L2 .
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Note that in the case of permuting hyperkähler bundles, there is a natural isometric identification
I, which is covariantly constant.

Elliptic operators over closed odd-dimensional manifolds have index zero.

Corollary 5. Let X→M be a permuting hyperkähler bundle over a closed oriented Riemannian
3-manifold (M, g). Then

Ind(F) = 0.

In this setting, since we are dealing with index zero Fredholm operators, one can hope to
count solutions to the equation F(f) = 0.

Definition 53. Let X → M be a permuting hyperkähler bundle, with fibers modeled on a
hyperkähler manifold (X, gX , I, J,K), over a closed oriented Riemannian 3-manifold (M, g).
Let Fuet(X) be the space of Fueter sections,

Fuet(X) = {f ∈ Γ(X) | F(f) = 0}.

Optimistically, we assume for a generic Riemannian metric g on M — or potentially larger set of
perturbations — Fuet(X) is a zero-dimensional manifold. If Fuet(X) is compact — or can be
compactified — we can count the number of Fueter sections.

n(M,X) := #Fuet(X).

This count can be understood as a Z2-count, or more ambitiously one can hope to define a signed
count,

n(M,X) :=
∑

f∈Fuet(X)

sign(f).

This number a priori depends on the Riemannian metric g — although we drop it from the notation
— and might not be necessarily an invariant of the 3-manifold M .

Let X = Mon◦k, be the moduli space of centered k-monopoles on R3. Ignoring technical
difficulties to define these counts, let

monk(M) := n(M,Mon◦k) =
∑

f∈Fuet(Mon◦k)

sign(f). (3.2.4)

We call monk(M) the kth monopole number of (M, g).

Conjecture 5. For a generic g, monk(M) is a topological invariant of the 3-manifold M . More
ambitiously, one can think of Fuet(Mon◦k) as the generators of a Floer theory — where the
differential is defined by counting the solutions to the 4-dimensional Fueter operator on R×M .

The main difficulty in defining these invariants come from the compactness problems.
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3.3 Compactness

In this section, we study the compactness properties of Fueter sections over 3- and 4-dimensional
manifolds. We start with the case where the hyperkähler manifoldX is compact or more generally,
the case where the image of Fueter sections fall inside a fixed compact subset of the bundle X.
The following lemma is the gauged version of Theorem 3.2 in [46] with a similar proof.

Theorem 22. Let X→M be a hyperkähler bundle over a closed oriented Riemannian 3-manifold
(M, g). Let p > 3. Let {fi}∞i=1 be sequence of Fueter sections of X such that ∪∞i=1fi(M) ⊂ C,
where C is a compact subset of X. Furthermore, suppose supi{‖∇fi‖Lp} <∞. The sequence
{fi}∞i=1 has a subsequent which converges in C∞loc(M).

Let X→ N be a hyperkähler bundle over an oriented Riemannian 4-manifold (N,h). Let
p > 4. Let {fi}∞i=1 be sequence of Fueter sections of X such that ∪∞i=1fi(N) ⊂ C, where C is a
compact subset of X. Furthermore, suppose supi{‖∇fi‖Lp} <∞. The sequence {fi}∞i=1 has a
subsequent which converges in C∞loc(N).

There are different assumption in this theorem which result in the compactness, but they
are rather strong conditions. If we remove the assumption about the norm of the derivative of
the sections, the sections might blow up, bubble and form singularities. Also, if we remove the
assumption that the images of the sections stay in a compact subset, we can have a sequence of
Fueter section which their image diverge to infinity.

The first step in the direction of removing these assumptions is taken by Walpuski [97].
Walpuski proves a sequence of Fueter sections {fi}∞i=1 of a hyperkähler bundle X with compact
fibers over a closed oriented Riemannian 3-manifold (M, g), with bounded energy, after passing to
a subsequence, converges outside of a closed rectifiable subset S ⊂M , called the blow-up locus,
with Hausdorff dimension dim(S) ≤ 1. Furthermore, Walpuski shows the non-compactness
along S has two different sources. First, bubbling of holomorphic spheres. This non-compactness
has a codimension two nature. Second, codimension three non-removable singularities.

The following example demonstrates the emergence of the bubbling phenomenon .

Example 13 ([97]). Let (X, gX , I, J,K) be a hyperkähler manifold such that for some complex
structure Iζ in the S2-family of complex structures on X , there is a non-trivial Iζ-holomorphic
2-sphere in X ,

f : S2 → X such that ∂Iζf = 0.

Let M = S3 equipped with the standard round metric. Furthermore, let X = S3 ×X → S3 be
the trivial hyperkähler bundle above S3 equipped with the trivial connection d. Let π : S3 → S2

be the Hopf map and . : S2 → S2 the complex conjugation map. Since the bundle is trivial, the
sections can be identified with maps from S3 to X . Let

u = f ◦ . ◦ π : S3 → X,

u is Fueter.
Let sλ : C→ C be the scaling map, defined by sλ(z) = λz for all λ ∈ R+. This map extends

to the one point compactification of C, i.e., CP 1 ∼= S2, by letting sλ(∞) =∞. By an abuse of
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notation, we still denote this map by sλ : S2 → S2. We can define a 1-parameter family of Fueter
maps

uλ = f ◦ . ◦ sλ ◦ π : S3 → X.

Sending λ ↓ 0, the family of Fueter maps uλ blows up along π−1(∞) ∼= S1 and converges
to the constant map on the complement of this circle. Note that,the energy of these maps, i.e.,
E(uλ) = 1

2

∫
S3 |∇uλ|2 is independent of λ and bounded.

The following theorem is due to Walpuski. In the original statement X is assumed to be
compact; however, with no difficulty one can replace this assumption with a slightly weaker one,
where X is not necessarily compact but

∪∞i=1fi(M) ⊂ C,

where C is a compact subset of X.

Theorem 23 (Walpuski). Let (M, g) be a closed oriented Riemannian 3-manifold. Let X→M
be a hyperkähler bundle with fibers modeled on a hyperkähler manifold (X, gX , I, J,K). Suppose
the bundle is equipped with a connection∇ and an isomorphism I : STM → b(X). Let {fi}∞i=1

be a sequence of Fueter sections on this bundle such that fi(M) ⊂ C, where C is a compact
subset of X for every i ∈ N. Moreover, let c be a positive constant such that

E(fi) :=
1

2

∫
M
|∇fi|2 ≤ c.

Then after passing to a subsequence the following holds:

• Convergence away from the blow-up locus. There exists a closed subset S with finite
1-dimensional Hausdorff measure H1(S) < ∞ and a Fueter section f ∈ Ω0(M \ S,X)
such that fi|M\S converges to f in C∞loc(M).

• Decomposition of the blow-up locus. There exist a constant ε0 > 0 and an upper semi-
continuous function Θ : S → [ε0,∞) such that the sequence of measures µi := |∇fi|2H3

converges weakly to µ = |∇f |2H3 + ΘH1|S .

S decomposes as

S = Γ ∪ sing(f),

with

Γ := supp(ΘH1
S)

and
sing(f) := {x ∈M : lim sup

r→0

1

r

∫
Br(x)

|∇f |2 > 0},

Γ isH1-rectifiable andH1(sing(f)) = 0.
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• Bubbling-off of holomorphic spheres For each smooth point x ∈ Γ there exists a non-
trivial −I(v)-holomorphic sphere

fx : S2 → Xx,

with v the unit tangent vector in TxΓ.

Four dimensional version of this theorem is as following:

Theorem 24 (Walpuski). Let (N,h) be an oriented Riemannian 4-manifold. Let X → M be
a hyperkähler bundle with fibers modeled on a hyperkähler manifold (X, gX , I, J,K) over N .
Suppose the bundle is equipped with a connection ∇, an isomorphism I : SΛ+(T ∗N)→ b(X)
and the standard identification ι : Λ+(T ∗N) → so(TN). Let {fi}∞i=1 be a sequence of (4-
dimensional) Fueter sections on this bundle such that fi(M) ⊂ C, where C is a compact subset
of X, for every i ∈ N. Moreover, let c be a positive constant such that

E(fi) :=
1

2

∫
M
|∇fi|2 ≤ c.

Then after passing to a subsequence the following holds:

• Convergence away from the blow-up locus. There exists a closed subset S whichH2(S) <
∞ and a Fueter section f ∈ Ω0(M \ S,X) such that fi|M\S converges to f in C∞loc(N).

• Decomposition of the blow-up locus. There exist a constant ε0 > 0 and an upper semi-
continuous function Θ : S → [ε0,∞) such that the sequence of measures µi := |∇fi|2H4

converges weakly to µ = |∇f |2H4 + ΘH2|S .

S decomposes as

S = Γ ∪ sing(f),

with

Γ := supp(ΘH2
S)

and
sing(f) := {x ∈M : limsupr→0

1

r2

∫
Br(x)

|∇f |2 > 0},

Γ isH2-rectifiable andH2(sing(f)) = 0.

• Bubbling-off of holomorphic spheres. For each smooth point x ∈ Γ there exists a non-
trivial −I(α)-holomorphic sphere

fx : S2 → Xx,

which α is unit self-dual 2–form on TxM .
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In the direction of defining the monopole invariant monk(M), and also in the direction of
addressing the Donaldson-Segal conjecture, we investigate the compactness properties, in the
case where X is the moduli space of centered k-monopoles.

3.4 Fueter Sections of Monopole Bundles

In this section, we mainly consider the case where the hyperkähler manifold X is a moduli space
of centered k-monopoles. We start by reviewing the basic facts about the geometry of the moduli
spaces of monopoles on R3 with the structure group SU(2). Our treatment is brief. For more
detailed account consult with [4].

3.4.1 Geometry of the Moduli Spaces of Monopoles on R3R3R3

In this subsection we review the basic results about the geometry of the moduli spaces of
monopoles on R3.

Let P → R3 be a principal SU(2)-bundle over R3. Let (A,Φ) be a pair of a connection A
on P and a section Φ of the adjoint bundle. The Yang-Mills-Higgs action functional of this pair
is defined by

YMH(A,Φ) =
1

2

∫
R3

(|FA|2 + |dAΦ|2)dxdydz.

Here the norms are taken with respect to the adjoint-invariant inner product on su(2).
Let A denote the space of connections on P and Γ(gP ) the space of sections of the adjoint

bundle gP . Let G = Aut(PG) be the space of bounded gauge transformations. G acts on
A× Γ(gP ) by

g · (A,Φ) = (gAg−1 − dgg−1, gΦg−1).

The Yang-Mills-Higgs action functional is invariant under the action of the gauge group, and
therefore, it induces an action functional on the space of equivalent classes of pairs (A,Φ).

Let (A,Φ) be a pair with finite energy. To any such pair we can assign mass and charge. The
Yang-Mills-Higgs functional can be rewritten as

YMH(A,Φ) =
1

2

∫
R3

| ∗ FA − dAΦ|2dxdydz +

∫
R3

d〈Φ,FA〉.

For any pair with finite energy we have |Φ(x)| → m as |x| → ∞, for a non-negative constant m.
We let m = 1 as a normalizing assumption.

Let R >> 0 be a sufficiently large number such that BR(0) contains all the zeros of Φ. We
would have a map from a large sphere in R3 to the unit 2-sphere in su(2),

Φ

|Φ|
: S2

R(0)→ S2
1(0) ⊂ su(2).
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For a pair (A,Φ) with finite energy we have

−k = deg(
Φ

|Φ|
) = − 1

4π
lim
R→∞

∫
S2

0(R)
〈Φ,FA〉 ∈ Z.

In this section, we are concerned with the moduli spaces of SU(2)-monopoles on R3 with
charge k ∈ Z.

Definition 54 (Moduli Spaces of Monopoles on R3). Let P → R3 be a principal SU(2)-bundle.
Let k ∈ Z. The moduli space of k monopoles, denoted by Nk, is defined by

Nk = {(A,Φ) | ∗ FA = dAΦ, YMH(A,Φ) <∞, |Φ| → 1, charge(A,Φ) = k}/G.

For the most purposes it is better to enlarge the moduli spaces of k-monopoles by a circle
phase factor, to get moduli spaces of framed monopoles.

Definition/Lemma 72 (Moduli Spaces of Framed Monopoles on R3 [4]). A pair (A,ϕ) with
finite energy is framed in a direction — say — x1 if

lim
x1→∞

ϕ(x1, 0, 0) =

(
i 0
0 −i

)
.

A gauge transformation g ∈ G is called x1-diagonal if limx1→∞ g(x1, 0, 0) is diagonal.
These gauge transformations preserve the x1-framed monopoles. Furthermore, every monopole
can be transformed to an x1-framed monopole using a suitable gauge transformation, and
therefore,

Solutions to Bogomolnyi equation
gauge transformations

∼=
x1 − framed solutions to Bogomolnyi equation

x1 − diagonal gauge transformations
.

An x1-framed gauge transformation g ∈ G is defined to be an x1-diagonal gauge transformation
where

lim
x1→∞

g(x1, 0, 0) = 1.

The moduli space of framed k-monopoles over R3, denoted by Mk, is defined by

Mk =
x1 − framed k-monopoles

x1 − framed gauge transformations
.

Mk is a U(1)-bundle over Nk, which can be seen by noticing

U(1)→ x1 − framed k-monopoles
x1 − framed gauge transformations

→ x1 − framed k-monopoles
x1 − diagonal gauge transformations

.

The Bogomolny equation is invariant under the gauge transformations. Moreover, the
translation group of R3 acts naturally on the moduli spaces of monopoles and framed monopoles
on R3.
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Definition 55 (Moduli Spaces of Centered Monopoles on R3). The moduli spaces of centered
k-monopoles on R3 are defined by

Mon◦k =
Nk

R3
.

The deformation theory of these spaces has been studied by Atiyah and Hitchin [4]. In
particular, we have the following lemma.

Lemma 73. The moduli spaces of monopoles, framed monopoles and centered monopoles are
smooth finite dimensional manifolds with dimensions 4|k| − 1, 4|k| and 4|k| − 4, respectively.

There is a natural hyperkähler structure on the moduli spaces of framed and centered
monopoles on R3.

3.4.2 Hyperkähler Structure on the Moduli Spaces of Monopoles

In this section, we study the hyperkähler structure on the moduli spaces of monopoles on R3.
There are different ways to see the hyperkähler structure on the moduli spaces of monopoles.
Here we review two closely related approaches.

• By studying the linearized equations.

• By the virtue of the hyperkähler reduction.

3.4.2.1 The Linear Theory

Let Ck ⊂ A × Γ(gP ) be the space of smooth pairs (A,Φ) on a principal SU(2)-bundle on R3

defined by

Ck = {(A,Φ) | YMH(A,Φ) <∞, charge(A,Φ) = k, lim
|x|→∞

|Φ| = 1}.

The linearization of the action of the gauge group at on the tangent space of Ck at (A,Φ) is given
by

d1 : Ω0(R3, su(2))→ Ω0(R3, su(2))⊕ Ω1(R3, su(2)), d1g = −([Φ, g], dAg).

Let G be the gauge group, more specifically, defined by

G = {g ∈ Aut(P ) | g is bounded, (d1g)g−1 ∈ L2(R3)},

and G0 the space of framed gauge transformations.
The linearization of the Bogomolny equation at (A,Φ) is given by

d2 : Ω0(R3, su(2))⊕ Ω1(R3, su(2))→ Ω1(R3, su(2)), d2(a, ψ) = ∗dAa− dAψ + [Φ, a].
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The equation d∗1(a, ψ) = 0 is a gauge fixing condition. d∗1 and d2 can be coupled to produce an
elliptic operator, as we saw in Chapter 1,

D = d∗1 + d2 : Ω0(R3, su(2))⊕ Ω1(R3, su(2))→ Ω0(R3, su(2))⊕ Ω1(R3, su(2)).

The tangent space of the space of monopoles at (A,ϕ) can be identified with the kerD. Quater-
nions act on Ω0(R3, su(2))⊕ Ω1(R3, su(2)) induced by the identification

(a1dx1 + a2dx2 + a3dx3, ψ)→ ψ + a1I + a2J + a3K.

Moreover, the linearized Bogomolny equations are invariant under the H-action. This induces an
action of H on the moduli spaces of solutions.

With the suitable boundary conditions, where the infinitesimal deformations are L2-integrable,
the L2-inner product restricted to the kerD defines a Riemannian metric on the moduli spaces of
monopoles. It can be seen this metric together with the almost complex structures introduced by
the action of H forms a hyperkähler manifold on the moduli spaces of monopoles. The details
can be found in the chapter 4 of [4].

3.4.2.2 The Hyperkähler Reduction

The second approach is to understand the moduli spaces of monopoles as a hyperkähler quotient.
The hyperkähler quotient construction first arose in the context of mathematical physics, and
more specifically, in supersymmetry [45]. One can consider two cases, the finite-dimensional
construction, and the infinite-dimensional construction. In the infinite-dimensional case, one
might have an infinite dimensional hyperkähler manifold with an infinite-dimensional hyperkähler
action on it; however, the quotient space might be a finite-dimensional manifold. Among the
most interesting cases are the quotient construction of the hyperkähler metrics on the moduli
spaces of instantons and monopoles.

Definition 56 (Tri-Hamiltonian Action). A smooth action of a Lie group G on a hyperkähler
manifold (X, gX , I, J,K) is called a tri-Hamiltonian action, if

• G acts isometrically; i.e., for any h ∈ G we have L∗hgX = gX , where Lh : X → X is the
action of the element h ∈ G on X .

• G preserves the hyperkähler structure; i.e., for any h ∈ G, we have L∗hω = ω. The induced
hyperkählerG-action on TX commutes with the complex structures; i.e., Lh ◦Iζ = Iζ ◦Lh
for any h ∈ G. In particular, the hyperkähler action is symplectic with respect to ω1, ω2

and ω3.

• It admits a hyperkähler moment map, which is a smooth map µ : X → sp(1)∗ ⊗ g∗ such
that d〈µ, ξ〉 = −ιXξω for any ξ ∈ g, where Xξ is the vector field on X generated by the
infinitesimal action of ξ.

• µ is G-equivariant, where G acts on g by the co-adjoint action and trivially on sp(1)∗.
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In particular, this action is Hamiltonian with respect to ω1, ω2 and ω3 with moment maps
µ1 = 〈µ, i〉, µ2 = 〈µ, j〉 and µ3 = 〈µ, k〉, respectively.

The tri-Hamiltonian actions can be used to construct new hyperkähler manifolds, through a
process called hyperkähler reduction.

Definition 57 (Hyperkähler Reduction [45]). Let (X, gX , I, J,K) be a hyperkähler manifold
with a tri-Hamiltonian action of a Lie group G and a moment map µ : M → sp(1)∗ ⊗ g∗. Let
ξ = ξ1i + ξ2j + ξ3k ∈ sp(1)∗ ⊗ g∗ be a regular value of µ. Then µ−1(ζ)/G is a hyperkähler
manifold, called a hyperkähler reduction.

One can realize the moduli spaces of framed and centered monopoles as hyperkähler quotients.
Let P be the trivial principal G-bundle over R3 with the adjoint vector bundle gP . Let

V = A× Ω0(R3, gP ).

The space V is a flat infinite-dimensional affine space. This space can be equipped with a
quaternionic structure. The tangent space at each (A,Φ) ∈ V is given by

T(A,Φ)M = Ω1(R3, gP )× Ω0(R3, gP ).

The quaternionic structure can be seen by the correspondence we saw earlier,

(a1dx1 + a2dx2 + a3dx3, ψ)→ ψ + a1I + a2J + a3K.

