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Abstract of the Dissertation

On the Classification of Ancient solutions to the Ricci flow with Isotropic Curvature Condition

by

Jae Ho Cho

Doctor of Philosophy

in

Mathematics

Stony Brook University

2022

In this thesis, complete κ-noncollapsed ancient solutions to the Ricci flow will be studied.

First, we show that every n-dimensional, κ-noncollapsed, non-compact, complete ancient

solution to the Ricci flow with uniformly PIC(positive isotropic curvature) for n = 4 or n ≥ 12

has bounded curvature and weakly PIC2, which is the condition defined in [Bre10a], [Bre19].

Combining this with the results in [BN20], it implies that any such solution is isometric to

either a family of shrinking cylinders (or a quotient thereof) or the Bryant soliton. Secondly,

we classify all complex 2-dimensional, κ-noncollapsed, complete ancient solutions to the

Kähler-Ricci flow with weakly PIC. Lastly, we will discuss about gradient Ricci shrinkers

with bounded scalar curvature and uniformly PIC and show some results on its structure at

infinity. Many of the results in this thesis are based on joint work with Yu Li [CL20].
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Chapter 1

Introduction

1.1 Historical Background

There have been many cases where parabolic partial differential equation improves geometric

objects. The Ricci flow on a closed Riemannian manifold (M, g) is defined by Richard

Hamilton in his seminal work [Ham82] as a family of Riemannian metrics g(t) onM satisfying

∂tg(t) = −2Ricg(t)

g(0) = g

After showing the short time existence, Hamilton applied the Ricci flow to the closed 3-

manifold with positive Ricci curvature and showed that it converges to the round sphere

under the normalized Ricci flow, which proves that any such manifolds are diffeomorphic to

the round sphere or its quotient. Because of this result, Ricci flow was considered as a tool

that could lead to the resolution of long-standing Poincaré and geometrization conjectures

for 3-manifolds.

Even though the program turns out to be successful, it was not automatically given from

Hamilton’s work. As it was pointed out in [Ham93], the application of the Ricci flow in

general case is concerned with singularities that arise in finite time even for the normalized

Ricci flow. In the same paper, Hamilton introduced that singularities could be investigated
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by considering the ancient solutions to the Ricci flow. Due to this reason, the study of ancient

solutions to the Ricci flow becomes one of the most important questions. About a decade later,

Gregori Perelman made a breakthrough in the study of Ricci flow. By using his celebrated

entropy formula in [Per02], Perelman showed that any ancient solution that could be formed

by the blow-up of the high curvature region must be κ-noncollapsed if one starts the Ricci

flow from a compact manifold. Therefore, it is a central issue to understand κ-noncollapsed

ancient solutions to the Ricci flow. From this no local collapsing theorem, Perelman was

able to classify the finite time singularity models for 3-dimensional Ricci flows and prove

a canonical neighborhood theorem for high curvature parts. This observation enabled us

to continue the Ricci flow through the singular time after surgeries, which consequently

succeeded in proving Thurston’s geometrization conjecture. Detailed arguments can be found

in [Per02] [Per03b] [Per03a].

More generally, a complete classification problem of ancient solutions is still ongoing by

many researchers. For 2-dimensional case, Perelman [Per02] showed that all κ-noncollapsed

ancient solutions to the Ricci flow are R2 and shrinking spheres or their quotients. It

is worth mentioning that even collapsing cases are also completely classified by [DHS12]

[DS06] [Chu07]. In dimension 3, Brendle made a breakthrough [Bre20] and showed that

any κ-noncollapsed ancient solution on noncompact manifolds is either the Bryant soliton

or shrinking cylinders or their quotients. For compact case, it was proved by Brendle-

Daskalopoulos-Sesum [BDS20] that any compact, κ-noncollapsed ancient solution is either

the Perelman’s solution constructed in [Per03a] or shrinking sphere or their quotients. For

these low-dimensional cases, the positivity of curvature is automatically given from the

evolution equation. For example, it follows from Hamilton-Ivey pinching estimate that any

3-dimensional ancient solution has positive sectional curvature. In general, Chen [Che09]

proved the positivity of scaler curvature for ancient solution.

Apart from the result mentioned above, there is no natural curvature pinching for higher

dimensional ancient solutions. And it makes highly difficult to investigate ancient solutions
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with no additional curvature assumption. So it is natural to approach this problem after

adding some positivity conditions, which are preserved under the Ricci flow. One of the

candidates is positive isotropic curvature (PIC for short). After this condition was introduced

by Micallef-Moore [MM88], it has maintained a strong connection with the Ricci flow.

Hamilton [Ham97] showed that this condition is preserved under the 4-dimensional Ricci flow

and later, Nguyen [Ngu09] and Brendle-Schoen [BS09] independently completed the proof

for the general case. In the same paper, Brendle-Schoen introduced two more conditions,

PIC1 and PIC2, which are also preserved under the Ricci flow and closely related to the

long-standing differentiable sphere theorem as the 1/4-pinched condition implies PIC2. In

dimension 4, Hamilton [Ham97] (see also [CZ06a] [CTZ12]) classified all differential structures

of compact manifolds with PIC, provided that there is no essential incompressible space-form.

Here, an incompressible space-form N ⊂ M is a 3-dimensional submanifold of M that

is diffeomorphic to the quotient of S3 and π1(N) injects into π1(M). An incompressible

space-form is said to be essential unless π1(N) is trivial, or π1(N) = Z2 and the normal

bundle is non-orientable. One of the observations found in the paper is that any ancient

solution developed from the blow-up process must have a nonnegative curvature operator and

uniformly PIC. In the higher dimension when n ≥ 12, similar classification of all compact

manifolds with PIC was obtained by Brendle [Bre19]. In the paper, it was proved that any

ancient solution coming from a compact manifold with PIC must have weakly PIC2 and

uniformly PIC. The method used by Brendle is to construct ingeniously a family of curvature

cones that pinches toward the desired curvature condition. It is worth noting that most

of important properties including compactness theorem, Hamilton’s differential Harnack

inequality are still valid under the weakly PIC2 condition.
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1.2 Statement of Main Theorems and Ideas of Proof

After Brendle’s seminal work on 3-dimensional ancient solution [Bre20], Brendle-Naff have

generalized the result into the following classification result.

Theorem 1.2.1 (Corollary 1.6 of [BN20]). Any complete, noncompact, κ-noncollapsed ancient

solution to the Ricci flow with weakly PIC2, uniformly PIC and bounded curvature is isometric

to either a family of shrinking cylinders (or a quotient thereof) or to the Bryant soliton.

The idea of Theorem 1.2.1 is worth to be mentioned. First, they started to analyze the

simpler case when the solutions are rotationally symmetric with the same property and

achieve the desired classification result. After then, they show a neck improvement theorem

[BN20, Theorem 4.8], [Bre20, Theorem 8.5] and use it to prove that any ancient solutions

with given conditions must be rotationally symmetric, which completes the proof.

In this thesis, the slight improvement of Theorem 1.2.1 is obtained by dropping two

assumptions. First, we show that the uniformly PIC condition implies the weakly PIC2 if

n = 4 or n ≥ 12. Secondly, we prove that the boundedness of curvature can be dropped from

the statement by showing that it is implied from κ-noncollapsing and curvature conditions.

As a result, we have the following statement, which is the first main result in this thesis.

Theorem 1.2.2. Let (Mn, g(t))t∈(−∞,0] be a κ-noncollapsed, noncompact, complete ancient

solution to the Ricci flow with uniformly PIC for n = 4 or n ≥ 12. Then it is isometric to

either a family of shrinking cylinders (or a quotient thereof) or the Bryant soliton.

The proof of Theorem 1.2.2 can be summarized as follows. The first step of the proof is

to show that uniformly PIC implies weakly PIC2. Note that the boundedness of curvature

is not assumed here and it prevents us from directly applying the maximum principle for

parabolic equations. To overcome this, we review the idea of Chen which showed that any

scalar curvature is nonnegative for ancient solutions [Che09]. Since this result is obtained

from the evolution inequality of scalar curvature (∂t −∆)R ≥ 2
n
R2, it is still applicable for
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parabolic equations in the form of

(∂t −∆) f ≥ f 2. (1.2.1)

From this approach, one can prove that any such f on the complete ancient solution to

the Ricci flow(not necessarily having bounded curvature!) should be nonnegative. By this

observation, the bounded curvature assumption can be easily dropped and we prove that

the curvature operator is nonnegative in 4-dimensional case(Lemma 3.1.4). In the higher

dimensional case, we consider Brendle’s continuous family of curvature cones in [Bre19] and

show that the curvature operator of our ancient solution lies in this family. One of the

necessary conditions for this is to show that the Ricci tensor is 2-positive in a uniform way.

In other words, we need to show that the sum of two eigenvalues obtained from two distinct

eigenvectors divided by scalar curvature is bounded below by a positive constant. It can

be also shown from the previous curvature improvement lemma so the bounded curvature

assumption is still not needed. With the help of this continuous family, we are able to show

that the ancient solution has weakly PIC1 as the curvature cones pinch toward weakly PIC1.

Therefore, by [BCW19, Lemma 4.2] (see also [LN20, Proposition 6.2]), the ancient solution

has weakly PIC2. The second part of the proof is to show that any such ancient solution must

have bounded curvature. The proof relies on a version of canonical neighborhood theorem for

Ricci flows with weakly PIC2 and uniformly PIC (Theorem 4.1.3). First, we show that any

higher curvature part on a fixed time slice is close to a round cylinder. By using the fact that

any manifold with positive sectional curvature cannot have infinitely small cylinders [CZ06a,

Proposition 2.2], we can derive a contradiction if the curvature is unbounded on a times slice.

After then, we use the positivity of curvature obtained from the original condition together

with κ-noncollapsing condition to get the uniform curvature bound to a solution (Proposition

4.1.5).

Our second main result is the following classification of the ancient solutions to the Kähler

Ricci flow on Kähler surfaces, which is a very natural question that follows from the first

question.
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Theorem 1.2.3. Let (M2, g(t))t∈(−∞,0] be a κ-noncollapsed, complete, complex 2-dimensional

ancient solution to the Kähler-Ricci flow with weakly PIC and bounded curvature in any

compact time interval. Then it is isometrically-biholomorphic to one of the spaces C2, CP2,

CP1 × CP1, C1 × CP1 equipped with standard metrics, up to scalings on each factors.

It is well-known that a Kähler surface (i.e. Kähler manifold with complex dimension 2)

has weakly PIC if and only if it has nonnegative orthogonal bisectional curvature, which is

preserved under Kähler Ricci flow [GZ09]. In general, a Kähler manifold has nonnegative

orthogonal bisectional curvature if it has weakly PIC. This fact is shown in Proposition 2.2.2.

Also, an ancient solution to the Kähler Ricci flow with nonnegative orthogonal bisectional

curvature has nonnegative bisectional curvature [LN20]. For the κ-solutions (Definition 4.2.1)

to the Kähler Ricci flow, there is a parallel theory to Perelman’s theory on κ-solutions to the

3-dimensional Ricci flows and many important theorems still hold for the κ-solutions to the

Kähler Ricci flow [Ni05][Cao92]. Since all compact κ-solutions to the Kähler Ricci flow are

classified [DZ20], the main issue is to prove the noncompact case.

To prove Theorem 1.2.3, we first prove that any κ-solutions to the Kähler Ricci flow

must be of Type I (Lemma 4.2.1). From the classification of Kähler-Ricci shrinkers with

nonnegative bisectional curvature [Ni05], the asymptotic behavior of the ancient solution

is modeled on standard C × CP1. Moreover, we obtain a curvature improvement so that

the ancient solution has a nonnegative curvature operator (Theorem 3.1.5). From the

nonnegativity of sectional curvature, we show that the geometry at spatial infinity is also

modeled on C×CP1. Therefore, we can prove a canonical neighborhood theorem (Proposition

4.2.9) to obtain a local S2-fibration, and these local fibrations can be patched together to

form a global fibration by following a standard argument (Theorem 4.2.17). Now the proof

of Theorem 1.2.3 is complete by a topological argument.

As an independent topic, we also consider gradient Ricci shrinkers with PIC conditions,

which can be regarded as a self-similar solution to Ricci flow. Note that a smooth manifold
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(M, g) is a gradient Ricci shrinker if there exists a potential function f :M → R such that

∇2f +Ric =
1

2
g

A gradient Ricci shrinker is a very important and fundamental example in the study of

differential geometry and Ricci flow for many reasons. It is a natural generalization of

Einstein manifolds and it yields a self-similar ancient solution to the Ricci flow. However, the

classification of gradient Ricci shrinkers is still incomplete. Li-Ni-Wang [LNW18] showed that

a 4-dimensional complete gradient Ricci shrinker with PIC is either a family of round spheres

or shrinking cylinders or a quotient thereof, and Naff [Naf19] showed the similar result for

n ≥ 12 with uniformly PIC condition. So it is natural to believe that the same result holds

for a general complete gradient Ricci shrinker with uniformly PIC. By following the idea of

Munteanu-Wang [MW15] [MW19], the following result can be made, which describes the

asymptotic structure of them.

Theorem 1.2.4. Let (Mn, f, g) be a complete, noncompact gradient Ricci shrinker with

uniformly PIC and bounded scalar curvature and n ≥ 5. Then each end E is smoothly

asymptotic to either the round cylinder R × Sn−1/Γ or a cone that is homeomorphic to

R+ × Sn−1/Γ.

From [KW15, Corollary 1.3.], we know that two gradient Ricci shrinkers must be isometric

if they are C2-asymptotic to the same cone. So there is a possibility that this theorem can

provide the answer for the classification problem of complete, noncompact gradient Ricci

shrinkers with uniformly PIC. For example, if we are able to show that an asymptotic cone

has to be rotationally symmetric, then (M, f, g) has to be flat due to [KW15, Corollary 1.4.].

It implies that any nonflat, complete, noncompact gradient Ricci shrinker with uniformly

PIC with bounded curvature is smoothly asymptotic to the round cylinder.
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Chapter 2

Preliminaries

2.1 Some Definitions for the Ricci Flow

There are many types of background materials required for the complete understanding of

Ricci flow. In this section, we will provide some of standard definitions in the Ricci flow. A

complete list of materials can be found in many literatures such as [Bre10a] [MT07].

Definition 2.1.1. Let (Mn, g(t))t∈(−∞,T ) be a complete ancient solution to the Ricci flow

∂tg(t) = −2Ricg(t).

(i) (M, g(t))t∈(−∞,T ) has bounded curvature on any compact time interval if for any compact

interval I ⊂ (−∞, T ), we have supM×I |Rm(x, t)| < ∞. In this case, T is called the

singular time if T <∞ and limt→T supx∈M |Rm(x, t)| = ∞.

(ii) Given κ > 0, (M, g(t))t∈(−∞,T ) is said to be κ-noncollapsed (at all scales) if for any ball

Bg(t)(x, r) satisfying |Rm(y, t)| ≤ r−2 for all y ∈ Bg(t)(x, r), we have

Vol(Bg(t)(x, r)) ≥ κrn

Next, we recall the following curvature conditions which are used throughout the paper.

For the historical background and the motivation of these conditions, readers can refer to

[BS09][Bre19][Ham97].
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Definition 2.1.2. (Isotropic curvature conditions)

(i) A Riemannian manifold (Mn, g) (n ≥ 4) is said to have weakly PIC (in other words,

nonnegative isotropic curvature) if for any p ∈ M and any orthonormal 4-frame

{e1, e2, e3, e4} of TpM , we have

R1313 +R1414 +R2323 +R2424 − 2R1234 ≥ 0.

Note that when n = 4, this condition is equivalent to a1 + a2 ≥ 0 and c1 + c2 ≥ 0 using

the notation in [Ham86]. This notation will be explained at the end of the section.

(ii) A Riemannian manifold (Mn, g) (n ≥ 5) is said to have uniformly PIC if there exists a

constant θ > 0 such that for any p ∈M and any orthonormal 4-frame {e1, e2, e3, e4} of

TpM we have

R1313 +R1414 +R2323 +R2424 − 2R1234 ≥ 4θR > 0.

Equivalently, it means that an algebraic curvature tensor Rm− θRI has weakly PIC.

