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Abstract of the Dissertation

Hodge Numbers of O’Grady 6 Via Ngô Strings

by

Ben Wu

Doctor of Philosophy

in

Mathematics

Stony Brook University

2022

The Betti and Hodge numbers of hyper-Kähler manifolds of OG6 type
were first computed by Mongardi, Rapagnetta, and Saccá. We provide an
alternative computation of the Betti and Hodge numbers of these manifolds
using the method of Ngô Strings introduced by de Cataldo, Rapagnetta, and
Saccá in their study of hyper-Kähler manifolds of OG10 type. More precisely,
we study the geometry of a special member of the deformation class, one which
admits a Lagrangian fibration, and we relate it to the geometry of several other
fibrations. We then use a refinement of the Ngô Support Theorem to compute
the Betti and Hodge numbers of manifolds of OG6 type. Our computation
will also lead to a description of the Hodge structure of some special members
of the deformation class in terms of the Hodge structure of a related Abelian
surface.
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Chapter 1

Introduction

Irreducible holomorphic symplectic (IHS) manifolds can be characterized as
the simply connected compact Kähler manifolds equipped with a unique, up
to scaling, holomorphic symplectic two-form. They are hyper-Kähler manifolds
by the Calabi-Yau theorem [Yau78]. IHS manifolds are, along with complex
tori and Calabi-Yau manifolds, one of the three building blocks of smooth
complex algebraic varieties with trivial first Chern class by the Beauville-
Bogomolov decomposition theorem [Bea83; Bog74]. There are few known
examples of IHS manifolds. There are two deformation classes appearing in
every even complex dimension, namely manifolds of K3[n] type and of Kumn

type [Bea83; Fuj83]. Manifolds of K3[n] type are deformation equivalent to the
Hilbert scheme of n points on a K3 surface and manifolds of Kumn type are
deformation equivalent to the generalized Kummer variety of dimension 2n.
There are two other known exceptional examples occurring in dimensions six
and ten, and they were constructed by O’Grady by symplectically resolving
certain singular moduli spaces of sheaves on Abelian surfaces and K3 surfaces
respectively [O’Gr03; O’Gr99]. Kaledin, Lehn, and Sorger proved that no new
examples can be obtained by using O’Grady’s methods [KLS06]. We denote
O’Grady’s exceptional examples by OG6 and OG10. Manifolds deformation
equivalent to OG6 (resp. OG10) are said to be of OG6 type (resp. OG10
type). All other known examples are deformation equivalent to one of the
above examples.

The topology of the known examples of IHS manifolds has been stud-
ied intensely. The Betti numbers of the Hilbert schemes of n points on
a K3 surface and of the generalized Kummer varieties were computed by
Göttsche using the Weil conjectures in [Göt90; Göt93] and were recomputed
by Göttsche and Soergel in [GS93] using the theory of perverse sheaves and
the Beilinson-Bernstein-Deligne-Gabber decomposition theorem [BBD82]. Us-
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ing Saito’s refinement of the BBDG decomposition theorem for mixed Hodge
modules [Sai90], Göttsche and Soergel were also able to compute the Hodge
numbers for the Hilbert schemes of n points on a K3 surface and of the gen-
eralized Kummer varieties.

The second Betti number for manifolds of OG6 type was computed by
O’Grady in [O’Gr03] and the Euler characteristic was determined shortly af-
ter by Rapagnetta in [Rap07]. The Betti and Hodge numbers were then com-
pletely determined by Mongardi, Rapagnetta, and Saccá in [MRS18] by looking
at a specific manifold of OG6 type and relating it to the geometry of a mani-
fold of K3[3] type. Mongardi, Rapagnetta, and Saccà note that their method
cannot be applied to the OG10 case since a certain class is not divisible by
two in the integral cohomology.

The second Betti number for manifolds of OG10 type was first computed
by Rapagnetta in [Rap08] and the Euler characteristic was determined by Moz-
govyy in [Moz07]. The Betti and Hodge numbers were then completely deter-
mined by de Cataldo, Rapagnetta, and Saccà in [dCRS21] using the method
of Ngô strings.

More recently, the cohomology algebra of IHS manifolds has been stud-
ied by Green, Kim, Laza, and Robles in [GKLR22]. Using knowledge of the
Betti and Hodge numbers, they compute the Looijenga-Lunts-Verbitsky (LLV)
decomposition of the cohomology algebra for all of the known examples. In
particular, this gives a description of the Hodge structure of all known exam-
ples in terms of the Hodge structure on its second cohomology.

The purpose of this thesis is to apply the method of Ngô strings to give a
new computation of the Betti and Hodge numbers for manifolds of OG6 type.
This method was first introduced by de Cataldo, Rapagnetta, and Saccà in
[dCRS21] to compute the Betti and Hodge numbers of manifolds of OG10 type.
We also give a description of the Hodge structure of some special manifolds
of OG6 type in terms of the Hodge structure of a related Abelian surface.
Although we do not describe the Hodge structure of all manifolds of OG6
type, as is done in [GKLR22] using the LLV decomposition, we note that our
computation of the Hodge structure using Ngô strings does not require prior
knowledge of the Hodge numbers as an input.

Theorem 1. The odd Betti numbers of the six dimensional complex projective
manifolds of OG6 type are zero and the even ones are:

b0 = 1, b2 = 8, b4 = 199, b6 = 1504.

The relevant part of the Hodge diamond listing the Hodge numbers is given
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below:
h0,0 = 1

h2,0 = 1 h1,1 = 6
h4,0 = 1 h3,1 = 12 h2,2 = 173

h6,0 = 1 h5,1 = 6 h4,2 = 173 h3,3 = 1144.

The rows corresponding to the odd weight cohomology are omitted since those
entries vanish and all other Hodge numbers can be recovered via the usual
symmetries satisfied by compact Kähler manifolds.

The starting point for both the original method of Mongardi, Rapagnetta,
and Saccà in [MRS18] and the new method of Ngô Strings is the same. Con-
sider an Abelian surface J = J(C0), which is the Jacobian of a general genus
two curve C0, with NS(J) = Zc1(θ), where θ is a symmetric theta divisor.
Consider the moduli space of pure dimension one sheaves on J with Mukai
vector v = (0, 2θ,−2). There is a natural morphism to the Abelian fourfold
J∨ × J , where J∨ is the dual Abelian variety of J . Denote the fiber of this
map over (OJ , 0) ∈ J∨ × J by M . The variety M is singular but admits
a symplectic resolution M̃ of OG6 type. The morphism sending a sheaf to
its Fitting support then realizes M̃ as a Lagrangian fibration over the linear
system B = |2θ| ' P3.

The original method of Mongardi, Rapagnetta, and Saccà then relates the
geometry of M̃ to the geometry of a manifold of K3[3] type. Key to their
argument is the fact that the exceptional divisor, Σ̃, of the symplectic resolu-
tion M̃ →M is divisible by two in H2(M̃,Z) (cf. [MRS18, Theorem 4.1] and
[Rap07, Theorem 3.3.1]). This fact allows them to construct a manifold Y of
K3[3] type [MRS18, Proposition 5.3] which is related to M̃ using only bira-
tional modifications of smooth projective varieties and a double cover [MRS18,
Section 6]. From this description of M̃ , they are able to deduce the Betti and
Hodge numbers of M̃ . Mongardi, Rapagnetta, and Saccà remark in the end of
their introduction that their method cannot be applied to manifolds of OG10
type since the divisor analogous to Σ̃ is not divisible by two in the second
integral cohomology in that case and point to [Rap08] for a proof.

In contrast, the method of Ngô strings, introduced by de Cataldo, Rapag-
netta, and Saccà in [dCRS21] is a more general approach and can be adapted
to the OG6 case, as shown in this thesis. Due to the generality of the ap-
proach, the method of Ngô strings may be useful in other similar situations,
such as studying the Hitchin fibration.

We now summarize our approach using the method of Ngô strings, which
follows the strategy introduced in [dCRS21]. Similar to the original approach
used in [MRS18], we relate the geometry of M̃ to another better understood
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manifold. However, we relate M̃ to a manifold N of Kum3 type rather than
the manifold Y of K3[3] type. The manifold N is constructed by considering
the moduli space of sheaves on J with Mukai vector w = (0, 2θ,−3). This
moduli spaces also admit a natural morphism to the Abelian fourfold J∨ × J ,
and N is defined as the fiber of this morphism over (OJ , 0). It is known that
N is smooth and is of Kum3 type [Yos01]. The morphism sending a sheaf to
its Fitting support then realizes N as a Lagrangian fibration over the linear
system B = |2θ| ' P3.

The two fibrations M̃ → B and N → B are closely linked via a group
scheme G → B which acts fiberwise on both M̃ and N . More precisely, M̃
and N both contain open dense subvarieties which are torsors under the action
of G. We note that the subvariety of M̃ is a G-torsor over the entire base B,
while the subvariety of N is a G-torsor over an open subset strictly contained
in the base B. Using this relationship between M̃ and N , we are able to use the
known cohomology of generalized Kummer varieties, along with some related
smaller dimensional fibrations, to deduce the Betti and Hodge numbers of M̃
by working in an appropriate Grothendieck group.