The action of the gauge group G preserves this quaternionic structure. Moreover, it is a tri-
hamiltonian action with a moment map µ = (µ1, µ2, µ3) : M → G∗ ∼= Ω1(R3, gP ), given
by

µ1(A,Φ) = [Φ,A1] + [A2, A3],

µ2(A,Φ) = [Φ,A2] + [A3, A1],

µ3(A,Φ) = [Φ,A3] + [A1, A2],

where A =
∑3

i=1Aidxi.
The components of the moment maps are given by the components of the Bogomolny

equation, and therefore, the hyperkähler reduction ∩iµ−1
i (0)/G, defines the moduli space of

monopoles, which appears as the union of the disjoint connected components of the moduli
spaces of monopoles with different charges.

More examples of this construction can be found in [45].

3.5 The Fueter Sections of the Moduli Spaces of Monopoles and the
Compactness Problems

In this section, we prove a partial compactness theorem for Fueter sections of monopole bundles.
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The theorems of Walpuski show that the non-compactness of Fueter sections of a bundle with
compact fibers has two sources, Bubbling-off of holomorphic spheres in the fibers of X, and the
formation of non-removable singularities. Non-compactness of the moduli spaces of monopoles
introduces a new source of non-compactness, divergence to infinity. In this section, we prove a
partial compactness theorem for the sequences of Fueter sections of the monopole bundles when
they do not go to infinity.

3.5.1 Bubbling

Depending on the geometry of X , one might be able to rule out some sources of the non-
compactness and potentially reduce the dimension of the singular set. For instance, the bubbling
does not occur if X does not contain any holomorphic sphere, and this can reduce the dimension
of the singular set.

An important case appears when there is a permuting SO(3)-action on the fibers, for instance
the case of the moduli spaces of monopoles on R3. The existence of the permuting SO(3)-action
rules out the existence of bubbles.

Theorem 25. Let (M, g) be an oriented closed Riemannian 3-manifold. Let X → M be a
hyperkähler bundle with fibers modeled on a hyperkähler manifold (X, gX , I, J,K) with a
permuting SO(3)-action — or a permuting SU(2)-action. Let {fi}∞i=1 be a sequence of Fueter
sections on this bundle such that fi(M) ⊂ C for every i ∈ N, where C is a compact subset of X.
Moreover, let c be a positive constant such that

E(fi) :=
1

2

∫
M
|∇fi|2 ≤ c.

Then after passing to a subsequence the following holds:

• Convergence away from the blow-up locus. There exists a closed rectifiable subset S with
Hausdorff dimension strictly less than 1, and a Fueter section f ∈ Ω0(M \ S,X) such that
fi|M\S converges to f in C∞loc(M).

• Description of the blow-up locus. There exist a constant ε0 > 0 and an upper semi-
continuous function Θ : S → [ε0,∞) such that the sequence of measures µi := |∇fi|2H3

converges weakly to µ = |∇f |2H3, where

S = sing(f) = {x ∈M : lim sup
r→0

1

r

∫
Br(x)

|∇f |2 > 0}.

Let Γsmooth ⊂ Γ denote the set of smooth points of Γ — which the tangent space can be
defined there — then

Γsmooth = ∅.

In particular, assuming the singular locus is smooth, the bubbling locus vanishes, Γ =
∅.AssumingthatthesingularlocusisanembeddedgraphinM, thesingularlocuswouldreducetoasetofisolatedpoints.
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Proof. Using Walpuski’s theorem, the proof reduces to showing Γsmooth = ∅. Recall that for
each smooth point x ∈ Γ, there exists a non-trivial holomorphic sphere in Xx, with respect to
the holomorphic structure on Xx associated to the tangent direction TxΓ; however, hyperkähler
manifolds with a permuting SO(3)-action do not contain any holomorphic sphere.

To see this recall that every symplectic form ωζ in the two-sphere family of symplectic
structures of hyperkähler manifolds with a permuting SO(3) action is exact 63. Moreover, there
is no J-holomorphic sphere in an exact symplectic manifold (X,ω) for any J compatible with ω.
Note that if f : S2 → X is a non-trivial J-holomorphic sphere,∫

S2

f∗ω =

∫
S2

ω(
∂f

∂x1
,
∂f

∂x2
)dx1dx2 =

∫
S2

ω(−J ∂f
∂x2

,
∂f

∂x2
)dx1dx2

=

∫
S2

ω(
∂f

∂x2
, J

∂f

∂x2
)dx1dx2 =

∫
S2

‖ ∂f
∂x2
‖2dx1dx2 > 0,

for a local orthonormal frame (∂x1, ∂x2).
But on the other hand since ω is exact ω = dθζ ,∫

S2

f∗ω =

∫
S2

f∗dθ = 0

which the last equality follows from the Stokes’ theorem. This is a contradiction; hence Γ is a
rectifiable set with no smooth point, and therefore, Γsmooth = ∅. This shows the singular set is a
closed subset of M , with Hausdorff dimension less than 1.

The 4-dimensional version of this theorem also follows similarly.

Theorem 26. Let (N,h) be a closed oriented Riemannian 4-manifold. Let X → N be a
hyperkähler bundle with fibers modeled on a hyperkähler manifold (X, gX , I, J,K) with a
permuting SO(3)-action — or a permuting SU(2)-action. Let {fi}∞i=1 be a sequence of Fueter
sections on this bundle such that fi(N) ⊂ C for every i ∈ N, where C is a compact subset of X.
Moreover, let c be a positive constant such that

E(fi) :=
1

2

∫
N
|∇fi|2 ≤ c.

Then after passing to a subsequence the following holds:

• Convergence away from the blow-up locus. There exists a closed subset S with Hausdorff
dimension strictly less than 2, and a Fueter section f ∈ Ω0(N \ S,X) such that fi|N\S
converges to f in C∞loc(N).

• Description of the blow-up locus. There exist a constant ε0 > 0 and an upper semi-
continuous function Θ : S → [ε0,∞) such that the sequence of measures µi := |∇fi|2H4

converges weakly to µ = |∇f |2H4, where

S = sing(f) = {x ∈ N : limsupr→0
1

r2

∫
Br(x)

|∇f |2 > 0}.
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In other words Γsmooth = ∅.

The proof is similar to the proof of the previous theorem.
We have the following immediate corollary.

Corollary 6. Let {fi}∞i=1 be a sequence of Fueter sections on a bundle X over a closed oriented
Riemannian 3- or 4-manifold, with fibers isomorphic to the moduli space of centered monopoles
Mon0

k, or the moduli space of monopoles framed monopoles Mk, where fi(N) ⊂ C for every
i ∈ N, where C is a compact subset of X, and with an energy bound

E(fi) :=
1

2

∫
N
|∇fi|2 ≤ c.

Then assuming the bubbling locus is an immersed submanifold, we get Γsmooth = ∅, and therefore,
the Hausdorff dimension of the blow-up locus on 3-manifolds is zero, and on 4-manifolds is at
most one.

To completely rule-out the bubbling phenomenon, one should show the bubbling locus can’t
be very irregular. For instance, in the 3-dimensional case, one can hope to show the bubbling locus
is a finite graph inside the 3-manifold. A difficulty in showing this is that potential existence of a
bubbling locus which is a graph with infinitely many edges, where the length of a sequence the
edges converges to zero, such that the total length of the edges of the graph is still finite. However,
ruling out the existence of such a bubbling locus seems crucial for proving the compactness
theorem, but We will not follow this direction any further in this thesis.

3.5.2 Non-Removable Singularities of Fueter Sections

In this section, we study the non-removable singularities of the Fueter sections. We will see
the tangent map of a Fueter section at a singular point satisfies a certain Cauchy-Riemann type
condition. Using this property, and under certain analytic assumptions, we will rule out the
existence of non-removable singular points for Fueter sections on certain bundles, in particular,
the monopole bundles, and we will prove a partial compactness theorem.

3.5.2.1 Non-Removable Singularities and Tri-Holomorphic-Maps

The tri-holomorphic maps are in the heart of the study of the singularities of Fueter sections. In
fact, they appear as the tangent map of the Fueter sections at the non-removable singular points.

Definition 58 (Tri-Holomorphic Map). Let (X, gX , I, J,K) be a hyperkähler manifold. Let
I : S2 → b(X) be an identification between S2 and the 2-sphere of the complex structures on X .
A map f : S2 → X is called a I-tri-holomorphic map if

∂1φ+ I(x)∂2φ = 0,

where ∂1, ∂2 is a local orthogonal frame at each point x ∈ S2.
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This means at each point x ∈ S2, the map dxf is complex linear with respect to the complex
structure on X associated to the point x ∈ S2. Moreover, note that the definition is independent
of the chosen local orthogonal frame ∂1, ∂2.

In the study of the singularities of the energy minimizing maps, the tangent maps play a
crucial role. Let f : (Mm, g) → (Nn, h) be an energy minimizing map with a singular point
y ∈M1. Schoen and Uhlenbeck proved that for every sequence ri of positive numbers converging
to zero, there exists a subsequence of the maps

x→ f(y + rix),

which converges weakly to a map

ϕy : Rm \ {0} → N.

Moreover, they showed this map ϕy, which is not necessarily unique and potentially depends on
the choice of ri and the chosen subsequence, is radially invariant. This map is called the tangent
map.

The following theorem shows the relationship between the tri-holomorphic maps, the non-
removable singularities, and the tangent maps.

Theorem 27. Let (M, g) be a closed oriented Riemannian 3-manifold. Let {fi}∞i=1 a sequence
of smooth Fueter sections of a hyperkähler bundle X→ M , where fi(M) ⊂ C for a compact
subset C ⊂ X. Let f be the section where fi → f in C∞loc(M \ S) for a singular set S. Suppose
f has a radially invariant tangent map at y ∈M . Let

ϕy : S2 \ S → Xy,

be the restriction of the radially invariant tangent map of f at y to the unit sphere S2 ⊂ R3. ϕy
is a −I-tri-holomorphic map. In other words,

∂1ϕy − I(x)∂2ϕ = 0.

Proof. The limiting section f satisfies the Fueter equation at each point y ∈ M where f is
smooth, and therefore, the re-scaled sections are Fueter too. By taking limit one can see that
every tangent map ϕy satisfies the Fueter equation.

At a point x ∈ S2 \ S, we choose an orthonormal frame (∂r, ∂1, ∂2) for R3 where (∂1, ∂2) is
a local frame for S2. We get

I(∂r)∂rφ+ I(∂1)∂1φ+ I(∂2)∂2φ = 0.

On the other hand, assuming the tangent map is radially invariant we get ∂rϕ = 0, and therefore,

I(∂1)∂1ϕ+ I(∂2)∂2ϕ = 0.
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By multiplying this equation by −I(∂1) we get

∂1φ− I(∂r)∂2φ = 0.

Moreover, we have I(∂r) = I(x) at each point x ∈ S2 \ S, and therefore,

∂1φ− I(x)∂2φ = 0.

Remark 7. This is similar to equation for J-holomorphic curves; however, here the complex
structure on the target manifold is not fixed. The complex structure depends on the point x in
the domain, In fact, at each point x ∈ S2, the map φ is a −I(x)-holomorphic map — and not
I(x)-holomorphic. It is true that for any almost complex structure I(x), its negative, −I(x) is
also a complex structure, but interestingly enough, this negative sign can affect the behaviour of
these maps extensively.

3.5.2.2 The Almost Monotonicity Formula

The behaviour of Fueter sections near the singular points is controlled by an important property
of Fueter sections, called the almost monotonicity, due to Walpuski [97]. This is quite similar to
almost monotonicity inequalities for harmonic maps.

Lemma 74 (Walpuski). Let f be a smooth Fueter section over an oriented Riemannian 3-
manifold (M, g). Let x ∈ M and ρ := d(x, .). Take 0 < s < r < r0, where r0 is injectivity
radius of (M, g) at x. We have

ecr

r

∫
Br(x)

|∇f |2 − ecs

s

∫
Bs(x)

|∇f |2 ≥
∫
Br(x)\Bs(x)

1

ρ
|∇rf |2 − c(r2 − s2),

where c is a constant depending the geometry and independent of the section f . In particular, if
the base manifold is flat and the bundle is trivial with the trivial connection,

1

r

∫
Br(x)

|df |2 − 1

s

∫
Bs(x)

|df |2 = 2

∫
Br(x)\Bs(x)

1

ρ
|∂rf |2.

Similarly one can prove the almost monotonicity formula for Feuter sections on 4-manifolds.

Lemma 75. Let f be a smooth Fueter section over an oriented Riemannian 4-manifold (N,h).
Then for every x ∈ M and 0 < s < r < r0, where r0 is injectivity radius of (N,h), and
ρ := d(x, .), we have

ecr

r2

∫
Br(x)

|∇f |2 − ecs

s2

∫
Bs(x)

|∇f |2 ≥
∫
Br(x)\Bs(x)

1

ρ2
|∇rf |2 − c(r2 − s2)

for a constant c. In the case that the base manifold is flat and the bundle is trivial with trivial
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connection,

1

r2

∫
Br(x)

|df |2 − 1

s2

∫
Bs(x)

|df |2 = 2

∫
Br(x)\Bs(x)

1

ρ2
|∂rf |2.

To rule out the existence of non-removable singularities for the limiting Fueter sections, one
should extend the almost monotonicity formula, which holds for smooth Fueter sections, to the
limiting Fueter sections, which are potentially singular.

Assumption 1. Let (M, g) be an oriented Riemannian 3-manifold. Let X→M be a hyperkähler
bundle, where the fibers are modeled on a hyperkähler manifold (X, gX , I, J,K) which does not
contain any holomorphic sphere. Let {fi}∞i=1 be a sequence of Fueter section on this bundle,
where fi → f ∈ Ω0(M \ S,X). We assume the almost monotonicity formula holds for f

ecr

r

∫
Br(x)

|∇f |2 − ecs

s

∫
Bs(x)

|∇f |2 ≥
∫
Br(x)\Bs(x)

1

ρ
|∇rf |2 − c(r2 − s2),

where c is a constant.

This assumption will be used to show the existence of the tangent maps for the limiting Fueter
sections at the singular points.

3.5.2.3 Fueter Sections and the Tangent Maps

An important technique in the study the singular points of harmonic maps over Riemannian
manifolds is blowing-up the harmonic map at the singular point, and produce tangent maps. The
same technique can be used in the study of Fueter sections. In this section, we see how the almost
monotonicity formula can be used to produce the tangent maps of Fueter sections at the singular
points.

Theorem 28. Let (M, g) be an oriented Riemannian 3-manifold. Let {fi}∞i=1 a sequence of
smooth Fueter sections of a hyperkähler bundle X → M , where fi(M) ⊂ C for a compact
subset C ⊂ X. Let f be the section where fi → f in C∞loc(M \ S) for a singular set S. Let
y ∈M . Let

fy,sj : B0(ry) ⊂ R3 → X, fy,sj (x) = f(y + sjx),

be a sequence of re-scaled sections, where sj → 0. Then, assuming 1, the sequence {fy,sj}∞j=1

converges to a map,

ϕy : R3 \ Sy → Xy, (3.5.1)

for a closed rectifiable subset Sy ⊂ R3 with Hausdorff dimension 1. We call

ϕy : R3 \ Sy → Xy, (3.5.2)

a tangent map of the section f at the point y ∈M .
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Proof. Let y ∈M , and ry the injectivity radius at y. Let fy,s : B0(ry) ⊂M → X be the scaled
map given by fy,s(x) = f(y + sx). The expression y + sx is defined using the exponential map
of the Riemannian metric g. Moreover, one can pull back the bundle and the connection over the
domain of fy,s.

The Fueter property of f implies that fy,s is also a Fueter section,

F(fy,s)(x) = rF(f)(y + sx) = 0.

Let sj → 0 be a positive increasing sequence. Let r < ry/sj . Each fy,s is a Fueter section, and
therefore, by the assumption 1,

1

r

∫
B0(r)

|∇fy,sj |2 =
1

rsj

∫
B0(rsj)

|∇f |2 ≤ 1

ry

∫
B0(ry)

|∇f |2 <∞, (3.5.3)

when si — and thus, c — is sufficiently small, and therefore,

E(fy,sj ) =
1

2

∫
B0(r)

|∇fy,sj |2 < CE , (3.5.4)

for a constant CE .
Moreover, for each j ∈ {1, 2, . . .}, we have

fy,sj (M) ⊂ f(M) ⊂ C, (3.5.5)

which is a compact subset of X.
The conditions 3.5.4 and 3.5.5 allow up to apply the Theorem 23 to the sequence {fy,sj}∞j=1.

Therefore, there exists a closed rectifiable subset Sy ⊂ R3 with finite 1-dimensional Hausdorff
measure and a Fueter map

ϕy : R3 \ Sy → Xy, (3.5.6)

such that fy,sj → ϕy in C∞loc(R3 \ Sy).

Definition 59 (The Density Function). Let f be a section of a bundle over an oriented Riemannian
3-manifold (M, g). The density function Θf : M → R;≥ 0 ∪ {+∞} is defined by

Θf (y) = lim
ρ→0

1

ρ

∫
Bρ(y)

|∇f |2.

In the case of 4-manifolds, let f be a section of a bundle over an oriented Riemannian 4-manifold
(N,h). The density function Θf : N → R is defined by

Θf (y) = lim
ρ→0

1

ρ2

∫
Bρ(y)

|∇f |2.

In both 3- and 4-dimensional cases, if y is a smooth point, then Θf (y) = 0. From Walpuski’s
theorem, recall that 0 < Θf (y) < ∞ implies y is a non-removable singularity. Moreover, if
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Θfi(y)→∞, for a sequence fi → f in C∞(M \ {y}), then y is a bubbling point.

Lemma 76. Let (M, g) be an oriented Riemannian 3-manifold. Let {fi}∞i=1 a sequence of smooth
Fueter sections of a hyperkähler bundle X→M . Let f be the map where fi → f in C∞loc(M \S)
for a singular set S. Then the density function Θf : M → R≥0 is upper semi-continuous.

The proof is similar to the case of harmonic maps, since the proof only uses the almost
monotonicity formula.

Proof. Let yi → y in M . We should show

yi → y ⇒ Θf (y) ≥ lim sup
i→∞

Θf (yi).

By letting s→ 0 in the almost monotonicity formula, for each yi,

ecr

r

∫
Br(yi)

|∇f |2 −Θf (yi) =

∫
Br(yi)

1

ρ
|∇rf |2,

and therefore,

Θf (yi) ≤
ecr

r

∫
Br(yi)

|∇f |2.

Let ε > 0 be a sufficiently small number. Let N > 0 be sufficiently large such that for i ≥ N ,
we have Br(yi) ⊂ Br+ε(y), and therefore,

lim sup
i→∞

Θf (yi) ≤
ecr

r

∫
Br+ε(y)

|∇f |2.

Let ε→ 0,

lim sup
i→∞

Θf (yi) ≤
ecr

r

∫
Br(y)

|∇f |2.

Let r → 0, and therefore, c→ 0,

lim sup
i→∞

Θf (yi) ≤ Θf (y).

Theorem 29. Let (M, g) be an oriented Riemannian 3-manifold. Let {fi}∞i=1 a sequence of
smooth Fueter sections of a hyperkähler bundle X→M with bounded energy, where fi(M) ⊂ C
for a compact subset C ⊂ X. Let f be the section where fi → f in C∞loc(M \ S) for a singular
set S. Suppose the almost monotonicity formula holds for f at y. Any tangent map of f at y,

ϕy : R3 \ Sy → Xy,

is radially invariant.
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The proof is similar to the case of energy-minimizing maps.