Similarly, a 4-dimensional Riemannian manifold (M4, g) is said to have uniformly PIC

if there exists a constant Λ ≥ 1 such that

0 < max(a3, b3, c3) ≤ Λmin(a1 + a2, c1 + c2).

(iii) A Riemannian manifold (Mn, g) is said to have weakly PIC1 if for any λ ∈ [−1, 1], any

p ∈M and any orthonormal 4-frame {e1, e2, e3, e4} of TpM , we have

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234 ≥ 0

Equivalently, (M, g)× R has weakly PIC.

(iv) A Riemannian manifold (Mn, g) is said to have weakly PIC2 if for any λ, µ ∈ [−1, 1],

any p ∈M and any orthonormal 4-frame {e1, e2, e3, e4} of TpM , we have

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0.

Equivalently, (M, g)× R2 has weakly PIC.
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(v) A Ricci flow solution (Mn, g(t))t∈I is said to have [weakly PIC, uniformly PIC, weakly

PIC1, weakly PIC2] if (M, g(t)) satisfies the corresponding curvature condition for all

t ∈ I. For uniformly PIC, the constant θ or Λ is required to be uniform for all t ∈ I.

Here, we recall some notations introduced in [Ham86]. After using the self-dual and

anti-self-dual decomposition of
∧2R4 =

∧
+⊕

∧
−, we can write the curvature operator as

Rm =

A B

Bt C

 .

Moreover, let a1 ≤ a2 ≤ a3 and c1 ≤ c2 ≤ c3 be eigenvalues of A and C, respectively. Also,

we denote the eigenvalues of the symmetric matrix
√
BBt by 0 ≤ b1 ≤ b2 ≤ b3. It is clear by

the Bianchi identity that

tr(A) = a1 + a2 + a3 =
R

2
= c1 + c2 + c3 = tr(C).

Now, let {e1, e2, e3, e4} be the positively oriented orthonormal basis of R4. Using this, one

can choose a basis for
∧

+ and
∧

− as

φ±
1 = e1 ∧ e2 ± e3 ∧ e4

φ±
2 = e1 ∧ e3 ± e4 ∧ e2

φ±
3 = e1 ∧ e4 ± e2 ∧ e3

Then we can compute

A1 = Rm(φ+
1 , φ

+
1 ) = R1212 +R3434 + 2R1234

A2 = Rm(φ+
2 , φ

+
2 ) = R1313 +R2424 + 2R1342

A3 = Rm(φ+
3 , φ

+
3 ) = R1414 +R2323 + 2R1423

C1 = Rm(φ−
1 , φ

−
1 ) = R1212 +R3434 − 2R1234

C2 = Rm(φ−
2 , φ

−
2 ) = R1313 +R2424 − 2R1342

C3 = Rm(φ−
3 , φ

−
3 ) = R1414 +R2323 − 2R1423

11



From this expression, we can see that any weakly PIC condition can be expressed as

Ai + Aj ≥ 0

and

Ci + Cj ≥ 0

for distinct i, j ∈ {1, 2, 3}. Therefore, 4-dimensional weakly PIC condition can be expressed

in the following simpler way.

min{a1 + a2, c1 + c2} ≥ 0

It is worth noting that this expression becomes simpler for a Kähler surface. In this case, a

positively oriented orthonormal basis can be chosen as {e1, Je1, e2, Je2} where J is a complex

structure. They generate self-dual and anti-self-dual two forms as we choose a basis for
∧

+

and
∧

− as

φ±
1 = e1 ∧ Je1 ± e2 ∧ Je2

φ±
2 = e1 ∧ e2 ± Je2 ∧ Je1

φ±
3 = e1 ∧ Je2 ± Je1 ∧ e2

Using this basis and Kähler condition together with Bianchi identity, one can represent the

curvature operator as a 6× 6 matrix

R
2

0 0 ρ1 ρ2 ρ3

0 0 0 0 0 0

0 0 0 0 0 0

ρ1 0 0

ρ2 0 0 C

ρ3 0 0


with a 3× 3 matrix C. Therefore, a Kähler surface has weakly PIC if and only if c1 + c2 ≥ 0,

where, as before, c1 ≤ c2 ≤ c3 are eigenvalues of C. Readers can refer to [Ham97], [CTZ04]

for more relevant results from this expression.
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There are some logical implications among these curvature conditions. We can observe

that

weakly PIC2 ⇒ weakly PIC1 ⇒ weakly PIC

by setting µ = 1 and λ = 1 in the definition. Moreover, if we take V,W ∈
∧2 as

V = e1 ∧ e3 + λe4 ∧ e2 and W = λe1 ∧ e4 + e2 ∧ e3, we can express weakly PIC1 condi-

tion as Rm(V, V ) + Rm(W,W ) ≥ 0. Hence the weakly PIC1 condition is implied by the

2-nonnegative of Riemannian curvature operator condition Rm ≥2 0. One can obtain the

weakly PIC2 condition similarly by taking V = e1∧e3+λµe4∧e2 andW = λe1∧e4+µe2∧e3,

but the nonnegativity of curvature operator is required for this case since it is possible to have

W = 0 when λ = µ = 0. Actually, this case implies the nonnegativity of sectional curvature.

Similarly, if we take λ = 0 in weakly PIC1 condition, we can see that any sum of two sectional

curvatures sharing one vector is nonnegative. In particular, it implies the nonnegativity of

Ricci curvature. Also, we can obtain the nonnegativity of scalar curvature by taking a trace

multiple times for weakly PIC condition. Note that in general, the nonnegativity of sectional,

Ricci curvature is not preserved under the Ricci flow. So we have the following diagram.

Note that the conditions on the first and second columns are preserved under the Ricci flow

while those on the third are not in general.

Rm ≥ 0 weakly PIC2 sec ≥ 0

Rm ≥2 0 weakly PIC1 Ric ≥ 0

weakly PIC

scal ≥ 0

13



2.2 Computational Results from Curvature Conditions

There are some useful results from curvature conditions which are obtained only by algebraic

computation. In this section, these results are given for the later use. In essence, the norm of

curvature operator is controlled by the scalar curvature if we have weakly PIC condition.

Proposition 2.2.1. Let (Mn, g) be a manifold with weakly PIC with n ≥ 5. Then we have

the following.

1. − R
n−4

≤ Ric ≤ R
2

2. There exists C > 0 such that |Rm| ≤ CR

Proof. Because of PIC condition, we have

Rikik +Rilil +Rjkjk +Rjljl − 2Rijkl ≥ 0

for any orthonormal 4-frame {ei, ej, ek, el}. By interchanging ei and ej and adding the results,

we can derive

Rikik +Rilil +Rjkjk +Rjljl ≥ 0 (2.2.1)

1. Choose an orthonormal frame {e1, · · · , en} so that the Ricci curvature tensor is diago-

nalized with eigenvalues R11 ≤ R22 ≤ · · · ≤ Rnn. Then from 2.2.1, we have

R− 2Rnn =
n−1∑
i,j=1

Rijij ≥ 0 (2.2.2)

which shows the upper bound in the statement. Also, by taking a sum of 2.2.1 for all

l ̸= i, j, k, we get

(n− 4)(Rikik +Rjkjk) +Rii +Rjj − 2Rijij ≥ 0 (2.2.3)

By taking a sum of for k ̸= i, j again and rescaling, we obtain

Rii +Rjj − 2Rijij ≥ 0 (2.2.4)
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By taking a sum of 2.2.4 for j ̸= i, we finally get

(n− 4)Rii +R ≥ 0 (2.2.5)

It gives the lower bound in the statement so completes the proof.

2. From 2.2.2 and 2.2.4, we get

Rikik ≤
1

2
(Rii +Rkk) ≤

R

2

Also, from 2.2.1, we have

Rikik ≥ −(Rilil +Rjkjk +Rjljl) ≥ −3

2
R

It implies that −3
2
R ≤ Rikik ≤ 1

2
R for any orthonormal 2-frame {ei, ek}. Now, from the

computation in the proof of Berger’s inequality [Ber60], we know

Rijkl = K(e1 + e3, e2 + e4) +K(e1 + e4, e2 − e3) +K(e1 − e4, e2 + e3) +K(e1 − e3, e2 − e4)

−K(e1 + e4, e2 + e3)−K(e1 − e4, e2 − e3)−K(e1 + e3, e2 − e4)−K(e1 − e3, e2 + e4)

for any orthonormal 4-frame {ei, ej, ek, el}. Here, we used the notation K(v, u) =

R(u, v, u, v). It implies that −32R ≤ Rijkl ≤ 32R and completes the proof.

Next, we will show the following result that shows the connection between PIC condition

and orthogonal bisectional curvature condition.

Proposition 2.2.2. Let (M, g) be a Kähler manifold with dimCM = n. If M has weakly

PIC, then it has nonnegative orthogonal bisectional curvature. The converse is also true if

n = 2.

Proof. Recall that (M, g) has nonnegative orthogonal bisectional curvature if

R(X, JX, Y, JY ) ≥ 0

15



for all nonzero real vectors X, Y ∈ TM . Note that (M, g) has nonnegative scalar curvature if

it has nonnegative orthogonal bisectional curvature as a sum of two distinct holomorphic

sectional curvatures can be expressed as a sum of two orthogonal bisectional curvature

components. For notational simplicity, let

IC(A,B,C,D) = R(A,C,A,C)+R(A,D,A,D)+R(B,C,B,C)+R(B,D,B,D)−2R(A,B,C,D)

Then we have

IC(A,B,C,D) = IC(C,D,A,B)

Now, choose two orthonormal vectors e1, e2 such that that {e1, Je1, e2, Je2} forms an or-

thonormal 4-frame of TM . Then there are 6 possible isotropic curvature components related

to this frame. Using Kähler condition and Bianchi identity multiple times, we have the

following result.

IC(e1, Je1, e2, Je2) = 0

IC(e1, Je1, Je2, e2) = 4R(e1, Je1, e2, Je2)

IC(e1, Je2, Je1, e2) =
R

2

IC(e1, Je2, e2, Je1) = R(e1 + e2, J(e1 + e2), e1 − e2, J(e1 − e2))

IC(e1, e2, Je1, Je2) = R(e1 + Je2, J(e1 + Je2), e1 − Je2, J(e1 − Je2))

IC(e1, e2, Je2, Je1) = IC(e1, Je2, Je1, e2) =
R

2

From these expressions, we can observe that any orthogonal bisectional curvature component

can be expressed in a form of isotropic curvature. Also, we know that described cases are the

only possibilities when n = 2, which shows that two conditions are equivalent.

2.3 Evolution of Curvature under the Ricci Flow

First, we will briefly introduce Uhlenbeck’s trick that significantly simplifies the evolution

equation for curvature tensor. Let E → M be a vector bundle that is isomorphic to the
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tangent bundle TM →M with fixed metric g(0). A main idea of the trick is to extend the

identity map ı0 : E → TM by

∂tıt = Ric ◦ ıt

Then, this bundle map ıt is an isometry for all t as

∂t(ı
∗
tg(X, Y )) = ∂t(gij(ıtX)i(ıtY )j)

= −2Rij(ıtX)i(ıtY )j +Rij(ıtX)i(ıtY )j +Rij(ıtX)i(ıtY )j

= 0

In other words, ı∗tgt is independent to t. Using this family of bundle isomorphisms, we will

work with a local orthonormal basis given as follows. For each point (x0, t0), we choose

an orthonormal basis {e1, · · · , en} with respect to g(t). Since the pull-back metric is time-

independent, {e1, · · · , en} is still an orthonormal basis at (x0, t) for any t with respect to

this pullback. By parallel transport, there exists an orthonormal frame on a spacetime

neighborhood of (x0, t0). With the help of such a frame, locally around (x0, t0), we can

consider Rm(x, t) in a fixed vector space of algebraic curvature tensors CB(Rn). Then we

can obtain the evolution equation of the curvature tensor as

(∂t −∆)Rijkl = Q(Rm)ijkl := RijpqRklpq + 2(RipkqRjplq −RiplqRjpkq) (2.3.1)

By taking a trace for indexes j and l in 2.3.1, we get

Q(Rm)isks = RispqRkspq + 2RipkqRpq − 2RipsqRspkq = 2RipkqRpq

since

RispqRkspq = −Rispq(Rkpqs +Rkqsp) = RispqRsqkp +RispqRpskq = 2RipsqRspkq

Therefore, we get the evolution equation of the Ricci curvature as

(∂t −∆)Rik = 2RipkqRpq (2.3.2)
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By taking a trace for 2.3.2 again, we can obtain the evolution equation and inequality of the

scalar curvature.

(∂t −∆)R = 2|Ric|2 ≥ 2

n
R2 (2.3.3)

2.4 Localization Result

It is observed that various curvature tensors satisfy parabolic partial differential equation

when the metric tensor evolves by Ricci flow. Together with the maximum principle, these

conditions were used to obtain the curvature improvement results for the Ricci flow on closed

manifolds or complete manifold with bounded curvature, which is the crucial part for the

study of Ricci flow. This standard argument becomes nontrivial if we try to extend the result

for general cases since there is no guarantee that the maximum principle for parabolic PDE

still holds. These cases can be handled as well after constructing a cut-off function that can

localize the evolution equations. In [Che09, Proposition 2.1], this argument was given for

2.3.3 but this proposition is still applicable for more general setting. In this section, this

localization result is given for the later applications.

Proposition 2.4.1. For r > 0 and A ≥ 14(n− 1) T
r2

+ 2, suppose (Mn, g(t))t∈[0,T ] is a Ricci

flow solution with a continuous function f :M× [0, T ] → R satisfying the following properties.

1) Bg(t)(p,Ar) is compactly contained in M for any t ∈ [0, T ].

2) For any t ∈ [0, T ] and x ∈ Bg(t)(p, r), |Ric|(x, t) ≤ n−1
r2

.

3) For any t ∈ [0, T ] and x ∈ Bg(t)(p,Ar), (∂t −∆) f(x, t) ≥ δf 2(x, t) in the barrier sense

for a constant δ > 0.

Then there exists a constant C = C(n) > 0 such that f(x, t) ≥ min

{
− 4

tδ
,− C

(Ar)2δ

}
for any

t ∈ [0, T ] and x ∈ Bg(t)(p,
3Ar
4
).
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Proof. By rescaling, we may assume that δ = 1. Now, we will include the argument in

[Che09, Proposition 2.1] to construct a cutoff function for the reader’s convenience. First, let

φ : R → [0, 1] be a smooth, non-increasing function such that φ ≡ 1 on (−∞, 7
8
] and φ ≡ 0

on [1,∞). For example, we can take a smooth function

ϕ(t) =


e−

1
t if t > 0

0 otherwise

and set φ(x) = ϕ(8−8x)
ϕ(8−8x)+ϕ(8x−7)

. From [Per02, Lemma 8.3], we know that

(∂t −∆) dt(p, x) ≥ −5(n− 1)

3r

whenever dg(t)(p, x) > r in the barrier sense. Now, if we define a cutoff function ψ :

M × [0, T ] → R by

ψ(x, t) := φ

(
dt(p, x) +

5(n−1)
3r

t

Ar

)
then we can check that ψ satisfies the following.

• ψ is compactly supported in ∪t∈[0,T ]Bg(t)(p,Ar)× {t}

• ψ(x, t) ≡ 1 wherever dg(t)(p, x) ≤ 3Ar
4

as

5(n− 1)T

3Ar2
≤ 5

42
<

1

8

from the choice of a constant A.

• (∂t −∆)ψ + 2|∇ψ|2
ψ

≤ C
(Ar)2

√
ψ since

(∂t −∆)ψ +
2|∇ψ|2

ψ
=

φ′

Ar

(
(∂t −∆) dg(t) +

5(n− 1)

3r

)
+

1

(Ar)2

(
−φ′′ +

2(φ′)2

φ

)
≤ 1

(Ar)2

∣∣∣∣φ′′ − 2(φ′)2

φ

∣∣∣∣
≤ C

(Ar)2

√
ψ
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Let u(x, t) = ψ(x, t)f(x, t). If f(x, t) ≥ 0 in Bg(t)

(
p, 3Ar

4

)
× [0, T ], then we are done. So we

may assume that there exists t0 ∈ [0, T ] such that infx∈M u(x, t0) = u(x0, t0) < 0. If (x0, t0)

is a smooth point of both dg(t)(p, x) and f , then from the critical point condition

0 = ∇u(x0, t0) = f∇ψ + ψ∇f

we have at (x0, t0),

(∂t −∆)u = f (∂t −∆)ψ + ψ (∂t −∆) f +
2f |∇ψ|2

ψ

= f

(
(∂t −∆)ψ +

2|∇ψ|2

ψ

)
+ ψ (∂t −∆) f

≥ Cf

(Ar)2

√
ψ + ψf 2

=
ψf 2

2
+

1

2

(√
ψf +

C

(Ar)2

)2

− C2

2(Ar)4

≥ ψf 2

2
− C2

2(Ar)4
.