As in the OG10 case, the main technical tool that makes this comparison of
the cohomology of M̃ and N possible is the Ngô Support Theorem (see [Ngô10,
Théorèm 7.2.1] for the original statement, [dCRS21, Theorem A.0.3] for the
Hodge theoretic refinement, and Section 2.2.1 for a discussion in this thesis).
The Ngô Support Theorem is a refinement of the Decomposition Theorem
[BBD82] for special types of fibrations called δ-regular weak Abelian fibrations,
which encompass many Lagrangian fibrations, including M̃ → B, N → B,
and the Hitchin fibration. The Decomposition Theorem is a general theorem
which states that the singular cohomology, or more generally the intersection
cohomology, of the domain of a fibration is a direct sum of pieces which are
governed by uniquely determined subvarieties, called supports, of the target.
In practice, it is extremely difficult to determine exactly which direct sum-
mands and supports appear in the Decomposition Theorem. However, if a
fibration is a δ-regular weak Abelian fibration, the Ngô Support Theorem re-
duces the question of determining the supports to questions about the top
degree direct image sheaf and completely determines the direct summands,
which are called Ngô strings, appearing in the Decomposition Theorem corre-
sponding to a given support. This is extremely powerful as questions about
the top degree direct image sheaf are often easier to answer and can be tackled
by studying the irreducible components of the fibers of the fibration.

The Hodge theoretic refinement of the Ngô support Theorem [dCRS21,
Theorem A.0.3] allows us to describe rational Hodge structure of M̃ in terms of

4



the Hodge structures of N and some smaller dimensional fibrations. However,
more can be said since the rational pure Hodge structure of N is known. More
precisely, the pure Hodge structure of N can be described in terms of the
Hodge structure of the Abelian surface J from which N is constructed. Using
this description, we are able to deduce our second main result, which describes
the pure Hodge structure of M̃ in terms of the pure Hodge structure of J . We
include a statement about the known Hodge structure of N for completeness.

Theorem 2. Let J be the Jacobian of a general genus two curve with NS(J) =

Zc1(θ), where θ is a symmetric theta divisor. Let M̃ be the manifold of OG6
type and N be manifold of Kum3 type constructed from J as described above.
Let U = Heven(J,Q), W = Hodd(J,Q), and 〈•〉 := [−2•](−•). Then

H∗(M̃) = Sym3 U ⊕
(
(U⊗2)⊕2 ⊕W⊗2

)
〈1〉 ⊕ U⊕137〈2〉 ⊕Q⊕512〈3〉.

H∗(N) = Sym3 U ⊕
(
U⊗2 ⊕ (U ⊗W )⊕2

)
〈1〉 ⊕ U⊕16〈2〉 ⊕Q⊕256〈3〉,

We note that using the language of Schur functors, one can rewrite the
cohomology of M̃ purely in terms of the even cohomology U of J . If one does
this, one recovers the description of the cohomology of M̃ coming from the
LLV decomposition given in [GKLR22]. See Section 5.6.1 for more details.

We now summarize the structure of this thesis. In Chapter 2, we review
the necessary preliminaries required for the thesis. In Section 2.1, we establish
our notation. In Section 2.2 we define the notion of a δ-regular weak Abelian
fibration and discuss the Ngô Support Theorem. In Sections 2.3 and 2.4, we
review the construction of the manifolds M̃ and N in more detail. In Section
2.5, we discuss the construction of the group scheme G → B over B. In
Section 2.6, we show that the group scheme G acts fiberwise on M̃ and N and
we then realize the triples (M̃,B,G) and (N,B,G) as δ-regular weak Abelian
fibrations. We remark that unlike the OG10 case, the fibers of our group
scheme G are not necessarily connected.

We then turn our attention to the study of the top degree direct image
sheaves for the fibrations M̃ → B and N → B. In Chapter 3, we first re-
call Rapagnetta’s stratification of the linear system |2θ| by analytic type of
singularity as described in [Rap07]. We then explicitly determine the number
of irreducible components of the fibers of the Lagrangian fibrations over each
stratum. The results are summarized in Proposition 3.1.3.

With this detailed description of the irreducible components of the fibers of
the Lagrangian fibrations, we compute the direct image sheaves in top degree
for both Lagrangian fibrations over various strata in Chapter 4. For precise
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statements, see Proposition 4.1.1 and Proposition 4.2.6. The key to determin-
ing the direct image sheaves is a precise understanding of the monodromy of
the irreducible components, which is more subtle than the OG10 case due to
the fact that the fibers of our group scheme G are not necessarily connected.

Finally in Section 5, we describe how the knowledge of the top degree direct
image sheaf along with the Ngô Support Theorem can be used to determine
the shape of the Decomposition Theorems for both Lagrangian fibrations.
For a precise statement, see Proposition 5.4.2. Similar to the OG10 case,
we fall short of determining the exact shape of the Decomposition Theorems
for M̃ → B and N → B. There is also an indeterminacy in both of these
fibrations which remarkably cancels out when comparing the shapes of the
Decomposition Theorems in the appropriate Grothendieck group. Using this
comparison, we deduce Theorem 1 about the Betti and Hodge numbers in
Section 5.5. Crucial to our proof are the following two facts: the first is that
the Hodge numbers and Hodge structures of the generalized Kummer type
manifold N are known. The second is that some of the Ngô strings which
appear in the Decomposition Theorems for M̃ → B and N → B also appear
in other lower dimensional fibrations related to the Abelian surface J . The
geometry of these lower dimensional fibrations are much simpler and their
Hodge theory is completely understood. For a more detailed discussion of
these Ngô strings, see Sections 5.2 and 5.3.

We conclude with following remark. If one is only interested in the state-
ments about the Betti and Hodge numbers of OG6, a result by Shen and Yin
[SY22, Theorem 0.2] implies that it suffices to work only in the constructible
derived category. They prove that for any compact hyper-Kähler manifold
M admitting a Lagrangian fibration M → B, the Hodge numbers can be
recovered from the perverse filtration associated to the Lagrangian fibration.
However, if one is interested in statements about the Hodge structure, then it
is necessary to work in the category of mixed Hodge modules.
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Chapter 2

Preliminaries

2.1 Notation
We work over the field of complex numbers, C. In this thesis, a variety is a
separated scheme of finite type over C. Unless otherwise stated, by point we
mean closed point. Given a morphism of varieties f : X → Y and a subvariety
Z ⊆ Y , we set XZ := f−1(Z). In the special case that Z = {y} is a point, we
will denote the fiber by Xy. Given a coherent sheaf F on a smooth projective
variety X, the ith Chern class of F , denoted by ci(F ), takes values in CH i(X),
where CH i(X) is the Chow group of cycles of codimension i on X modulo
rational equivalence. If X has dimension n, the Chow group of cycles of
dimension i (or i-cycles) is denoted by CHi(X) := CHn−i(X). By abuse
of notation, we will denote the image of ci(F ) under the cycle class map
cl : CH i(X)→ H2i(X,Z) by the same symbol.

Given a variety X, there are two categories which we will work with.
The first is the bounded constructible derived category Db

c(X,Q), or simply
Db(X,Q), whose objects are complexes of sheaves on X of Q-vector spaces
whose cohomology complexes are constructible with respect to some finite al-
gebraic stratification. Note that here, we are implicitly using the analytic
topology on X. For basics and references, see [dCM09]. The second is Saito’s
bounded derived category DbMHMalg(X) of algebraic mixed Hodge modules
which rational structure, which is endowed with the formalism of weights. See
[Sai90] for the foundations and [Sch14] for the basics and references. Given
an object K ∈ DbMHMalg(X), we denote by K(k) the Tate twist of K by an
integer k.

There is a natural exact functor rat : DbMHMalg(X) → Db(X,Q), which
is neither essentially surjective nor fully faithful. However, via the functor
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rat, the standard t-structure on DbMHMalg(X) corresponds to the middle
perversity t-structure on Db(X,Q). In particular, this implies that if K ∈
MHMalg(X), then rat(K) is a perverse sheaf on X. Moreover, a splitting
of the object K induces a splitting of the object rat(K). Given an object
K ∈ DbMHMalg(X), we will often abuse notation and denote rat(K) by K.

If Z ⊆ X is a closed irreducible subvariety and L is a polarizable varia-
tion of rational pure Hodge structures of weight w(L ) on some Zariski dense
open subset V ⊆ Zreg, then the intersection cohomology object ICZ(L ) ∈
MHMalg(X) yields, via rat, the usual intersection cohomology complex of Z
with coefficients in the local system underlying L . Such a local system is
necessarily self dual, i.e. L ' L ∨, and is semi-simple. We define

I C Z(L ) := ICZ(L )[− dim(Z)]

and note that the object rat(I C Z(L )) is not Verdier self-dual and the coho-
mology sheaves of I C Z(L ) are concentrated in non-negative degrees begin-
ning in degree zero. When making geometric statements, we use the non self-
dual complexes I C . However in proofs, the perverse object IC is sometimes
used to exploit the simplified book-keeping when considering the Poincaré-
Verdier and Relative Hard Lefschetz dualities.

If the object I C Z(L ), with L pure of weight of w(L ), is considered
in MHMalg(X)[− dim(Z)] ⊂ DbMHMalg(X), then the (hyper)cohomology
group IH•(Z,L ) := H•(Z,I C (L )) is a pure polarizable Hodge structure of
weight w(L ) + •.

2.2 δ-Regular Weak Abelian Fibrations
The notion of a δ-regular weak Abelian fibration was introduced by B.C. Ngô
in [Ngô10]. We follow the discussion in [dCRS21, §2.2 and §2.3] and summarize
the notion below.

Let g : G → B be a smooth commutative group scheme over B, and let
g0 : G0 → B be the identity component. Given a closed point of B, there is
the canonical Chevalley devissage of the fiber G0

b of G at b, i.e. there is a
canonical short exact sequence

0→ Rb → G0
b → Ab → 0 (2.1)

over the perfect field k(b), where Ab is an Abelian variety and Rb is affine,
connected, and maximal with respect to these properties.

8



Remark 2.2.1. Since we are working over C, given any integral locally closed
subvariety Z ⊂ B, there exists an open dense subvariety V ⊂ Z and a short
exact sequence of smooth commutative algebraic group schemes over V with
connected fibers

0→ RV → G0|V → AV → 0 (2.2)
which realizes the Chevalley devissage point-by-point on V (cf. [Ngô10,
§7.4.8]).