Proof. The crucial fact is that 1
r

∫
Br(y) |∇ϕy|

2, for 0 < r < ry, is independent of r. To see this
note that

1

r

∫
B0(r)

|∇fy,s|2 =
1

rs

∫
B0(rs)

|∇f |2 ≤ 1

ry

∫
B0(ry)

|∇f |2 <∞.

Let s→ 0,

1

r

∫
B0(r)

|∇ϕ|2 = Θf (y),

where the right-hand side, and therefore the left-hand side, is independent of r. Thus,

Θf (y) = Θϕ(0) =
1

r

∫
Br(0)

|∇ϕ|2.

Inserting this into the monotonicity formula for ϕ : R3 \ S → Xy, we get

0 =
1

r

∫
Br(0)

|∇ϕ|2 − 1

s

∫
Bs(0)

|∇ϕ|2 =

∫
Br(x)\Bs(x)

1

ρ
|∇rϕ|2,

and therefore, almost everywhere

∇rϕ = 0.

By integration along the rays originating from the 0 ∈ R3, we get

ϕ(λx) = ϕ(x), for all λ > 0.

This shows a non-constant tangent map ϕ has a cone singularity at the origin 0 ∈ R3. We can
consider the restriction of the map ϕ to the unit sphere in R3 \ S, by an abuse of notation we still
denote this map with ϕ. We get

ϕ : S2 \ S → Xy.

This map satisfies a very specific equation.
We get a stronger result when X does not contain any holomorphic sphere.

Corollary 7. Let (M, g) be an oriented Riemannian 3-manifold. Let {fi}∞i=1 a sequence of
smooth Fueter sections of a hyperkähler bundle X → M with bounded energy, where X does
not contain any holomorphic sphere, and fi(M) ⊂ C for a compact subset C ⊂ X. Let f be the
section where fi → f in C∞loc(M \ S) for a singular set S. Let ϕy denote the tangent map of f
at y. Then the singular set associated to ϕy is either empty or has one isolated non-removable
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singularity at the origin,

ϕy : R3 → Xy,

with a −I-tri-holomorphic map

ϕy |S2
: S2 → Xy.

Proof. Suppose there exists 0 6= y ∈ S. Since ϕ is radially invariant, all points, λy ∈ S for all
λ ∈ R. Therefore, we get a ray of singular points with Hausdorff dimension at least 1. However,
since Γ = ∅, this is not possible.

This gives a nice characterization of regular points, similar to the case of harmonic maps,

y ∈ reg(f)⇔ Every tangent map at y is constant.

The following compactness result is immediate.

Corollary 8. Let (M, g) be an oriented Riemannian 3-manifold. Let {fi}∞i=1 a sequence of
smooth Fueter sections of a hyperkähler bundle X→M with bounded energy, where X does not
contain any holomorphic or −I-tri-holomorphic sphere. Let fi(M) ⊂ C for a compact subset
C ⊂ X. There exists a section f , which after passing to a subsequence, fi → f in C∞loc(M).

Holomorphic maps between kähler manifolds are harmonic. There is an analogous statement
for I-triholomorphic maps.

Theorem 30. I-tr-holomorphic maps — and −I-tr-holomorphic maps — are harmonic.

Proof. For a point x ∈ S2 and complex structure I(x) on X , we have

∇df(X, I(x)Y ) = ∇Xdf(I(x)Y )− df∇X(I(x)Y ),

but since at the point x ∈ S2, f is I(x)-holomorphic,

∇df(X, jY ) = I(x)∇df(X,Y ),

where j is the complex structure on S2. Moreover, since∇df is a symmetric tensor we have

∇df(jX, jY ) = −∇df(X,Y ).

Let ∂x and ∂y = j∂x be a local orthonormal frame at x ∈ S2. Let τ(f) denote the tension field
of f at x,

τ(f) = trace(∇df) = ∇df(∂x, ∂x) +∇df(∂y, ∂y) = ∇df(∂x, ∂x) +∇df(j∂x, ∂jx) = 0,

and therefore, f is harmonic.

Theorem 31. The image of a I-tri-holomorphic sphere — and a −I-tri-holomorphic sphere —
inside a hyperkähler manifold X is a minimal sphere.
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Proof. Any harmonic map f : CP 1 → X is conformal, and therefore, I-tri-holomorphic spheres
are conformal too. The image of such a harmonic, conformal map is a minimal surface.

This shows the existence of non-removable singularities in the singular locus of the limiting
Fueter section implies the existence of minimal spheres in the target hyperkähler manifold. This
motivates the study of minimal spheres in hyperkähler manifolds.

3.5.3 Minimal Spheres in Hyperkähler Manifolds

The previous section gives us a motivation to study minimal spheres in hyperkähler manifolds —
especially in the moduli spaces of monopoles — which are not image of a holomorphic curve,
since the I-tri-holomorphic maps are not holomorphic. We collect some of the basics facts
about these spheres here, which we will use in the next section, to rule out the existence of
non-removable singularities in certain cases.

Lemma 77. Let (X, gX , I, J,K) be a hyperkähler manifold. Let f : S2 → X be a I-tri-
holomorphic map. Furthermore, suppose f : S2 → X is holomorphic with respect to a complex
structure I0 on X . Then f is a constant map.

Proof. Let j be the complex structure on S2. At each points x ∈ S2 we have

dxf + I(x) ◦ dxf ◦ j = 0, dxf + I0 ◦ dxf ◦ j = 0,

and therefore,

(I(x)− I0) ◦ df ◦ j = 0 ∈ Ω0(S2, f∗TX),

which implies df = 0 everywhere on S2, and therefore, f is constant.

There is no closed minimal surface in the model hyperkähler manifolds Hk . However, one
can study closed minimal surfaces in T4k equipped with the hyperkähler structure induced from
Hk . There is the following result of Micallef in this direction [72].

Theorem 32 (Micallef). Any area minimizing surface in a flat T4 is holomorphic with respect to
a complex structure compatible with the given flat metric on T4.

The following theorem follows from the theorem above and the Lemma 77.

Corollary 9. There is no non-trivial I-tri-holomorphic map f : S2 → T4.

Remark 8. The Corollary 9 is compatible with the compactness theorem of [46] for Fueter maps
on a hyperkähler bundle where the fiberes on modeled on a hyperkähler manifold (X, gX , I, J,K)
where X is compact and gX is flat, over an oriented Riemannian 3-manifold (M, g) which is a
quotient of S3 by a finite subgroup of SU(2)

The case of K3 surfaces is different. Michallef and Wolfson, and later Foscolo showed
there exist hyperkähler metrics on the K3-surfaces that admit a strictly stable minimal sphere
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which is not holomorphic with respect to any complex structure compatible with the metric. The
counterexamples of Foscolo are the images of I-tri-holomorphic maps.

Another family of manifolds to consider are the ones constructed by Gibbons-Hawking
Ansatz. We will study these manifolds in more detail in Section 4.1.1.3. As we will see, all
compact minimal spheres in the multi-Eguchi-Hanson and multi-Taub-NUT are holomorphic.
This implies the following lemma.

Lemma 78. Let (X, gX , I, J,K) be a multi-Eguchi-Hanson or multi-Taub-NUT space. There is
no non-trivial I-tri-holomorphic map f : S2 → X .

3.5.4 Minimal Surfaces in the Moduli Spaces of Monopoles

In this section, we study minimal surfaces in the moduli spaces of monopoles on R3, which
potentially can be a source of non-compactness of the spaces of Fueter sections on monopole
bundles. There are certain minimal spheres, called the axi-symmetric ones, in these moduli
spaces; however, we will show, because of topological reasons, these spheres cannot be a source
of non-compactness. Furthermore, we state a conjecture about the minimal surfaces in the moduli
spaces of monopoles on R3 which, if true, will result in a compactness theorem.

One way of constructing minimal submanifolds in the moduli spaces of solutions to a gauge-
theoretic equation is to consider the solutions which are invariant under some group action and
have certain symmetries.

Example 14. For any given direction in R3, we can consider the solutions invariant under
rotation around this axis. These solutions are called axi-symmetric solutions. The space of
axi-symmetric solutions with charge k to the Bogomolny equation is a minimal RP2 in the moduli
space of k-monopoles, or a minimal sphere in the universal cover of this space. In fact, as we
will see, this minimal sphere in the universal cover is image of a −I-tri-holomorphic map.

In the case charge k = 2, it is proven by Tsai and Wang that this minimal sphere is the only
compact minimal surface inside the Atiyah-Hitchin space [93].

3.5.4.1 The Unique Minimal Sphere in the Atiyah-Hitchin Space

The moduli space of reduced 2-monopoles Mon0
2 is the first non-trivial example of the moduli

spaces of reduced monopoles. About this 4-dimensional manifold we have π1(Mon0
2) = Z2. Let

M̃on0
2 be the double cover of this space, called the Atiyh-Hitchin manifold. Any minimal surface

Σ ⊂ Mon0
2 would lift to a minimal surface — potentially disconnected — Σ̃ ⊂ M̃on0

2.
As shown by Atiyah and Hitchin this space has a minimal 2-sphere at its core [4]. In this

section, we review a theorem of Tsai and Wang which states this is the only minimal submanifold
of the Atiyah-Hitchin space.

Theorem 33 ([93]). Let Σ denote the minimal sphere of axi-symmetric solutions in the Atiyah-
Hitchin space. Then

• Σ is the only compact minimal surface in M̃on0
2.
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• Σ is a calibrated, and therefore, it minimizes the area within its homology class.

• There is no compact, three-dimensional, minimal submanifold in M̃on0
2.

Sketch of the proof. A four dimensional manifold is hyperkähler if and only if it is anti self-dual
Einstein. The group SO(3) acts on R3, and therefore, on the moduli spaces of monopoles. This
action preserves the L2-metric of the moduli space, and therefore, the Riemannian metric of the
Atiyah-Hitchin space. The Atiyah-Hitchin metric is an SO(3)-invariant anti self-dual Einstein
metric. Because of this SO(3) symmetry the partial differential equation for the metric reduces
to an ordinary differential equation.

By a theorem of Gibbons and Pope such a metric can be written as

ds2 = dr2 + a2(σ1)2 + b2(σ2)2 + c2(σ3)2.

The function r : M̃on0
2 → R≥0 can be understood as a radius function on the Atiyah-Hithin

space. The minimal sphere Σ is the zero section, Σ = r−1(0). In fact, r measures the geodesic
distance from this minimal sphere.

Consider the map r2 : M̃on0
2 → R≥0. The restriction of this map to any minimal submanifold

N is subharmonic,

∆N (r2
|N ) = tr(Hess(r2

|N )) ≥ 0,

and therefore, by the maximal principle, r2 is constant on N . In particular, the Hessian of r2,
restricted to N , vanishes, which implies r = 0.

The following corollary is immediate.

Corollary 10. The minimal RP2 of axi-symmetric solutions is the only minimal surface in Mon0
2.

3.5.4.2 Minimal Spheres in the Moduli Spaces of Monopoles with Higher Charges

In this section, we state a conjecture regarding the minimal submanifolds of the moduli spaces
reduced k-monopoles, which generalizes the case of k = 2.

Theorem 34 (Atiyah-Hitchin [4]). For every charge k, the moduli space of axi-symmetric
solutions is a minimal RP2 in Mon0

k. It will pull back to copies of minimal S2 or RP2 in the
universal cover, depending on whether k is even or odd.

It is natural to ask the following question.

Question 79. Is there any compact minimal submanifold in the moduli spaces of centered
k-monopoles for k > 2?

The main difficulty in answering this question is the absence of radius function r, unlike the
case of charge 2-monopoles.

A slightly different approach to study these spheres stems from the twistorial description.
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3.5.5 A Twistorial Description of−I−I−I-Tri-Holomorphic Maps

A standard method to study hyperkähler manifolds is to use the twistororial description, introduced
by Roger Penrose [79], and more relevant to our setup in [45]. As we mentioned earlier, if
(X, gX , I, J,K) is a hyperkähler manifold, then any (aI + bJ + cK) is also a covariantly
constant complex structure, where a2 + b2 + c2 = 1.

The twistor space Z associated to a 4k-dimensional hyperkähler manifold X is defined to be
- topologically - the product manifold X × S2 with the almost complex structure

J1 = (aI + bJ + cK, j),

at the point (x, a, b, c) ∈ X × S2, where j is the standard complex structure on S2. We call this
complex structure, the standard complex structure of the twistor space. This complex structure is
integrable.

Theorem 35 (Atiyah-Hitchin-Singer). (Z,J1) is a complex manifold.

Proof can be found in [45, 5]
However, there is a non-standard almost complex structure defined on Z, introduced by Eells

and Salamon [23]. This almost complex structure on the twistor space is defined by

J2 = (−aI − bJ − cK, I0),

at each point (x, a, b, c) ∈ X × S2. This almost complex structure is called the Eells-Salamon
complex structure [23]. These two complex structures are quite different. For instance, we have
the following theorem.

Theorem 36 (Eells-Salamon [23]). The almost complex structure J2 is never integrable.

As observed by Eells and Salamon, the twistor space equipped with this non-integrable
complex structure is quite suitable for studying the harmonic maps into the hyperkähler manifold
X . It turns out the Eells-Salamon twistor space (Z,J2) gives a amenable description of −I-
holomorphic maps into X , by considering their Gauss lift to Z.

Definition 60. Let (X, gX , I, J,K) be a 4k-dimensional hyperkähler manifold. Let Z = S2×X
be the Twistor space. Let g : S2 → X . Then the map ĝ : S2 → Z defined by

g̃(x) := (x, g(x)),

is called the Gauss lift of g to the twistor space Z, which can be understood as a section of the
bundle Z → S2, or simply the graph of g.

The following theorem shows the relevance of the Eells-Salamon almost complex structure to
−I-tri-holomorphic maps.

Theorem 37. Let (X, gX , I, J,K) be a hyperkähler manifold. The map g : S2 → X is a
−I-tri-holomorphic map if and only if g̃ is a J2-holomorphic section of the twistor space Z.
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Proof. Let y = (a, b, c) ∈ S2 ⊂ R3. The theorem follows from

2∂J2 g̃ = dg̃ + J2 ◦ dg̃ ◦ j = (0, dg − I ◦ dg ◦ j) = (0, 2∂−Ig).

Example 15. The theorem above can be used to construct J2-holomorphic sections of Z → S2.
Let g : S2 → Mon0

2 be the −I-holomorphic parametrization of the axi-symmetric solutions. g̃ is
a J2-holomorphic section of the twistor space Z = S2 ×Mon0

2 → S2.

The twistor space can be defined for any oriented Riemannian 4-manifold X . The Grassmann
bundle of 2-planes Z = G̃r2(TX) over X is a vector bundle whose fiber at the point x ∈ X is
the space of real oriented two dimensional subspaces in TxX , denoted by G̃r2(TxX), which is
the double cover of Gr2(TxX). Note that π1(Gr2(TX)) = Z2.

The Hodge star operator ∗ : Λ2TX → Λ2TX give rise to a decomposition

Λ2TX = Λ2
+TX ⊕ Λ2

−TX.

Let

S± = S(Λ2
±TX),

be the corresponding unit 2-sphere bundles over X . We have the following bundle isomorphism

G̃r2(TX) ∼= S+ × S−.

The bundle S− generalizes the twistor bundleZ we constructed above for hyperkähler 4-manifolds
to general oriented Riemannian 4-manifolds. The almost complex structure J2 can be generalized
to S− [23]. We have projection maps

π± : G̃r2(TX)→ S±.

For any map g : S2 → X , let g̃ : S2 → G̃r2(TX) be the corresponding Gauss lift. We can
define subsidiary Gauss lifts g̃± : S2 → S±,

g̃± = π± ◦ g̃.

Theorem 38. [Eells-Salamon [23]] Let (X, gX) be an oriented Riemannian 4-manifold. The
correspondences

g → g̃, g → g̃,

are bijective correspondences between non-constant conformal harmonic maps g : S2 → X and
non-trivial J2-holomorphic spheres g̃± : S2 → S±.

This theorem gives another argument for the following fact, which we can encountered before.
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Corollary 11. Let (X, gX , I, J,K) be a 4k-dimensional hyperkähler manifold. The image of a
−I-tri-holomorphic map g : S2 → X is minimal sphere.

Proof. Let f : S2 → X be a −I-tri-holomorphic map. Its Gauss lift g̃ is a J2-holomorphic
section of S− → S2, and by the theorem above, g itself is a conformal harmonic map, and
therefore, its image in X is a minimal sphere.

3.5.5.1 Non-Removable Singularities and the Topology of the Moduli Spaces of Monopoles

In order to completely rule out the existence of the non-removable singularities for a sequence
of Fueter sections of a bundle with fiber Mon0

2, we should show the minimal sphere of the
axi-symmetric solutions, which is in fact an RP2 ⊂ Mon0

2, wouldn’t appear as the image of a
tangent map of a Fueter section at any point.

Theorem 39. Let (M, g) be an oriented Riemannian 3-manifold. Let {fi}∞i=1 be a sequence of
smooth Fueter sections of a monopole bundle X→M , with fibers modeled on Mon0

k. Moreover,
suppose fi → f in C∞loc(M \ {y}), where f has a non-removable singularity at y ∈ M . The
minimal RP2 ⊂ Mon0

k of the axi-symmetric k-monopoles cannot appear as the image of a tangent
map of the section f at the point y.

Proof. Let {sj}∞j=1 be a sequence of positive numbers, where sj → 0. Let

fy,sj : B0(ry) ⊂ R3 → X, fy,sj (x) = f(y + sjx),

be a sequence of re-scalings of f . Then the sequence {fy,sj}∞j=1, assuming the Assumption 1,
converges to a radially invariant map ϕy, which can be restricted to S2 ⊂ R3 to get

ϕy : R3 \ Sy → Xy, (3.5.7)

for a closed rectifiable subset Si,y ⊂ R3 with Hausdorff dimension less than 1.
For each smooth Fueter section fi, let

fi,y,sj : B0(ry) ⊂ R3 → X, fi,y,sj (x) = fi(y + sjx),

be a sequence of re-scaled sections. Then for each i the sequence {fi,y,sj}∞j=1 converges to a map
ϕi,y, which is radially invariant, and therefore, we can define

ϕi,y : R3 \ Si,y → Xy. (3.5.8)

for a closed rectifiable subset Si,y ⊂ R3 with Hausdorff dimension less than 1.
For each j, the sequence {fi,y,sj}∞i=1 → fy,sj in C∞loc(M \ Sy,sj ) for a closed rectifiable

subset Sy,sj ⊂M with Hausdorff dimension less than 1, and therefore,

ϕi,y → ϕy, in C∞loc(R3 \ S),

for a closed rectifiable subset S ⊂ R3 with Hausdorff dimension less than 1.
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The maps ϕi,y and ϕy are −I-tri-holomorphic spheres in Mon0
k. However, since each map

fi, and therefore, fi,y,sj is smooth and the image of ϕi,y(B3) is contractible in Mon0
k. Since

ϕi,y → ϕy in C∞loc(R3 \ S), the subset ϕy(B3) is also contractible in Mon0
k. However, the

minimal RP2 of axi-symmetric solutions is non-trivial in second homology, and therefore, it can’t
be the image of the map ϕy.

Corollary 12. The minimal spheres of axi-symmetric solutions is not a source of non-compactness.

In fact, we expect there would not be any minimal sphere in the moduli spaces of centered
monopoles which can be a source of non-compactness.

Conjecture 6. There is no minimal sphere Σ in the universal cover of the moduli space of
centered k-monopoles which is trivial in the second homology.