From this, for umin(t) := infx∈M u(x, t), we have

d−

dt
umin(t0) = lim inf

h↘0

umin(t0 + h)− umin(t0)

h

≥ umin(t0)
2

2
− C2

2(Ar)4

=
umin(t0)

2

4
+

(
umin(t0)

2

4
− C2

2(Ar)4

)
and this inequality holds as long as umin(t0) ≤ 0. By integrating this inequality, we have

umin(t) ≥ min

{
−4

t
,−

√
2C

(Ar)2

}

and it completes the proof since ψ ≡ 1 in Bg(t)(p,
3Ar
4
) × [0, T ]. This argument can be

completed similarly even if dg(t)(p, x) or f is not smooth at (x0, t0) since we can choose a

barrier function.

From the above localization result, one can obtain the following result, which will be used

multiple times to obtain the curvature improvements.
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Corollary 2.4.2. Let (M, g(t))t∈(−∞,0] be a complete ancient solution to the Ricci flow (not

necessarily having bounded curvature). If a continuous function f :M×(−∞, 0] → R satisfies

the inequality

(∂t −∆) f ≥ δf 2

in the barrier sense for some δ > 0, then f(x, t) ≥ 0 for all (x, t) ∈M × (−∞, 0].

Proof. For each p ∈M , we can choose r > 0 small enough so all assumptions in Proposition

2.4.1 are satisfied. By taking A→ ∞ and translating the initial time by −τ0, we get

f(x, t) ≥ − 4

(t+ τ0)δ
.

Then the result is obtained by taking τ0 → ∞.

2.5 Gradient Ricci Shrinker

In this section, we will review some of standard formulas for gradient Ricci shrinkers for the

later use. First, we have the following equation from the definition.

∇2f +Ric =
1

2
g

By taking a trace, we have

∆f +R =
n

2

Now, by combining the shrinker equation with Bochner’s formula and Ricci identity, we can

derive

−1

2
∇jR = −∇iRij = ∇i∇i∇jf = ∇j∇i∇if +Rjk∇kf = −∇jR +Rjk∇kf

which implies

∇jR = 2Rjk∇kf

Using this, one can observe the following formula by adding a constant to f if necessary

R + |∇f |2 = f
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since

∇i(R + |∇f |2) = ∇iR + 2∇i∇jf∇jf

= ∇iR +∇if − 2Rij∇jf

= ∇if

Now, we define the f -Laplacian to be

∆f = ∆−∇f · ∇

Then, we have

∆ff = ∆f − |∇f |2 = n

2
−R− |∇f |2 = n

2
− f

We can also derive the following.

∆R = 2∇j(Rjk∇kf) = ∇R · ∇f + 2Rjk∇j∇kf = ∇R · ∇f +R− 2|Ric|2

From this, we can derive the shrinker version of the evolution equation (∂t −∆)R = 2|Ric|2

under the Ricci flow.

∆fR = ∆R−∇R · ∇f = R− 2|Ric|2

Also, one of the properties for the potential function f is that it is in fact uniformly equivalent

to the square of distance function. This result is first observed in [CZ10] and later optimized

in [HM11].

Lemma 2.5.1 (Lemma 2.1 of [HM11]). Let (Mn, g, f) be a gradient Ricci shrinker. Then

there exists a point p ∈M where f attains its infimum and f satisfies the quadratic growth

estimate

1

4
(d(x, p)− 5n)2+ ≤ f(x) ≤ 1

4
(d(x, p) +

√
2n)2

for all x ∈M .
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Chapter 3

Curvature Improvement

3.1 4-dimensional Case

3.1.1 Ricci flow with uniformly PIC

In this section, we consider a complete 4-dimensional ancient solution to the Ricci flow with

uniformly PIC and prove the curvature improvement. It is notable that the same result is

given in [Bre14, Theorem 1.3] for steady solitons. But, every steady soliton has bounded

scalar curvature as R+ |∇f |2 is constant and hence every steady soliton with weakly PIC

must have bounded curvature due to Proposition 2.2.1. As the boundedness of curvature is

not assumed here, we need to use Corollary 2.4.2 to obtain the result.

First, remark that M4 has weakly PIC if and only if a1 + a2 ≥ 0 and c1 + c2 ≥ 0. In other

words, the curvature tensors restricted to self-dual, anti-self-dual 2 forms are 2-positive. For

ancient solutions, this 2-positivity can be improved as the positivity as follows.

Lemma 3.1.1. Let (M4, g(t))t∈(−∞,0] be a complete 4-dimensional ancient solution to the

Ricci flow with weakly PIC. Then we have

a1 ≥ 0 and c1 ≥ 0

on M × (−∞, 0].
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Proof. From the evolution equation of the curvature operator (see [Ham97]), we have

(∂t −∆) a1 ≥ a21 + b21 + 2a2a3 ≥ a21 + 2a2a3

(∂t −∆) c1 ≥ c21 + b21 + 2c2c3 ≥ c21 + 2c2c3

From the weakly PIC condition, we know that

0 ≤ 1

2
(a1 + a2) ≤ a2 ≤ a3

0 ≤ 1

2
(c1 + c2) ≤ c2 ≤ c3

Therefore, we have

(∂t −∆) a1 ≥ a21

(∂t −∆) c1 ≥ c21

Now the result follows from Corollary 2.4.2.

Next, we focus on uniformly PIC condition which implies that all curvature components

are controlled by a1 + a2 and c1 + c2. Starting from this condition, we show that a3 and c3

are controlled solely by a1 and c1, respectively.

Lemma 3.1.2. Let (M4, g(t))t∈(−∞,0] be a complete 4-dimensional ancient solution to the

Ricci flow with uniformly PIC. Then we have

a3 ≤ (6Λ2 + 1)a1

c3 ≤ (6Λ2 + 1)c1

on M × (−∞, 0].

Proof. First, we have

(∂t −∆) a3 ≤ a23 + b23 + 2a1a2

(∂t −∆) a1 ≥ a21 + b21 + 2a2a3
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Since we have max(a3, b3) ≤ Λ(a1 + a2) and (a1 + a2)
2 ≤ 4a22 ≤ 4a2a3, we have

(∂t −∆) (a3 − (6Λ2 + 1)a1)

≤ a23 + b23 + 2a1a2 − (6Λ2 + 1)(a21 + b21 + 2a2a3)

≤ a23 + b23 + 2a2(a1 − a3)− 12Λ2a2a3

≤ a23 + b23 − 12Λ2a2a3

≤a23 + b23 − 3Λ2(a1 + a2)
2

≤− a23.

Moreover, if (a3 − (6Λ2 + 1)a1)(x0, t0) ≥ 0 for some (x0, t0) ∈M × (−∞, 0] , then we have at

(x0, t0),

(∂t −∆) (a3 − (6Λ2 + 1)a1) ≤ −(a3 − (6Λ2 + 1)a1)
2

Now the result follows from Corollary 2.4.2, by choosing f = (−a3 + (6Λ2 +1)a1)
−. Similarly,

the conclusion for c1 and c3 also holds.

We continue to show the following pinching condition.

Lemma 3.1.3. Let (M4, g(t))t∈(−∞,0] be a complete 4-dimensional ancient solution to the

Ricci flow with uniformly PIC. Then we have

b23
(a1 + a2)(c1 + c2)

≤ 1

4

on M × (−∞, 0].

Proof. First, from the uniformly PIC condition, we know that

γ := sup
M×(−∞,0]

b3√
(a1 + a2)(c1 + c2)

≤ Λ <∞
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Now, suppose that the statement is not true, then we have γ > 1
2
. From [Ham86], we have

the following evolution equations

(∂t −∆) b3 ≤b3(a3 + c3) + 2b1b2,

(∂t −∆) (a1 + a2) ≥a21 + a22 + 2a3(a1 + a2) + b21 + b22,

(∂t −∆) (c1 + c2) ≥c21 + c22 + 2c3(c1 + c2) + b21 + b22.

From direct calculations, we get

(∂t −∆)
√

(a1 + a2)(c1 + c2) ≥
√

(a1 + a2)(c1 + c2)(G+ E)

where

G =
1

4
|∇ log(a1 + a2)−∇ log(c1 + c2)|2 ≥ 0

and

E =
1

2

(
a21 + a22 + b21 + b22

a1 + a2
+
c21 + c22 + b21 + b22

c1 + c2

)
+ a3 + c3

=
1

2

(
(a1 − b1)

2 + (a2 − b2)
2

a1 + a2
+

(c1 − b1)
2 + (c2 − b2)

2

c1 + c2

)
+ a3 + c3 + 2b1 +

a2(b2 − b1)

a1 + a2
+
c2(b2 − b1)

c1 + c2
.

Now, set u(x, t) = b3 − γ
√
(a1 + a2)(c1 + c2). Then u(x, t) ≤ 0 globally because of the

definition of γ. Furthermore, this function satisfies the following evolution inequality.

(∂t −∆)u(x, t) ≤ b3(a3 + c3) + 2b1b2 − γ
√
(a1 + a2)(c1 + c2)E

≤ u(x, t)(a3 + c3) + 2b1(b2 − γ
√

(a1 + a2)(c1 + c2))− γ
√

(a1 + a2)(c1 + c2)K

where

K =
1

2

(
(a1 − b1)

2 + (a2 − b2)
2

a1 + a2
+

(c1 − b1)
2 + (c2 − b2)

2

c1 + c2

)
+
a2(b2 − b1)

a1 + a2
+
c2(b2 − b1)

c1 + c2
.

Now, since

b2 − γ
√

(a1 + a2)(c1 + c2) ≤ u(x, t) ≤ 0
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and K ≥ 0, it is clear that (∂t −∆)u(x, t) ≤ 0 everywhere. Moreover, it can be zero only

when K = u(x, t) = 0 and b2 = b3. But this implies

a1 = b1 = c1 = a2 = b2 = c2 = b3

and

0 = u(x, t) = b3 − γ
√
(a1 + a2)(c1 + c2) = (1− 2γ)b3

Since γ > 1
2
from the assumption, it can only happen when all terms are equal to 0, which is

impossible since a1 + a2 > 0. Moreover, it follows from the uniformly PIC and Lemma 3.1.2

that (∂t −∆)u(x, t) ≤ −6δ|Ric|2 for a small constant δ = δ(Λ, γ) > 0. With this fact, we

obtain

(∂t −∆) (u+ δR) ≤ −4δ|Ric|2 ≤ −δR2.

Therefore, we have

(∂t −∆) (u+ δR) ≤ −δ−1(u+ δR)2

wherever u+ δR ≥ 0. From Corollary 2.4.2, it implies that u(x, t) + δR(x, t) ≤ 0 everywhere.

From this, we have

0 ≥ b3√
(a1 + a2)(c1 + c2)

− γ +
δR√

(a1 + a2)(c1 + c2)
≥ b3√

(a1 + a2)(c1 + c2)
− γ + δ′

for a small constant δ′ = δ′(Λ, γ) > 0. However, it implies that b3√
(a1+a2)(c1+c2)

≤ γ − δ′

everywhere, which contradicts the choice of γ. So we conclude that γ ≤ 1
2
, which completes

the proof.

One can check that Lemma 3.1.3 actually implies (M, g(t))t∈(−∞,0] has weakly PIC1.

However, this condition can be further improved in the following way.

Lemma 3.1.4. Let (M4, g(t))t∈(−∞,0] be a 4-dimensional, complete ancient solution to the

Ricci flow with uniformly PIC. Then it has nonnegative curvature operator.

Proof. To this end, we will show that

b23
a1c1

≤ 1
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for all (x, t) ∈M × (−∞, 0], which can be proven similarly as follows. If it is not true, then

we have

η := sup
M×(−∞,0]

b3√
a1c1

> 1.

Notice that η is finite by Lemma 3.1.2. If we set v(x, t) = b3−η
√
a1c1, then we get v(x, t) ≤ 0

everywhere and we have the following evolution equation.

(∂t −∆) v(x, t) ≤ b3(a3 + c3) + 2b1b2 − η
√
a1c1E

where

E =
1

2

(
a21 + b21 + 2a2a3

a1
+
c21 + b21 + 2c2c3

c1

)
=

1

2

(
(a1 − b1)

2 + 2a3(a2 − a1)

a1
+

(c1 − b1)
2 + 2c3(c2 − c1)

c1

)
+ 2b1 + a3 + c3

=: F + 2b1 + a3 + c3.

Therefore, we obtain

(∂t −∆) v(x, t) ≤ v(x, t)(a3 + c3) + 2b1(b2 − η
√
a1c1)− η

√
a1c1F ≤ 0

since F ≥ 0 and v(x, t) ≤ 0. Moreover, the equality case is obtained if and only if a1 =

b1 = c1 = a2 = c2, b2 = b3 and b3 = η
√
a1c1. Since we already know that b3√

(a1+a2)(c1+c2)
≤ 1

2

from Lemma 3.1.3, we get b3 ≤ 1
2

√
(a1 + a2)(c1 + c2) = b1. Therefore the equality case is

obtained when a1 = b1 = c1 = a2 = c2 = b2 = b3 and b3 = η
√
a1c1 >

√
a1c1 = b3. It shows

that a1 = c1 = 0 in the equality case, which contradicts to the curvature condition. As before,

(∂t −∆) v(x, t) ≤ −6δ|Ric|2 for a small constant δ = δ(Λ, η) > 0. From the similar argument

used in Lemma 3.1.3, we obtain a contradiction.

Now we show that b3√
a1c1

≤ 1 implies the nonnegativity of the curvature operator. To do

so, let φ±
i ∈

∧2
± (i = 1, 2, 3) be bases of a self-dual vector space

∧
+ and an anti-self-dual

vector space
∧

− that Rm|∧2
±
is diagonalized, respectively. Let φ =

∑3
i=1 p

iφ+
i +

∑3
j=1 q

jφ−
j .

From the definition, we have Rm(φ+
i , φ

+
i ) ≥ a1 and Rm(φ−

i , φ
−
i ) ≥ c1 and Rm(φ+

i , φ
−
j ) ≥ −b3
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for all i, j = 1, 2, 3. Therefore we have

Rm(φ, φ) ≥ 3a1

3∑
i=1

(pi)2 + 3c1

3∑
j=1

(qj)2 − 6b3

3∑
i,j=1

|pi||qj|

≥ 3a1

3∑
i=1

(pi)2 + 3c1

3∑
j=1

(qj)2 − 6
√
a1c1

3∑
i,j=1

|pi||qj|

= 3
3∑
i,j

(|pi|
√
a1 − |qj|

√
c1)

2 ≥ 0.

Therefore, the proof is complete.

Consequently, for a 4-dimensional, complete, noncompact ancient solution to the Ricci

flow (M4, g(t))t∈(−∞,0] with uniformly PIC, there exists a constant K = K(Λ) > 0 such that

a3 ≤ Ka1, c3 ≤ Kc1, b
2
3 ≤ a1c1. (3.1.1)

In other words, it satisfies the restricted isotropic curvature pinching condition in [CZ06a].

3.1.2 Kähler Ricci flow with weakly PIC

In this section, we consider a complete (complex) 2-dimensional ancient solution to the Kähler

Ricci flow with weakly PIC. See also [CTZ04, Lemma 3.1].

Lemma 3.1.5. Let (M, g(t))t∈(−∞,0] be a complete, complex 2-dimensional ancient solution

to Kähler-Ricci flow with weakly PIC. Then it has nonnegative curvature operator.