The function δ : B → Z sending b ∈ B to dimk(b) Rb is upper-semicontinuous
and we define the δ-loci Bi by Bi := {b ∈ B | δ(b) = i}. Now suppose that
d = dimk(b) Gb is constant on B (it is so on the connected components of B
by smoothness). The Tate module of G/B is defined to be the object

T (G) = T (G/B) := R2d−1g0! QG0(d)

in DbMHM(B)alg. Given any b ∈ B, the short exact sequence in Equation
2.1 induces a short exact sequence

0→ T (Rb)→ T (G0
b)→ T (Ab)→ 0

of rational mixed Hodge structures.
For any fixed prime `, let Tet,Qℓ

(G/B) be the Qℓ-adic counterpart of
T (G/B), i.e. it is defined by the same formula using the étale topol-
ogy/cohomology formalism. The Tate module Tet,Qℓ

(G/B) is defined to
be polarizable if étale locally, there is a pairing

Tet,Qℓ
(G/B)⊗ Tet,Qℓ

(G/B)→ Qℓ(1)

such that for every b ∈ B, the kernel of the pairing at b is Tet,Qℓ
(Rb). With

these preliminaries out of the way, we can define the notion of a δ-regular weak
Abelian fibration.

Definition 2.2.2. A weak Abelian fibration, denoted as a triple (M,B,G)

is a pair of of morphisms M
f−→ B

g←− G such that

1. f is proper,

2. G is a smooth commutative group scheme over B,

3. f and g have the same pure relative dimension d,

4. there is an action a : G×B M →M of G on M over B,

9



5. the action has affine stabilizers at every point m ∈M ,

6. the Tate module Tet,Qℓ
(G/B) is polarizable.

If in addition the δ-loci, Bi, satisfy the inequality

codimBi ≥ i (2.3)

for every non-negative integer i, then (M,B,G) is said to be a δ-regular weak
Abelian fibration. In particular, this inequality implies that the general fiber
G0

b is an Abelian variety.

Given a weak Abelian fibration (M,B,G), if M is a quasi-projective holo-
morphic symplectic manifold of complex dimension 2d and the morphism
M → B is a Lagrangian fibration, i.e. a proper surjective morphism with
connected fibers and with general fiber a Lagrangian subvariety, then de
Cataldo, Rapagnetta, and Saccá give the following criterion for determining
when (M,B,G) is δ-regular.

Proposition 2.2.3. ([dCRS21, Proposition 2.3.2]) Let (M,B,G) be a weak
Abelian fibration such that

1. M is a quasi-projective holomorphic symplectic manifold and B is
smooth,

2. M → B is a proper Lagrangian fibration and G → B has connected
fibers,

3. there is an open subset M0 ⊂M such that M0/B is a G/B-torsor.

Then (M,B,G) is δ-regular.

2.2.1 The Ngô Support Theorem
In this section, we recall the definition of a support and state the refinement
of the Ngô Support Theorem given by de Cataldo, Rapagnetta, and Saccá in
[dCRS21].

Definition 2.2.4 (Supports). Let f : X → Y be a proper map of complex alge-
braic varieties. By the Decomposition and Semisimplicity Theorems ([BBD82,
§6]), there exists finitely many triples (Vα,Lα, dα), where Vα ⊂ Y is a locally
closed smooth irreducible algebraic subvariety of Y , Lα is a local system on
Vα, and dα is an integer, such that there is a canonical decomposition

Rf∗ICX '
⊕
α

ICVα
(Lα)[dimX − dimVα − dα]
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in the bounded constructible derived category Db(Y ). The closed subvarieties
Zα := Vα are called the supports of Rf∗ICX .

In the remainder of this section, we work with the following set up.

Set-up 2.2.5. Let (M,B,G) be a δ-regular weak Abelian fibration. Suppose
that d = dim(M/B) = dim(G/B), M/B is projective, B is irreducible, and M
is a rational homology manifold, i.e. I C M ' QM .

We note that the assumption on the equality of relative dimensions is
made only to simplify the numerology. Let A be a finite set enumerating
the supports of Rf∗QM , so that the supports are denoted Zα for α ∈ A . In
view of Remark 2.2.1, there is an open dense subvariety Vα ⊂ Zα and a short
exact sequence of smooth commutative algebraic group schemes over Vα with
connected fibers

0→ RVα → G0|Vα → AVα → 0

realizing the Chevalley devissge point-by-point on Vα. Denote the natural
map Aα → Vα by gα and let δabα denote the relative dimension of Aα/Vα. Let
Λ•

α := R•gα∗QAα where 0 ≤ • ≤ δabα .

Theorem 3. With the set-up above, there is an isomorphism in DbMHMalg(B)
of pure objects of weight 0.

Rf∗QM '
⊕
α∈A

Iα[−2(d− δabα )](δabα − d) (2.4)

where

Iα :=

2δabα⊕
•=0

I C Zα(Λ
•
α ⊗Lα)[−•] (2.5)

and Lα is a polarizable variation of pure Hodge structures of weight 0.

The summands Iα appearing in Theorem 3 are called Ngô strings.

Remark 2.2.6. We note that there is a stronger version of the Ngô Support
Theorem (cf. [Ngô10, Proposition 7.2.3]) which keeps track of the action of the
group of connected components of the group scheme G on the complex Rf∗QM .
As this stronger version is not needed in this thesis, we do not state it precisely.
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2.3 Moduli Spaces of Pure Dimension One
Sheaves on Surfaces

In this section, we recall some basic definitions about pure dimension one
sheaves on surfaces. Let X be a smooth projective surface. A coherent sheaf
F on X is pure of dimension one if for every non-trivial subsheaf G ⊂ F ,
dim(G ) = 1, where dim(G ) is the dimension of the schematic support of G . If
F is a pure dimension one sheaf, a key property is that there exists a length
one locally free resolution

0→ F1
ϕ−→ F0 → F → 0 (2.6)

where F1 and F2 have the same rank (cf. [HL97, §1.1]).
Using this resolution, the Fitting support of F , denoted by FittSupp(F ),

as the vanishing subscheme induced by the morphism det(F1)→ det(F0) be-
tween determinant bundles (cf. [Eis95, Corollary-Definition 20.4]). We note
that this definition is independent of the resolution.

One can also verify from the resolution in Equation 2.6 that stability with
respect to the reduced Hilbert polynomial amounts to the following notion of
stability.

Definition 2.3.1. (Semi-stability for Pure Dimension One Sheaves) A pure
dimension one sheaf F on a smooth projective polarized surface (X,H) is
Gieseker (semi-)stable with respect to H if for all proper pure dimension
one quotients F → G , the following inequality holds,

χ(F )

c1(F ) ·H (≤)

χ(G )

c1(G ) ·H
(2.7)

Note that Remark 2.3.2 below implies that the denominators in Equation 2.7
are always non-zero by the Nakai-Moishezon criterion since H is ample. In the
remainder of this thesis, semi-stability will always mean Gieseker semi-stability
as it is the only type of semi-stability considered.

We end this section with two remarks on the Fitting support.

Remark 2.3.2. The Fitting support of a pure dimension one sheaf F on X
contains the schematic support of F [Eis95, Proposition 20.7] and Equation
2.6 implies that the Fitting support represents c1(F ) in the CH1(X) . In
particular, two pure dimension one sheaves F and G have isomorphic deter-
minant bundles if and only if their Fitting supports are linearly equivalent.

12



Remark 2.3.3. If the Fitting support of F is an integral curve, then F is
the pushforward of a rank one torsion free sheaf on the curve. It follows that
F has no pure dimension quotient and is automatically stable. If F is the
pushforward of a line bundle on a curve C which is possibly both reducible
and non-reduced, then the only proper pure dimension one quotients of F are
restrictions to the pure dimension one subschemes of C. It follows that F is
(semi-)stable if and only if

χ(F )

C ·H (≤)

χ(F |D)
D ·H

(2.8)

for every proper subcurve D ⊂ C.

2.4 The Varieties M̃ , M , N and B

In this section, we review the construction of the Kummer and O’Grady
type manifolds. Throughout the rest of this thesis, we work with a fixed
curve C0 of genus two. Fix a Weierstrass point w0 ∈ C0 and let J :=
H0(C0,Ω

1
C0
)∨/H1(C0,Z) be the Jacobian of C0. The Abel-Jacobi Theorem

gives a canonical isomorphism Pic0(C0)
≃−→ J and under this identification,

the Abel-Jacobi embedding can be written as

C0
u
↪−→ J ; x 7→ [x− w0]. (2.9)

The image θ := u(C0) is a symmetric theta divisor, i.e. θ is invariant under
pullback by the natural (−1)-involution on J sending x to −x. We will work
under the additional assumption that

NS(J) ' Zc1(θ), (2.10)

which holds if the curve C0 fixed at the beginning is general.
Using the theta divisor, we can also identify J with its dual Abelian variety,

J∨, via the map
J → J∨; x 7→ [θx − θ], (2.11)

where θx := θ + x.
We now recall the notion of the Mukai lattice and Mukai vectors (cf. [HL97,

Section 6.1]). Let Heven(J,Z) := H0(J,Z) ⊕ H2(J,Z) ⊕ H4(J,Z) denote the
even integral cohomology of J . Given a vector v = (v0, v2, v4) ∈ Heven(J,Z),
define v := (v0,−v2, v4). For vectors v, w ∈ Heven(J,Z), the Mukai pairing is
given by

(v, w) := −
∫
J

(v, w), (2.12)
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and (Heven(J,Z), (·, ·)) is called the Mukai lattice.
Given a coherent sheaf F on J , the Mukai vector of F is defined to

be v(F ) := ch(F ) ∪
√

Td(J), where ch(F ) is the Chern character of F
and Td(J) is the Todd class of J . Note that since J is an Abelian surface,
Td(J) = 1, which implies that v(F ) = ch(F ). In particular,

v(F ) = (r, c1, χ) (2.13)

where r = rk(F ), c1 = c1(F ) and χ = ch2(F ). Note that by Hirzebruch-
Riemann-Roch, χ = ch2(F ) = χ(F ) is the Euler characteristic of F .