Conjecture 7. Let (M, g) be an oriented Riemannian 3- or 4-manifold. Let {fi}∞i=1 be a sequence
of smooth Fueter sections of a monopole hyperkähler bundle X→M , with fibers modeled on
the moduli space of centered k-monopoles on R3, such that fi(M) ⊂ C for a compact subset
C ⊂ X, and with bounded energy E(fi) < Cε, for a constant Cε. Then there exists a Fueter
section f ∈ Γ(M,X), such that fij → f in C∞(M), for a subsequence {fij}.

We finish this section with another conjecture. Throughout this section we assumed there is
bound on the energy of the Fueter sections, since it is not a topological quantity in the case of
Fueter sections. However, we expect that this assumption is not necessary.

Conjecture 8. There exists a uniform bound on the energy of a sequence of Fueter sections of
the monopole bundles, when their images are in a compact subset of the bundle.

3.6 Divergence to Infinity

Another source of the non-compactness, which we mostly ignored in this writing, is the potential
divergence of the Fueter sections to infinity. The moduli spaces of centered charge 2 SU(2)-
monopoles is asymptotically (R3 × S1)/Z2. We can start by considering the Fueter sections to
(R3×S1)/Z2 as the model space at infinity. Motivated by the study of monopoles on Calabi-Yau
3-folds, we would consider the case where the hyperkähler bundle is defined by

X = T ∗M × U(1)→M,

where (M, g) is an oriented Riemannian 3-manifold, X equipped with the connection obtained
from both the Levi-Civita connection on T ∗M and the trivial connection on the trivial U(1)-
bundle above M .

Let f = (a, φ) ∈ Γ(X) is Fueter section of this bundle, where a is a 1-form on M and φ a
function φ : M → U(1). The Fueter equation reads as

∗da = dφ,

which is a U(1)-Bogomolny equation on M .
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As we have observed before, assuming (a, φ) is a smooth monopole, we have φ = c for
a constant c ∈ R and a is a closed 1-form. In particular, in the case where M is a homology
3-sphere a = df , and therefore, up to gauge this equation has only a trivial solution.

The study of the singular cases, and the case of monopoles with higher charges is necessary
for resolving the compactness problems completely; however, we will not follow this direction
any further here.
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Chapter 4

On the Donaldson-Scaduto Calibrated
Submanifolds

Donaldson proposed the possibility of studyingG2-manifolds from the viewpoint of coassociative
fibrations and the adiabatic limit, where the diameters of the fibers shrink to zero [14]. In particular,
it is expected that this approach would be helpful in the study of the following two fundamental
problems:

• determining when a compact oriented smooth 7-dimensional manifold admits an integrable
G2-structure;

• understanding the formation of singularities and corresponding failure of compactness
in the counting problems in order to define invariants of G2-manifolds, using instantons,
monopoles, associative and coassociative submanifolds.

The adiabatic picture led Donaldson and Scaduto to conjecture the existence of certain associative
submanifolds in G2-manifolds with a coassociative K3-fibration near the adiabatic limit [20].

Conjecture 9 (Donaldson-Scaduto). Let X be the smooth 4-manifold underlying any complex
K3-surface. Let α1, α2 and α3 be −2 classes on X such that α1 + α2 + α3 = 0. Let
H ⊂ H2(X,R) ∼= R3,19 be a maximal positive subspace H ∼= R3. Let vi be the projection of
αi to H . Then there is an associative submanifold P ⊂ X × R3 with three ends asymptotic to
cylinders Σi×R+vi, where Σi is a 2-sphere representing αi with respect to the complex structure
defined by vi. The associative submanifold P is unique up to translations in R3.

As explained in [20], one can consider the non-compact manifold obtained as resolution of
the A2-singularity, which can be emebedded in the K3-manifold. This non-compact hyperkähler
4-manifold can be described using the Gibbons-Hawking Ansatz. This results in a similar
conjecture involving the multi-Eguchi-Hanson spaces.

In this chapter, we propose a strategy to prove the Donaldson-Scaduto conjecture and take
several steps in that direction.
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4.1 The Preliminaries

In the this section, we set up the basics to explain, motivate and study this conjecture. We start by
reviewing the basics of the geometry of calibrated submanifolds and their deformation. For more
detailed introduction to the subject consult with [40, 71, 69, 56, 66].

4.1.1 Calibrated Geometry

A classical topic in Riemannian geometry is the study of minimal submanifolds in a given
Riemannian manifold. For instance geodesics on Riemann surfaces, minimal surfaces in 3-
dimensional Riemannian manifolds, and complex curves in Kähler manifolds are among the most
well-studied ones. Information about minimal submanifolds of a Riemannian manifold can help
us in understanding the geometry of the ambient manifold.

Motivated by complex submanifolds in Kähler manifolds, Harvey and Lawson introduced a
special class of minimal submanifolds, called the calibrated submanifolds [40]. These minimal
submanifolds are defined by a first order partial differential equation, which is easier to analyze
that a general minimal submanifold, which is described by a second order partial differential
equation.

Calibrated geometry is closely related to the theory of manifolds with special holonomy
groups. In fact, there are natural classes of calibrations and calibrated submanifolds in manifold
with special holonomy groups. Moreover, these submanifolds play an important role in the study
of gauge theories over manifolds with special holonomy groups.

Definition 61 (Calibrated Submanifold). Let (M, g) be a Riemannian manifold. Let φ ∈ Ωk(M)
be a closed k-form. φ is called a calibration on M if for every x ∈ M and every oriented
k-dimensional vector subspace V ⊂ TxM equipped with the induced Euclidean metric gV , we
have

φ|V ≤ volV ,

where volV is the induced volume form on V associated to gV .
Let N ⊂M be an oriented k-dimensional submanifold. N is called a calibrated submanifold

if for every x ∈ N

φ|TxN = volTxN .

In other words, for each x ∈ N , TxN is a calibrated k-plane with respect to φ.

Calibrated submanifolds are minimal. Recall that minimal submanifolds are critical points
of the volume functional, and they are not necessarily volume minimizers. The minimal sub-
manifolds can even be the maximizers of the volume functional; however, compact calibrated
submanifold are the volume minimizers in their homology class.

The prototypical and motivating examples of calibrated submanifolds appear in Kähler
manifolds.
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Example 16. Let (M, g, ω) be a Kähler manifold. 2k-form ωk/k! is a calibration on M and
calibrated submanifolds with respect to this form are the complex k-dimensional submanifolds,
and therefore, compact complex submanifolds of Kähler manifolds are volume minimizing in
their homology class.

4.1.1.1 Special Lagrangians

The relevance of calibrated geometry to the geometry of Calabi-Yau manifolds follows from the
following.

Definition 62 (Special Lagrangian). Let (Z, g, ω,Ω) be a Calabi-Yau n-fold. Real-valued differ-
ential n-forms

Re (eiθΩ) = cos θRe(Ω)− sin θ Im(Ω),

are calibrations on Z, where eiθ is called the phase of the calibration. Let L ⊂ Z be an
n-dimensional oriented submanifold. L is called a special Lagrangian with phase eiθ if L is
calibrated with respect to the form Re (eiθΩ). If we do not explicitly state the phase of the special
Lagrangian, it is assumed that θ = 0.

There is a different characterization of the special Lagrangians which is quite useful, and also
explains the etymology of the denomination of the special Lagrangian submanifolds.

Lemma 80. Let (Z, g, ω,Ω) be a Calabi-Yau n-fold. Let L ⊂ Z be an n-dimensional oriented
submanifold. L is a special Lagrangian if and only if

ω|L = 0 and Im Ω|L = 0. (4.1.1)

The first condition asserts that L is a Lagrangian submanifold, and the second condition implies
L is a special one.

We start by considering the linear model.

4.1.1.2 Special Lagrangians in C2C2C2

Let Z = Cn with the Calabi-Yau structure

g = |dz1|2 + . . .+ |dzn|2, ω =
i

2
(dz1 ∧ dz1 + . . .+ dzn ∧ dzn) and Ω = dz1 ∧ . . . ∧ dzn.

The Calabi-Yau structure on C2 in real coordinates (x1, y1, x2, y2) on R4 = C2, where z1 =
x1 + iy1 and z2 = x2 + iy2, takes the form

g =dx2
1 + dy2

1 + dx2
2 + dy2

2, ω = dx1 ∧ dy1 + dx2 ∧ dy2,

Re(Ω) =dx1 ∧ dx2 − dy1 ∧ dy2 and Im(Ω) = dx1 ∧ dy2 + dy1 ∧ dx2.
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A 2-dimensional submanifold L ⊂ C2 is special Lagrangian if and only if

(ω − i Im(Ω))|L = 0.

Following Joyce [55], if we introduce the complex variables

w1 = x1 + ix2, w2 = y1 − iy2,

we can see

ω − i Im Ω = dw1 ∧ dw2,

and therefore, the condition of being special Lagrangian translates into

(dw1 ∧ dw2)|L = 0.

However, this is equivalent to L being holomorphic with respect to the integrable almost complex
structure J , defined by

J(
∂

∂x1
) =

∂

∂x2
, J(

∂

∂y1
) = − ∂

∂y2
.

This is called a hyperkähler rotation. Note that C2 = H can be understood as a Calabi-Yau 2-fold
and also as a hyperkähler 4-manifold. In fact, since the calibrated condition consists of equations
in the linear algebra level, this observation extends to all hyperkähler 4-manifolds.

C2 can be considered as a special case of a more general family of hyperkähler 4-manifolds
with a U(1)-symmetry, discovered by Gibbons and Hawking [37], which we also saw earlier in
chapter 3.

4.1.1.3 The Gibbons–Hawking Ansatz

The Gibbons-Hawking Ansatz describes a system of coordinates on a family of hyperkähler
4-manifolds with a U(1)-symmetry, in terms of a positive harmonic function defined on an open
subset of R3.

Definition 63 (The Gibbons–Hawking Ansatz). Let U ⊂ R3 be an open subset with coordinates
u1, u2 and u3. Let p1, . . . , pn be n distinct points in U . Let π : X → U \ {p1, . . . , pn} be a
principal U(1)-bundle. Let t be the coordinate along the fibers, normalized to have period 2π,
with ∂t the corresponding vector field of the S1-action, θ a connection 1-form on X such that
θ(∂t) = i. Let θ0 = θ

2πi . Let β be the curvature 2-form defined by dθ = π∗(β) and V : U → R
a positive harmonic real-valued function such that

∗dV =
1

2πi
β.
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X can be equipped with a hyperkähler structure, given by the Riemannian metric

gX = V

3∑
i=1

du2
i + V −1θ2

0,

the Kähler forms ω1, ω2, ω3, and corresponding integrable almost complex structures I, J and
K given by

ω1 = du1 ∧ θ0 + V du2 ∧ du3, ω2 = du2 ∧ θ0 + V du3 ∧ du1,

ω3 = du3 ∧ θ0 + V du1 ∧ du2,

I(du2) = −du3, I(du1) = − 1

V
dθ0, J(du3) = −du1, J(du2) = − 1

V
dθ0,

K(du1) = −du2, K(du3) = − 1

V
dθ0.

Furthermore, the U(1)-action is symplectic and Hamiltonian with respect to each symplectic
form, with the moment maps u1, u2 and u3. The map µ : X → R3 defined by µ = (u1, u2, u3) is
the hyperkähler moment map of the U(1)-action on X .

The Calabi-Yau structure on this space is given by the metrig gX mentioned above, holomor-
phic volume form Ω and the kähler 2-form ω,

Ω = ω1 − iω2 = (θ0 + iV du3) ∧ (du1 − idu2), ω = ω3.

Note that

Ω ∧ Ω = 2ω2
3.

Example 17 (Multi-Eguchi-Hanson Spaces). Let U = R3 \ {0}. Let V : U → R be the function
defined by

V (x) =
1

4π|x|
.

Then X = R4 \ {0} with the Euclidean metric g which can be extended over the origin 0 ∈ R4

to get X = R4.
Let U = R3 \ {p, q}, where p 6= q. Let V : U → R be the function given by

V (x) =
1

4π|x− p|
+

1

4π|x− q|
.

This metric on X extends smoothly to the points π−1(p) and π−1(q). The resulting hyperkähler
manifold X is called the Eguchi-Hanson space, which is in fact T ∗S2. The Eguchi–Hanson
metric is ALE (asymptotically locally Euclidean), asymptotic to the flat metric on R4/Z2.

Let U = R3 \ {p1, . . . , pn} for distinct points p1, . . . , pn. Let V : U → R be the function
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defined by

V (x) =

n∑
i=1

1

4π|x− pi|
.

This metric on X , similar to the previous cases, extends smoothly to the points π−1(pi). The re-
sulting hyperkähler manifold X is called a multi-Eguchi-Hanson space. A multi-Eguchi–Hanson
metric is ALE, asymptotic to the Euclidean metric on R4/Zn.

Example 18 (Multi-Taub-NUT Spaces). Let m > 0. Let U = R3 \ {0}. Let V : U → R be the
function defined by

V (x) = m+
1

4π|x|
.

The metric g on X extends smoothly over π−1(0). The resulting space is topologically R4, but
with a different metric, called the Taub-NUT metric. The Taub-NUT metric is ALF (asymptotically
locally flat), asymptotic to the product metric on R3 × S1.

Let m > 0. Let U = R3 \ {p1, . . . , pn} for distinct points p1, . . . , pn. Let V : U → R be the
function defined by

V (x) = m+
n∑
i=1

1

4π|x− pi|
.

This metric on X extends smoothly over the isolated points π−1(pi). The resulting hyperkähler
manifold X is called a multi-Taub-NUT space. Multi-Taub–NUT metrics are ALF.

4.1.1.4 Special Lagrangians in the Gibbons-Hawking Spaces

We start by considering closed special Lagrangians in the Gibbons-Hawking spaces. By the
maximal principle there is no closed minimal submanifold in Rn, and therefore, there is no closed
special Lagrangian in R4. A similar result holds for the Taub-NUT space. For a proof of the
following lemma consult with [67].

Lemma 81. There is no closed minimal submanifold in the Taub-NUT space.

There are compact holomorphic spheres, and therefore, special Lagrangians, in the multi-
Eguchi Hanson and the multi-Taub-NUT spaces.

Lemma 82. We have the following,

• The zero section S2 inside the Eguchi-Hanson space T ∗S2 is a minimal surface, a holo-
morphic sphere with respect to the complex structure specified by the direction of the vector
connecting q to p in the Gibbons-Hawking construction.
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• The 2-sphere π−1([pi, pj ]) in the multi-Eguchi-Hanson or the multi-Taub-NUT spaces,
where [pi, pj ] is the line segment connecting pi to pj in R3, is a minimal sphere, holomor-
phic with respect to the complex structure specified by the direction of the vector connecting
pi to pj .

The proofs are straightforward.
One can consider the special Lagrangians in the Gibbons-Hawking spaces which are in-

variant under the U(1)-action. The following theorem shows the significance of these special
Lagrangians.

Theorem 40 (Trinca [92]). Let (X, g) be a multi-Eguchi-Hanson or a multi-Taub-NUT space
with a harmonic function with two singular points. Then, compact minimal submanifolds are
U(1)-invariant or are contained in the unique U(1)-invariant compact minimal surface.

There are also complete non-compact U(1)-invariant special Lagrangians in the Gibbons-
Hawking spaces.

Lemma 83. U(1)-invariant special Lagrangian fibrations with singularities of the Gibbons-
Hawking spaces, with respect to ω1, are given by the following equations,

u1 = c1,

u2 = c2,

for constants c1 and c2.

Proof. The U(1)-action on X is symplectic with respect to ω1. In fact, it is Hamiltonian, with
the moment map µ1 : X → u(1)∗ ∼= R,

µ1 = u1.

The U(1)-invariant special Lagrangians are in the level sets of the moment map; i.e., for any
U(1)-invariant special Lagrangian L, there exists c1 ∈ R such that L ⊂ µ−1

1 (c1),

µ1 = u1 = c1.

Let v be the vector field associated to the infinitesimal action of 1 ∈ R. L is a U(1)-invariant
special submanifold, and therefore, ιv Im(Ω|L) = 0.

2ιv Im(Ω|L) = du2 = 0,

and therefore, u2 = c2, for a constant c2.
Sending each of these special Lagrangians to (c1, c2), we get a U(1)-invariant special La-

grangian fibration with singularities of a Gibbons-Hawking space over R2.

In the Taub-NUT case, these special Lagrangians are asymptotically conical. If (c1, c2) 6=
(0, 0) they are topologically cylinder S1 × R, and if (c1, c2) = (0, 0), it is cone on S1. More
generally, in the multi-Taub-NUT case, these special Lagrangians are topologically cylinders
with some meridians each to a point.
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4.1.1.5 U(1)-Invariant Special Lagrangians in C3C3C3

Relevant to Donaldson-Scaduto’s conjecture are U(1)-invariant special Lagrangian submanifolds
in certain Calabi-Yau 3-folds. One can first consider the linear case. U(1)-invariant special
Lagrangians in C3 have been studied by Joyce [50, 52, 51].

Let U(1) act on C3 by

eiθ . . . (z1, z2, z3) = (eiθz1, e
−iθz2, z3) for eiθ ∈ U(1).

Let L ⊂ C3 be a U(1)-invariant special Lagrangian. Locally L can be written as

L = {(z1, z2, z3) ∈ C3 | Im(z3) = u(Re(z3), Im(z1z2)),

Re(z1z2) = v(Re(z3), Im(z1z2)), |z1|2 − |z2|2 = 2a},

where a ∈ R and u, v : R2 → R satisfy a non-linear Cauchy-Riemann equation,

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −2(v2 + y2 + a2)

1
2
∂u

∂y
.

Joyce studied the existence, uniqueness and regularity properties of these special Lagrangians.
The Donaldson-Scaduto special Lagrangians, which we will study in this chapter, can be under-
stood as a non-linear generalization of this problem, where C2 in C3 = C2 × C is replaced by a
non-linear hyperkähler 4-manifold with a U(1)-action.

4.1.1.6 Deformation of Compact Special Lagrangian Submanifolds

Let L be a compact special Lagrangian submanifold of a Calabi-Yau n-fold M . McLean showed
that the moduli space of nearby special Lagrangians is a smooth manifold with dimension b1(L)
[71].

In McLean’s theorem, the Calabi-Yau structure of the ambient Calabi-Yau manifold M is
fixed. One can consider the case where the Calabi-Yau structure can change too. The detailed
proof can be found in Marshal’s thesis [69]. We sketch an almost identical but slightly different
proof here, in the case n = 3, which is more suitable for our needs.

Theorem 41 (McLean [71, 69]). LetM be a smooth 2n-dimensional manifold and (g(p), ω(p),Ω(p))
a smooth family of Calabi-Yau structures on M , parameterised by p ∈ Rm. Let L ⊂ M be
a closed submanifold which is special Lagrangian with respect to the Calabi-Yau structure
(g(0), ω(0),Ω(0)) on M . Moreover, suppose [ω(p)|L ] = 0 = [Ω(p)|L ] in H∗dR(L,R) for all
p ∈ Rm. Then there exist an open subset W ⊂ Rm containing 0, and a family of smooth
manifoldsMp for all p ∈W , each with dimension b1(L) such that for each p ∈W , the smooth
manifoldMp is the moduli space of smooth submanifolds near L which are special Lagrangian
with respect to (g(p), ω(p),Ω(p)). Moreover, the parametrized moduli space

ML = ∪p∈WML,p = {(p, Lξ) | p ∈W and Lξ is a smooth special Lagrangian submanifold

with respect to (g(p), ω(p),Ω(p)) near L},
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is a smooth manifold with dimension b1(L) +m.

For simplicity, here we only prove the case where the Calabi-Yau structure is fixed and n = 3.