Proof. From Lemma 3.1.1, we obtain c1 ≥ 0 onM×(−∞, 0]. Moreover, we have the evolution

equation

(∂t −∆)Rm = Rm2 +Rm♯ = Rm2 + 2

0 0

0 C♯

 , (3.1.2)

where C♯, which is the adjoint matrix of C, has eigenvalues {c1c2, c2c3, c3c1}. Therefore, we

know that C♯ is positive definite. So if we set λ to be the smallest eigenvalue of Rm, then it

follows from (3.1.2) that

(∂t −∆)λ ≥ λ2.
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Therefore, we conclude from Corollary 2.4.2 that Rm ≥ 0 on M × (−∞, 0].

3.2 Higher Dimensional Case

In this section, we will show that every n-dimensional, complete ancient solution to the Ricci

flow(not necessarily having bounded curvature) with n ≥ 12 and uniformly PIC automatically

has weakly PIC2. This result can be obtained in two steps. First, we will show the uniform

version of [LN20, Proposition 5.2], which shows that any ancient solution to the Ricci flow

with weakly PIC should have 2-nonnegative Ricci curvature; that is, a sum of two smallest

eigenvalues of Ricci curvature should be nonnegative. After then, we will use two continuous

families of cones in a space of algebraic curvature tensors constructed by Brendle.

Proposition 3.2.1. Let (Mn, g(t))t∈(−∞,0] be a complete ancient solution to the Ricci flow

with uniformly PIC for n ≥ 5. Then there exists δ = δ(n, θ) > 0 such that

λ1 + λ2 ≥ δR

on M × (−∞, 0], where λ1 + λ2 is a sum of the two smallest eigenvalues of Ric.

Proof. Let f = λ1 + λ2 − δR with δ > 0 determined later. Here, we choose an orthonormal

frame {e1, e2, · · · , en} such that the Ricci curvature is diagonalized with eigenvalues R11 ≤

R22 ≤ · · · ≤ Rnn. From 2.3.2 and 2.3.3, we know that the function f satisfies the following

evolution equation in the barrier sense.

(∂t −∆) f ≥ 2(R1i1i +R2i2i)Rii − 2δ|Ric|2 (3.2.1)

From Proposition 2.2.1, we have |Ric|2 ≤ nR2. So (3.2.1) becomes

(∂t −∆) f ≥ 2(R1i1i +R2i2i)Rii − 2nδR2. (3.2.2)

Also, we can rewrite

2(R1i1i +R2i2i)Rii =
∑
i≥3

(R1i1i +R2i2i)(2Rii −R11 −R22) + (R11 +R22)
2 (3.2.3)
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Now, we will show that there exists a constant θ > 0 such that

∑
i≥3

(R1i1i +R2i2i)(2Rii −R11 −R22) ≥ 3θR2

To do so, we can first observe that this expression can be decomposed as follows.

∑
i≥3

(R1i1i +R2i2i)(2Rii −R11 −R22)

=2θR(2R− n(R11 +R22)) +
∑
i≥3

(R1i1i +R2i2i − 2θR)(2Rii −R11 −R22).

If f(x, t) ≤ 0, then we additionally have

2θR(2R− n(R11 +R22)) ≥ 2θ(2− nδ)R2.

Since (M, g(t)) has uniformly PIC, we know that there is at most one i ≥ 3 such that

R1i1i +R2i2i − 2θR < 0 as a sum of two components in such a form has to be nonnegative.

Based on this observation, there are 3 possibilities.

1. If R1i1i +R2i2i − 2θR ≥ 0 for all i = 3, · · · , n, then we have

∑
i≥3

(R1i1i +R2i2i − 2θR)(2Rii −R11 −R22) ≥ 0. (3.2.4)

2. If R1i1i +R2i2i − 2θR < 0 for some 3 ≤ i < n, then we still have 3.2.4 since

(R1i1i +R2i2i − 2θR)(2Rii −R11 −R22) + (R1n1n +R2n2n − 2θR)(2Rnn −R11 −R22)

≥ (R1n1n +R2n2n − 2θR)(2Rnn − 2Rii) ≥ 0

3. If R1n1n +R2n2n − 2θR < 0, then there exists a constant C = C(n, θ) > 0 such that

∑
i≥3

(R1i1i +R2i2i − 2θR)(2Rii −R11 −R22)

≥(2θR−R1n1n −R2n2n)

(
n−1∑
i=3

(2Rii −R11 −R22) +R11 +R22 − 2Rnn

)

=(2θR−R1n1n −R2n2n)(2R− 4Rnn − (n− 2)(R11 +R22)) ≥ −δCR2
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where the last inequality holds since

2R− 4Rnn − (n− 2)(R11 +R22) ≥ −(n− 2)(R11 +R22) ≥ −(n− 2)δR

and

2θR−R1n1n −R2n2n ≤ 2θR + |R1n1n|+ |R2n2n| ≤ (2θ + C1)R,

where C1 = 2C > 0 with the constant C > 0 from Proposition 2.2.1.

Therefore, in any case, we have

∑
i≥3

(R1i1i +R2i2i)(2Rii −R11 −R22) ≥ 2θ(2− nδ)R2 − δCR2 ≥ 3θR2 (3.2.5)

by taking δ > 0 small enough. By combining (3.2.2), (3.2.3) and (3.2.5), we finally obtain

that if f(x, t) ≤ 0,

(∂t −∆) f ≥ (R11 +R22)
2 + 3θR2 − 2nδR2 ≥ (R11 +R22)

2 + δ2R2

by decreasing δ > 0 if necessary. It implies that

(∂t −∆) f− ≥ 1

2
(f−)2

where f− := min{f, 0}. Now the proof is complete by Corollary 2.4.2.

Now we are ready to prove the main theorem in the section.

Theorem 3.2.2. Let (Mn, g(t))t∈(−∞,0] be a complete ancient solution to the Ricci flow with

uniform PIC for n ≥ 12. Then it has weakly PIC2.

Proof. In [Bre19, Definition 3.1] and [Bre19, Definition 4.1], Brendle has constructed two

continuous families of closed, convex, O(n)-invariant cones C(b) and C̃(b) in CB(Rn) for

n ≥ 12. Moreover, the following properties hold:

• C(b) is defined for all b ∈ (0, bmax].

• C̃(b) is defined for all b ∈ (0, b̃max].

32



• limb→0 C̃(b) = C(bmax) ∩ PIC1.

• C(bmax) = C̃(b̃max).

As in [Bre19, Section 5], we define

Ĉ(b) :=


C(b) if b ∈ [0, bmax)

C̃(bmax + b̃max − b) if b ∈ [bmax, bmax + b̃max).

From the construction, I = 1
2
id⃝∧ id = δikδjl − δilδjk is in the interior of Ĉ(b), where ⃝∧ is

the Kulkarni-Nomizu product. Moreover, if Rm ∈ Ĉ(b), then Q(Rm) lies in the interior of

TRmĈ(b). The readers can refer to [Bre19, Theorem 3.2] for more details. Here TRmĈ(b) is

the tangent cone to Ĉ(b) at Rm. Note that for a finite dimensional inner product space X

and a closed, convex subset F ⊂ X, the tangent cone TyF to F at y ∈ F is defined as

TyF = {x ∈ X | x · z ≥ 0 for all z ∈ NyF}

where NyF is the normal cone to F at y, which is given as

NyF = {z ∈ X | x · z ≥ y · z for all x ∈ F}

Claim 1. There exists b0 > 0 such that the curvature tensor of (M, g(t)) is contained in

Ĉ(b0) for all t ∈ (−∞, 0].

Recall the transformation la,b, defined in [BW08], so that there exists S ∈ CB(Rn)

satisfying

la,b(S) := S + bRic(S)⃝∧ id +

(
2(a− b)

n
scal(S)

)
I = Rm. (3.2.6)

Clearly, la,b(S) is close to S if a, b are close to 0. Note that C(b) is defined as an image of

E(b) under la,b where a = (2+(n−2)b)2

2(2+(n−3)b)
b. Therefore, by assuming that b is small enough, it is

enough to show that Rm is contained in E(b). In other words, we need to find an algebraic

curvature tensor T satisfying
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1. T ≥ 0

2. Rm− T has weakly PIC.

3. R11 +R22 ≥ 0

4. R22 −R11 ≤ C
b

√
R
(∑n

p=3(T1p1p + T2p2p

) 1
2
for some C > 0.

Note that the condition 3,4 are the weaker version of the original in the paper. The readers

can refer to [Bre19, Definition 3.1] for the full definition of the curvature cone. Now, let

T = θ
2
RI. Since Rm is a curvature tensor of ancient solution, we have R ≥ 0 so the condition

1 is satisfied. Also, the condition 2 is guaranteed as Rm has uniform PIC. And the condition

3,4 hold because of Proposition 3.2.1 and Proposition 2.2.1. Therefore, we can conclude that

Rm ∈ Ĉ(b0) if b0 is sufficiently small. It verifies Claim 1.

Now, we prove that if the curvature operator Rm of (M, g(t))t∈(−∞,0] is contained in Ĉ(b) for

some b ∈ (0, bmax + b̃max), then Rm ∈ Ĉ(b′) if b′ is sufficiently close to b. To do so, we need

the following claim.

Claim 2. There exists a constant τ ∈ (0, 1) depending only on n and b such that

Q(Rm)− τR2I ∈ TRmĈ(b).

Suppose that Claim 2 is false. Then since Ĉ(b) is a cone and 1
R2Q(Rm) is scaling invariant,

one can choose a sequence of counterexamples Rmk ∈ ∂Ĉ(b) such that |Rmk| = 1 and

Q(Rmk) − 1
k2
R2
kI is on the boundary of TRmk

Ĉ(b) for all k > 0. By taking a subsequence,

Rmk converges to Rm∞ ∈ ∂Ĉ(b) and Q(Rm∞) is on the boundary of TRm∞ Ĉ(b). However,

this contradicts the transversality of Ĉ(b). It verifies Claim 2.

Now we will show the aforementioned statement. Suppose that the curvature operator

of (M, g(t))t∈(−∞,0] is contained in Ĉ(b) for some b ∈ (0, bmax+ b̃max). To complete the proof of
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the statement, it is enough to show that there exists a constant δ > 0 so that Rm−δRI ∈ Ĉ(b)

since it will imply that Rm lies in the interior of the cone, which makes the statement true.

With this objective in mind, we define a function λ as follows. For any spacetime point

(x, t) ∈ M × (−∞, 0], let λ(x, t) be the smallest number so that the curvature operator

S := Rm + (λ − δR)I lies on the boundary of Ĉ(b), where the constant δ > 0 will be

determined later. Here, we may assume λ to be locally smooth since the general case will be

handled at the end of the proof. Now, we will show that λ(x, t) ≤ 0 for all (x, t) ∈M×(−∞, 0]

using the localization result obtained earlier.

For any (x, t) ∈ M × (−∞, 0], we know that Rm(x, t) is contained in Ĉ(b) and hence

λ(x, t) − δR(x, t) ≤ 0. Now, we will investigate the evolution equation for the curvature

operator S. First, one can compute the quadratic term Q(S) of S as follows. Note that the

definition of Q is given in (2.3.1).

Q(S) = Q(Rm) + 2(λ− δR)Ric⃝∧ id + 2(n− 1)(λ− δR)2I.

Therefore, we can derive the following evolution equation

(∂t −∆)S = Q(Rm) + ((∂t −∆)λ) I − 2δ|Ric|2I

= Q(S)− 2(λ− δR)Ric⃝∧ id− 2(n− 1)(λ− δR)2I − 2δ|Ric|2I + ((∂t −∆)λ) I.

(3.2.7)

Now, wherever λ(x, t) ≥ 0, we know that

scal(S) = R + n(n− 1)(λ− δR) ≥ R

2

for small enough δ > 0 and

|λ− δR| = δR− λ ≤ δR

Together with Proposition 2.2.1, we have

−2(λ− δR)Ric⃝∧ id− 2(n− 1)(λ− δR)2I − 2δ|Ric|2I ≥ −C1δR
2I
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for a constant C1 = C1(n) > 0. Therefore, we obtain from (3.2.7)

(∂t −∆)S ≥ ((∂t −∆)λ) I +Q(S)− C1δR
2I,

wherever λ(x, t) ≥ 0. Also, since λ− δR ≤ 0 and R > 0, we have

λ2(x, t) ≤ δ2R2(x, t)

if λ(x, t) ≥ 0. This implies

−C1δR
2 − λ2 ≥ −(C1δ + δ2)R2 ≥ −C2δscal(S)

2,

where C2 = 4(C1 + 1). As a result, we obtain

(∂t −∆)S ≥
(
(∂t −∆)λ+ λ2

)
I +Q(S)− C2δscal

2(S) (3.2.8)

wherever λ(x, t) ≥ 0. Now we observe the following.

Claim 3. (∂t −∆)S is not contained in the interior of TSĈ(b).

To show Claim 3, we fix a point (x0, t0) ∈M × (−∞, 0] and choose a supporting plane

H of Ĉ(b) at S(x0, t0) with a normal vector ν pointing toward a half-space containing Ĉ(b).

Then we can see that F (p) = ⟨p, ν⟩ is a distance function between p and H. So the function

F (S(x0, t)) has its local minimum at t = t0. It implies that

0 =
∂

∂t
F (S(x0, t))

∣∣∣∣
t=t0

=

〈
∂

∂t
S(x0, t0), ν

〉
.

Also, if we choose any tangent vector u ∈ Tx0M and consider a geodesic γ(s) starting from x0

with a directional vector u, then F (S(γ(s), t0)) has its local minimum at s = 0. So we have

0 ≤ d2

ds2
F (S(γ(s), t0))

∣∣∣∣
s=0

= ⟨∇u∇uS(x0, t0), ν⟩ .

After taking the sum for u, we get ⟨∆S(x0, t0), ν⟩ ≥ 0. By combining this two results, we get

⟨(∂t −∆)S(x0, t0), ν⟩ ≤ 0
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which shows that (∂t −∆)S(x0, t0) can not be contained in the interior of TSĈ(b). It verifies

the Claim 3.

Since S is contained of Ĉ(b), we know from Claim 2 that Q(S) − τscal2(S)I ∈ TSĈ(b).

Therefore, if we choose δ > 0 small enough so that δ < τ
2C2

, then Q(S) − C2δscal
2(S)I is

contained in the interior of TSĈ(b). Combining this with Claim 3, we conclude that the

first term ((∂t −∆)λ+ λ2) I on the right side of (3.2.8) should not be contained in TSĈ(b).

Therefore, we obtain

(∂t −∆)λ+ λ2 ≤ 0 (3.2.9)

wherever λ(x, t) ≥ 0. By applying Corollary 2.4.2 on (−λ)−, we obtain λ(x, t) ≤ 0 for all

(x, t) ∈M × (−∞, 0]. It completes the proof of statement when λ is locally smooth at (x0, t0).

Now, let us consider the case when λ is not smooth at (x0, t0). Note that S(x0, t0) =

Rm(x0, t0)+(λ(x0, t0)−δR(x0, t0))I is on the boundary of Ĉ(b). So we can choose a supporting

hyperplane H of Ĉ(b) at S(x0, t0). Using this hyperplane, we can define a new function λ̃

which is the smallest number so that S̃ := Rm+(λ̃−δR)I lies on H. Clearly, λ̃(x, t) is smooth

and λ̃(x0, t0) = λ(x0, t0). Also, since I is in the interior of Ĉ(b), we have λ̃(x, t) ≤ λ(x, t) for

all (x, t) in a small neighborhood of (x0, t0). In other words, the function λ̃ is a lower barrier

function of λ from below. Also, since F (p) = ⟨p, ν⟩ is constant for p ∈ H, we can use the

proof of Claim 3 again to show that (∂t −∆) S̃(x0, t0) has to be contained in H. From the

same argument, λ̃ satisfies the differential inequality

(∂t −∆) λ̃+ λ̃2 ≤ 0

at (x0, t0), wherever λ̃(x0, t0) ≥ 0. Therefore, (3.2.9) holds in the barrier sense, which is

sufficient to apply Corollary 2.4.2.

Now we set

I := {b ∈ (0, bmax + b̃max) | Rm(x, t) is contained in Ĉ(b) for all (x, t) ∈M × (−∞, 0]}.