Equation 2.13 implies that the Mukai vector of a coherent sheaf on J takes
values in

Heven
alg (J) := H0(J,Z)⊕NS(J)⊕H4(J,Z) ⊂ Heven(J,Z). (2.14)

Since we are working under the assumption NS(J) ' Zc1(θ), we can identify
Heven

alg (J) with Z3 in the natural way. Under this identification, we will denote
vectors in Heven

alg (J) by v = (0, 2θ, χ).
Consider a vector of the form v = (0, 2θ, χ) ∈ Heven

alg (J) with χ 6= 0 and
let Mv be the moduli space of semi-stable sheaves on J with Mukai vector
v. Points of Mv are in bijection with S-equivalence classes of sheaves, or
equivalently isomorphism classes of polystable sheaves (see [HL97, Definitions
1.5.3, 1.5.4]). Sheaves with such a Mukai vector v are pure of dimension
one. By [Muk84], Mv is a normal irreducible projective variety of dimension
v2 + 2 = 10 and the smooth locus, which is precisely the locus parameterizing
strictly stable sheaves, admits a symplectic form.

There is a natural morphism

av : Mv → J∨ × J ; [F ] 7→
(
det(F )⊗OJ(2θ)

∨,
∑

c2(F )
)
, (2.15)

where [F ] is the S-equivalence class of F , det(F ) is the determinant bundle
of F , and

∑
c2(F ) is the sum in J of any representative of c2(F ) in CH0(J),

the Chow group of zero cycles on J (cf. [HL97, §4.5 and Proposition 10.3.6 ]).
The fiber of this morphism

Mv := a−1
v (OJ , 0), (2.16)

as well as its resolution, will be our main objects of interest in this paper.
The points of Mv parameterize S-equivalence classes of semi-stable sheaves,
on J having determinant bundle isomorphic to OJ(2θ) and second Chern class
summing up to 0.
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The moduli spaces Mv and the fibers Mv depend on the parity of the Euler
characteristic χ in the Mukai vector v = (0, 2θ, χ).

If χ is odd, then the Mukai vector v is primitive and Yoshioka shows in
[Yos01, Theorem 0.1 and Theorem 0.2] Mv is smooth of dimension 10 and
that the fiber Mv is deformation equivalent to a generalized Kummer variety
of dimension 6.

If χ is even, then the Mukai vector v = 2v′ is twice a primitive Mukai vector
and Rapagnetta shows in [Rap07] that the moduli space Mv and the fiber Mv

are both reduced, but singular. The singular locus Σv ⊂ Mv parameterizes
polystable sheaves of the form

F1 ⊕F2,

with v(Fi) = v′, determinant bundle isomorphic to OJ(2θ) and second Chern
class summing up to 0. The locus Σv is itself singular and its singular locus,
Ωv ⊂ Σv, parameterizes polystable sheaves of the form

F ⊕F .

Both the moduli space Mv and the fiber Mv admit symplectic resolutions

πv : M̃v →Mv,

which can be realized by first blowing up Ωv in Mv, then blowing up BlΩvMv

along the strict transform of Σv, and finally contracting the inverse image of
Ωv via the two blowups. The resolution M̃v is an irreducible holomorphic
symplectic manifold which is birational, and hence deformation equivalent, to
O’Grady’s six dimensional exceptional example ([Rap07, Proposition 2.2.1]).

Remark 2.4.1. The fibers of the resolution π : M̃ → M are described by
Rapagnetta in [Rap07, Remark 1.1.5]. In particular, if [F ] ∈ Σ ⊂ M , then
π−1([F ]) is a P1. If [F ] ∈ Ω ⊂ M , then π−1([F ]) is a smooth 3-dimensional
quadric.

We also record the following fact about the Decomposition Theorem for
the symplectic resolution.

Proposition 2.4.2. There is a canonical isomorphism in DbMHMalg(M) and
in Db

c(M,Q) (turn off the Tate twists)

Rπ∗QM̃ ' I C M ⊕QΣ[−2](−1)⊕QΩ[−6](−3). (2.17)
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Proof. By a general result of Kaledin (see [Kal06, Lemma 2.11]), the sym-
plectic resolution π : M̃ → M is semismall. The Decomposition Theorem for
semismall morphisms [dCM09, Theorem 4.2.7] implies that

Rπ∗QM̃ ' I C M ⊕I C Σ[−2](−1)⊕I C Ω[−6](−3). (2.18)

Rapagnetta, in the proof of [Rap07, Theorem 2.1.7], shows that the singular
locus Σ ⊂M is isomorphic to (J∨×J)/±1. In particular, Σ has finite quotient
singularities, which implies that the intersection complex I C Σ is the constant
sheaf. Under the isomorphism Σ ' (J∨× J)/± 1, the singular locus Ω of Σ is
identified with the 256 nodes. Since Ω is a finite set, the intersection complex
I C Ω is also the constant sheaf.

For Mukai vectors of the form v = (0, 2θ, χ), analysis of the spaces Mv is
simplified by the existence of the additional structure of a Lagrangian fibration,
which we now describe. There is a Le Potier support morphism from the
moduli space Mv to the Hilbert scheme parameterizing closed subschemes of
J with cohomology class 2θ sending a sheaf to its Fitting support ([LeP93,
p. 24]). The image of the support morphism restricted to Mv ⊂ Mv is the
linear system |2θ| since the Fitting support of sheaves in Mv are all linearly
equivalent.

If C ⊂ J is an integral curve with cohomology class 2θ, then a pure di-
mension one sheaf F on J with Fitting support C is the pushforward of a
torsion free sheaf F on C. Using this fact and adjunction, one can conclude
that the rank of F must be one by looking at the Hilbert polynomial of F . In
particular, the fiber of this morphism over an integral curve C is precisely the
degree χ+ 4 compactified Jacobian of C (see [LeP93, p. 24] and [Ale04, §1]).

In the remainder of the paper, we fix some Mukai vectors and will work
with the following varieties.

Definition 2.4.3. Set

M̃ := M̃(0,2θ,−2), M̃ := M̃(0,2θ,−2), (2.19)

M := M(0,2θ,−2), M := M(0,2θ,−2) (2.20)
N := M(0,2θ,−3), N := M(0,2θ,−3), (2.21)

Set B := |2θ| ' P3 and let
m : M → B, (2.22)
n : N → B, (2.23)
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denote the respective support morphisms and let

m̃ : M̃
π−→M

m−→ B (2.24)

denote the composition of the support morphism with the symplectic resolution.

Remark 2.4.4. The varieties M̃ and N are holomorphic symplectic manifolds.
By [Mat01, Theorem 1], the support morphisms are Lagrangian fibrations. By
[Mat00, Theorem 1], the Lagrangian fibrations m : M̃ → B and n : N → B are
equidimensional and hence flat by the miracle flatness theorem. Moreover, we
can say that

1. since M has a symplectic resolution, it has canonical singularities and
is thus Cohen-Macaulay (see [KM98, Corollary 5.24 and Lemma 5.12]);

2. since the fibers of m are dominated by the corresponding fibers of m̃,
they all have the same dimension 3 by upper semi-continuity of fiber
dimension for the proper morphism m.

Since the base B is regular, it again follows again from the miracle flatness
theorem that the morphism m : M → B is flat.

2.5 The Group Scheme G

In this section, we introduce the relevant group scheme G as an open subset

G ⊂M(0,2θ,−4).

We follow the discussion in Section 3.3 in [dCRS21]. Although their statements
are formulated in terms of moduli spaces of sheaves on a K3 surface, many
of their proofs carry over to our situation. We begin with the following two
lemmas which are the analogues of Lemmas 3.3.1 and 3.3.2 in [dCRS21].

Lemma 2.5.1. For any Mukai vector of the form v = (0, 2θ, χ), the locus
Gv ⊂Mv parameterizing stable sheaves that are pushforwards of line bundles
on their schematic supports is a nonempty Zariski open subset

Proof. The proof of Lemma 3.3.1 in [dCRS21] only uses the fact that Mv is
a moduli space of pure dimension one sheaves on a surface and applies in our
case.

Lemma 2.5.2. Let F be a coherent sheaf on J with v(F ) = (0, 2, χ) and
assume that F is the pushforward of a line bundle on a curve C ∈ |2θ|.
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1. If C = 2Cred, then χ is even, F is stable, and the degree of the restriction
of F to Cred is deg(FCred

) = (χ/2) + 2.

2. (a) If C = C1 + C2 for C1 6= C2 and χ is even, then the sheaf F is
stable if and only if deg(FC1) = deg(FC2) = (χ/2) + 2.

(b) If C = C1+C2 for C1 6= C2 and χ is odd, then the sheaf F is stable
if and only if deg(FC1) = 2+(χ+1)/2 and deg(FC2) = 2+(χ−1)/2
or vice-versa.

Proof. Noting that J has trivial canonical bundle, pa(C) = 5, and pa(Cred) =
2, the computation done in the proof of Lemma 3.3.2 in [dCRS21] applies in
our case.

We now discuss the construction of the group scheme G. Recall from
Equation 2.15 that there is a map a(0,2θ,−4) : M(0,2θ,−4) → J∨ × J from the
moduli space of sheaves with Mukai vector (0, 2θ, 4) to the Abelian fourfold
J∨ × J and recall that M(0,2θ,−4) := a−1

(0,2θ,−4)(OJ , 0) is the corresponding fiber
over (OJ , 0) ∈ J∨ × J .