Proof. Let f : L→M be an embedding of a compact special Lagrangian L. We have

f∗ Im(Ω) = 0 = f∗ω.

Let Zg : TL → T ∗L be the bundle isomorphism between vector fields and 1-forms on L,
defined using the pull-back of the Riemannian metric g to L. Let ν(L) → L be the normal
bundle of L in M . Let Ũ be a small tubular neighbourhoods of L in M , identified with a small
neighbourhood of the zero section in the normal bundle, still denoted by Ũ . Let

Ũk,p = {ξ ∈W k,p(ν(L)) | ξ(x) ∈ Ũ for all x ∈ L},

for k ≥ 0 and p > 1.
Note that since L is a special Lagrangian we have the bundle isomorphisms

J : ν(L)→ TL, Zg ◦ J : ν(L)→ T ∗L.

Let U = Zg ◦ J(Ũ) and

Uk,p = {η ∈W k,p(T ∗L) | η(x) ∈ U for all x ∈ L},

for k ≥ 0 and p > 1.
For any η ∈ U , let fη : L→M be the deformation map defined by

fη(x) = expf(x)((Zg ◦ J)−1(ηx)).

fη(L) is an embedding of L homotopic to f(L), when η is sufficiently small. Moreover, any
nearby submanifold homotopic to L can be presented in such a way.

Let G : U → Ω0(L)⊕ Ω2(L) be the map defined by

G(η) = ∗f∗η (Ω) + f∗η (ω).

fη(L) is a special Lagrangian if and only if G(η) = 0. In order to show that the zero set of G
forms a manifold, we should use the inverse function theorem, and therefore, we should set up
the map G between the suitable Banach spaces. Let

G : Uk+1,p →W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L)), G(η) = ∗f∗η (Ω) + f∗η (ω).

However, note that

d0G : W k+1,p(Λ1(T ∗L))→W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L)),

is not elliptic, and therefore, not Fredholm. This can be seen by looking at the rank of the domain
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and target spaces, which are not equal,

rank(W k+1,p(Λ1(T ∗L))) = 3, rank(W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L))) = 1 + 3 = 4.

To resolve this problem, let

F : Uk+1,p ⊕W k+1,p(Λ3(T ∗L))→W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L)),

be the map defined by

F (η, χ) = G(η) + d∗χ.

Note that if F (η, χ) = G(η) + d∗χ = 0, then

‖d∗χ‖2L2 = 〈d∗χ, d∗χ〉L2 = −〈G(η), d∗χ〉L2 = −〈dG(η), χ〉L2 = −〈df∗η (ω), χ〉L2 = 0.

This shows F (η, χ) = 0 implies d∗χ = 0, and therefore, χ = CvolgL for a constant C ∈ R,
which shows

F−1(0) = G−1(0)×H3(L,R).

The linearized map

d(0,0)F : W k+1,p(Λ1(T ∗L))⊕W k+1,p(Λ3(T ∗L))→W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L)),

is given by

d(0,0)F (η, χ) = (d+ d∗)(η + χ),

which is elliptic, and since L is compact, it is Fredholm.
Let

V := (d+ d∗)(W k+1,p(Λ1(T ∗L))⊕W k+1,p(Λ3(T ∗L))) ⊂W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L)).

By the Hodge decomposition theorem,

W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L)) = V ⊕H0(L)⊕H2(L),

where H0(L) and H2(L) are constant functions and harmonic 2-forms on L, respectively. In
fact, by the Hodge decomposition theorem, V is the Banach subspace of W k,p(Λ0(T ∗L)) ⊕
W k,p(Λ2(T ∗L)) which is L2-orthogonal toH0(L)⊕H2(L).

The next step is to show Image(F ) ⊂ V , which is proposition 3.18 in [69]. To see this, note
that ∗f∗η (Ω) and f∗η (ω) are co-closed and closed, respectively. Moreover, since the maps f and
fη are homotopic, we have

[fη(ω)] = [f(ω)] = 0 and [fη(Ω)] = [f(Ω)] = 0,
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and therefore,

∗f∗η (Ω) = d∗α1 and f∗η (ω) = dα2,

for some α1, α2 ∈ Ω1(L). Moreover, since d∗α1, dα2 ∈W k+1,p(Λ1(T ∗L)), we can take

α1, α2 ∈W k+1,p(Λ1(T ∗L)).

Furthermore, we have

d(0,0)F (W k+1,p(Λ1(T ∗L))⊕W k+1,p(Λ3(T ∗L))) = V.

This means there is a solutions η ∈W k+1,p(Λ1(T ∗L)) to the equation

(d∗ + d)η = d∗α1 + dα2,

for α1, α2 ∈W k+1,p(Λ1(T ∗L)), which is theorem 3.15 in [69].
Moreover,

(η, χ) ∈ ker(d(0,0)F ) ⇐⇒ d∗η = 0 and dη + d∗χ = 0.

Note that if dη + d∗χ = 0,

‖d∗χ‖2L2 = 〈d∗χ, d∗χ〉L2 = −〈dη, d∗χ〉L2 = 0,

and therefore, dη = d∗η = d∗χ = 0, which since L is compact, η and χ are harmonic 1-form
and 3-form, respectively.

ker(d(0,0)F ) = H1(L)⊕H3(L),

and therefore, dim ker(d(0,0)F ) = b1(L) + b3(L) = b1(L) + 1. Moreover, T0ML = ker(d0G),
thus dimT0ML = b1(L).

This can be used to compute the index of the operator F .

Corollary 13. Let (M, g, ω,Ω) be a Calabi-Yau 3-fold and L ⊂ M a compact special La-
grangian submanifold. Let

F : Uk+1,p ⊕W k+1,p(Λ3(T ∗L))→W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L)),

F (η, χ) = ∗f∗η (Ω) + f∗η (ω) + d∗χ.

we have index(0,0)F = 0.

Proof. We have the linearized map

d(0,0)F : W k+1,p(Λ1(T ∗L))⊕W k+1,p(Λ3(T ∗L))→W k,p(Λ0(T ∗L))⊕W k,p(Λ2(T ∗L)).
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The cokernel can be identified with the L2-orthogonal complement of the image, and therefore,

ker(d(0,0)F ) = H1 ⊕H3, coker(d(0,0)F ) ≡ H0 ⊕H2.

Therefore, dim ker(d(0,0)F ) = b1(L) + b3(L) and dim coker(d(0,0)F ) = b0(L) + b2(L), and
therefore, by the Poincaré duality,

index d(0,0)F = (b1(L) + b3(L))− (b0(L) + b2(L)) = 0.

4.2 Donaldson-Scaduto Calibrated Submanifolds

In this section, we give the definition of the asymptotically cylindrical calibrated submanifolds,
which their existence has been conjectured by Donaldson and Scaduto.

4.2.0.1 Donaldson-Scaduto Special Lagrangians

There exists a Calabi-Yau version of the Donaldson-Scaduto conjecture for special Lagrangians
in X × C for a hyperkähler 4-manifold X . We start by setting up the basics to define the
asymptotically cylindrical special Lagrangians, which appear in this version of the Donaldson-
Scaduto conjecture.

Let (X, gX , I, J,K) be a 4-dimensional hyperkähler manifold with Kähler structures ω1, ω2

and ω3, corresponding to the complex structures I , J and K, respectively. Let Z = X × C =
X × R2 be the 6-dimensional manifold equipped with the Calabi-Yau-structure given by

gZ = gX + dx⊗ dx+ dy ⊗ dy, ω = ω3 + dx ∧ dy
Ω = (ω1 − iω2) ∧ (dx+ idy), (4.2.1)

where x and y denotes the coordinates on R2.
Suppose there is a non-trivial U(1)-action on X . We extend this action to Z by letting

U(1) act trivially on R2. In this section, we are interested in asymptotically cylindrical special
submanifolds in Z which are invariant under this U(1)-action. Here, we assume (X, gX , I, J,K)
is given by the Gibbons-Hawking construction, for instance X can be a multi-Taub-NUT or a
multi-Eguchi-Hanson space, with the harmonic function given by

V (u) = m+
n∑
i=1

1

4π|x− pi|
,

for points {p1, . . . , pn} ⊂ R3, n ≥ 3 and m ≥ 0. For simplicity assume

{p1, . . . , pn} ⊂ R2 × {0} ⊂ R3. (4.2.2)

In this section, of special interest is the case n = 3. In this case, the condition 4.2.2 holds for a
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suitable choice of R2 inside R3.
Consider the n minimal 2-spheres Σi,i+1 = π−1[pi, pi+1] ⊂ X , which generate H2(X).

The sphere Σi,j = π−1[pi, pj ], i 6= j, is holomorphic with respect to the complex structure
aI + bJ + cK where

(a, b, c) =
pi − pj
|pi − pj |

∈ S2 ⊂ R3.

Let the vectors v1,2, v2,3, . . . , vn,1 ∈ R2 be defined by

vi,j = (pi − pj) ∈ R2 × {0} ⊂ R3.

Let vci,j be the straight line defined by vci,j = c+ Rvi,j for any c ∈ R2 × {0} ⊂ R3. Let

Lci,j := Σi,j × (vci,j) ⊂ X × R2,

for i 6= j.

Lemma 84. The cylindrical submanifolds Lci,j ⊂ Z are U(1)-invariant special Lagrangians in
X × C with respect to the Calabi-Yau structure defined in 4.2.1.

Proof. Any set of the form π−1(A), including π−1[pi, pj ], is invariant under the U(1)-action on
X , and therefore, Lci,j is invariant under the U(1)-action on Z.

First we show Lci,j is a Lagrangian submanifold. Let (z, t) ∈ Σi,j × (Rvi,j). Let wi,j be the
unique lift of the vector pi−pj ∈ R3 to the point z ∈ X such that dπz(wi,j) = pi−pj ∈ Tπ(z)R3.

T(z,t)L
c
i,j = 〈∂t, wi,j , vi,j〉.

Recall that ω = du3 ∧ θ0 + V du1 ∧ du2 + dx ∧ dy. We have ω(vi,j , wi,j) = 0. Moreover,

ω(∂t, wi,j) = −du3(wi,j) = 0, and ω(∂t, vi,j) = −du3(vi,j) = 0,

since pi and pj are in R2 × {0}, and therefore, Lci,j is a Lagrangian submanifold.
Second we show Lci,j is a special submanifold. We have

Im(Ω) =
1

2
θ ∧ (−du1dy + du2dx)− πV du3 ∧ (du1dx+ du2dy).

Let vi,j = (a, b, 0), and therefore, wi,j = (u1, u2, u3, ∂t) = (a, b, 0, 0),

Im(Ω)(∂t, wi,j , vi,j) =
1

2
(−du1(wi,j)dy(vi,j) + du1(wi,j)dy(vi,j)) =

1

2
(−ab+ ab) = 0,

and therefore, it is a special Lagrangian.

More generally, we are interested in the asymptotically cylindrical special Lagrangians
in X × C. Asymptotically cylindrical special Lagrangians can be defined in asymptotically
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cylindrical Calabi-Yau manifolds; however, here we consider the case where the ambient Calabi-
Yau manifold is cylindrical in certain directions. Our definition is different from the usual one,
since in the common definition the ambient manifold is asymptotically cylindrical, for instance
asymptotic to the Calabi-Yau 3-fold K3× S1 × R, and the asymptotes of the special Lagrangian
submanifolds are assumed to be in the same direction, whereas here different ends of the special
Lagrangian can go towards infinity in different directions.

Definition 64 (Asymptotically Cylindrical Special Lagrangian inX×C). Let (X, gX , ω1, ω2, ω3)
be a hyperkähler 4-manifold. Let (Z, g, ω,Ω) be the Calabi-Yau 3-fold where Z = X ×R2

x,y and

gZ = gX + dx⊗ dx+ dy ⊗ dy, ω = ω3 + dx ∧ dy (4.2.3)

Ω = (ω1 − iω2) ∧ (dx+ idy). (4.2.4)

Let l+i be any half-line in R2
x,y. Let Σi ⊂ X be a complex curve in X , holomorphic with

respec to the complex structure on X specified by the unit vector in the direction of l+i . Let
Li = Σi × l+i ⊂ X × C be the resulting cylindrical special Lagrangian in Z. Moreover, let
ti : Li → R+ be a radius function which measure the distance on Li from a fixed point. Let
L1, . . . , Ln be a number of two by two disjoint special Lagrangians of the form described above.

A connected, complete special Lagrangian L ⊂ Z is called asymptotically cylindrical special
Lagrangian, asymptotic to L1, . . . , Ln in directions l+1 , . . . , l

+
n with decay rate β1, . . . , βn < 0,

if there exists a compact subset L′ ⊂ L, normal vectors field v1, . . . , vn on L1, . . . , Ln where
ti > R for a sufficiently large R > 0 and all i ∈ {1, . . . , n}, and a diffeomorphism

Φ :
(
(L1 ∩ t−1

1 (R,+∞)) ∪ . . . ∪ (Ln ∩ t−1
n (R,+∞))

)
→ L \ L′,

such that the following diagram commutes,

(
(L1 ∩ t−1

1 (R,+∞)) ∪ . . . ∪ (Ln ∩ t−1
n (R,+∞))

)
L \ L′

X × C X × C

expv1 ⊕...⊕expvn

Φ

Id

where for each i,

|∇kvi| = O(eβit),

on (Li ∩ t−1
i (R,+∞)) for all k ∈ {0, 1, 2, . . .}.

As we go towards infinity in different directions in X×C, we would see different geometries;
however, we are only interested in the cylindrical ends of X ×C. For any line vci,j ⊂ R2, let Rvci,j
be rectangular open neighbourhood of this line in R2. Let X ′ ⊂ X be a compact subset of X .
The ambient space for the asymptotically special Lagrangians we are interested in are union of
finitely many subspaces of Z of the form X ′ ×Rvci,j , which are cylindrical Calabi-Yau manifolds
with boundary. Moreover, the special Lagrangians we will study are away from the boundary of
these manifolds, and therefore, the boundary does not introduce any complications.
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Let X be a multi-Eguchi-Hanson space, constructed over R3 \ {p1, p2, p3}, where p1, p2

and p3 are not collinear. Let’s let c = (0, 0) ∈ R2. We would have three cylindrical special
Lagrangians L0

1,2, L
0
2,3 and L0

3,1. Note that these special Lagrangians, two by two, intersect only
in one point,

L0
1,2 ∩ L0

2,3 = (π−1(p2), c),

L0
2,3 ∩ L0

3,1 = (π−1(p3), c),

L0
3,1 ∩ L0

1,2 = (π−1(p1), c).

The points p1, p2 and p3 form a triangle in R2 × {0} ⊂ R3, and there is a natural direction on
each Lagrangian, given by the positive direction of R+ . . . (pi − pj).

In this situation, Donaldson-Scaduto conjecture asserts the following.

Conjecture 10 (Donaldson-Scaduto Special Lagrangian). LetX be a multi-Eguchi-Hanson space,
constructed via the Gibbons-Hawking construction over R3 \ {p1, p2, p3}, where p1, p2 and p3

are not collinear. There exists an asymptotically cylindrical special Lagrangian L ⊂ X × C,
homeomorphic to S3 minus three 3-dimensional balls, where L has three ends L1, L2 and L3

which in the positive directions are asymptotic to L0
1,2, L

0
2,3 and L0

3,1, respectively. We call L a
Donaldson-Scaduto special Lagrangian 4.11.

Figure 4.1: Donaldson-Scaduto Conjecture

In the conjecture, we set the vector c = 0 ∈ R2. More generally, one can consider the
asymptotically cylindrical special Lagrangians L ⊂ X × C with three ends L1, L2 and L3

which in the positive directions are asymptotic to Lc11,2, L
c2
2,3 and Lc33,1, respectively, for three

vectors c1, c2, c3 ∈ R2. The existence of the Donaldson-Scaduto special Lagrangian would imply
c1, c2, c3 must intersect in a point.

Lemma 85. Let X be a multi-Eguchi-Hanson space, constructed via the Gibbons-Hawking
construction over R3 \ {p1, p2, p3} where p1, p2 and p3 are not collinear. Let c1, c2, c3 ∈ R2. Let
L ⊂ X × C be an asymptotically cylindrical special Lagrangian with three ends L1, L2 and L3

which in the positive directions are asymptotic to Lc11,2, L
c2
2,3 and Lc33,1, respectively. Then three
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lines l1, l2 and l3 defined by

l1 = {t
−−−−→
p2 − p1

|−−−−→p2 − p1|
+ c1 ∈ R2 × {0} | t ∈ R},

l2 = {t
−−−−→
p3 − p2

|−−−−→p3 − p2|
+ c2 ∈ R2 × {0} | t ∈ R},

l3 = {t
−−−−→
p1 − p3

|−−−−→p1 − p3|
+ c3 ∈ R2 × {0} | t ∈ R},

are concurrent. In other words, they intersect at a point.

Proof. We have

Im(Ω) = ω1 ∧ dy − ω2 ∧ dx = dλ,

where λ = −xω2 + yω1.
Let r : Z → R be a radius function, denoting the distance from a fixed point on L. Let

Lt = L ∩ r−1[0, t]. Let t >> 1. The boundary of Lt consists of three 2-spheres, which we
denote them by Σt

1,2,Σ
t
2,3 and Σt

3,1. Let c1 = (x1, y1), c2 = (x2, y2), c3 = (x3, y3). Let

−−−−→
p2 − p1

|−−−−→p2 − p1|
=

1√
a2

1 + b21
(a1, b1, 0),

−−−−→
p3 − p2

|−−−−→p3 − p2|
=

1√
a2

2 + b22
(a2, b2, 0),

−−−−→
p1 − p3

|−−−−→p1 − p3|
=

1√
a2

3 + b23
(a3, b3, 0).

We have

v1,2 + v2,3 + v3,1 = (a1 + a2 + a3, b1 + b2 + b3, 0)

= (p1 − p2) + (p2 − p3) + (p3 − p1) = (0, 0, 0).

By the Stokes theorem,∫
Lt

Im(Ω) =

∫
∂Lt

λ =

∫
Σt1,2

λ+

∫
Σt2,3

λ+

∫
Σt3,1

λ.

As t→ +∞, we have

x→ a1t+ x1, y → b1t+ y1 along L1,

x→ a2t+ x2, y → b2t+ y2 along L2,

x→ a3t+ x3, y → b3t+ y3 along L3.
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Therefore, for large t

0 =

∫
Lt

Im(Ω) =

∫
Σt1,2

(xω2 − yω1) +

∫
Σt2,3

(xω2 − yω1) +

∫
Σt3,1

(xω2 − yω1)

→
∫

Σt1,2

((x1 + a1t)ω2 − (y1 + b1t)ω1) +

∫
Σt2,3

((x2 + a2t)ω2 − (y2t+ b2)ω1)

+

∫
Σt3,1

((x3 + a3t)ω2 − (y3 + b3t)ω1).

The integral of symplectic forms over the holomorphic spheres in the multi-Eguchi-Hanson
and the multi-Taub-NUT spaces can be computed explicitly. More generally, suppose (X, gX , I, J,K)
is a multi-Eguchi-Hanson or a multi-Taub-NUT space, constructed above R3 \ {p1, . . . , pn}.