Then I is nonempty since b0 ∈ I and open from the previous argument. Also, it is closed since

Ĉ(b) is a continuous family. Therefore, it implies that Rm(x, t) is contained in Ĉ(b) for all
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b ∈ (0, bmax + b̃max). By taking b→ (bmax + b̃max), we can conclude that (M, g(t))t∈(−∞,0] has

weakly PIC1. Then by [BCW19, Lemma 4.2](see also [LN20, Proposition 6.2]), we conclude

that (M, g(t))t∈(−∞,0] has weakly PIC2 and it completes the proof of Theorem 3.2.2.
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Chapter 4

Proof of Main Theorems

In this chapter, we will complete the proof of three main theorems: Theorem 1.2.2, 1.2.3 and

1.2.4.

4.1 Proof of Theorem 1.2.2

First, we recall the definition of κ-solutions in [BN20, Definition 1.1].

Definition 4.1.1. [κ-solutions to the Ricci flow] For n ≥ 4, a complete noncompact ancient

solution (Mn, g(t))t∈(−∞,0] to the Ricci flow is called a κ-solution if it satisfies the following

conditions.

1. (Curvature condition) Uniformly PIC, weakly PIC2, uniformly bounded curvature

2. (Noncollapsing condition) κ-noncollapsed

Note that all κ-solutions are completely classified in [BN20].

Theorem 4.1.1 (Corollary 1.6 of [BN20]). Any κ-solution (Mn, g(t))t∈(−∞,0] is isometric to

either a family of shrinking cylinders (or a quotient thereof) or to the Bryant soliton.

Now, we prove a canonical neighborhood theorem on Ricci flows with possibly unbounded

curvature. Naively speaking, it helps us model all higher curvature region using κ-solutions,
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which are completely classified. To do so, we will collect some of Perelman’s tools that are

still valid in our setting. First, one can observe that [Per02, Corollary 11.6] can be easily

generalized as follows.

Lemma 4.1.2 (Perelman). For every w > 0, there exist constants C = C(w) < ∞ and

τ = τ(w) > 0 with the following properties. Let (Mn, g(t))t∈[−T,0] be a (possibly incomplete)

Ricci flow solution with weakly PIC2. Suppose Bg(0)(x0, r0) is compactly contained in M such

that VolBg(0)(x0, r0) ≥ wrn0 and T ≥ 2τr20. Then

R(x, t) ≤ Cr−2
0

for (x, t) ∈ Bg(0)(x0, r0/4)× [−τr20, 0].

Proof. The proof is almost identical with the original proof of [Per02, Corollary 11.6]. The

only difference is we need to replace [Per02, Proposition 11.4] to [CW15, Lemma 4.5].

Simply speaking, the κ-noncollapsing condition implies that one can obtain a noncollapsing

ball from the curvature bound. And the above lemma gives the way to obtain the curvature

bound when the ball is noncollapsing. Using this result, we are able to show a variation of

canonical neighborhood theorem whose statement is given as follows.

Theorem 4.1.3. Let (Mn, g(t))t∈[0,2] be a complete noncompact κ-noncollapsed Ricci flow

solution with uniformly PIC and weakly PIC2. For any ϵ > 0, there exists a small number

r̄ > 0 satisfying the following property.

Suppose (x̄, t̄) ∈M × [1, 2] and R(x̄, t̄) = r−2 ≥ r̄−2, then after rescaling the metric by the

factor r−2, the parabolic neighborhood Bg(t̄)(x̄, ϵ
−1r)× [t̄− ϵ−1r2, t̄] is ϵ-close in C [ϵ−1]-topology

to a κ-solution.

Proof. The proof is similar to the canonical neighborhood theorem for compact Ricci flows.

See [Per03b][KL+08][MT07][CZ06a][Bre19] for the original proof. The argument here is easier

since we assume uniformly PIC and weakly PIC2 conditions, which in particular implies the

nonnegative Ricci curvature. We sketch the proof for the reader’s convenience.
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Assume that there exists an ϵ̄ > 0 such that the conclusion does not hold for a sequence

(xk, tk) ∈ M × [1, 2] with Qk = R(xk, tk) → ∞. By a standard point-picking argument, we

can replace this sequence if necessary and assume that for any A > 0, the conclusion of the

theorem holds for all (y, t) ∈ Bg(tk)(xk, AQ
−1/2
k ) × [tk − AQ−1

k , tk] with R(y, t) ≥ 2Qk. In

other words, we can say that the theorem is true for all points in the parabolic neighborhood

of (xk, tk) whose curvature is larger than the base point (xk, tk). Indeed, otherwise for a fixed

k there exists a spacetime sequence (yi, si) with (y0, s0) = (xk, tk) satisfying

1. The conclusion fails.

2. R(yi+1, si+1) ≥ 2R(yi, si)

3. (yi+1, si+1) ∈ Bg(si)(yi, AR(yi, si)
−1/2)× [si − AR(yi, si)

−1, si].

Also, note that the distance is nonincreasing for t as we have nonnegative Ricci curvature.

Therefore, we have

dg(tk)(xk, yI) ≤
I−1∑
i=0

dg(si)(yi, yi+1) ≤
I−1∑
i=0

AR(yi, si)
−1/2 ≤ 4AR(y0, s0)

−1/2,

tk − sI =
I−1∑
i=0

(si − si+1) ≤
I−1∑
i=0

AR(yi, si)
−1 ≤ 2AR(y0, s0)

−1/2.

Therefore, the process must be terminated in finitely many steps, which is a contradiction.

By taking a diagonal sequence, we consider the spacetime limit of (M, gk(t), xk) for t ≤ 0,

where gk(t) = Qkg(Q
−1
k t+ tk). To derive a contradiction, we only need to prove the limit is a

κ-solution.

Step 1: We claim there exists a sequence Hk → ∞ and constants ηm > 0, c > 0

satisfying the following. For any (x̄, t̄) ∈ Bg(tk)(xk, HkQ
−1/2
k ) × [tk − HkQ

−1
k , tk], if we set

Q̄ = Qk + R(x̄, t̄), then on the parabolic neighborhood P = Bg(t̄)(x̄, cQ̄
−1/2)× [t̄− cQ̄−1, t̄]

we have

|∇mR| ≤ ηmQ̄
m
2
+1 (4.1.1)
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for m ≥ 0. Indeed, if Q̄ ≥ 3Qk, then by our assumption (x̄, t̄) has a canonical neighborhood

and hence |∂tR−1| + |∇R−1/2| ≤ C. Therefore, the local geometry around (x̄, t̄) is well-

controlled. Moreover, the higher curvature estimates follow from Shi’s local estimates. For

more details, see [CZ06a, Theorem 4.1, Step 1] or [KL+08, Lemma 52.11].

Step 2: Next, we prove that (M, gk(0), xk) converges smoothly to a complete smooth

Riemannian manifold (M∞, g∞, x∞). We have R ≤ 2η0Qk on a parabolic neighborhood of

(xk, tk) if we take (x̄, t̄) = (xk, tk) in Step 1. Therefore, there exist constants c1 > 0, C1 > 0

such that Rgk(0) ≤ C1 on Bgk(0)(xk, c1). From the κ-noncollapsing condition, it implies that

VolBgk(0)(xk, 1) ≥ v0 > 0. From the Bishop-Gromov volume comparison theorem, for any

L > 0 and y ∈ Bgk(0)(xk, L), we have

VolBgk(0)(y, 1) ≥
VolBgk(0)(y, L+ 1)

(L+ 1)n
≥

VolBgk(0)(xk, 1)

(L+ 1)n
≥ v0

(L+ 1)n
=: v1

Therefore, it follows from Lemma 4.1.2 that there exist C2 = C2(v1) > 0 and τ = τ(v1) > 0

such that

R(x, t) ≤ C2 (4.1.2)

for (x, t) ∈ Bgk(0)(y, 1/4) × [−τ, 0]. Combining (4.1.1) and (4.1.2), one easily concludes

that the limit (M∞, g∞, x∞) of a sequence (M, gk(0), xk) is a complete smooth Riemannian

manifold, which has uniformly PIC1, weakly PIC2, and is κ-noncollapsed.

Step 3: Next, we show that the curvature of the limit (M∞, g∞, x∞) must be uniformly

bounded. From the proof of Step 2, we can assume (M∞, g∞, x∞) is defined on a spacetime

open neighborhood of M∞ × (−∞, 0] which contains M∞ × {0}. If the curvature operator of

g∞(0) lies on the boundary of PIC2 cone somewhere, then it follows from [Bre19, Proposition

6.6] that the universal covering (M̃∞, g∞(0)) is isometric to (N × R, g1 × gE), where (N, g1)

is a complete Riemannian manifold with uniformly PIC1 and weakly PIC2. We claim that N

has bounded curvature. Otherwise there exists a sequence qk ∈ N such that Rg1(qk) → ∞.

By our assumption of the canonical neighborhood, (N, g1, qk) is 2ϵ̄-close to the standard

Sn−1/Γ and hence N is compact, which is a contradiction.
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Therefore, we may assume (M∞, g∞) has strictly PIC2. If the curvature is not bounded,

we can choose zk ∈M∞ such that Rg∞(zk) → ∞. SinceM∞ has a positive sectional curvature,

we know that (M∞, R(zk)g∞, zk) subconverges to the standard (Sn−1/Γ)× R. In addition,

it follows from [Bre18, Proposition A.2] that Γ = {1}. However, it contradicts [CZ06a,

Proposition 2.2].

Step 4: Now, (M∞, g∞(t)) can be extended backwards to an ancient solution with

uniformly bounded curvature. The proof of this claim is given similarly to [CZ06a, Theorem

4.1, Step 4]. See also [KL+08, Step 4 in Page 2705] and [Bre19, Theorem 7.2, Step 6]. In sum,

we have proved that (M∞, g∞(t))t∈(−∞,0] is a κ-solution, which contradicts our assumptions

on xk.

Next, we prove the following lemma, see also [Che09, Theorem 3.6].

Lemma 4.1.4. Let (Mn, g(t))t∈[0,T ] be a complete, κ-noncollapsed solution of the Ricci flow

with weakly PIC2 and (M, g(t)) has bounded curvature for each t ∈ [0, T ]. Then (M, g(t))t∈[0,T ]

has uniformly bounded curvature.

Proof. We claim that for any t0 ∈ [0, T ], there exists an ϵ > 0 such that R is uniformly

bounded on M × [t0, t0 + ϵ). Indeed, since (M, g(t0)) has bounded curvature and is κ-

noncollapsed, it clear that there exists a v0 > 0 such that VolBg(t0)(x, 1) ≥ v0 for any x ∈M .

Therefore by [CW15, Corollary 1.3], there exists an ϵ > 0 such that R ≤ C(t − t0)
−1 for

t ∈ [t0, t0 + ϵ). Now the claim follows from [Che09, Theorem 3.1].

Next we define I := {t ∈ [0, T ] | supM×[0,t]R < ∞}. It is clear from the claim that I is

open and nonempty. On the other hand, for any ti ∈ I such that limi→∞ ti = t̄, we know

from our definition that (M, g(t))t∈[0,t̄) has bounded curvature in any compact time interval.

Therefore, the trace Harnack inequality holds, see [Bre09]. In particular, R is uniformly

bounded on M × [0, t̄] since

tR(x, t) ≤ t̄

(
sup
M×{t̄}

R

)
for any x ∈M and t ≤ t̄. Since I is both open and closed, T ∈ I and the proof is complete.
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Now, we prove the main result of the section, which states that the assumption of the

trace Harnack inequality in [Bre19, Proposition 6.11] can be dropped.

Proposition 4.1.5. Let (Mn, g(t))t∈(−∞,0] be an n-dimensional, κ-noncollapsed, noncompact

complete ancient solution to the Ricci flow with uniformly PIC and weakly PIC2. Then the

curvature of (M, g(t))t∈(−∞,0] is uniformly bounded. In particular, under the same assumption,

the trace Harnack inequality holds for (M, g(t))t∈(−∞,0].

Proof. If there exists (x0, t0) ∈ M × (−∞, 0] such that the curvature operator Rm(x0, t0)

lies on the boundary of PIC2 cone, then the universal cover M̃ of M splits off a line by

[Bre19, Proposition 6.6]. We assume M̃ is isometric to N × R where (N, g1(t))t∈(−∞,0] is

(n−1)-dimensional, κ-noncollapsed, complete ancient solution to the Ricci flow with uniformly

PIC1, see [Bre10a, Proposition 7.14]. Therefore, it follows from [Bre19, Theorem 6.4] (see

also [Yok17]) that N is homothetic to Sn−1. In this case, the conclusion is obviously true.

Therefore, we may assume that M has strictly PIC2. From the Lemma 4.1.4, we only

need to prove the curvature is bounded for each time slice. Fix a t0 ≤ 0, if the curvature at

t0 is unbounded, there exists a sequence pi with Qi = R(pi, t0) → ∞. By applying Theorem

4.1.3 on M × [t0 − 2, t0], we conclude that (M,Qig(t0), pi) converges smoothly to a κ-solution.

Since the limit must contain a splitting direction, by Toponogov’s splitting theorem, we may

assume the limit is the standard (Sn−1/Γ)× R. By our assumption, it follows from [Bre18,

Proposition A.2] that Γ = {1}. However, we obtain a contradiction by [CZ06a, Proposition

2.2]. Together with Lemma 4.1.4, it implies that (Mn, g(t))t∈(−∞,0] has bounded curvature

on each compact time interval and hence the trace Harnack inequality holds, see [Bre09].

Therefore, the curvature is uniformly bounded since R is nondecreasing in t.

By combining Theorem 4.1.1 and Proposition 4.1.5, we obtain the following theorem.

Theorem 4.1.6. Suppose (Mn, g(t))t∈(−∞,0] is a complete, noncompact, κ-noncollapsed

ancient solution to the Ricci flow with uniformly PIC and weakly PIC2. Then it is isometric

to either a family of shrinking cylinders (or a quotient thereof) or to the Bryant soliton.
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Remark 4.1.7. The conclusion of Theorem 4.1.6 also holds for any 3-dimensional, κ-noncollapsed,

noncompact complete ancient solution to the Ricci flow, based on Brendle’s breakthrough

[Bre20, Theorem 1.3]. On the other hand, it is not clear if there is any 3-dimensional

noncompact complete ancient solution to the Ricci flow which has unbounded curvature.

It is worth noting that the counterexample is given in [CW15, Theorem 1.4] for immortal

solutions with nonnegative curvature operator and unbounded curvature.

Proof of Theorem 1.2.2: Theorem 1.2.2 follows immediately from Theorem 4.1.6 and the

curvature improvements obtained from Theorem 3.2.2 and Lemma 3.1.4.

4.2 Proof of Theorem 1.2.3

4.2.1 κ-solutions to the Kähler Ricci flow

We first recall the following definition of κ-solutions in the Kähler setting.

Definition 4.2.1. [κ-solutions to the Kähler Ricci flow] A complete ancient solution

(Mn, g(t))t∈(−∞,0] to the Kähler Ricci flow is called a κ-solution if it satisfies the follow-

ing conditions.

1. (Curvature condition) Nonnegative bisectional curavture, uniformly bounded curvature

2. (Noncollapsing condition) κ-noncollapsed

Now, we will show that any κ-solution must be of Type I. See also [DZ20, Lemma 2.5].

Lemma 4.2.1. For any κ-solution (Mn, g(t))t∈(−∞,0) such that t = 0 is the singular time,

there exists a constant C0 > 0 such that |t||R(x, t)| ≤ C0 for all (x, t) ∈M × (−∞, 0).