Let MB
(0,2θ,−4) := a−1

(0,2θ,−4)({OJ} × J) be the pre-image of the slice {OJ} ×
J ⊂ J∨ × J . Note that since the sheaves parameterized by MB

(0,2θ,−4) have
isomorphic determinant bundles, the Fitting support of these sheaves are all
in the linear system B = |2θ| by Remark 2.3.2. Set

GB := G(0,2θ,−4) ∩MB
(0,2θ,−4),

G := G(0,2θ,−4) ∩M(0,2θ,−4).
(2.25)

We summarize the relationship between these spaces in the following diagram:
6G 8GB 10G(0,2θ,−4)

6M(0,2θ,−4)
8MB

(0,2θ,−4)
10M(0,2θ,−4)

B

where the superscripts on the left denote the respective dimensions of the
spaces, the hooked arrows are inclusions, and the arrows with two heads are
the support morphisms (which are surjective).
Corollary 2.5.3. The open subset GB

(0,2θ,−4) ⊂MB
(0,2θ,−4) can be identified with

the relative degree-0 Picard scheme Pic0C/B of the family C/B of curves in the
linear system B.
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Proof. The proof of Corollary 3.3.3 in [dCRS21] applies.

Using this identification, the morphism M(0,2θ,−4)

a(0,2θ,−4)−−−−−→ J∨ × J
pr2−−→ J

restricted to GB
(0,2θ,−4) induces a morphism

a : Pic0C/B → J × B. (2.26)

where the map to B is just the map Pic0C/B → B. In view of the following
lemma, the morphism a is a morphism of B-group schemes.

Lemma 2.5.4. Let C ∈ B and i : C → J be the inclusion. Then the map

a : Pic0(C)→ J ; L 7→
∑

c2(i∗L). (2.27)

is a group homomorphism.

Proof. Although C ∈ B can be singular, the inclusion i : C → J is a regular
embedding with normal bundle i∗OJ(C). Riemann-Roch without denomina-
tors (cf. [FH91, Theorem 15.3]) holds for regular embeddings (cf. [Ful98,
Example 15.3.6]) and implies that the Chern polynomial, ct(i∗L), is given by

ct(i∗L) = 1 + [C]t+ ([C]2 − i∗c1(L))t
2. (2.28)

We now claim that the sum of a representative of [C]2 in CH0(J) is zero,
i.e.

∑
[C]2 = 0 ∈ J . To see this, choose a smooth curve C ′ ∈ B which does

not contain any 2-torsion points in J [2] and intersects C transversely. Such a
choice is always possible by Rapagnetta’s description of the linear system B
(see the upcoming Section 3.1). Then, a representative of [C]2 in CH0(J) is
given by C ∩ C ′. Since B = |2θ| where θ is a symmetric theta divisor, C and
C ′ are symmetric. This implies that if x ∈ C ∩ C ′, then −x ∈ C ∩ C ′. Since
C ′ does not contain any 2-torsion points, x and −x must be distinct points in
C ∩ C ′ and we conclude that

∑
[C]2 = 0.

Equation 2.28 then implies that

a(L) =
∑

c2(i∗L) =
∑

[C]2 −
∑

i∗c1(L) = −
∑

i∗c1(L).

Since the first Chern class is a group homomorphism from Pic0(C) to CH0(C),
we conclude that a is a group homomorphism.

An immediate corollary is the following.

Corollary 2.5.5. The open subset G := G(0,2θ,−4) ∩M(0,2θ,−4) ⊂M(0,2θ,−4) can
be identified with the kernel of the map a : Pic0C/B → J × B and thus inherits
the structure of a B-group scheme.
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2.6 M̃ and N as δ-regular Weak Abelian
Fibrations

In this section, we show that the triples (M̃,B,G) and (N,B,G) are δ-regular
weak Abelian fibrations satisfying the assumptions of Theorem 3 (cf. Section
2.2.1). As in the previous section, we follow the discussion in [dCRS21, Section
3.4]. We begin with a series of lemmas.

Lemma 2.6.1. The fiber product G×B M is irreducible.

Proof. Let S ⊂ B be the locus parameterizing smooth curves. For any b ∈ S,
the universal property of the fiber product implies that

(G×B M)b ' Gb ×Mb

where (G×B M)b is the fiber of (G×B M) over b. Since b ∈ S corresponds to
a smooth curve in the linear system |2θ|, the fibers Gb and Mb are irreducible
and it follows that (G ×B M)b is irreducible. Now consider the fiber product
diagram

(G×B M)S G×B M

S B

□

By the discussion above, every fiber of the map (G×BM)S → S is irreducible.
Since S ⊂ B is also irreducible, it follows that (G ×B M)S is irreducible.
However, since S is a Zariski open subset of B, (G ×B M)S is a Zariski open
subset of G ×B M and hence is dense in G ×B M . Since the closure of an
irreducible space is irreducible, we conclude that G×B M is irreducible.

Lemma 2.6.2. Tensoring a sheaf by a line bundle with the same Fitting
support induces (algebraic) actions aM : G×BM →M and aN : G×BN → N .

Proof. By Lemma 3.4.1 in [dCRS21], there is an algebraic action

aM : G×B M→M.

The universal property of fiber products gives a morphism

G×B M → G×B M→M

To show that there is an algebraic action aM : G ×B M → M , it suffices to
show that the image of the above map is contained in M . In particular, we
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must show that given (L ,F ) ∈ GC ×MC , det(F ⊗L )⊗OJ(2θ)
∨ ' OJ and∑

c2(F ⊗L ) = 0.
We first show that det(F ⊗L )⊗OJ(2θ)

∨ ' OJ . If the Fitting support of
both F and L is a smooth curve C ∈ B, then the Fitting support of F ⊗L
is also C since the Fitting support is equal to the schematic support in this
case. Since the Fitting support is a representative of the first Chern class in
CH1(J), it follows that det(F ⊗L ) = det(F ). It follows that the restriction
of the composition

G×B M →M→ J∨,

to the open subset (G×B M)S is the zero map, where the map M→ J∨ is the
morphism taking a sheaf F to det(F )⊗OJ(2θ)

∨. Since G×BM is irreducible
by Lemma 2.6.1, we conclude that the composition is the zero map.

We next show that
∑

c2(F ⊗ L ) = 0. If C ∈ |2θ| is a smooth curve
and i : C → J denotes the inclusion, then any (L ,F ) ∈ GC ×MC can be
written as (i∗L, i∗F ) where L and F are line bundles of degrees 0 and 2 on C
respectively satisfying

∑
c2(i∗L) =

∑
c2(i∗F ) = 0. It follows from the proof

of Lemma 2.5.4∑
c2(F ⊗L ) =

∑
c2(i∗F ) +

∑
c2(i∗L) = 0.

It follows that the restriction of the composition

G×B M →M→ J,

to the open subset (G ×B M)S is the zero map, where the map M → J is
the morphism taking a sheaf F to

∑
c2(F ). Since G×B M is irreducible by

Lemma 2.6.1, we conclude that the composition is the zero map.
We have shown that for any C ∈ B, the composition

G×B M →M
a−→ J∨ × J

is the zero map. It follows that the map G×B M →M factors through M as
desired.

Lemma 2.6.3. The action G×B M →M lifts to a unique action G×B M̃ →
M̃ .

Proof. This follows from the fact that the resolution M̃ → M is the blowing
up of a locus which is invariant under the action of the group scheme.

Lemma 2.6.4. The actions of G on M̃,M, and N have affine stabilizers.
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Proof. The proof of Lemma 3.4.4 in [dCRS21] applies to our case and shows
that the action of G on M, M̃, and N have affine stabilizers. Given a sheaf
F ∈M, M̃, or N , the stabilizer of F in G, is contained in the stabilizer of F
in G. Since the stabilizer of F in G is affine, the stabilizer of F in G is also
affine.

Lemma 2.6.5. (Polarizability of the Tate module) The Qℓ-adic counterparts
Tet,Qℓ

(−) of the Tate module T (−) associated with G→ B are polarizable. The
same is true if we restrict the family of curves to any subfamily of curves over
a locally closed subvariety of B.

Proof. Although stated for the family of spectral curves in the GLn and SLn

Hitchin systems, the polarizability results in [dC17a, Theorem 3.3.1 and The-
orem 4.7.2] for the relative Pic0 and the relative Prym varieties are proved for
any family of curves obtained via base change from a linear system of curves
on a nonsingular surface.

We note that de Cataldo’s proof of polarizability for the relative Prym
variety can also be adapted to give polarizatibility for our group scheme G.
The key observation is the following. For any b ∈ B, let Cb =

∑
mbjC

red
bj
⊂ J

be the corresponding curve in J and let C̃bj → Cred
bj

be the normalization of the
irreducible components of Cb. Let ãlbbj : Pic0(C̃bj) → J be the morphism on
Albanese varieties induced by the map ĩbj : C̃bj → J and let ãb :=

∑
mbj ãlbbj .

In view of the upcoming Lemmas 3.2.1, 3.3.3, and 3.4.11, the diagram

Pic0(Cb) Pic0(C̃b)

J

ν∗b

ab
ãb

commutes. One then checks that the morphisms ãb and ĩ∗b play the same role
as the morphisms Nab

pa and p̃∗a in Lemma 4.7.1 of [dC17a]. One then follows
the proof of Theorem 4.7.2 in [dC17a] to conclude polarizability of the Tate
module.

Lemma 2.6.6. Let M̃ lf ⊂ M̃ and N lf ⊂ N be open subsets parameteriz-
ing stable sheaves which are pushforwards of line bundles on their schematic
supports. Then

1. M̃ lf surjects onto B and is a torsor under the group scheme G,
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2. N lf surjects onto B \NR where NR is the locus of non-reduced curves
in B and is a torsor under the restriction of G to B \ NR. Moreover,
there is no open set of N which is a G-torsor over the entire base B.