Let ωζ be a symplectic form in the S2-family of symplectic structures on X . Let Σ =
π−1[pi, pj ]. Then ∫

Σ
ωζ = 2πlengthζ([pi, pj ]),

where lengthζ([pi, pj ]) denotes the signed length of the projection of [pi, pj ] onto the direction
specified by xζ in R2. Applying that to our previous computations, we get∫

Lt
Im(Ω)→+ (x1 + a1t)length2([p2, p1])− (y1 + b1t)length1([p2, p1])

+ (x2 + a2t)length2([p3, p2])− (y2 + b2t)length1([p3, p2])

+ (x3 + a3t)length2([p1, p3])− (y3 + b3t)length1([p1, p3])

= t(a1b1 − b1a1 + a2b2 − b2a2 + a3b3 − b3a3)

+ (x1b2 − y1a1 + x2b2 − y2a2 + x3b3 − y3a3),

as t→ +∞, and therefore,

x1b2 − y1a1 + x2b2 − y2a2 + x3b3 − y3a3 = 0,

which is the equation of l1, l2 and l3 being concurrent.

There exists a similar conjecture for associative submanifolds in G2-manifolds.
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4.2.0.2 Donaldson-Scaduto Associative Submanifolds

Let (X, gX , ω1, ω2, ω3) be a 4-dimensional hyperkähler manifold. Let Y = X × R3 be the
7-dimensional manifold equipped with the integrable G2-structure given by

gY = V
3∑
i=1

du2
i + V −1θ2

0 + dx⊗ dx+ dy ⊗ dy + dz ⊗ dz,

φ = volR3−dx ∧ du1 ∧ θ0 − V dx ∧ du2 ∧ du3

−dy ∧ du2 ∧ θ0 − V dy ∧ du3 ∧ du1

−dz ∧ du3 ∧ θ0 − V dz ∧ du1 ∧ du2,

where x, y and z denotes the coordinates on R3.
Suppose there is a U(1)-action on X . We extend this action to Y by letting U(1) act trivially

on R3. In this section, we are interested in asymptotically cylindrical associative submanifolds in
Y which are invariant under this U(1)-action. Moreover, similar to the previous section, suppose
X is given via the Gibbons-Hawking construction, for instance X can be a multi-Taub-NUT or a
multi-Eguchi-Hanson space, constructed over R3 \ {p1, . . . , pn}, where n ≥ 3 and m ≥ 0.

Recall that the 2-spheres Σi,i+1 = π−1[pi, pi+1] ⊂ X are minimal and holomorphic with
respect to the complex structure aI + bJ + cK where

(a, b, c) =
pi − pj
|pi − pj |

∈ S2 ⊂ R3.

Let the vectors v1,2, v2,3, . . . , vn,1 ∈ R3 be defined by

vi,j = (pi − pj) ∈ R3.

Let vci,j be the straight line defined by vci,j = c+ R . . . vi,j for any c ∈ R3. Let

N c
i,j := Σi,j × (vci,j) ⊂ X × R3.

Lemma 86. The cylindrical submanifolds N c
i,j ⊂ Y are U(1)-invariant associative submani-

folds.

Proof. The proof of invariance under the U(1)-action is similar to the special Lagrangian case
84.

In the special case where the points pi ∈ R2×{0} ⊂ R3, we haveN c
i,j ⊂ X×R2×{0} ⊂ Y .

As we saw in 84, N c
i,j is a special Lagrangian in X × R2 × {0}, and therefore, an associative

submanifold in Y .
For a general configuration of points, let wi,j be the unique lift of the vector pi − pj ∈ R3 to

the point z ∈ X . Let vi,j = (a, b, c) and wi,j = (a, b, c, 0),

T(z,t)N
c
i,j = 〈∂t, wi,j , vi,j〉.
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Note that

ψ = ∗φ = du1 ∧ du2 ∧ du3 ∧ θ − V dy ∧ dz ∧ du2 ∧ du3 − dy ∧ dz ∧ du1 ∧ θ
− V dz ∧ dx ∧ du3 ∧ du1 − dz ∧ dx ∧ du2 ∧ θ
− V dx ∧ dy ∧ du1 ∧ du2 − dx ∧ dy ∧ du3 ∧ θ.

Recall that N c
i,j is associative if and only if at each point p ∈ N c

i,j and for each basis (e1, e2, e3)
of TpN c

i,j we have ψ(e1, e2, e3, . . .) = 0. In fact, we only need to show ψ(∂t, vi,j , wi,j , v) = 0
for any vector v ∈ TpY . We have

ψ(∂t, wi,j , vi,j , v)

= (dy ∧ dz)(vi,j , v)du1(wi,j) + (dz ∧ dx)(vi,j , v)du2(wi,j) + (dx ∧ dy)(vi,j , v)du3(wi,j)

= (bdz(v)− dy(v)c)a+ (cdx(v)− adz(v))b+ (ady(v)− bdx(v))c = 0.

More generally, we are interested in the asymptotically cylindrical associatives in X × R3.

Conjecture 11 (Donaldson-Scaduto Associative Submanifold). LetX be a multi-Eguchi-Hanson
space, constructed via the Gibbons-Hawking construction over R3 \ {p1, . . . , pn}, where no
three of the points p1, . . . , pn are collinear. There exists an asymptotically cylindrical asso-
ciative submanifold N ⊂ X × R3, homeomorphic to S3 minus n 3-dimensional balls which
has n cylindrical ends N1, . . . , Nn−1, Nn which in the positive directions are asymptotic to
N0

1,2, . . . , N
0
n−1,n, N

0
n,1, respectively. We call N a Donaldson-Scaduto associative submanifold.

Figure 4.2: Donaldson-Scaduto Associative for 5 Points

4.3 The Method of Continuity and the Donaldson-Scaduto
Conjecture

In this section, we propose a strategy to approach the Donaldson-Scaduto conjecture by the
method of continuity. Moreover, we take first steps in that direction.

Let P = {p1, . . . , pn} be the set of distinct points in R3 where no three of them are collinear.
Let (XP , gP , IP , JP ,KP ) be the multi-Eguchi-Hanson space, constructed via the Gibbons-
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Hawking construction over R3 \ P . One can move the points p1, . . . , pn in R3. As one moves
these points around the hyperkähler manifold XP , and therefore, the Calabi-Yau manifold
ZP := XP × C (or the G2-manifold YP := XP × R3) changes too. In order to show the
Donaldson-Scaduto conjecture holds for any of these manifolds for any generic configuration of
points P , we propose to use the method of continuity.

Let ∆ be the set of n-tuples of points in R3, which contains three collinear points,

∆ = {(q1, . . . , qn) ∈ (R3)n | qi, qj and qk are collinear for some distinct i, j, k ∈ {1, . . . , n}}.

(R3)n \∆ is the parameter space. Let Λ ⊂ (R3)n \∆ be the set n points P , where the Donaldson-
Scaduto conjecture holds for ZP . In order to apply the method of continuity one should prove
three claims,

• Λ is an open subset of (R3)n \∆,

• Λ is a closed subset of (R3)n \∆,

• Λ is non-empty.

In the following section, we prove the first claim in the case special Lagrangians.

4.3.1 Λ is an open subset

In this section, we focus on the case of special Lagrangians. However, we consider the slightly
more general case of special Lagrangians with n ends, rather that just 3.

Definition 65 (Donaldson-Scaduto Special Lagrangian). Let X be a multi-Eguchi-Hanson space,
constructed via the Gibbons-Hawking construction over R3 \ {p1, . . . , p3}, where no three of
these points are collinear. Let Σi,j = π−1[pi, pj ], where π : X → R3 is the bundle map used
in the Gibbons-Hawking construction. Let L0

i,j = Σi,j × (R . . . (pj − pi)). The asymptotically
cylindrical special Lagrangian L ⊂ X × C, homeomorphic to S3 minus n 3-dimensional balls,
where L has n ends L1, . . . , Ln which in the positive directions are asymptotic to L0

1,2, . . . , L
0
n,1,

respectively, is called a Donaldson-Scaduto special Lagrangian.

In order to show that the subset Λ ⊂ (R3)n \∆ is an open subset, we should prove that if
there is a special Lagrangian submanifold LP ⊂ XP × C which satisfies the Donaldson-Scaduto
conjecture, then after sufficiently small deformation of the points P = {p1, . . . , pn} to the points
P ′ = {p′1, . . . , p′n}, it is still possible to find a special Lagrangian LP ′ ⊂ XP ′×C which satisfies
the conjecture.

Theorem 42. Let P = {p1, . . . , pn} be the set of distinct points in R2×{0} ⊂ R3 where no three
of them are collinear. Let (XP , gP , IP , JP ,KP ) be the multi-Eguchi-Hanson space, constructed
via the Gibbons-Hawking construction over R3 \ P . The existence of the special Lagrangians in
XP × C predicted by the Donaldson-Scaduto conjecture is an open condition with respect to the
deformation of the points P = {p1, . . . , pn}.
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This theorem is based on the infinite-dimensional inverse function theorem. There are many
similar theorems in the literature where one deforms the geometric structure of the background
ambient space and then deforms the calibrated submanifold accordingly so it stays calibrated
[69]. However, here one major difference is that when we moves the points P = {p1, . . . , pn} in
R2 × {0} ⊂ R3, it is the manifold XP which is changing — and therefore, XP × C — and not
just its hyperkähler — or the Calabi-Yau — structure on the fixed ambient manifold.

4.3.1.1 Geometric Deformation of the Ambient Spaces

Let (XP , gP , IP , JP ,KP ) be a multi-Eguchi-Hanson or multi-Taub-NUT space constructed via
the Gibbons-Hawking construction over R3 \ P where P = {p1, . . . , pn}. If we move the
position of the points P = {p1, . . . , pn} to get a new set of disjoint points P ′ = {p′1, . . . , p′n},
the resulting hyperkähler manifold XP ′ , as a hyperkähler manifold, is not necessarily isomorphic
to XP . In fact, XP and XP ′ are not necessarily isometric. Therefore, as we move the points P , it
is the Calabi-Yau manifold ZP which is changing, and not only its Calabi-Yau structure.

Although XP and XP ′ are not isometric as hyperkähler manifolds, they are diffeomorphic,
and therefore, ZP and ZP ′ are diffeomorphic. Using an appropriate diffeomorphism, one can
pull-back the Calabi-Yau structure of ZP ′ to ZP . This helps us to fix an ambient manifold
Z = ZP , and only change its Calabi-Yau structure as we are deforming the configuration of
points P . The idea of studying the deformation problem of special Lagrangians in ZP = XP ×C
while deforming P is to transform the problem to a fixed 6-dimensional manifold Z where it is
the Calabi-Yau structure is changing. This is the topic of the rest of this section.

Fix a set of distinct points P = {p1, . . . , pn} in R2 × {0} ⊂ R3 where no three of them
are collinear as a reference set of points. Suppose they are ordered in a way that the open
segments connecting the consecutive points (p1, p2), . . . , (pn−1, pn), (pn, p1) are disjoint. We
see an example below 4.3.1.1.

Figure 4.3: A Non-Intersecting Cycle.

The following lemma states we can always find such a non-intersecting cycle which connects
all the points.

Lemma 87. Let n ≥ 3. Let q1, . . . , qn be a set of n distinct points in R2 where no three of them
are collinear. We can order them as p1, . . . , pn where {p1, . . . , pn} = {q1, . . . , qn}, and the
segments connecting the consecutive points (p1, p2), . . . , (pn−1, pn), (pn, p1) are disjoint.
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Proof. Consider the convex hull of these points. Let p1 be a point among {q1, . . . , qn} on the
convex hull. By connecting p1 to all the other points, we get n − 1 oriented rays. Order them
based on their slope in the counter clockwise order. We name these n− 1 points such that these
ordered rays are p1p2, p1p3, . . . , p1pn. The cycle we look for is p1p2 . . . pn.

Figure 4.4: Finding a Non-Intersecting Cycle

Remark 9. For a given set of n points, which no three of them are collinear, there can be
different ways of ordering them to construct non-intersecting cycles. Each different order, and
therefore, different cycle will result in a different asymptotic condition for the Donaldson-Scaduto
conjecture, and therefore, conjecturally there would be different special Lagrangians assigned to
a set of n points, as shown in figure 9.

Figure 4.5: Two Different Special Lagrangians for the Same Set of Points

Let Bε(pi) ⊂ R3 be a sufficiently small open ball around pi such that

B4ε(pi) ∩B4ε(pj) = ∅, for all distinct i, j ∈ {1, . . . , n}. (4.3.1)

Let P ′ = {p′1, . . . , p′n} be another configuration of points where p′i ∈ (R2 × {0}) ∩Bε(pi). Let
the diffeomorphism fp′ : R3 → R3 be a map such that on ∪ni=1Bε(pi) it is defined by

fp′(x) = x+ (p′i − pi), when x ∈ Bε(pi).

The assumption 4.3.1 assures that one can extend fp′ to get a diffeomorphism on R3 such that
f(pi) = p′i and
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• The map f : Bε(p1)× . . .×Bε(pn)→ Diff(R3) defined by f(p′1, . . . , p
′
n) = fP ′ , where

P ′ = {p′1, . . . , p′n}, is smooth.

• fP ′([pi, pi+1]) = [p′i, p
′
i+1].

• f(p1, . . . , pn) = fP = Id : R3 → R3.

Note that this extension is not unique and there are many ways to define f ; however, we can pick
any of them which satisfies the conditions above.

Let f̃P ′ : XP → XP ′ be any U(1)-equivariant diffeomorphism which covers fp′i : R3 → R3.
Locally, in a U(1)-invariant gauge, this can be written as

f̃P ′i (u1, u2, u3, t) = (fp′i(u1, u2, u3), t). (4.3.2)

Using this map we can pull back the hyperkähler structure of XP ′ to XP . For any set of
points P ′ = {p′1, . . . , p′n}, we define the hyperkähler structure (gP ′ , IP ′ , IP ′ , IP ′) on XP by
pulling-back the hyperkähler structure of XP ′ via f̃P ′i .

The following lemma states a key property of these maps.

Lemma 88. The map f̃P ′ : XP → XP ′ induces a bi-holomorphism

f̃P ′ |Σi,i+1
: Σi,i+1 → Σ′i,i+1.

Proof. First note that the map f̃P ′ takes Σi,i+1 to Σ′i,i+1, since the map fP ′ takes [pi, pi+1] to
[p′i, p

′
i+1], and therefore, the diffeomorphism f̃P ′ which covers fP ′ induces a diffeomorphism

from the 2-sphere π−1([pi, pi+1]) = Σi,i+1 to π−1([p′i, p
′
i+1]) = Σ′i,i+1.

For points x and x′ = fP ′(x) in Σi,i+1 and Σ′i,i+1, respectively, we have

TxΣi,i+1 = 〈wi,i+1, ∂t〉, Tx′Σ
′
i,i+1 = 〈w′i,i+1, ∂t〉,

where wi,i+1 and w′i,i+1 are the vectors covering vi,i+1 and v′i,i+1, respectively.
The linearized map dxf̃P ′ takes wi,i+1 to a multiple of w′i,i+1, and since it is equivariant it

takes ∂t to a multiple of ∂t, and therefore, it is complex linear.

The next step is to extend this diffeomorphism to the Calabi-Yau manifolds ZP = XP × C.
One can simply define a diffeomorphism by taking the identity map on the C component; however,
this is not suitable for the deformation problem, as we will explain below.

Let lp1,p2 , lp2,p3 , . . . , lpn−1,pn , lpn,p1 ⊂ R2 be the half-lines through origin which are in
the positive direction of the vectors p2 − p1, p3 − p2, . . . , pn − pn−1, p1 − pn, respectively.
Let the rectangles R̃p1,p2 , R̃p2,p3 , . . . , R̃pn−1,pn , R̃pn,p1 ⊂ R2 ∼= C be tubular neighbourhood
of lp1,p2 , lp2,p3 , . . . , lpn−1,pn , lpn,p1 , which are half-infinite rectangles with infinite length and
ε-width for a sufficiently small ε.

Let r : R2 → [0,∞) be the distance from the origin in R2. Let

Rpi,pi+1 = R̃pi,pi+1 ∩ r−1(T,∞),
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for a sufficiently large T >> 1 such that the half-infinite rectangles Rpi,pi+1 are two-by-two
disjoint.

Let θ(lpi,pi+1 , lp′i,p′i+1
) be the angle from lpi,pi+1 to lp′i,p′i+1

. Let gP ′ : R2 → R2 be the map
which in polar coordinates on each Rpi,pi+1 is defined by

gP ′(θ, r) = (θ + θ(lpi,pi+1 , lp′i,p′i+1
), r), for (θ, r) ∈ Rpi,pi+1 .

The map gP ′ takes each half-rectangle Rpi,pi+1 to Rp′i,p′i+1
by simply rotating it. Moreover, it

takes each half-line lpi,pi+1 ∩ r−1(T,∞) to lp′i,p′i+1
∩ r−1(T,∞). We can extend gP ′ to get a

diffeomorphism gP ′ : R2 → R2 such that

• The map g : Bε(p1)× . . .×Bε(pn)→ Diff(R2) defined by g(p′1, . . . , p
′
n) = gP ′ , where

P ′ = {p′1, . . . , p′n}, is smooth.

• g(p1, . . . , pn) = gP = Id : R2 → R2.

Let the diffeomorphism hP ′ : XP × C→ XP ′ × C be the map defined by

hP ′(x, z) = (f̃P ′(x), gP ′(z)).

We can pull back the Calabi-Yau structure (gP ′ ,ΩP ′ , ωP ′) of ZP ′ = XP ′ × C to ZP = XP × C
via the map hP ′ . By an abuse of notation, we still denote this pulled-back Calabi-Yau structure
on ZP by (gP ′ ,ΩP ′ , ωP ′).

With this understanding, for any set of distinct points P ′ = {p′1, . . . , p′n} we have a Calabi-
Yau structure on the fixed smooth manifold Z = ZP . Let W be the space parametrizing the
Calabi-Yau structure onZ close to the reference Calabi-Yau structure (gP ,ΩP , ωP ). In the Calabi-
Yau case — as opposed to the G2 case — we only move the points pi inside Bε(pi) ⊂ R2 × {0}.
Let π′ : R3 → R2 be the projection on the first two coordinates. The parameter space is given by

Q = π′(Bε(p1))× . . .× π′(Bε(pn)),

and therefore, dimQ = 2n.
The following lemma explains the reason behind the specific choice of the maps gP ′ .

Lemma 89. The map hP ′ : ZP → ZP ′ induces a diffeomorphism between the special La-
grangians L0

i,i+1 = Σi,i+1 × (v0
i,i+1) and (L0

i,i+1)′ = Σ′i,i+1 × (v0
i,i+1)′ in Zp and ZP ′ , respec-

tively, sufficiently away from the origin,

hP ′ |
L0
i,i+1

∩r−1[T,∞)
: L0

i,i+1 ∩ r−1(T,∞)→ (L0
i,i+1)′ ∩ r−1(T,∞),

for a sufficiently large T .

Proof. As we observed in the Lemma 88, f̃P ′ takes Σi,i+1 to Σ′i,i+1. On the other hand, gP ′ takes
the half-line lpi,pi+1 ∩ r−1(T,∞) to l′pi,pi+1

∩ r−1(T,∞), and therefore, the diffeomorphism hP ′

takes Σi,i+1 × (lpi,pi+1 ∩ r−1(T,∞)) to Σ′i,i+1 × (l′pi,pi+1
∩ r−1(T,∞)).
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This means as we move the point P ′ in the parameter space Q and change the Calabi-Yau
structure, these topologically cylindrical special Lagrangians, in the positive direction as induced
by the vectors pi+1 − pi and outside of a compact subset, do not change. In particular, as we
deform the Calabi-Yau structure, the asymptotic condition for the Donaldson-Scaduto special
Lagrangians — which are asymptotic to these cylindrical special Lagrangians in the positive
directions — do not change, and the deformation problem of these special Lagrangians fit into the
framework of the deformation of the asymptotically cylindrical special Lagrangians with fixed
asymptotic ends, which has been studied previously in the literature, for instance in [82].