Proof. Suppose that it is not true. We take Ti → −∞ and ϵi → 0− and choose (xi, ti) ∈

M × (Ti, ϵi) so that

(ϵi − ti)(ti − Ti)R(xi, ti) = (1− δi) sup
M×[Ti,ϵi]

(ϵi − t)(t− Ti)R(x, t),
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where δi → 0. Then with a rescaled metric g̃i(t) := Rig(ti +Q−1
i t) where Qi := R(xi, ti), we

get

R̃i(x, t) = Q−1
i R(x, ti +Q−1

i t) ≤ Q−1
i

(ϵi − ti)(ti − Ti)Qi

(1− δi)(ϵi − ti −Q−1
i t)(ti +Q−1

i t− Ti)

=
(ϵi − ti)(ti − Ti)Q

2
i

(1− δi)((ϵi − ti)Qi − t)((ti − Ti)Qi + t)

=
1

1− δi
· (ϵi − ti)Qi

(ϵi − ti)Qi + t
· (ti − Ti)Qi

(ti − Ti)Qi + t

for all x ∈ M and t ∈ (Qi(Ti − ti), Qi(ϵi − ti)). In particular, we have R̃i(x, 0) ≤ (1− δi)
−1

and R̃i(xi, 0) = 1. If we set αi : Qi(ϵi − ti) and βi := Qi(Ti − ti), then we know βi ≤ 0 ≤ αi

and

1

α−1
i − β−1

i

=
(ϵi − ti)(ti − Ti)Qi

ϵi − Ti
≥ 1

2(ϵi − Ti)
sup

M×[Ti,ϵi]

(ϵi − t)(t− Ti)R(x, t)

≥ 1

4
sup

M×[Ti/2,2ϵi]

(ϵi − t)R(x, t)

≥ 1

8
sup

M×[Ti/2,2ϵi]

|t|R(x, t) → ∞

because of the assumption. It implies that αi → ∞ and βi → −∞. From the previ-

ous curvature bound and a κ-noncollapsing property, the sequence of pointed manifolds

(M, g̃i(t), xi)t∈(βi,αi) smoothly subconverges to (M∞, g∞(t), x∞)t∈(−∞,∞) which is a nonflat κ-

noncollapsed eternal solution. In particular, this limit has a nonnegative bisectional curvature

which is bounded in any compact time interval. Also, since δi ↘ 0, we get R∞(x, 0) ≤ 1

for all x ∈M∞ and R∞(x∞, 0) = 1. After considering the universal cover of M∞ and Cao’s

dimension reduction argument [Cao04, Theorem 2.1], we may assume that M∞ is simply

connected and has positive Ricci curvature. By using the result in [Cao97, Theorem 1.3],

we conclude that (M∞, g∞) is a nonflat, κ-noncollapsed Kähler Ricci steady soliton with

nonnegative bisectional curvature. However, such a Kähler steady soliton does not exist by

[DZ19, Theorem 1.2].

Notice that the Kähler Ricci shrinker with nonnegative bisectional curvature is an impor-

tant type of κ-solution. It is notable that their classification is given as follows.
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Theorem 4.2.2 (Theorem 3 of [Ni05]). Let (Mn, g, f) be a Kähler Ricci shrinker with

nonnegative bisectional curvature. Then (M, g) is isometrically biholomorphic to a quotient

of Nk × Cn−k, where N is a compact Hermitian symmetric spaces.

Also, all compact κ-solutions are completely classified.

Theorem 4.2.3 (Proposition 2.8 of [DZ20]). Let (M, g(t))t∈(−∞,0] be a compact κ-solution.

Then it must be isometrically-biholomorphic to a quotient of compact Hermitian symmetric

space.

In particular, this result implies that any compact, complex 2-dimensional κ-solution has

to be isometrically-biholomorphic to either CP2 or CP1 × CP1, up to scalings on each factor.

From now on, we will consider the noncompact case. First, we prove the following which

implies that there is no κ-solution given as a nontrivial quotient of C× CP1.

Lemma 4.2.4. Let (M2, g(t)) be a κ-solution whose universal cover is C× CP1. Then it is

isometrically-biholomorphic to C× CP1 itself.

Proof. First, we investigate an isometry of C× CP1. Let Φ : C× CP1 → C× CP1 and v1 is

a vector field tangent to C. Then Φ∗(v1) is also tangent to C since it is parallel. Therefore,

Φ preserves the product structure and we can write Φ = (Φ1,Φ2) where Φ1 : C → C

and Φ2 : CP1 → CP1 are isometries. Now, let f : C × CP1 → C × CP1 be an isometry

corresponding to the covering map C×CP1 →M . If f is not trivial, we can write f = (f1, f2)

where f1 is an orientation preserving rigid motion on R2 and f2 ∈ SO(3). In particular, we

know that f2 ∈ SO(3) has a fixed point. Therefore, f1 has no fixed point and hence generates

a infinite group. Now, we will show that M has no maximal volume growth. Once this result

is proven, then we get a contradiction since (M, g(t))t∈(−∞,0) is κ-noncollapsed. For the result,

it is enough to show the following claim.
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Claim. Let f : Rn → Rn be an orientation preserving rigid motion with no fixed point.

Then the quotient space Rn/⟨f⟩ has no maximal volume growth, i.e., we have

lim
r→∞

Vol(B(x, r))

rn
= 0

This claim can be proven as follows. We know that f has an infinite order since otherwise

the center of mass of any orbit must be a fixed point. Let f(x) = Ax+ b for A ∈ SO(n) and

b ∈ Rn and consider the following function r(x) := |f(x)−x|2 = |(A− I)x+ b|2. Then we can

check that for x = tv with a unit vector v, r(tv) → ∞ as t→ ∞ unless (A− I)v = 0. In this

exceptional case, we get r(tv) = |b|2 for all t. Therefore, we can conclude that there exists

p ∈ Rn such that r(p) = minx∈Rn r(x). Note that r(p) ̸= 0 since otherwise p is a fixed point of

f . Now let H be a hyperplane in Rn passing through p with a normal vector f(p)− p. Since

p is a critical point of r(x), for any V ∈ Rn, we have Drp(V ) = 2⟨f(p)− p,Dfp(V )− V ⟩ = 0.

Moreover, for any tangent vector V on H at p, we have ⟨f(p)− p, V ⟩ = 0 so we finally have

⟨f(p) − p,Dfp(V )⟩ = 0 which implies that f(H) is parallel to H. Let Si ⊂ Rn be a slit

domain bounded by f i(H) and f i+1(H). Then {Si}i∈Z forms a partition of Rn and moreover

we can take a fundamental domain of Rn/⟨f⟩ contained in S0. After choosing r ≥ r(p), we

eventually get

Vol(B(x, r))

rn
≤ Cr(p)rn−1

rn
→ 0

as r → ∞. It completes the proof of the claim so the proof of Lemma 4.2.4 is also obtained.

Now, we will recall the properties of Type I ancient solution for later applications.

Theorem 4.2.5. Let (M, g(−τ))τ∈(0,∞) be a κ-solution and R(x,−τ) < C0

τ
for any x ∈ M

and τ ∈ (0,∞). Then we have the following.

(i) For any 0 < τ1 < τ2 and p, q ∈M , we have

dg(−τ2)(p, q)− 8(n− 1)C0(
√
τ2 −

√
τ1) ≤ dg(−τ1)(p, q) ≤ dg(−τ2)(p, q).

(ii) For any p, q ∈M , if we define a reduced distance l(q, τ) based on (p, 0), then it satisfies

1

4
√
3

(
dg(−τ)(p, q)√

τ
− 8(n− 1)C0

)
≤

√
l(q, τ) ≤

dg(−τ)(p, q)√
τ

+
√
n(n− 1)C0
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(iii) For gi(−τ) = τ−1
i g(−τiτ) with τi → ∞, the sequence of pointed manifolds (M, gi(−τ), pi)τ∈(0,∞)

subsequentially converges to (M∞, g∞(−τ), p∞)τ∈(0,∞) in Cheeger-Gromov sense.

(iv) For a reduced distance function li(q, τ) = lgi(pi,0)(q, τ) = lg(pi,0)(q, τiτ) defined on M , we

have li(q, τ) → l∞(q, τ) on M∞ × (0,∞) in the Cheeger-Gromov convergence.

(v) If we define

V̂∞(τ) =

∫
M∞

τ−n/2e−l∞(q,τ)dvg∞(−τ)

for τ ∈ (0,∞), then this quantity is given as a limit of the sequence of reduced

volumes with respect to gi. In other words, for Ṽi(τ) = Ṽ gi
(pi,0)

(τ) = Ṽ g
(pi,0)

(τiτ), we have

limi→∞ Ṽi(τ) = V̂∞(τ) for all τ ∈ (0,∞). Moreover, when pi = p for all i, then V̂∞(τ)

is a constant which implies that the limit is a Ricci shrinker.

(vi) When pi = p for all i, then the limit doesn’t depend on the choice of p. In particular,

for any p ∈ M and τi → ∞, we have (M, gi(−τ), p) → (M∞, g∞(−τ), p∞)τ∈(0,∞) in

Cheeger-Gromov sense with a limit which is a non-flat Ricci shrinker.

Proof. (i) The second inequality is given from the fact that the solution has nonnegative

Ricci curvature. Also, the first inequality is given from the time derivative estimate of the

distance function in [Per02, Lemma 8.3].

(ii) From [Per02], we know the following estimate

|∇l|2(x, τ) ≤ 3

τ
l(x, τ)

which is equivalent to

|∇
√
l|(x, τ) ≤

√
3

4τ
≤ 1√

τ

By integrating both sides along the geodesic connecting p and q, we have

|
√
l(q, τ)−

√
l(p, τ)| ≤

dg(−τ)(p, q)√
τ
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Let γ : [0, τ ] → M be a constant path so that γ(η) = p for all η ∈ [0, τ ]. Then we can

estimate l(p, τ) using γ and type I condition by

l(p, τ) ≤ 1

2
√
τ
L(γ) = 1

2
√
τ

∫ τ

0

√
ηR(p, η)dη ≤ 1

2
√
τ

∫ τ

0

n(n− 1)C0√
η

dη = n(n− 1)C0

so we can get
√
l(q, τ) ≤

dg(−τ)(p, q)√
τ

+
√
n(n− 1)C0

For the other direction, let γ̃ : [0, τ ] → M be a L-minimizing geodesic connecting p and q.

Then we have

dg(−τ)(p, q) =

∫ τ

0

d

dη
d(p, γ̃(η), η)dη =

∫ τ

0

(
∇d · γ̃′(η) + ∂

∂η
d(p, γ̃(η), η)

)
dη

Again, from [Per02], we know

|γ̃′(η)| =
∣∣∣∣ 1

2
√
η
∇L(γ̃(η), η)

∣∣∣∣ = |∇l(γ̃(η), η)|

Using the similar argument, we can estimate the right hand side as follows.

|∇l(γ̃(η), η)| ≤

√
3l(γ̃(η), η)

η
=

√
3L(γ̃(η), η)

2η3/2
≤

√
3L(q, τ)

2η3/2
=

√
3τ 1/4η−3/4

√
l(q, τ)

We also get the following due to the distance estimate for type I condition.

∂

∂η
d ≤ 4(n− 1)C0√

η

Combining all these together, we can derive

dg(−τ)(p, q) ≤
∫ τ

0

(√
3τ 1/4η−3/4

√
l(q, τ) +

4(n− 1)C0√
η

)
dη =

√
τ(4

√
3
√
l(q, τ) + 8(n− 1)C0)

which completes the proof.

(iii) From the Type I condition, we have

Rgi(x,−τ) = τiR(x,−τiτ) ≤ τi
n(n− 1)C0

τiτ
=
n(n− 1)C0

τ

on M × (0,∞) for all i. With κ-noncollapsing property, it completes the proof.
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(iv) Now, for any i and τ ∈ [A−1, A] and x ∈ Bgi(−1)(pi, r) = Bg(−τi)(pi, r
√
τi) for some

r > 0, we can apply (i) to obtain the following.

dg(−τiτ)(pi, x)√
τiτ

≤ 1
√
τiτ

(
dg(−τi)(pi, x) + 8(n− 1)C0

√
τi(

√
τ − 1)+

)
≤ 1√

τ

(
r + 8(n− 1)C0(

√
τ − 1)+

)
≤ C(r, A, n, C0)

Hence, from (ii), we get

0 ≤ li(x, τ) = l(pi,0)(q, τiτ) ≤ C1(r, A, n, C0)

for all i. Also, from [Per02], li satisfies

|∇gi(−τ)li(x, τ)|2gi(−τ) ≤ |∇gi(−τ)li(x, τ)|2gi(−τ) +Rgi(x,−τ) ≤
3li(x, τ)

τ
≤ C2(r, A, n, C0)∣∣∣∣∂li∂τ

∣∣∣∣ ≤ 2li(x, τ)

τ
≤ C3(r, A, n, C0)

Now, let Φi : Ui ⊂ M∞ → Φi(Ui) ⊂ M be diffeomorphisms yielding the convergence

(M, gi(−τ), pi) → (M∞, g∞(−τ), p∞). Then for any 0 < r0 < r, we can take i large enough

so that we have a sequence of uniformly Lipschitz functions Φ∗
i li on Bg∞(−1)(p∞, r0). Since

r > 0 is chosen arbitrarily, we can see that li(q, τ) → l∞(q, τ) on M∞ × (0,∞) in the

Cheeger-Gromov convergence by the Arzela-Ascoli theorem and a diagonalization argument.

Since l∞(q, τ) has to be a locally Lipschitz function on M∞ × (0,∞), we also know that

∇g∞(−τ)l∞(x, τ) and ∂l∞
∂τ

(x, τ) exist a.e. on M∞ × (0,∞).

(v) From the monotonicity formula from [Per02], we can show the integrand of Ṽi(τ) is

always bounded by the integrable function in any compact interval in (0,∞). Now the result

is obtained from the Lebesgue’s dominated convergence theorem. For the case when pi = p

for all i, from the monotonicity we know that limi→∞ Ṽi(τ) doesn’t depend on the choice of τ

since τi → ∞. Therefore, V̂∞(τ) is a constant and in particular, this value doesn’t depend on

the choice of τi as long as τi → ∞.
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Now, we know that

∂li
∂τ

−∆gi(−τ)li + |∇gi(−τ)li|2gi(−τ) −Rgi(−τ) +
n

2τ
≥ 0

in the weak sense. i.e. for any nonnegative Lipschitz function ϕ compactly supported on

M × [τ1, τ2] with 0 < τ1 < τ2, we have∫ τ2

τ1

∫
M

(
∇gi(−τ)li · ∇gi(−τ)ϕ+

(
∂li
∂τ

+ |∇gi(−τ)li|2gi(−τ) −Rgi(−τ) +
n

2τ

)
ϕ

)
τ−n/2dvgi(−τ)dτ ≥ 0

Again, from the Lebesgue’s dominated convergence theorem, we have

∂l∞
∂τ

−∆g∞(−τ)l∞ + |∇g∞(−τ)l∞|2g∞(−τ) −Rg∞(−τ) + n

2τ
≥ 0

in the weak sense. Now we want to show that it is still true even though we take the test

function as e−l∞ . Since the result (ii) is invariant under the parabolic rescaling, we have

1

4
√
3

(
dgi(−τ)(pi, q)√

τ
− 8(n− 1)C0

)
≤
√
li(q, τ) ≤

dgi(−τ)(pi, q)√
τ

+
√
n(n− 1)C0

Now, let ϕk = ψke
−l∞ where ψk is a Lipschitz functions compactly supported onBg∞(−τ)(p∞, k+

1) so that 0 ≤ ψk ≤ 1, |∇ψk| ≤ 1 and ψk ≡ 1 on Bg∞(−τ)(p∞, k). Using ϕk as a test function,

we have

0 ≤
∫ τ2

τ1

∫
Bg∞(−τ)(p∞,k)

(
∂l∞
∂τ

−Rg∞(−τ) + n

2τ

)
e−l∞τ−n/2dvg∞(−τ)dτ + A+B

where

A =

∫ τ2

τ1

∫
Bg∞(−τ)(p∞,k+1)\Bg∞(−τ)(p∞,k)

(
∂l∞
∂τ

−Rg∞(−τ) + n

2τ

)
ψke

−l∞τ−n/2dvg∞(−τ)dτ

B =

∫ τ2

τ1

∫
Bg∞(−τ)(p∞,k+1)\Bg∞(−τ)(p∞,k)

e−l∞∇g∞(−τ)l∞ · ∇g∞(−τ)ψkτ
−n/2dvg∞(−τ)dτ

By taking k large enough, from (i) we have a quadratic bound of l∞ by

C1

dg∞(−τ)(p∞, q)
2

τ
≤ l∞(q, τ) ≤ C2

dg∞(−τ)(p∞, q)
2

τ

with a fixed constant C1, C2 > 0. Since the Ricci curvature is nonnegative in our case, we

can use the volume comparison theorem between M∞ and the flat Euclidean space (Rn, h).
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Using Type I condition, we get∣∣∣∣∣
∫ τ2