Proof. The claims follow from the upcoming Propositions 3.2.10, 3.3.8, and
3.4.14.

Proposition 2.6.7. The triples (M̃,B,G) and (N,B,G) are δ-regular weak
Abelian fibrations which satisfy the assumptions of Set-up 2.2.5.

Proof. By Lemma 2.6.2, Lemma 2.6.3, Lemma 2.6.4, and Lemma 2.6.5, the
triples (M̃,B,G) and (N,B,G) are weak Abelian fibrations. Lemma 2.6.6 and
Proposition 2.2.3 imply that the triple (M,B,G) is a δ-regular weak Abelian
fibration. Since δ-regularity is a property of the group scheme G, the triple
(N,B,G) is also a δ-regular weak Abelian fibration although N does not con-
tain an open subset which is a G-torsor over the entire base B. To see that
the assumptions of Set-up 2.2.5 are satisfied, note that M̃ , N are both smooth
and projective, B ' P3 is irreducible, and M̃/B, N/B, G/B all have relative
dimension three.
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Chapter 3

Irreducible Components

In this chapter, we first describe Rapagnetta’s stratification of the linear
system B = |2θ|. We then study the fibers of the Lagrangian fibrations
m̃ : M̃ → B and n : N → B over each stratum, with an emphasis on describing
the irreducible components. Our main results are summarized in Section 3.1
and the proofs will be carried in Sections 3.2, 3.3, and 3.4. The results in this
section are the key input to the proofs of Propositions 4.1.1 and 4.2.6, which
describe the top degree direct image sheaves R6m̃∗QM̃ and R6n∗QN .

3.1 Rapagnetta’s Stratification of the Linear
System |2θ|

Recall that J = J(C0) is the Jacobian of a genus two curve with NS(J) '
Zc1(θ) where θ is a symmetric theta divisor. In [Rap07], Rapagnetta stratifies
the linear system |2θ| according to the analytic type of singularity by looking
at the morphism

φ : J → |2θ|∨

induced by the linear system |2θ|, whose image, K, is a singular Kummer
quartic surface in |2θ|∨.

Proposition 3.1.1. [Rap07, Proposition 2.1.3] Rapagnetta’s stratification of
the linear system |2θ| according to analytic type of singularity is the following:

• Stratum S: the open dense locus parameterizing smooth curves of genus
5.
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• Stratum N(1): the locus parameterizing irreducible nodal curves singu-
lar in a unique 2-torsion point. We have dimN(1) = 2 and N(1) =
∪p∈J [2]Np where Np ' P2 parameterizes curves singular at p.

• Stratum N(2): the locus parameterizing irreducible nodal curves singular
in exactly two distinct 2-torsion points. We have dimN(2) = 1 and
N(2) = ∪p,q∈J [2],p ̸=qNpq where Npq := Np ∩Nq ' P1. Note that there are(
16
2

)
= 120 lines Npq.

• Stratum N(3): the locus parameterizing irreducible nodal curves singular
in exactly three distinct 2-torsion points. We have dimN(3) = 0 and
|N(3)| = 240.

• Stratum R(1): the locus parameterizing reducible curves of the form
θx + θ−x where θx and θ−x are translates of the theta divisor θ by x ∈
J \ J [2]. Such curves necessarily have two distinct singular points. We
have dimR(1) = 2 and R := R(1) is isomorphic to the Kummer quartic
K in B.

• Stratum R(2): the locus parameterizing reducible curves of the form
θx+ θ−x. Such curves necessarily have a unique singular point belonging
to J [2]. We have dimR(2) = 1 and R(2) = ∪p∈J [2]Qp, where Qp is a
conic in Np.

• Stratum NR: the locus parameterizing non-reduced curves of the form
C = 2Cred where Cred ' θp is the translate of the theta divisor by a
2-torsion point p ∈ J [2]. We have dimNR = 0 and |NR| = 16.

In particular, the locus parameterizing singular curves in B consists of 17
irreducible divisors, namely the divisor R parameterizing reducible curves and
the divisors Np for p ∈ J [2] parameterizing curves which are singular at p.

Remark 3.1.2. The following poset structure of Rapagnetta’s stratification is
implicit in the description given by Rapagnetta in [Rap07].

0NR 1R(2) 2R 3B

0N(3) 1N(2) 2N(1)

(3.1)

where the superscripts on the left denote the respective dimensions.
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We end this section by stating our main results on the irreducible compo-
nents of the fibers of the Lagrangian fibrations m̃ and n.

Proposition 3.1.3. The number of irreducible components of the fibers of
m̃ : M̃ → B and n : N → B over each stratum are summarized by the following
table. The entries in the table are the number of irreducible components in the
respective fibers.

Strata 3S 2N(1) 1N(2) 0N(3) 2R(1) 1R(2) 0NR

M̃b 1 1 2 4 2 2 34
Nb 1 1 2 4 2 2 2

where the superscripts on the left denote the respective dimensions.

Proof. This follows from the upcoming Propositions 3.2.10, 3.3.8, and 3.4.14.

Our computation of the irreducible components of the fibrations m̃ and n
will also lead us to the following description of the fibers of the group scheme
g : G→ B.

Proposition 3.1.4. The fibers of the identity component of the group scheme
g : G → B over the various strata, the group of connected components of
the group scheme, and the δ values (see Section 2.6) are summarized by the
following table:

Strata Isomorphism Type of G0
b π0(Gb) δ

3S 3-dimensional Abelian variety {1} 0
2N(1) C∗-bundle over an Abelian surface {1} 1
1N(2) (C∗)2-bundle over an elliptic curve Z/2Z 2
0N(3) (C∗)3 (Z/2Z)2 3
2R(1) C∗-bundle over an Abelian surface {1} 1
1R(2) C-bundle over an Abelian surface {1} 1
0NR C3 (Z/2Z)4 3

where the superscripts on the left denote the respective dimensions.

3.2 Irreducible Components Over Integral
Curves

In this section, we study the irreducible components of the fibers of the La-
grangian fibrations m̃ : M̃ → B and n : N → B over the locus of integral
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curves, i.e. over the strata S,N(1), N(2), and N(3) (cf. Diagram 3.1). Since
any curve C in these strata is integral, the sheaves parameterized by the fiber
MC are all stable by Remark 2.3.3. In particular, the fibers MC and M̃C are
isomorphic, which implies that studying the fibers of m̃ : M̃ → B over the
locus of integral curves is equivalent to studying the fibers of m : M → B over
the locus of integral curves. The main result of this section is Proposition
3.2.10.

Throughout this section, we will work with an arbitrary Mukai vector
v = (0, 2θ, χ) with χ 6= 0 to deal with the cases M and N simultaneously.
Recall that Mv denotes the moduli space of semi-stable sheaves on J with
Mukai vector v and Mv := Mv ∩ a−1

v (OJ , 0) where av : Mv → J∨ × J is the
morphism defined in Equation 2.15.

A description of the fibers Mv,C over the locus of integral curves was previ-
ously given by Rapagnetta in the proof of Proposition 2.1.4 in [Rap07], which
we record in the following lemma. We summarize Rapagnetta’s proof as it
introduces ideas and notation that will be used later in the section.

Lemma 3.2.1. Suppose C ∈ B is an integral curve with k nodes. Let
i : C → J be the inclusion map and ν : C̃ → C be the normalization of C.
Let ã : Pic0(C̃) → J be the morphism on Albanese varieties induced by the
composition C̃

ν−→ C
i−→ J . Then

1. the fiber Mv,C is stratified by subvarieties U(C ′) where C ′ → C is a
partial normalization of C at r nodes,

2. U(C ′) is isomorphic to a (C∗)(k−r)-bundle over some fiber of ã.

Proof. Since C is integral, points of Mv,C are parameterized by rank one tor-
sion free sheaves on C with Euler characteristic χ 6= 0. In particular, since
C is a nodal curve, it is known (see [Bea99, Section 2]) that such a sheaf on
C is either a degree-(χ+ 4) line bundle on C or the pushforward of a degree-
(χ+ 4− r) line bundle on a partial normalization ν ′ : C ′ → C desingularizing
exactly r-nodes.

Let U(C ′) ⊂ Mv,C be the subset parameterizing sheaves coming from a
partial normalization C ′ and let U(C ′) := U(C ′) ∩Mv,C . By the discussion
above, the sub-varieties U(C ′) give a stratification of Mv,C . This implies that
the subvarieties U(C ′) give a stratification of Mv,C which proves the first claim.

To see the second claim, let a′ : U(C ′) → J be the restriction of the mor-
phism pr2 ◦ av : Mv → J∨ × J → J to U(C ′). The restriction a′ associates
to a line bundle L′ on C ′ the point

∑
nipi +

∑
qk where

∑
nipi is the push-

forward to J of a representative, in the CH0(C̃), of the first Chern class of
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the pullback of L′ to C̃ and qk ∈ J [2] ∩ C are the points having two distinct
pre-images in C ′. In particular, we see that the map a′ descends to a map
ã : Picχ+4−r(C̃)→ J .

If we fix any [F0] ∈ U(C ′), we can identify U(C ′) with Pic0(C ′) and
Picχ+4−r(C̃) with Pic0(C̃). Under this identification, the discussion above
implies that there is a commutative diagram

Pic0(C ′) Pic0(C̃)

J J

µ∗

a′ ã

t′

(3.2)

where µ : C̃ → C ′ is the normalization of C ′ and t′ : J → J is translation by
the point

∑
qk ∈ J . Moreover, one can check that the morphism ã which

sends, a line bundle L to the point
∑

(i ◦ ν)∗c1(L) ∈ J , can be identified with
the map on Albanese varieties induced by the composition C̃

ν−→ C
i−→ J .