The case of the deformation of the G2-manifolds of the form YP = XP × R3 is quite
similar. In the G2 case the points p1, . . . , pn can move inside R3. Similar to the Calabi-Yau case,
we can construct diffeomorphisms gP ′ : R3 → R3 such that gP ′ takes half-infinite cylindrical
neighbourhood of each half-line lpi,pi+1∩r−1(T,∞) to the half-infinite cylindrical neighbourhood
l′pi,pi+1

∩ r−1(T,∞) such that

• The map g : Bε1(p1)× . . .×Bεn(pn)→ Diff(R3) defined by g(p′1, . . . , p
′
n) = gP ′ , where

P ′ = {p′1, . . . , p′n}, is smooth.

• g(p1, . . . , pn) = gP = Id : R3 → R3.

The parameter space is given by

Q = Bε(p1)× . . .×Bε(pn),

and therefore, dimQ = 3n.
Let the diffeomorphism hP ′ : XP×R3 → XP ′×R3 defined by hP ′(x,w) = (f̃P ′(x), gP ′(w))

for any x ∈ XP and w ∈ R3.

Lemma 90. The map hP ′ : YP → YP ′ induces a diffeomorphism between the associatives
N0
i,i+1 = Σi,i+1 × (v0

i,i+1) and (N0
i,i+1)′ = Σ′i,i+1 × (v0

i,i+1)′ in YP and YP ′ , respectively,

hP ′ |
N0
i,i+1

∩r−1[T,∞)
: N0

i,i+1 ∩ r−1(T,∞)→ (N0
i,i+1)′ ∩ r−1(T,∞),

for a sufficiently large T .

The proof is similar to 89.

4.3.1.2 Deformation of the Asymptotically Cylindrical Special Lagrangians inX × CX × CX × C

Let P0 = (p1, . . . , pn) be an ordered set of n distinct points in (R2 × {0})n ⊂ (R3)n, where no
three of them are collinear. Let Bε(p1), . . . , Bε(pn) ⊂ R3 be sufficiently small and disjoint open
neighbourhoods of p1, . . . , pn, respectively. Let π′ : R3 → R2 be the projection on the first two
components. Let Q be the parameter space, Q = π′(Bε(p1))× . . .× π′(Bε(pn)).

Let X be the smooth 4-manifold underlying a multi-Eguchi-Hanson or a multi-Taub-NUT
hyperkähler manifold. Let Z = X × C. Let P denote a configuration of points in the parameter
space Q. For each P , we have a hyperkähler structure on X , denoted by (X, gX,P , IP , JP ,KP ),
and therefore, a Calabi-Yau structure on Z, denoted by (Z, gZ,P , ωP ,ΩP ).
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The open property of Λ ⊂ (R2)n \∆ follows from the following theorem, which is the main
theorem of this subsection.

Theorem 43. Let LP0 be a Donaldson-Scaduto special Lagrangian in Z = X × C with respect
to the Calabi-Yau structure associated to P0 = (p1, . . . , pn) ∈ W with a decay rate α < 0,
where |α| is sufficiently small. The moduli spaceMLP0

of asymptotically cylindrical special
Lagrangian submanifolds in (Z, gZ,P0 , IP0 , JP0 ,KP0) with rate β < 0, where α < β < 0, near
and homotopic to LP0 — which are necessarily of the type predicted by the Donaldson-Scaduto
conjecture — is a smooth 0-dimensional manifold, and therefore, LP0 is isolated. Moreover, the
parametrized moduli space

M̃LP0
= {(P,L) | P ∈ Q and L is an asymptotically cylindrical special Lagrangian with decay rate

β near and homotopic to LP0 with respect to the Calabi-Yau structure (gZ,P , ωP , ωP )},

is a 2n-dimensional smooth manifold, where 2n = dim(Q). Furthermore, for any P ∈ Q there
exists a unique LP where

(P,LP ) ∈ M̃LP0
.

The rest of this subsection is devoted to proving this theorem. We present the proof in a
sequence of lemmas. The proof follows the same line of thought as in [82, 57, 57, 69].

Let L0 denote the smooth 3-dimensional manifold underlying the special Lagrangian LP0 .
Let f : L0 → Z be an embedding of the special Lagrangian LP0 in Z. We have

f∗ Im(ΩP0) = f∗ωP0 = 0.

Let Zg0 : TL0 → T ∗L0 be the bundle isomorphism between vector fields and 1-forms on L0,
defined using the pull-back of the Riemannian metric gZ,P0 to L0. Let ν(LP0) → LP0 be the
normal bundle of LP0 in Z. Let Ũ be a small tubular neighbourhoods of LP0 in Z with a fixed
radius at different points of LP0 , identified with a small neighbourhood of the zero section of the
normal bundle, by an abuse of notation still denoted by Ũ . Let

Ũk,pα = {ξ ∈W k,p
α (ν(LP0)) | ξ(x) ∈ Ũ for all x ∈ LP0},

for k ≥ 0, p > 1 and α < 0.
Note that since LP0 is a special Lagrangian we have the bundle isomorphisms

J0 : ν(LP0)→ TL0, Zg0 ◦ J0 : ν(LP0)→ T ∗L0.

Let U = Zg0 ◦ J0(Ũ) and

Uk,pα = {η ∈W k,p
α (T ∗L0) | η(x) ∈ U for all x ∈ L0},

for k ≥ 0, p > 1 and α < 0.
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For any η ∈ Uk,pα , let fη : LP0 → Z be the deformation map defined by

fη(x) = expf(x)((Zg0 ◦ J0)−1(ηx)).

fη(LP0) is an embedding of L0 homotopic to LP0 = f(L0), when η is sufficiently small.
Moreover, any nearby submanifold homotopic to LP0 can be presented in this manner.

For a moment let’s assume the Calabi-Yau structure on Z, associated to P0 ∈ Q, is fixed. Let
G : U → Ω0(L0)⊕ Ω2(L0) be the map defined by

G(η) = ∗P0f
∗
η (Im(ΩP0)) + f∗η (ωP0),

where ∗P0 is the Hodge star operator, defined using the pull-back of the Riemannian metric gZ,P0

to L0.
fη(L0) is a special Lagrangian in (Z, gZ,P0 , ωP0 ,ΩP0) if and only if G(η) = 0. In order to

show that the zero set of G forms a smooth manifold, we should use the inverse function theorem,
and therefore, we should set up the map G between the appropriate Banach spaces. Let

Gk+1,p
α : Uk+1,p

α →W k,p
α (Λ(T ∗L0))⊕W k,p

α (Λ2(T ∗L0)), Gk+1,p
α (η) = ∗P0f

∗
η (ΩP0) + f∗η (ωP0).

However, note that similar to the compact case, the linearized map

d0G
k+1,p
α : W k+1,p

α (Λ0(T ∗0LP0))→W k,p
α (Λ0(T ∗L0))⊕W k,p

α (Λ2(T ∗L0)),

is not elliptic, and therefore, not Fredholm. This can be seen by looking at the rank of the domain
and the target space, which are not equal,

rank(W k+1,p
α (Λ1(T ∗L0))) = 3, rank(W k,p

α (Λ0(T ∗L0))⊕W k,p
α (Λ2(T ∗L0))) = 1 + 3 = 4.

To resolve this problem, let

F̃ k+1,p
α : Uk+1,p

α ⊕W k+1,p
α (Λ3(T ∗L0))→W k,p

α (Λ0(T ∗L0))⊕W k,p
α (Λ2(T ∗L0)),

defined by

F̃ k+1,p
α (η, χ) = Gk+1,p

α (η) + d∗P0
χ,

where d∗P0
χ = − ∗P0 d ∗P0 χ.

Lemma 91. The map F̃ k+1,p
α : Uk+1,p

α ⊕W k+1,p
α (Λ3(T ∗L0))→W k,p

α (Λ0(T ∗L0))⊕W k,p
α (Λ2(T ∗L0)),

is elliptic, where the linearization is given by

d(0,0)F̃
k+1,p
α : W k+1,p

α (Λodd(T ∗L0))→W k,p
α (Λeven(T ∗L0)), d(0,0)F̃

k+1,p
α (η, χ) = (d∗ + d)(η + χ).

The proof is similar to the compact case, 41.
More generally, we want to allow the Calabi-Yau structure of the ambient space to change.
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Lemma 92. Let

F k+1,p
α : Q× Uk+1,p

α ⊕W k+1,p
α (Λ3(T ∗L0))→W k,p

α (Λ0(T ∗L0))⊕W k,p
α (Λ2(T ∗L0)),

be the map defined by

F k+1,p
α (P, η, χ) = ∗P f∗η (Im(ΩP )) + f∗η (ωP ) + d∗Pχ.

where ∗P and d∗P are defined with respect to the Riemannian metric gZ,P , pulled-back to L0. The
map F k+1,p

α is elliptic.
Let

(d2)(P0,0,0)F
k+1,p
α : W k+1,p

α (Λ1(T ∗L0))⊕W k+1,p
α (Λ3(T ∗L0))

→W k,p
α (Λ0(T ∗L0))⊕W k,p

α (Λ2(T ∗L0)),

denote the derivative ofF k+1,p
α at (P0, 0, 0) in the direction ofW k+1,p

α (Λ1(T ∗L0))⊕W k+1,p
α (Λ3(T ∗L0)).

We have

(d2)(P0,0,0)F
k+1,p
α (η, χ) = (d∗gP + d)(η + χ).

The lemma follows from 91.

Lemma 93. For any k > 0, p ≥ 1 and α ∈ R, we have

Gk+1,p
α (Uk+1,p

α ) ⊂ d∗P0
(W k+1,p

α (Λ1(T ∗L0)))⊕d(W k+1,p
α (Λ1(T ∗L0)))

⊂W k,p
α (Λ0(T ∗L0))⊕W k,p

α (Λ2(T ∗L0)).

Proof. First note that ∗f∗η (ΩP0) and f∗η (ωP0) are co-closed and closed, respectively.

d∗P0
(∗f∗η (ΩP0)) = ∗P0f

∗
η (dΩP0) = 0, d(f∗η (ωP0)) = f∗η (dωP0) = 0.

Moreover, f∗η (ΩP0) and f∗η (ωP0) are exact. To see this note that fη is homotopic to f , and
therefore, it is enough to show f∗(ΩP0) and f∗(ωP0) are exact; however, since LP0 is a special
Lagrangian in (Z, gZ,P0 , ωP0 ,ΩP0), we have f∗(ΩP0) = f∗(ωP0) = 0,

[f∗η (ΩP0)] = [f∗(ΩP0)] = 0, [f∗η (ωP0)] = [f∗(ωP0)] = 0,

and therefore,

∗f∗η (ΩP0) = d∗θ1, f∗η (ωP0) = dθ2,
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for 1-forms θ1 and θ2 on L0. Moreover,

d∗θ1 = ∗f∗η (ΩP0)− ∗f∗0 (ΩP0) = ∗d(

∫ 1

0
f∗sη(ιsηΩP0)ds),

dθ2 = f∗η (ωP0)− f∗0 (ωP0) = d(

∫ 1

0
f∗sη(ιsηωP0)ds),

and we can take

θ1 = ∗
∫ 1

0
f∗sη(ιsηΩP0)ds, θ2 =

∫ 1

0
f∗sη(ιsηωP0)ds.

Therefore,

θ1 = O(eαt), and θ2 = O(eαt),

which proves the lemma.

This lemma implies

F̃ k+1,p
α (Uk+1,p

α ×W k+1,p
α (Λ3(T ∗L0)))

⊂ d∗P0
(W k+1,p

α (Λ1(T ∗L0)))⊕ d(W k+1,p
α (Λ1(T ∗L0)))⊕ d∗P0

(W k+1,p
α (Λ3(T ∗L0))).

Lemma 94. For any k > 0, p ≥ 1 and α ∈ R, we have

F k+1,p
α (Q× Uk+1,p

α )

⊂ d∗P0
(W k+1,p

α (Λ1(T ∗L0)))⊕ d(W k+1,p
α (Λ1(T ∗L0)))⊕ d∗P0

(W k+1,p
α (Λ3(T ∗L0))).

Proof. First note that ∗f∗η (ΩP ) and f∗η (ωP ) are co-closed and closed, respectively.

d∗P (∗f∗η (ΩP )) = ∗P f∗η (dΩP ) = 0, d(f∗η (ωP )) = f∗η (dωP ) = 0.

Moreover, f∗η (ΩP ) and f∗η (ωP ) are exact, since fη is homotopic to f , and therefore, we should
only show f∗(ΩP ) and f∗(ωP ) are exact. This is true because of the types of deformations which
we are considering. As we saw in the Lemma 85, when c = 0, [f∗(ΩP )] = [f∗(ωP )] = 0. The
negative decay rate shows all deformations fη(L0) still have c = 0. If we were considering
the deformations where the ends were moving too, this assumption would not have been valid
anymore. Therefore,

∗P f∗η (ΩP ) = d∗P0
θ1, f∗η (ωP ) = dθ2,

for 1-forms θ1 and θ2 on L0.

θ1 = O(eαt), and θ2 = O(eαt),
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which proves the lemma.

Let

C := (d+ d∗P0
)(W k+1,p

α (Λ1(T ∗L0))⊕W k+1,p
α (Λ3(T ∗L0))) ⊂W k,p

α (Λ0(T ∗L0))⊕W k,p
α (Λ2(T ∗L0)).

Let D be the L2-orthogonal complement of C

Q⊕W k+1,p
α (Λ0(T ∗L))⊕W k+1,p

α (Λ2(T ∗L)) = C ⊕ D.

The following lemma characterizes D.

Lemma 95. We have D = {(P, θ) | P ∈ Q and θ ∈ DP }, where

DP = ker(d+ d∗P : W k+1,q
−α (Λeven(L0))→W k+1,q

−α (Λodd(L0))),

where 1
p + 1

q = 1.

Proof. DP can be identified with the co-kernel of (d+d∗P ) : W k+1,p
α (Λodd(L0))→W k+1,p

α (Λeven(L0)),
which itself can be identified with the kernel of (d+d∗P ) : W k+1,q

−α (Λeven(L0))→W k+1,q
−α (Λodd(L0)).

Lemma 96. We have

F k+1,p
α (Q× Uk+1,p

α ×W k+1,p
α (Λ3(T ∗LP0)))) ⊂ C ⊂W k,p

α (Λ0(T ∗LP0))⊕W k,p
α (Λ2(T ∗LP0)).

Proof. Let (P, η, χ) ∈W × Uk+1,p
α ×W k+1,p

α (Λ3(T ∗LP0))). We should show

〈F k+1,p
α (P, η, χ),DP 〉L2(L0) = 0.

Let θ = h + β ∈ DP , for a constant 0-form h and a closed and co-closed 2-form β. For each
P ∈ Q,

〈F k+1,p
α (P, η, χ), h+ β〉L2(LP ) = 〈∗P f∗η (Im(ΩP )) + f∗η (ωP ) + d∗Pχ, h+ β〉L2(LP )

= 〈∗P f∗η (Im(ΩP )), h〉L2(LP ) + 〈f∗η (ωP ), β〉L2(LP ) + 〈d∗Pχ, β〉L2(LP )

= 〈d∗P θ1, h〉L2(LP ) + 〈dθ2, β〉L2(LP ) + 〈d∗Pχ, β〉L2(LP )

= 〈θ1, dh〉L2(LP ) + 〈θ2, d
∗
Pβ〉L2(LP ) + 〈χ, dβ〉L2(LP ) = 0.

Note that the boundary terms limt→∞〈θ1, h〉L2(LtP ) and limt→∞〈θ2, ∗β〉L2(LtP ) vanish, since θ1

and θ2 decay exponentially, and h and β are bounded.

Lemma 97. For each P ∈ Q, let Gk+1,p
P,α : Uk+1,p

α →W k,p
α (Λ(T ∗LP ))⊕W k,p

α (Λ2(T ∗LP )) be
the map defined by

Gk+1,p
P,α (η) = ∗P f∗η (ΩP ) + f∗η (ωP ),
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and F̃ k+1,p
P,α : Uk+1,p

α ⊕W k+1,p
α (Λ3(T ∗LP ))→W k,p

α (Λ0(T ∗LP ))⊕W k,p
α (Λ2(T ∗LP )) the map

defined by

F̃ k+1,p
P,α (η, χ) = ∗P f∗η (ΩP ) + f∗η (ωP ) + d∗Pχ.

Then (F̃ k+1,p
P,α )−1(0) = (Gk+1,p

P,α )−1(0)× {0}.

Proof. It is clear that

(Gk+1,p
P,α )−1(0)× {0} ⊂ (F̃ k+1,p

P,α )−1(0).

Suppose (η, χ) ∈ (F̃ k+1,p
P,α )−1(0). Let r : LP0 → R be a radius function on LP which measures

distance from a fixed point x0 ∈ LP . Let LRP = LP ∩ r−1[0, R]. Note that if F̃ k+1,p
P,α (η, χ) =

Gk+1,p
P,α + d∗χ = 0, then

‖d∗Pχ‖2L2(LRP )
= 〈d∗Pχ, d∗Pχ〉L2(LRP ) = −〈Gk+1,p

P,α (η), d∗Pχ〉L2(LRP )

= −〈dGk+1,p
P,α (η), χ〉L2(LRP ) +

∫
∂LRP

〈Gk+1,p
P,α (η), χ〉

= −〈df∗η (ω), χ〉L2(LRP ) +

∫
∂LRP0

〈Gk+1,p
α (η), χ〉 =

∫
∂LRP

〈Gk+1,p
P,α (η), χ〉.

By taking limit R→∞ and since χ and Gk+1,p
P,α (η) are exponentially decaying, we get

‖d∗Pχ‖2L2(LRP )
= 0,

and therefore, d∗Pχ = 0, which implies χ = CvolP for a constant C ∈ R. However, since χ is in
a certain Sobolev space, χ = 0.

With this setup, for each P ∈ Q, the linearized map

d(0,0)F̃
k+1,p
P,α : W k+1,p

α (Λ1(T ∗LP ))⊕W k+1,p
α (Λ3(T ∗LP ))→ C

is surjective.

Lemma 98. TLP0
M̃LP0

∼= ker d(P0,0,0)F
k+1,p
α , and therefore, dimM̃LP0

= 2n.

Proof. Let (P, η, χ) ∈ ker d(P0,0,0)F
k+1,p
α . We know χ = 0 and (d+ d∗P0

)η = 0. Let

ψ : ker d(P0,0,0)F
k+1,p
α → Q×H1(LP0 ,R),

be the map given by

(P, η, χ)→ (P, [η]).
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The map ψ : ker d(P0,0,0)F
k+1,p
α → Q×H1(LP0 ,R) is injective. This follows from the fact that

when α < 0 is sufficiently small such that [0, α2] does not include any eigenvalue of Laplacian
on functions on LP ,

ker(d+ d∗)k+1,p
α = ker(d+ d∗)k+1,2

α ⊂ ker(d+ d∗)k+1,p
0 .

Suppose (P1, [η1]) = (P2, [η2]), and therefore, P1 = P2, and [η] = 0, where η = η1 − η2. We
have η = dk for some k ∈W k+2,p

0 (Λ0(T ∗LP )), thus

0 = d∗η = ∆k,

and therefore, k = 0.
For each P ∈ Q, let ψP (η, χ) = ψ(P, η, χ). We have image(ψP ) = image(ιP ), which is

the natural inclusion ιP : H1
c (LP )→ H1(LP ), appearing in the following exact sequence,

0→ H0(LP )→ H0(∂LP )→ H1
c (LP )

ι−→ H1(LP )→ H1(∂LP )→ H2
c (LP )

→ H2(LP )→ H2(∂LP )→ H3
c (LP )→ 0.