τ1

∫
Bg∞(−τ)(p∞,k+1)\Bg∞(−τ)(p∞,k)

(
−Rg∞(−τ) + n

2τ

)
e−l∞τ−n/2dvg∞(−τ)dτ

∣∣∣∣∣
≤
∫ τ2

τ1

∫
Bg∞(−τ)(p∞,k+1)\Bg∞(−τ)(p∞,k)

C3

τn/2+1
e−C1

dg∞(−τ)(p∞,q)2

τ dvg∞(−τ)dτ

≤
∫ τ2

τ1

∫
Bh(O,k+1)\Bh(O,k)

C3

τn/2+1
e−C1

dh(O,q)2

τ dvhdτ

≤ C4

∫ τ2

τ1

∫ k+1

k

e−C1
r2

τ

τn/2+1
rdrdτ ≤ C5e

−k

Also, since we have ∣∣∣∣∂l∞∂τ
∣∣∣∣ ≤ 2l∞

τ
≤ 2C2

(
dg∞(−τ)(p∞, q)

τ

)2

and

|∇g∞(−τ)l∞| ≤
√

3l∞
τ

≤
√

3C2

dg∞(−τ)(p∞, q)

τ

we can do the similar computation to conclude that A,B → 0 as k → ∞. Consequently, we

get ∫ τ2

τ1

∫
M∞

(
∂l∞
∂τ

−Rg∞(−τ) + n

2τ

)
e−l∞τ−n/2dvg∞(−τ)dτ ≥ 0

Now, observe that

∂

∂τ
V̂∞(τ) = −

∫
M∞

(
∂l∞
∂τ

−Rg∞(−τ) + n

2τ

)
e−l∞τ−n/2dvg∞(−τ)dτ

Since we know that V̂∞(τ) is constant, we can conclude that

∂l∞
∂τ

−Rg∞(−τ) + n

2τ
= 0

Using the similar argument, we can also get

2∆g∞(−τ)l∞ − |∇g∞(−τ)l∞|2 +Rg∞(−τ) +
l∞ − n

τ
= 0

Now, from the direct computation given in [Per02], if we set u = τ−n/2e−l∞ , we can see that

u satisfies □∗u = (∂τ −∆+R)u = 0. Then for

v = (τ(2∆g∞(−τ)l∞ − |∇g∞(−τ)l∞|2 +Rg∞(−τ)) + l∞ − n)u
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we already proved that v = 0 so obviously □∗v = 0. But it implies that l∞ should satisfy

Ricg∞(−τ) +∇2
g∞(−τ)l∞ − 1

2τ
g∞(−τ) = 0, which implies that M∞ is a Ricci shrinker.

(vi) From [CZ11], there exists a point x0 ∈ M such that (M, gi(−τ), x0) subsequentially

converges to (M∞, g∞(−τ), x∞) which is a non-flat Ricci shrinker. Now pick any q ∈M and

denote r = dg(−1)(x0, q). From (i), we have

dgi(−τ)(x0, q) ≤ τ
− 1

2
i dg(−τiτ)(x0, q) ≤ τ

− 1
2

i (r + 8(n− 1)C0

√
τiτ)

≤ 9(n− 1)C0

√
τ

Therefore, for given τ , even though we change the basepoint as q, which is away from x0 by

uniformly bounded distance, we get a limit isometric to (M∞, g∞(−τ)), which is a non-flat

Ricci shrinker. It completes the proof.

Remark 4.2.6. Note that the result (iii), (iv), (v) are still true for τi → 0. For (vi), we still

have a uniqueness of the limit for a fixed point but we don’t know whether it is non-flat.

Next, we prove the following characterization of the behavior near the singular time.

Here, a Kähler manifold M is said to be irreducible if its universal cover is not isometrically-

biholomorphic to a product of two Kähler manifolds of smaller dimensions. From the

uniqueness of the Ricci flow [CZ06b] and [Kot14, Corollary 1.2], we know that a Kähler Ricci

flow is irreducible if and only if any time slice is irreducible.

Proposition 4.2.7. Let (M, g(−τ))τ∈(0,∞) be an irreducible κ-solution and let τ = 0 be the

singular time. Then the followings are equivalent.

(a) M is isometrically-biholomorphic to a quotient of compact Hermitian symmetric space.

(b) There exists p ∈M such that limτ→0R(p,−τ) = ∞.

(c) For all p ∈M , we have limτ→0R(p,−τ) = ∞.
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Proof. Clearly, we can see that (a) implies (b). For the direction from (b) to (c), if it is not true,

then there exists p, q ∈M such that for τi → 0, we have R(p,−τi) → ∞ but R(q,−τi) ≤ C

for some C > 0. For Qi = R(p,−τi), let gi(−τ) = Qig(−Q−1
i τ − τi). Then the sequence

of manifolds (M, gi(−τ), p)τ∈[0,∞) subsequentially converges to (M∞, g∞(−τ), p∞)τ∈[0,∞) and

Rg∞(p∞, 0) = 1. In particular, this limit is non-flat. From (vi) of Theorem 4.2.5, we know

that this limit is isometric to the limit of (M, gi(−τ), q)τ∈[0,∞). But the latter must converge

to the flat space since Rgi(q, 0) = R(q,−τi)/Qi → 0 as i→ ∞. This is a contradiction. For

the direction from (c) to (a), fix τ > 0. Then for any τ0 ∈ (0, τ) and p ∈M , from the estimate∣∣∣∣∂R∂τ
∣∣∣∣ ≤ ηR2

we obtain

1

R(p,−τ)
− 1

R(p,−τ0)
≤ η(τ − τ0).

Now, by taking τ0 → 0, since R(p,−τ0) → ∞, we have R(p,−τ) ≥ 1
ητ
. Therefore, the scalar

curvature of (M, g(−τ)) has a positive lower bound. If M is noncompact, it contradicts the

average curvature decay in [NT03, Theorem 0.4]. So M has to be compact. Now the result

follows from Theorem 4.2.3

Next, we prove the following result about the asymptotic scalar curvature ratio. Later,

this result will be used to get a splitting direction of the rescaling limit.

Lemma 4.2.8. Let (M, g(−τ))τ∈(0,∞) be a κ-solution. Then for any τ ∈ (0,∞) and p ∈M ,

we have

lim inf
dg(−τ)(x,p)→∞

R(x,−τ)d2g(−τ)(x, p) = ∞.

Proof. If the statement is not true, then we may assume it does not hold when τ = 1. So

there exists a sequence {pi} ⊂M such that dg(−1)(p, pi) → ∞ but R(pi,−1)d2g(−1)(p, pi) ≤ C

for some C > 0. If we take ρi = d2g(−1)(p, pi) and consider gi(−τ) = ρ−1
i g(ρi(1 − τ) − 1),

then from the compactness of κ-solutions, a sequence (M, gi(−τ), pi)τ∈[1,∞) subsequentially

converges to (M∞, g∞(−τ), p∞)τ∈[1,∞). Moreover, since ρi → ∞, one can use Theorem 4.2.5
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to show that (M, gi(−τ), p)τ∈(1,∞) subsequentially converges to a nonflat Kähler Ricci shrinker

(M ′
∞, g

′
∞(1 − τ), p′∞)τ∈(1,∞). But since dgi(−1)(p, pi) = 1 for all i, we know that both limits

are isometric. Note that

R∞(p∞,−1) = lim
i→∞

Ri(pi,−1) = lim
i→∞

d2g(−1)(p, pi)R(pi,−1) ≤ C

from the assumption. However, since τ = 1 is the singular time of the Kähler Ricci shrinker,

we have Rg∞(q,−τ) → ∞ for any q ∈M∞ as τ → 1, which is a contradiction.

Using this result, we can investigate the asymptotic behavior of the ancient solution in

the following way.

Proposition 4.2.9. Let (M2, g(−τ))τ∈[0,∞) be a noncompact complex 2-dimensional nonflat

κ-solution. Then for any sequence (pi, τi) ∈ M × (0,∞) with τi → ∞ and Qi = R(pi,−τi),

the sequence (M,Qig(−τi), pi) subsequentially converges to C× CP1 in the Cheeger-Gromov

sense. Here we assume the scalar curvature of C× CP1 is identically 1.

Proof. We first consider the case when pi = p is a fixed point. Let gi(−τ) = τ−1
i g(−τiτ).

Then by Theorem 4.2.5, we know that the limit of (M, gi(−τ), p)τ∈(0,∞) exists as a nonflat,

noncompact, Kähler Ricci shrinker with nonnegative bisectional curvature. And this limit

has to be a shrinking (C× CP1, g∞(−τ))τ∈(0,∞) because of Theorem 4.2.2 and Lemma 4.2.4.

Because of type I condition, there are 2 possible cases.

Case 1. R(p,−τi)τi → L > 0.

Then the limit of (M, gi(−1), p) is homothetic to the limit of (M, g̃i(−1), p) where g̃i(−1) =

Qig(−τi). Therefore, the conclusion holds.

Case 2. R(p,−τi)τi → 0.

From ∣∣∣∣∂R∂τ
∣∣∣∣ ≤ ηR2
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we have

1

R(p,−τi)
− 1

R(p, 0)
≤ ητi

This inequality implies that

1− ητiR(p,−τi) ≤
R(p,−τi)
R(p, 0)

≤ 1.

So we get R(p,−τi)
R(p,0)

→ 1 as i→ ∞. But then the trace Harnack inequality implies that R(p,−τ)

is constant in τ . However, this implies that M is flat, which is a contradiction. It completes

the proof when the sequence {pi} is a fixed point.

Now we will handle general cases. If there exists a point p ∈M such that
dg(0)(p,pi)√

τi
≤ D for

all i, then the limits of (M, gi(−1), p) and (M, gi(−1), pi) are isometric as dgi(−1)(p, pi) will

be bounded due to (i) in Theorem 4.2.5. Therefore, we may assume
dg(0)(p,pi)√

τi
→ ∞. There

are two possibilities.

Case 1. Qiτi → 0.

Let Q̃i = R(pi, 0). By integrating
∣∣∂R
∂τ

∣∣ ≤ ηR2 and multiplying Qi on both sides, we get

0 ≤ 1− Qi

Q̃i

≤ ηQiτi → 0.

So we have Qi

Q̃i
→ 1 as i → ∞. In particular, we have Q̃i → 0. It implies that the limit,

denoted by (M∞, g∞(−τ), p∞)τ∈(0,∞), of (M,Qig(−Q−1
i τ), pi)τ∈(0,∞) is isometric to that of

(M, Q̃ig(−Q̃−1
i τ), pi)τ∈(0,∞). Note that we know Q̃id

2
g(0)(p, pi) → ∞ from Lemma 4.2.8 and

Q̃ig(−Q̃−1
i τ) has a nonnegative curvature operator from Lemma 3.1.5, we can apply To-

ponogov’s splitting theorem to conclude that the limit of (M, Q̃ig(−Q̃−1
i τ), pi) splits a line

generated by the vector field V . Since the limit is equipped with a complex structure J∞,

the vector field J∞V generates another splitting direction. Therefore, the universal covering

(M̃∞, g̃∞(τ), p∞) is isometrically biholomorphic to C × CP1, where we have used the fact

that every real 2-dimensional nonflat κ-noncollapsed ancient solution is a shrinking sphere
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[Per02, Corollary 11.3]. Therefore, it follows from Lemma 4.2.4 that (M∞, g∞(−τ), p∞)τ∈(0,∞)

is isometrically biholomorphic to a family of shrinking (C× CP1, g∞(−τ))τ∈[0,∞) with a unit

scalar curvature at τ = 1. Therefore, (M,Qig(−τi), pi) converges smoothly to C× CP1.

Case 2. Qiτi → C > 0.

For simplicity, we assume that C = 1. Then there are 2 possible subcases.

Subcase 1. Q̃iτi → L > 0

Then it implies that the limit of (M,Qig(−Q−1
i τ), pi)τ∈(0,∞) and (M, Q̃ig(−Q̃−1

i τ), pi)τ∈(0,∞)

are homothetic. From the previous argument, we know that the limit of (M, Q̃ig(−Q̃−1
i τ), pi)τ∈(0,∞)

is isometric to (C×CP1, g∞(−τ))τ∈(0,∞). Therefore, it is clear that the limit of (M,Qig(−τi), pi)

is also (C× CP1, g∞(−1)).

Subcase 2. Q̃iτi → ∞

From the compactness, for ĝi := τ−1
i g(−τiτ), a sequence (M, ĝi(−τ), pi)τ∈(0,∞) subsequentially

converges to a noncompact κ-solution (M∞, ĝ∞(−τ), p∞)τ∈(0,∞). If M∞ is reducible, then we

can argue as above that the limit is C× CP1. In this case, since we already have Qiτi → 1,

the limit of (M, ĝi(−τ), pi)τ∈(0,∞) is isometric to the limit of (M,Qig(−τiτ), pi)τ∈(0,∞) which

verifies the statement by taking τ = 1. Therefore, we may assume that M∞ is irreducible.

By integrating
∣∣∂R
∂τ

∣∣ ≤ ηR2 from 0 to −τiτ and dividing both sides by τi, we obtain

1

τiR(pi,−τiτ)
− 1

Q̃iτi
≤ ητ

Since Q̃iτi → ∞ from the assumption, it implies that R̂i(pi,−τ) = τiR(pi,−τiτ) ≥ 1
2ητ

for

large enough i. In particular, we can deduce that limτ→0 R̂∞(p∞,−τ) = ∞. From Proposition

4.2.7, it implies that M∞ has to be compact, which is a contradiction.
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4.2.2 Construction of the Fibration

From Proposition 4.2.9, we are able to reconstruct M as a total space of S2-fibration over a

noncompact Riemann surface. This construction will be given in this subsection. From now

on, we will drop the time parameter −τ for simplicity unless there is confusion. For all the

spheres S2, we assume the scalar curvature is identically 1. Here, the argument in [CL20] is

repeated.

Proposition 4.2.10. Let (M2, g(−τ))τ∈[0,∞) be a noncompact complex 2-dimensional nonflat

κ-solution. For any ϵ > 0, there exists a τ̄ > 0 such that for any (x,−τ) ∈M × (−∞,−τ̄ ],

there exists an open neighborhood Ωx ∋ x with a diffeomorphism ψx : Ωx → B(0, 100)× S2 ⊂

R2 × S2 such that

(a) ψx(x) = (0, s̄), where s̄ is the north pole of S2.

(b) For the standard metric g0 on R2 × S2 and i ∈ [0, ϵ−1] and gx = R(x)g, we have

sup
Ωx

|∇i
gx(gx − ψ∗

xg0)|gx ≤ ϵ.

(c) The map φx = π1 ◦ψx : (Ωx, gx) → (B(0, 99), g0|B(0,99)) is an ϵ-Riemannian submersion.

Now, we will construct a transition map φx,y between two local fibrations φx and φy

defined in Proposition 4.2.10. This strategy originates in [CG90; CFG92], see also [CL21]. In

the following, the function δ(ϵ) → 0 as ϵ→ 0 and δ(ϵ) may be different line by line.

Proposition 4.2.11. With the same assumptions as in Proposition 4.2.10, for any x, y ∈M

with dg(x, y) ≤ 10r with r = r(x, y) = 1/
√

max(R(x), R(y)), if we set Ωx,y = Ωx ∩ Ωy, then

there is a δ(ϵ)-almost isometry φx,y : φy(Ωx,y) → φx(Ωx,y). Moreover, it satisfies the following

properties.

(a) |φx − φx,y ◦ φy| ≤ δ(ϵ)r.