Since C ′ is a nodal curve with (k − r)-nodes, it is known that Pic0(C ′) is
a (C∗)(k−r)-bundle over Pic0(C̃) (cf. [HM98, Chapter 5.B]). Diagram 3.2 then
implies that U(C ′) ' ker(a′) is a (C∗)(k−r)-bundle over the fiber of ã.

Corollary 3.2.2. If C ∈ B is an integral curve, i : C → J is the inclusion
map, and ν : C̃ → C is the normalization of C, then there are bijections
between the sets of

1. irreducible components of Mv,C,

2. connected components of ker(a), where a : Pic0(C) → J is the group
homomorphism sending L ∈ Pic0(C) to

∑
c2(i∗L) described in Equation

2.27,

3. connected components of ker(ã), where ã : Pic0(C̃)→ J is the morphism
on Albanese varieties induced by the composition ĩ = i ◦ ν.

In particular, the number of irreducible components in the fiber Mv,C over
the locus of irreducible nodal curves is independent of the nonzero integer χ
appearing in the Mukai vector v.

Proof. There is a bijection between the set of irreducible components of Mv,C

and the set of top dimensional strata. The top dimensional strata are precisely
the connected components of ker(a).

The bijection between the set of connected components of ker(a) and the set
of connected components of ker(ã) follows from Diagram 3.2 with C ′ = C̃.
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In the case that C ∈ S ∪N(1), the kernel of the map a : Pic0(C)→ J has
been studied and ker(a) is shown to be connected (cf. [MRS18, Remark 5.1
(5)]). We give a slightly more general proof of this fact which allows us to
describe the fiber ker(a) when over the entire locus of integral curves.

In the remainder of this section, we will work with a fixed integral curve
C ∈ B with k nodes. Let i : C → J be the inclusion map and ν : C̃ → C be
the normalization of C. Note that C has arithmetic genus 5 and C̃ is a smooth
curve of genus 5−k. Let D = φ(C) be the image of C in K and τ : D̃ → D be
the normalization of D. Note that D is an integral curve of arithmetic genus
3 with k nodes and D̃ is a smooth curve of genus 3− k.

We abuse notation and denote by φ : C → D the restriction of φ to C.
Note that the map φ is double cover ramified at the k nodes pi of C. There is
a commutative diagram

C̃ D̃

C D

ϕ̃

ν τ

ϕ

where the map φ̃ is exists by the universal property of normalizations and is a
double cover which is ramified at the 2k points in C̃ which lie over the nodes
pi. There are natural involutions ι on C and ι̃ on C̃ which interchange the
fibers of the coverings. These give rise to involutions σ := ι∗ on Pic0(C) and
σ̃ := ι̃∗ on Pic0(C̃).

We have the following lemmas which will help us describe ker(a). We note
that the observation in Lemma 3.2.4 is due to Rapagnetta.

Lemma 3.2.3. The identity component of ker(ã) can be identified with the
image φ̃∗(Pic0(D̃)) ⊂ Pic0(C̃).

Proof. If L ∈ Pic0(D̃), then φ∗L is σ̃-invariant. This implies that ã(φ̃∗L) =

−ã(φ̃∗L) and in particular, is a 2-torsion point of J . It follows that the image
of the subset φ̃∗(Pic0(D̃)) ⊂ Pic0(C̃) under ã is contained in the finite set
J [2]. Since ã is continuous and ã(φ̃∗OD̃) = ã(OC̃) = 0, we conclude that
φ̃∗(Pic0(D̃)) ⊂ ker(ã). Since φ̃∗(Pic0(D̃)) and ker(ã) are both Abelian varieties
of the same dimension, we must have equality.

Lemma 3.2.4. Consider C ∈ N(2) with nodes at p, q. Denote by p1, p2 the
points in C̃ lying over p. Then the degree 0 line bundle OC̃(p1− p2) is not the
pullback of a line bundle from D̃.

29



Proof. The involution ι̃ defines a Z/2Z action on C̃ whose quotient is D̃. Since
p1, p2 are in the fixed locus of the involution ι on C̃, the line bundle OC̃(p1−p2)
is Z/2Z invariant. This line bundle is also Z/2Z-linearizable since any Z/2Z-
invariant line bundle is Z/2Z-linearizable (cf. [Dol03, Remark 7.2]). By the
Kempf Descent Lemma, OC̃(p1 − p2) descends to a line bundle on D̃ if and
only if there exists a Z/2Z-linearization of OC̃(p1−p2) such that the linearized
Z/2Z action on the fibers of OC̃(p1 − p2) over the fixed points p1, p2, q1, q2 of
ι is trivial (cf. [HL97, Proposition 4.2.15]).

One linearization of OC̃(p1 − p2) can be described explicitly as follows.
Consider OC̃(p1 − p2) as the subsheaf of the sheaf of rational functions con-
sisting of rational functions on C̃ vanishing at p2 and having at most a simple
pole at p1. If xi, yi are local coordinates at pi, qi respectively for which the
Z/2Z action on C̃ is linear, then the stalk of OC̃(p1 − p2) at p1 is generated
by the function 1

x1
, the stalk at p2 is generated by the function x2 and the

stalks at qi are generated by the function 1. Since the involution ι acts by −1
in each coordinate chart, the induced action on the stalks of OC̃(p1 − p2) at
pi are non-trivial while the induced action on the stalks at qi are trivial. By
[KKV89, §2], the only other possible Z/2Z-linearization of OC̃(p1− p2) differs
from the described one by the Z/2Z character −1. It follows that there is no
Z/2Z-linearization of OC̃(p1−p2) satisfying the conditions of Kempf’s Descent
Lemma and we conclude that OC̃(p1− p2) is not the pullback of a line bundle
from D̃.

We have the following useful corollary.

Corollary 3.2.5. The line bundle OC̃(p1 − p2) does not lie in the identity
component of ker(ã).

Proof. By Lemma 3.2.3, the identity component of ã−1(0) can be identified
with φ̃∗Pic0(D̃). Since the line bundle OC̃(p1 − p2) does not descend to a line
bundle on D̃b by Lemma 3.2.4, it does not lie in the identity component of
ker(ã).

We now observe that there is an involution, σ, on the moduli space Mv.
This involution is induced by pullback via the −1 involution on the Abelian
surface J sending x to −x, using the fact that θ is symmetric. In particular,
we have

σ : Mv →Mv; [F ] 7→ [(−1)∗F ] (3.3)
When the Mukai vector v = (0, 2θ, 2χ′) with χ′ 6= 0 is even, we have the

following lemma.

30



Lemma 3.2.6. Let v = (0, 2θ, 2χ′) be a Mukai vector with χ′ 6= 0 and let
σ : Mv →Mv be the involution described above. The fixed locus of σ contains
Mv.

Proof. If C ∈ S ⊂ B is a smooth curve in J , then it is an étale double cover of
its image D := φ(C) in K. Let L be a degree-(χ′+2) line bundle on D. Pulling
back this line bundle to C via the étale double cover gives a line bundle of
degree 2χ′ + 4 on C which is −1∗-invariant. Pushing forward this line bundle
on C to J determines a stable sheaf in Mv ⊂Mv which is σ-invariant. Since,
Picχ′+2(D) is three-dimensional, it follows that a six-dimensional algebraic
subset of Mv is fixed by σ. Since dimMv = 6, all of Mv is fixed by σ by
closure of the fixed locus.
Remark 3.2.7. An important observation is that the involution σ on Pic0(C)
described above is precisely the restriction of the involution σ on the moduli
space of semi-stable sheaves described in Equation 3.3 to the locus parameter-
izing line bundles in a fiber over C. In particular, Lemma 3.2.6 implies that
a−1(0) ⊂ Fix(σ).

We now study the fixed locus of σ. The main tool is the theory of Prym
varieties for the branched double covers C → D and C̃ → D̃. The theory in
the smooth case was developed by Mumford in [Mum74] and was extended
to the nodal case by Beauville in [Bea77]. In the nodal case, there is still a
norm map Nm : Pic0(C)→ Pic0(D) (see [EGA II, §6.5]) and Beauville defines
the Prym variety P as identity component of the kernel of the norm map.
Beauville shows that P is an Abelian variety of dimension pa(D) − 1 = 2.
As in the classical case, the Prym variety can alternatively be defined as the
image of the map 1− σ : Pic0(C̃)→ Pic0(C̃).
Lemma 3.2.8. Fix(σ) = ker(1 − σ) is connected if k = 0, 1 and has 2k−1

connected components if k = 2, 3. Each connected component is isomorphic to
a (C∗)k-bundle over Pic0(D̃).

Proof. Consider the commutative diagram of short exact sequences (note that
the ones have been omitted from the columns)

ker(1− σ) ker(1− σ̃)

1 (C∗)k Pic0(C) Pic0(C̃) 1

1 ker(α) (1− σ)Pic0(C) (1− σ̃)Pic0(C̃) 1,

ν∗

1−σ 1−σ̃

α
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where α is the restriction of ν∗ to the subgroup (1− σ)Pic0(C). As discussed
above, (1− σ̃)Pic0(C̃) is the Prym variety P̃ and (1− σ)Pic0(C) is the Prym
variety P . The Prym varieties P and P̃ are both Abelian varieties of dimension
2.

When k = 0, C = C̃ and the double cover φ : C → D is unramified. In this
case, the pullback φ∗ : Pic0(D)→ Pic0(C) is not injective and ker(φ∗) ' Z/2Z.
Mumford proves that

ker(1− σ) ' φ∗Pic0(D)

and it follows that ker(1− σ) is connected (see [Mum74, §2 Data II (vi)]).
When k = 1, 2, 3, the double cover φ̃ : C̃ → D̃ is ramified and the pullback

φ̃∗ : Pic0(D̃)→ Pic0(C̃) is injective. Mumford proves that (loc. cit.)

ker(1− σ̃) ' φ̃∗Pic0(D̃)× (Z/2Z)2k−2.