Note that H4(LP ,R) ∼= H0
c (LP ,R) = 0, since L0 is simply connected. The exact sequence

shows

dim image ιP = b2(L)− b0(∂L) + b0(L) = (n− 1)− n+ 1 = 0,

and therefore,

dim image ψ = 2n+ 0 = 2n.

4.3.1.3 The Index Problem

The map

d(0,0)F
k+1,p
α : W k+1,p

α (Λ1(T ∗LP0))⊕W k+1,p
α (Λ3(T ∗LP0))→ C,

is surjective and has 0-dimensional kernel, and therefore,

index d(0,0)F
k+1,p
α = 0.

The map

d(0,0)F
k+1,p
α : W k+1,p

α (Λ1(T ∗LP0))⊕W k+1,p
α (Λ3(T ∗LP0))

→W k,p
α (Λ0(T ∗LP0))⊕W k,p

α (Λ2(T ∗LP0)),
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is Fredholm, has 0-dimensional kernel, and moreover,

coker d(0,0)F
k+1,p
α = D = ker(d+ d∗ : W k+1,q

−α (Λeven)→W k+1,q
−α (Λodd)).

For α sufficiently small, ker(d+d∗ : W k+1,q
−α (Λeven)→W k+1,q

−α (Λodd)) consists the vector space
of smooth closed and co-closed 0-forms and 2-forms, which consists only of constant functions,
and therefore, is 1-dimensional. With this setup,

index d(0,0)F
k+1,p
α = −1.

4.4 Dimensional Reduction of the Donaldson-Scaduto Conjecture

It is expected that the Donaldson-Scaduto calibrated submanifolds are U(1)-invariant. This
symmetry can be helpful in finding these conjectured submanifolds. More generally, in the
presence of a suitable group action G on a manifold Z, the problem of finding a certain G-
invariant submanifold L in the ambient space Z can be dimensionally reduced to the problem of
finding some submanifold L/G ⊂ Z/G; however, the latter problem might be a singular one, and
the study of singular spaces can be difficult. In the case of G-invariant Lagrangians in symplectic
manifolds, if the action is Hamiltonian, one can do better and dimensionally reduce the problem
to the symplectic quotient space.

In this section, by studying the problem in the level of the symplectic quotient, we will
show that the Donaldson-Scaduto special Lagrangians in X × C will correspond to certain
non-compact J-holomorphic curves with boundary in R4 with respect to a non-standard singular
almost complex structure J . Moreover, we will show that these J-holomorphic curves are
described by a real Monge-Ampère equation. This approach might be useful in proving that
Λ ⊂ (R3)n \∆ is a closed subspace. Finally we address the non-generic case where the points
p1, p2 and p3, used in the Gibbons-Hawking construction of X , are collinear. This case can be
understood as the special case used in the continuity method.

4.4.1 Dimensional Reduction of Special Lagrangians

The main theorem of this subsection is the following.

Theorem 44. Let (X, gX , I, J,K) be a 4-dimensional hyperkähler manifold given by the
Gibbons-Hawking Ansatz, specified by a positive harmonic map V : U ⊂ R3 → R. There
is a one-to-one correspondence between U(1)-invariant special Lagrangians in Z = X × C
and J-holomorphic curves in the symplectic quotient for some non-integrable almost complex
structure J , given by

J(du1) =
1√
V
dx3, J(du2) = − 1√

V
dy3. (4.4.1)

where u1, u2, x3, y3 denote the standard Euclidean coordinates on R4.

In tha case V = m +
∑

i
1

|x−pi| for m ≥ 0, one can complete X by adding some isolated
points to get a multi-Eguchi-Hanson or a multi-Taub-NUT space — still denoted by X — which
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correspondingly results in completing the symplectic quotient to get R4. Then the one-to-one
correspondence extends to the U(1)-invariant special Lagrangians in X×C and the non-compact
J-holomorphic curves with boundary in R4, with respect to a non-standard, singular, non-
integrable almost complex structure J .

Proof. Let π : X → R3 be the bundle map which appears in the definition of the Gibbons-
Hawking construction, π(x) = (u1(x), u2(x), u3(x)). The U(1)-action onX×C, equipped with
the symplectic form ω = ω3 + dx3 ∧ dy3, is Hamiltonian with the moment map µ : X ×C→ R,
given by µ(x, z) = u3(x), and therefore, any U(1)-invariant Lagrangian L will be in a level set
of the moment map, µ|L = c for a constant c ∈ R. Let

Zc := µ−1(c)/U(1) and L := L/U(1) ⊂ Zc.

On the reduction space u3 is constant; moreover, as we take quotient by the U(1)-action,
there is no t-coordinate. Therefore, the remaining variables are u1, u2, x3, y3. This is a global
coordinate system on the symplectic quotient, which is Zc = R4

u1,u2,x3,y3
.

The symplectic structure ω on Z induces a symplectic structure ω on the symplectic quotient
Zc, given by

ωred = V du1 ∧ du2 + dx3 ∧ dy3.

Note that V : U ⊂ R3 → R induces a real-valued positive function on the symplectic quotient,
which by an abuse of notation we still denote it with V : Zc → R.

On the other hand the holomorphic volume form Ω induces a holomorphic volume Ωred form
on the reduction space, which is a holomorphic 2-form, given by

Ωred = (du1 − idu2) ∧ (dx3 + idy3).

The holomorphic volume form Ωred determines a complex structure Ired on Zc, given by

Ired(du1) = du2, Ired(dx3) = −dy3.

The Riemannian metric g on Z induces a Riemannian metric gred on Zc, given by

gred = V du1 ⊗ du1 + V du2 ⊗ du2 + dx3 ⊗ dx3 + dy3 ⊗ dy3.

The equations Im(Ω)|L = ω|L = 0 imply Im(Ωred)|L = ωred|L = 0, which are special Lagrangian
type conditions for L in Zc; however, note that (Zc, gred, ωred,Ωred) is not a Calabi-Yau manifold.
Let u = u1 + iu2 and z3 = x3 + iy3. We have

ω2
red = −V

4
du ∧ du ∧ dz3 ∧ dz3, Ωred ∧ Ωred = du ∧ du ∧ dz3 ∧ dz3,

and as we can see, unlike Z, on the reduction space the differential forms ω2
red and Ωred ∧ Ωred

do not agree up to a constant. It is more pleasant to work with structures which satisfy this
formal relation. This can be resolved with the help of introducing a new singular symplectic form,
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denoted by ω, given by

ω =

√
2

V
ωred,

moreover, let g = gred and Ω = Ωred. Then

2ω2 = du ∧ du ∧ dz3 ∧ dz3 = −Ω ∧ Ω,

and therefore, (Zc, g, ω,Ω) satisfies a formal property similar to Calabi-Yau manifolds. Note that
this space is not a genuine singular Calabi-Yau manifold, since dw 6= 0.

Let

θ =
√

2ω + i Im (Ω).

We have

θ|L = 0.

In real coordinates

√
2ω = 2

√
V du1 ∧ du2 +

2√
V
dx3 ∧ dy3, Im(Ω) = du1 ∧ dy3 − du2 ∧ dx3,

and therefore,

θ = (2
√
V du1 ∧ du2 +

2√
V
dx3 ∧ dy3) + i(du1 ∧ dy3 − du2 ∧ dx3)

= 2(
√
V du1 + idx3) ∧ (du2 −

i√
V
dy3).

This means L is pseudo-holomorphic curve with respect to the almost complex structure J , given
by

J(du1) =
1√
V
dx3, J(du2) = − 1√

V
dy3. (4.4.2)

Remark 10. As mentioned in the proof of the lemma above, (Zc = R4, g, ω,Ω) is not a Calabi-
Yau manifold. Let Zsing

c denote the points in Zc where V is singular. In the multi-Eguchi-Hanson
and the multi-Taub-NUT cases, the singular set

Zsing
c := {(u1, u2, x3, y3) | V (u1, u2, 0) = 0} = {p1, p2, p3} × R2,

which is a 2-dimensional subset of R4 — of codimension 2. At each point p = (u1, u2, x3, y3) ∈
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Zsing
c , let

T(u1,u2,x3,y3)R4 = 〈∂u1(p), ∂u2(p)〉 ⊕ 〈∂x3(p), ∂y3(p)〉.

The metric g blows up alongZsing
c . More specifically, g(p)|〈∂u1(p),∂u2(p)〉 blows up, and g(p)|〈∂x3(p),∂y3(p)〉

is the standard Euclidean metric. The 2-form ω is not closed; moreover, it is singular along
Zsing
c . In fact, ω(p)|〈∂u1(p),∂u2(p)〉 blows up, and ω(p)|〈∂x3(p),∂y3(p)〉 = 0. Furthermore, Ω and I

are smooth, and in fact, the standard ones on C2. The almost complex structure J is also singular
along Zsing

c ,

Jp(du1) = 0, Jp(du2) = 0. (4.4.3)

The cylindrical special LagrangiansL0
i,j ⊂ Z would map into bandsL0

i,j inside the symplectic
reduction space,

L0
i,j = [pi, pj ]× ((pi − pj) . . .R) ⊂ R2 × R2 = R4.

The Donaldson-Scaduto conjecture reduces to the existence of J-holomorphic curves asymptotic
to these bands.

Conjecture 12 (Dimensionally Reduced Donaldson-Scaduto Conjecture). Let X be a multi-
Eguchi-Hanson space, constructed via the Gibbons-Hawking construction over R3 \ {p1, p2, p3},
where p1, p2 and p3 are not collinear. There exists L ⊂ R4 a non-compact J-holomorphic curve
with non-compact boundary with three ends L1, L2 and L3 which in the positive directions are
asymptotic to the J-holomorphic bands L0

1,2, L
0
2,3 and L0

3,1, respectively. We call L a Donaldson-
Scaduto holomorphic curve.

We see an schematic drawing of such J-holomorphic band.

Figure 4.6: Dimensionally Reduced Donaldson-Scaduto Conjecture in R2 × R2
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This approach can be helpful in the direction of proving the closed property of the existence
of the Donaldson-Scaduto special Lagrangians. In the dimensionally reduced picture, we would
have a sequence of singular almost complex structures J i and a corresponding sequence of
J i-holomorphic curves with boundary Li, and one hopes to show as J i → J0, we would get
Li → L0.

An important step in that direction would be to show there is no J-holomorphic sphere in
R4 for a J of the form mentioned in 4.4.1. It seems quite plausible; however, here we would not
follow that any further.

4.4.2 Special Lagrangians and the Monge-Ampère Equation

In this section, we show that the existence of the Donaldson-Scaduto submanifolds are described
by a Monge-Ampère equation.

Let π1 : R4
(u1,u2,x3,y3) → R2

(u1,u2) and π2 : R4
(u1,u2,x3,y3) → R2

(x3,y3) be the projection maps
on the first two components and the last two components, respectively. The expected projections
of a Donaldson-Scaduto J-holomorphic curve on R2

(u1,u2) and R2
(x3,y3) are presented in the figure

4.11.
The triangle in R2

(u1,u2) is the triangle we used in the Gibbons-Hawking construction in
R2 × {0}. The projection map π1 projects each asymptotic band L0

i,j = [pi, pj ]× ((pi − pj) ·R)
to the segment [pi, pj ] ⊂ R2. Moreover, the map π1 sends the non-compact boundaries of each
band L0

i,j to a vertex of this triangle.
The projection map π2 projects each asymptotic band L0

i,j = [pi, pj ] × ((pi − pj) · R)
to the line (pi − pj) · R ⊂ R2. It is expected that the image of L under the projection map
π2 is an amoeba, which in three directions converges to the positive direction of the vectors
(p1 − p2) · R, (p2 − p3) · R and (p3 − p1) · R.

Conjecture 13. Let Tp1,p2,p3 be the region in R3
(u1,u2) bounded with the triangle with vertices

p1, p2, p3. Let L be the Donaldson-Scaduto J-holomorphic curve. We expect

π1(L) = Tp1,p2,p3 .

In other words, the projection of L would fill the triangle, and also does not go outside of this
region.

Moreover, the image of π2(∂(L)) would consists of three curves, bounding an amoeba, which
is filled by π2(L).

Motivated by the figure 4.11, we would think about the Donaldson-Scaduto J-holomorphic
curve L as a graph of a map F : A ⊂ R2

(x3,y3) → T ⊂ R2
(u1,u2) or G : T ⊂ R2

(u1,u2) → A ⊂
R2

(x3,y3) for two sets A and T . In fact, Conjecture 13 states T is the triangle Tp1,p2,p3 and A is
an amoeba. The condition θ|L would translate to a partial differential equation for F , which is
investigated in the following theorem.

Theorem 45. The existence of the Donaldson-Scaduto J-holomorphic curves are described by a
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map

φ : A ⊂ R2
(x3,y3) → R,

such that

det (Hess(φ)) = 1/V,

where T = π1(L) is a subset of R2, conjecturally Tp1,p2,p3 , as presented in the figure 4.4.2.

Figure 4.7: Map F describing L

In this equation, φ is a function of x3 and y3, and V : R2
(u1,u2) → R is a function of u1 and

u2, where u1 and u2 are the derivatives of φ with respect to y3 and x3, respectively,

∂y3φ = u1, ∂x3φ = u2.

Proof. Let

F = (F1, F2) : R2
(x3,y3) → R2

(u2,u1),

and therefore,

T(x3,y3,u1,u2)(Graph(F )) = 〈(1, 0, ∂x3F1, ∂x3F2), (0, 1, ∂y3F1, ∂y3F2)〉 ⊂ T(x3,y3,u1,u2)R4.

The graph of F is a Lagrangian if ω|T (Graph(F ))
= 0. We only need to check

ω((1, 0, ∂x3F1, ∂x3F2),(0, 1, ∂y3F1, ∂y3F2))

= (V du1 ∧ du2 + dx3 ∧ dy3)((1, 0, ∂x3F1, ∂x3F2), (0, 1, ∂y3F1, ∂y3F2))

= V (∂x3F1∂y3F2 − ∂x3F2∂y3F1) + 1 = V det (dF ) + 1 = 0,

and therefore,
det (dF ) = −1/V.
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The special condition Im(Ω)|T (Graph(F )) = 0 can be written as

Im(Ω)((1, 0, ∂x3F1, ∂x3F1), (0, 1, ∂y3F1, ∂y3F2))

= (du1 ∧ dy3 + du2 ∧ dx3)((1, 0, ∂x3F1, ∂x3F2), (0, 1, ∂y3F1, ∂y3F2))

= ∂x3F1 − ∂y3F2 = 0,

and therefore,

∂x3F1 = ∂y3F2.

The special Lagrangian equations for the graph of F are

det (dF ) = −1/πV , ∂x3F1 = ∂y3F2.

Let F̂ := (F̂1, F̂2) = (F2, F1) : R2
(x3,y3) → R2

(u1,u2). The equation ∂x3F̂2 = ∂y3F̂2 shows that
one can define a function φ : R2

(x3,y3) → R such that

∂y3φ = F̂1, ∂x3φ = F̂2,

and therefore, det(dF ) = −det(dF̂ ) = det(Hess(φ)). By rewriting the special Lagrangian
equations in terms of φ we get

det (Hess(φ)) = 1/V,

which is a real Monge–Ampère equation.

One could consider the Donaldson-Scaduto J-holomorphic curves as a graph of a map above
the triangular region T ⊂ R2

(u1,u2),

G = (G1, G2) : T ⊂ R2
(u1,u2) → A ⊂ R2

(x3,y3).

The same type of calculations as the one in the proof of Theorem 45 shows there exists a map

ψ : T ⊂ R2
(u1,u2) → R,

such that

det(Hess(ψ)) = V.
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Figure 4.8: Map G describing L

Assuming T = Tp1,p2,p3 , the boundary conditions of ψ are described by the following,

|dψ(u1, u2)| = |G(u1, u2)| → ∞ as x→ [p1, p2] ∪ [p2, p3] ∪ [p3, p1].

4.4.3 The Degenerate Case

In the study of the existence problem, in the analysis of the deformation of Donaldson-Scaduto
special Lagrangians and also in writing down the Mongè Ampere equation describing the
Donaldson-Scaduto J-holomoprhic curves, we considered a generic case where the points p1, p2

and p3 are not collinear. In this section, we consider the non-degenerate case, where p1, p2 and
p3 are collinear. The material in this section, are rather speculative.

The triangle Tp1,p2,p3 , when p1, p2 and p3 are collinear, would be degenerate and is just a line
segment. Without loss of generality, let’s assume p1, p2 and p3 lie on the x-axis and p2 lies on
the segment [p3, p1]. Let e1 be the vector in the positive direction of the x-axis. We would have
two parallel special Lagrangians in X × C, namely,

L0
1,2 = π−1[p1, p2]× 〈e1〉, L0

2,3 = π−1[p2, p3]× 〈e1〉.

Let π1 : X×C→ R2 be the map defined by π1(x, z) = π(x), where π : X → R2 = R2×{0} ⊂
R3. Let π2 : X ×C→ R2 = C be the map defined by π2(x, z) = z. We would get the following
degenerate figure.
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Figure 4.9: Singular Special Lagrangian

In fact, we expect there would be no smooth Donaldson-Scaduto special Lagrangian in this
degenerate case. Let L0

sing,p1,p2,p3
be the singular special Lagrangian, illustrated in 4.4.3, which is

the union of L0
1,2 and L0

2,3. This special Lagrangian is singular along a line, which is {p2}× 〈e1〉.
Note that the intersection

L0
p1,p2

∩ L0
p2,p3

= {p2} × 〈e1〉,

is not a transversal intersection.
For each t ∈ (0, 1), let pt1, p

t
2, p

t
3 be three points which are not collinear, but they converge

to the collinear ones p1, p2, p3 as t → 0. In fact, by a affine transformation of R2, we can
assume pt1 and pt3 are fixed and pt2 is getting closer to the segment connecting pt1 and pt3. As
one moves pt2 closer and closer to this line segment, we would expect to get a family of smooth
Donaldson-Scaduto special Lagrangians L0

pt1,p
t
2,p

t
3

converging to the singular special Lagrangian

L0
sing,p1,p2,p3

.
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Figure 4.10: Formation of Singular Special Lagrangian

The main deformation problem here is to start with the singular special LagrangianL0
sing,p1,p2,p3

,
and show that this special Lagrangian can be disingularized as we move the point p2 slightly
off the segment connecting p1 and p3. This is also motivated by the method of continuity for
proving the Donaldson-Scaduto conjecture, since we can consider this singular case as the spe-
cial case of the method of continuity. In fact, proving this would show the space of smooth
Donaldson-Scaduto special Lagrangians is non-empty.

Figure 4.11: Disingularization

The picture in the symplectic reduction space is clearer. Let π1 : R4
(u1,u2,x3,y3) → R2

(u1,u2)

and π2 : R4
(u1,u2,x3,y3) → R2

(x3,y3) be the projection maps on the first two components and the
last two components, respectively. In the degenerate case, we would have two J-holomorphic
bands L0

p1,p2
and L0

p2,p3
. The J-holomorphic curve conjectured by the dimensionally reduced

Donaldson-Scaduto conjecture is simply their union, which unlike the special Lagrangian case, is
a smooth object [p1, p3]× 〈e1〉; however with boundary.
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Figure 4.12: The Limiting Band

The deformation problem in this case is to start with the smooth band [p1, p3] × 〈e1〉, and
prove as we move the point p2 slightly off the segment connecting p1 and p3, we would get a
smooth Donaldson-Scaduto J-holomorphic curve with three ends.

Figure 4.13: Deformation of the Limiting Case
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