(b) |Dφx −Dφx,y ◦Dφy| ≤ δ(ϵ).
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Proof. From the assumption, we have dgy(x, y) =
√
R(y)dg(x, y) ≤ 10 and hence x ∈ Ωy. It

follows from Proposition 4.2.10 that ∣∣∣∣R(x)R(y)
− 1

∣∣∣∣ ≤ δ(ϵ). (4.2.1)

Moreover, if we set g1 = (ψx ◦ ψ−1
y )∗g0, then it follows from Proposition 4.2.10 and (4.2.1)

that g1 and g0 are C2-close on ψy(Ωx,y). More precisely, on ψy(Ωx,y) one has

|g1 − g0|+ |∇g0g1|+ |∇2
g0
g1| ≤ δ(ϵ), (4.2.2)

where the norms are with respect to g0. Next, we prove the map ψx ◦ ψ−1
y almost preserves

the product structure. Indeed, if V is a parallel vector field along R2, with respect to g0, and

V1 = (ψx ◦ ψ−1
y )∗V , then from (4.2.2) we have

|∇g0V1| ≤ δ(ϵ), (4.2.3)

and hence V1 is almost tangent to R2 in the sense that

|(π1)∗V1 − V1| ≤ δ(ϵ), (4.2.4)

where π1 : R2 × S2 → R2 is the projection map. Similarly, if V2 is tangent to S2, then we

have

|(π2)∗V2 − V2| ≤ δ(ϵ). (4.2.5)

Now we define φx,y : φy(Ωx,y) → φx(Ωx,y) by φx,y(p) = π1 ◦ψx ◦ψ−1
y (p, s̄). It is clear from

the definition that φx,y is a δ(ϵ)-almost isomtery on φy(Ωx,y). We claim that φx,y satisfies

all required property. Indeed, for any z ∈ Ωx,y, we set ψy(z) = (p1, s1) and ψy(z) = (p2, s2).

We consider a geodesic segment γ such that γ(0) = (p1, s) and γ(1) = (p1, s̄). If we set

γ̃ = ψx ◦ ψ−1
y ◦ γ, then it is clear from (4.2.4) that |π1(γ̃(0))− π1(γ̃(1))| ≤ δ(ϵ)r. Therefore,

the property (a) is proved by our definition of φx,y. The property (b) can be proved similarly

by (4.2.4) and (4.2.5).
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Remark 4.2.12. To make the proof of Proposition 4.2.11 rigorous, one needs to slightly shrink

Ωx,Ωy and Ωx,y such that the new sets contain all S2 fibers. In the following, we will not

mention this explicitly.

Next, we will show that the map φx,y which is constructed previously almost satisfies the

cocycle condition φx1,x3 = φx1,x2 ◦ φx2,x3 .

Proposition 4.2.13. For any x1, x2, x3 ∈M with dg(xi, xj) ≤ 10r with

r = r(x1, x2, x3) = 1/
√

max(R(x1), R(x2), R(x3)) for any pair i, j ∈ {1, 2, 3}, wherever it

makes sense, we have the following.

(a) |φx1,x3 − φx1,x2 ◦ φx2,x3 | ≤ δ(ϵ)r.

(b) |Dφx1,x3 −Dφx1,x2 ◦Dφx2,x3| ≤ δ(ϵ).

Proof. From Proposition 4.2.11, wherever it makes sense, we have

|φx1 − φx1,x3 ◦ φx3| ≤ δ(ϵ)r and |φx2 − φx2,x3 ◦ φx3| ≤ δ(ϵ)r.

Since φx1,x2 is δ(ϵ)-almost isometry, we have

|φx1 − φx1,x2 ◦ φx2,x3 ◦ φx3 | ≤ |φx1 − φx1,x2 ◦ φx2|+ |φx1,x2 ◦ (φx2 − φx2,x3 ◦ φx3)| ≤ δ(ϵ)r.

Using the inequality |φx1 − φx1,x3 ◦ φx3| ≤ δ(ϵ)r, we have

|(φx1,x3 − φx1,x2 ◦ φx2,x3) ◦ φx3| ≤ δ(ϵ)r.

Since φx3 is surjective, (a) is proved. Similarly, (b) can be proved by the same argument.

Now we want to modify the local fibrations φx to make them compatible with a transition

map φx,y. To do so, we need the following lemma.

Lemma 4.2.14. For any x, y ∈ M and r = r(x, y) = 1/
√

max(R(x), R(y)) with 2r ≤

dg(x, y) ≤ 4r, we assume that Bg(x, 2r) ∩Bg(y, 2r) ̸= ∅. Then there exista a new fibrations

φ̃x on Bg(x, 2r) such that

φ̃x = φx,y ◦ φy
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on Bg(x, 2r) ∩ Bg(y, 2r). Moreover, it has same estimates with those of φx in Proposition

4.2.10 and coincides with φx on Bg(y, 4r(x, y)) wherever φx = φx,y ◦ φy.

Proof. Let θ(z) be a cut-off function on R2 such that θ(z) ≡ 1 on B(0, 2) and θ(z) ≡ 0

outside B(0, 4) and ϕ(p) := θ
(
φy(p)

r

)
. Now define a map φ̃x : Ωx,y → R2 by φ̃x(z) =

ϕ(z)(φx,y ◦ φy(z)) + (1− ϕ(z))φx(z). Clearly, φ̃x = φx wherever φx = φx,y ◦ φy. Also since

ϕ(z) ≡ 1 for any z ∈ Bg(x, 2r) ∩Bg(y, 2r), it satisfies the property. Now the estimates follow

from φ̃x(z)− φx(z) = ϕ(z)(φx,y ◦ φy(z)− φx(z)) and the Proposition 4.2.10.

Lemma 4.2.15. For any x1, x2, x3 ∈M and r = r(x1, x2, x3) = 1/
√

max(R(x1), R(x2), R(x3))

with 2r ≤ dg(xi, xj) ≤ 4r for any pair i, j ∈ {1, 2, 3}, we assume that Bg(x1, 2r), Bg(x2, 2r)

and Bg(x3, 2r) have a nonempty intersection. Then there exist a new diffeomorphism φ̃x1,x3

on φx3(Bg(x1, 2r) ∩Bg(x3, 2r)) such that

φ̃x1,x3 = φx1,x2 ◦ φx2,x3

on φx3(Bg(x1, 2r) ∩Bg(x2, 2r) ∩Bg(x3, 2r)). Moreover, it has the same estimates with those

of φx1,x3 in Proposition 4.2.11 and coincides with φx1,x3 wherever φx1,x3 = φx1,x2 ◦ φx2,x3.

Proof. Let θ(z) be the cut-off function defined in Lemma 4.2.14, then we define φ̃x1,x3(z) =

ϕ(z)(φx1,x2 ◦ φx2,x3(z)) + (1 − ϕ(z))φx1,x3(z). Then one can check that φ̃x1,x3 satisfies all

properties mentioned in the statement.

Now we can construct a global fibration on M .

Proposition 4.2.16. Let (M2, g(t))t∈(−∞,0] be a noncompact complex 2-dimensional nonflat

κ-solution. Then there exists a smooth S2-fibration p : M → S where S is a noncompact

Riemann surface.

Proof. From Proposition 4.2.10, there exist local fibrations for all points on M , if −t is

sufficiently large. By using Lemma 4.2.14 and Lemma 4.2.15. we can follow the standard

technique in [CG90; CFG92] to modify all local fibrations to be compatible. For details, the

reader can refer to [CL21, Theorem 5.16].
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Now we can prove the following classification of the noncompact κ-solutions on Kähler

surface.

Theorem 4.2.17. Let (M2, g(t))t∈(−∞,0] be a nonflat, noncompact κ-solution. Then it is

isometrically-biholomorphic to a family of shrinking C× CP1.

Proof. By considering the universal cover, we may assume that M is simply connected.

From Lemma 3.1.5, we know that (M, g(−τ)) has nonnegative curvature operator. From

[NT03, Theorem 5.3], we conclude that (M, g(0)) is isometrically-biholomorphic to N × L

where N is a compact Hermitian symmetric space and L is diffeomorphic to R2k where

k = dimC L. If k = 1, then (M, g(t)) is isometrically-biholomorphic to the product of a

real 2-dimensional κ-solutions L and CP1. From the result in [Per02], it implies that M is

isometrically-biholomorphic to C× CP1 that verifies the statement.

If k = 2, then M = L and in particular M is diffeomorphic to R4. From Proposition

4.2.16, there exists a global S2-fibration over a noncompact Riemann surface S. Applying

the long exact sequence of homotopy groups on the fibration S2 → R4 → S, we have

π1(S
2) → (π1(R4) = 0) → π1(S) → (π0(S

2) = 0)

which shows π1(S) = 0, i.e., S is simply connected. By the classification of noncompact

surfaces, S is diffeomorphic to R2. In particular, the base space of this fibration is contractible.

Therefore, this fibration is trivial so the total space has to be diffeomorphic to S2×R2, which

is a contradiction. From Lemma 4.2.4, the proof is complete.

Now the proof of Theorem 1.2.3 is immediate.

Proof of Theorem 1.2.3: Theorem 1.2.3 follows from Theorem 4.2.3 and Theorem 4.2.17.

4.3 Proof of Theorem 1.2.4

In this section, we will show the following proposition whose idea is given in [MW15].
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Proposition 4.3.1. Let (Mn, f, g) be a complete, noncompact gradient Ricci shrinker with

weakly PIC and n ≥ 5. If its scalar curvature converges to 0 at infinity, then (M, g) is

smoothly asymptotic to a cone at infinity.

Proof. The proof is obtained from a slight modification of [MW15, Theorem 0.3] after

using the result in Proposition 2.2.1. However, we include the sketch of proof for reader’s

convenience.

From [CLY11], we know that there exists a constant C0 > 0 such that

C0 ≤ Rf

Now, the proof is completed from [KW15] after showing that there exists a constant C1 > 0

such that

Rf ≤ C1 (4.3.1)

It is enough to show that (4.3.1) holds in Kr := {f ≥ r} for large enough r > 0. From

Proposition 2.2.1, we have |Ric|2 ≤ nR2 and this implies

∆fR = R− 2|Ric|2 ≥ R− 2nR2 (4.3.2)

Also, since ∆ff = n
2
− f , we can compute

∆f

(
1

fk

)
= − k

fk+1
(∆ff) +

k(k + 1)

fk+2
|∇f |2

=
k

fk+2

(
f 2 − nf

2
+ (k + 1)|∇f |2

)
for all k ≥ 1. In particular, using |∇f |2 ≤ R + |∇f |2 = f , we can derive

∆f

(
1

f

)
≤ 1

f
in M (4.3.3)

Remark that the potential function f is equivalent to the square of distance function and

R+ |∇f |2 = f . Since the scalar curvature of M is asymptotically vanishing at infinity, we

can choose r0 > n large enough so that all of the followings are satisfied in Kr0 .
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1. R < 1
8n

2. f2

4
− nf

2
+ 3|∇f |2 ≥ 0

In particular, the second condition implies that

∆f

(
1

f 2

)
=

2

f 4

(
f 2 − nf

2
+ 3|∇f |2

)
≥ 3

2f 2
(4.3.4)

in Kr0 . Now, define a function

u := R− r0
8nf

+
r20

16nf 2

which is negative on ∂Kr0 . Also, by combining (4.3.2), (4.3.3) and (4.3.4), we have

∆fu ≥ R− 2nR2 − r0
8nf

+
3r20

32nf 2

= u− 2n

(
R2 − r20

64n2f 2

)
= u− 2n

(
R− r0

8nf

)(
R +

r0
8nf

)
≥ u− 2nu

(
R +

r0
8nf

)
= u

(
1− 2nR− r0

4f

)
(4.3.5)

in Kr0 . Now we claim that u ≤ C2

f2
for some constant C2 > 0, which verifies that (4.3.1) holds

in Kr0 . Note that we may assume u is positive somewhere since otherwise the statement

becomes trivial. To get this result, let us choose a cutoff function ψ :M → R defined by

ψ(x) =


l−f(x)

l
for 0 ≤ f(x) ≤ l

0 for f(x) ≥ l

with a constant l > 2r0. Then we have

∆fψ
2 = 2ψ∆fψ + 2|∇ψ|2 =

2ψ(f − n
2
)

l
+

2|∇f |2

l2
(4.3.6)

Now, let G := ψ2u and p ∈ M be a point where G achieves its positive maximum on Kr0 .

Clearly, p should be the interior point of Kr0 as G is negative on ∂Kr0 . So we have

0 = ∇G = u∇(ψ2) + ψ2∇u
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at p. By combining (4.3.5) and (4.3.6), we get the following inequality at p.

0 ≥ ∆fG = ∆f (ψ
2)u+ ψ2∆fu+ 2∇(ψ2) · ∇u

≥ 2u

(
ψ(f − n

2
)

l
+

|∇f |2

l2

)
+G

(
1− 2nR− r0

4f

)
− 8u|∇ψ|2

= G

(
2(f − n

2
)

lψ
+

2|∇f |2

ψ2l2
+ 1− 2nR− r0

4f
− 8

|∇ψ|2

ψ2

)
= G

(
2(f − n

2
)

lψ
+ 1− 2nR− r0

4f
− 6

|∇f |2

ψ2l2

)
Since G(p) > 0, it implies that

2(f − n
2
)

lψ
+ 1− 2nR− r0

4f
− 6

|∇f |2

ψ2l2
≤ 0 (4.3.7)

at p. Moreover, from the choice of r0, we know that R(p) ≤ 1
8n
. It implies that

1− 2nR− r0
4f

≥ 1− 1

4
− 1

4
> 0

at p. From (4.3.7), we get

2(f − n
2
)

lψ
− 6

|∇f |2

ψ2l2
≤ 0

at p. Also, since r0 > n and |∇f |2 ≤ f , we have

2(f − n
2
)

lψ
≥ f

lψ

and

|∇f |2

l2ψ2
≤ f

l2ψ2

From these inequalities, we get

0 ≥
2(f − n

2
)

lψ
− 6

|∇f |2

l2ψ2
≥ f

lψ

(
1− 6

lψ

)
hence we finally get lψ(p) ≤ 6, which implies

G(p) = ψ(p)2u(p) ≤ 36u(p)

l2

Since ψ(x) ≥ 1
2
in {f ≤ l

2
}, we obtain the following for a set Vl = {x ∈M | r0 ≤ f(x) ≤ l

2
}.

sup
Vl

u ≤ 4 sup
Vl

G ≤ 4 sup
Kr0

G = 4G(p) ≤ 144u(p)

l2
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which completes the proof of claim. As a result, we have

R− r0
8nf

+
r20

16nf 2
≤ C2

f 2

for some constant C2 > 0. It completes the proof since

Rf ≤ r0
8n

+
C2

f
≤ r0

8n
+ C2

in Kr0 .

Proof of Theorem 1.2.4: Let (M, f, g) be a complete, noncompact gradient Ricci shrinker

with uniformly PIC and bounded curvature. For each end E, we first consider the case when

there exists a sequence xi → ∞ along E such that limi→∞R(xi) = c > 0. Then by [Nab10,

Proposition 4.1.], we know that a sequence (M, g, xi) subconverges to a nonflat gradient

Ricci shrinker (M∞, g∞, x∞). Also, since xi → ∞, we know that M∞ splits isometrically as

R×N∞ where N∞ is (n− 1)-dimensional gradient Ricci shrinker with uniformly PIC1. So we

know that N∞ is isometric to Sn−1/Γ by [Bre19, Theorem 6.4] (see also [Yok17]). Now, by

[MW19, Theorem 1.7.], we know that E is smoothly asymptotic to the same round cylinder.

So we may assume that the scalar curvature converges to 0 at infinity along E. Then

by Proposition 4.3.1, E is smoothly asymptotic to a Riemannian cone [r0,∞) × Σ with a

metric g∞ = dr2 + r2gΣ where (Σ, gΣ) is a closed (n− 1)-dimensional Riemannian manifold

and r0 ≥ 0. Note that g∞ also has weakly PIC as well.

Now we will investigate the metric g∞ closely. If we set gr := r2gΣ, then we get

∇2r =
1

2
L∂rg = rgΣ =

1

r
gr

So the Gauss equation implies that

Rr
ijkl = Rijkl + (∇i∇kr)(∇j∇lr)− (∇i∇lr)(∇j∇kr)

= Rijkl +
1

r2
((gr)ik(gr)jl − (gr)il(gr)jk)
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In particular, we have

Rr
ijij = Rijij +

1

r2
> Rijij

As a result, for any orthonormal 4-frame {ei, ej, ek, el} of Σ, we have

Rr
ikik +Rr

ilil +Rr
jkjk +Rr

jljl − 2Rr
ijkl > Rikik +Rilil +Rjkjk +Rjljl ≥ 0

since g∞ has weakly PIC. Therefore, we know that Σ is a closed manifold with PIC. From

the result in [MM88], it implies that Σ is homeomorphic to Sn−1/Γ and completes the proof.
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