Beauville proves that the induced map α : P → P̃ is an isogeny of degree
2k−1 (see [Bea77, Remark 3.6]). In particular, ker(α) is a finite group of order
2k−1.

Since ker(α) is a finite group, there is no nontrivial group homomorphism
C∗ → ker(α) and the snake lemma implies that there is an exact sequence

1→ (C∗)k → ker(1− σ)→ φ̃∗Pic0(D̃)× (Z/2Z)2k−2 → ker(α)→ 1.

Since ker(α) is a quotient of (Z/2Z)2k−2 of order 2k−1, there is a short exact
sequence

1→ (C∗)k → ker(1− σ)→ φ̃∗Pic0(D̃)× (Z/2Z)k−1 → 1,

and the lemma is shown.

Lemma 3.2.9. For k = 1, 2, 3, ker(a) = Fix(σ).

Proof. For k = 1, 2, 3, the inclusion ker(a) ⊆ Fix(σ) was discussed in Remark
3.2.7. We will show the reverse inclusion case by case.

If k = 1, then Fix(σ) is connected by Lemma 3.2.8 which implies that
ker(a) = Fix(σ).

If k = 2, note that by Equation 3.2, ker(a) is a (C∗)k-bundle over ker(ã).
Lemma 3.2.5 implies that ker(ã), and hence ker(a), is not connected. Since
Fix(σ) has exactly two connected components by Lemma 3.2.8, we conclude
that ker(a) = Fix(σ).

If k = 3, then Rapagnetta shows in [Rap07, Proposition 2.1.4] that ker(a)
has four connected components. Since Fix(σ) also has four connected compo-
nents by Lemma 3.2.8, we conclude that ker(a) = Fix(σ).
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We summarize the results of this section in the following Proposition.

Proposition 3.2.10. If C ∈ B is an integral curve with k nodes, then:

1. the fiber GC is isomorphic to a (C∗)k-bundle over φ̃∗Pic0(D̃) if k = 0, 1

and is isomorphic to a (C∗)k-bundle over φ̃∗Pic0(D̃)× (Z/2Z)k−1 if k =
2, 3,

2. the fiber M̃C is irreducible of dimension three if k = 0, 1, has 2k−1

irreducible components of dimension three if k = 2, 3, is reduced, Cohen-
Macaulay, and has an open dense subset parameterizing line bundles of
degree 2,

3. the fiber NC is irreducible of dimension three if k = 0, 1, has 2k−1 ir-
reducible components of dimension three if k = 2, 3, is reduced, Cohen-
Macaulay, and has an open dense subset parameterizing line bundles of
degree 1.

Proof. The statements about GC and the irreducible components follow from
Lemma 3.2.8, and Lemma 3.2.9. We now argue that M̃C is reduced. First
recall that M̃C ' MC since every point in MC is a stable sheaf. Since the
Le Potier support morphism is smooth at every point corresponding to a line
bundle [LeP93, p. 24], the fiber MC is reduced on the open dense subset
M lf

C . By Remark 2.4.4, the fiber MC is Cohen-Macaulay and thus, is reduced
everywhere. The same argument shows that NC is reduced.

3.3 Irreducible Components Over Reducible
Curves

In this section, we study the irreducible components of the fibers of the La-
grangian fibrations m̃ : M̃ → B and n : N → B over the locus of reduced, but
reducible curves, i.e. over R(1) ∪ R(2) (cf. Diagram 3.1). Unlike the case of
integral curves, the fibers of M̃ and N will differ over this locus. The fibers
of M̃ over this locus have already been described by Rapagnetta in [Rap07,
Proposition 2.1.4]. We give a slight generalization of Rapagnetta’s proof which
will allow us to also describe the fibers of N . We summarize the results of this
section in the following proposition.

Proposition 3.3.1. If C ∈ R(1) ∪R(2), then the fiber

1. GC is isomorphic to a C∗-bundle over the Abelian surface J if C ∈ R(1)
and is isomorphic to a C-bundle over J if C ∈ R(2);
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2. M̃C has two irreducible components of dimension three and has a non-
dense open subset parameterizing line bundles on C of bidegree (1, 1);

3. NC has two irreducible components of dimension three, is reduced, and
has an open dense subset parameterizing line bundles on C of bidegree
(0, 1) and (1, 0).

Proof. The first two statements are proved in Proposition 3.3.8 and the third
statement is proved in Corollary 3.3.10.

We initially work with an arbitrary Mukai vector v = (0, 2θ, χ) with χ 6= 0

and will later deal with the cases M̃ and N separately. Again, recall that Mv

denotes the moduli space of semi-stable sheaves on J with Mukai vector v,
Mv := Mv ∩ a−1(OJ , 0) where a : Mv → J∨ × J is the morphism defined in
Equation 2.15.

Fix C ∈ R(1) ∪ R(2) and recall that C is reduced, but reducible and can
be expressed as C = θx + θ−x for some x ∈ J \ J [2]. Let ix : C0 → J and
i−x : C0 → J denote the respective embeddings of the fixed genus 2 curve C0

into J with images θx and θ−x. We begin with the following lemma.

Lemma 3.3.2. Suppose F is a stable sheaf on J with Fitting support θx+θ−x.
Let L1 and L2 be the torsion free parts of F |θx and F |θ−x respectively. Then
there is an exact sequence

0→ F
α−→ ix∗L1 ⊕ i−x∗L2

β−→ Q→ 0. (3.4)

where Q is the defined as the cokernel of α and the restriction of β to each
summand is surjective. Moreover,

1. if χ(F ) = 2χ′ is even, then χ(Q) = 2 and deg(L1) = deg(L2) = χ′ + 2;

2. if χ(F ) = 2χ′ + 1 is odd, then either

(a) χ(Q) = 2, deg(L1) = χ′ + 2, deg(L2) = χ′ + 3, or
(b) χ(Q) = 2, deg(L1) = χ′ + 3, deg(L2) = χ′ + 2, or
(c) χ(Q) = 1, deg(L1) = deg(L2) = χ′ + 2.

Proof. There are natural surjective maps from F to ix∗L1 and i−x∗L2. The
map α is the direct sum of these two maps. Away from θx ∩ θ−x, α is an
isomorphism. Since both components of α are surjective, Q is a quotient of
both ix∗L1 and i−x∗L2. In particular, Q must be a quotient of Oθx∩θ−x . Since
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F is stable, χ(F ) < 2χ(Li) for i = 1, 2 by Equation 2.8. In particular, the
Riemann-Roch formula says that

deg(Li) > χ(F )/2 + 1. (3.5)

Taking Euler characteristics in Equation 3.4 gives χ(Q) = deg(L1) +
deg(L2)− 2− χ(F ). Since χ(Q) ≤ χ(Oθx∩θ−x) = 2,

deg(L1) + deg(L2) ≤ 4 + χ(F ). (3.6)
Combining Equations 3.5 and 3.6 then gives the result.

Lemma 3.3.3. Suppose F is a stable sheaf on J with Fitting support θx+θ−x

which sits in a short exact sequence

0→ F
α−→ ix∗L1 ⊕ i−x∗L2 → Q→ 0.

for some line bundles L1, L2 on C0 of degrees d1, d2 respectively. If
∑

c2(F ) =
0, then L2 is uniquely determined by L1 and x.

Proof. Using multiplicativity of the Chern polynomial and the description of
the intersection points of θx+ θ−x given in Proposition 3.1.1, we compute that∑

c2(ix∗L1 ⊕ i−x∗L2) =
∑

c2(ix∗L1) +
∑

c2(i−x∗L2)

Using multiplicativity of the Chern polynomial and the fact that c1(Q) = 0
since Q is a skyscraper sheaf, we see that if

∑
c2(F ) = 0, then∑

c2(ix∗L1) +
∑

c2(i−x∗L2) =
∑

c2(Q). (3.7)

Now note that for any x ∈ J , the map Pic0(C0)→ J sending a degree zero line
bundle L to the point

∑
c2(ix∗L) can be identified with the map on Albanese

varieties induced by the inclusion ix : C0 → J and thus, is an isomorphism.
After identifying Picdi(C0) with Pic0(C0) via the fixed Weierstrass point w0,
we can use this isomorphism to see that for a given L1 ∈ Picd1(C0), there is a
unique L2 ∈ Picd2(C0) satisfying Equation 3.7.

With these lemmas, we can now describe the fibers Mv,C over C ∈ R(1) ∪
R(2). As mentioned at the beginning of the section, the fibers Mv,C behave
differently depending on the parity of the Mukai vector. We begin with the
case when the Mukai vector is even.
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3.3.1 The Even Mukai Vector Case
Fix an even Mukai vector of the form v = 2v′ with v′ = (0, θ, χ′) with χ′ 6= 0.
The description of the singular locus Σv ⊂ Mv implies that the fiber Mv,C

contains sheaves which are strictly semi-stable since C = θx+ θ−x is reducible.
We begin with a description of the strictly semi-stable locus M ss

v,C ⊂Mv,C .

Lemma 3.3.4. Fix an even Mukai vector of the form v = 2v′ with v′ =
(0, θ, χ′) with χ′ 6= 0. Then the strictly semi-stable locus M ss

v,C ⊂ Mv,C is
isomorphic to the Abelian surface J .

Proof. Recall that the strictly semi-stable sheaves in Mv,C are of the form

F = F1 ⊕F2,

where F1 and F2 are stable sheaves with Mukai vector (0, θ, χ′), satisfying∑
c2(F ) = 0. In particular, this implies that F1 ' ix∗L1 and F2 ' i−x∗L2

where L1 and L2 are degree-(χ′ + 1) line bundles on C0. Lemma 3.3.3, with
Q = 0, implies that for a fixed line bundle L1 on C0, there is a unique line
bundle L2 such that

∑
c2(F ) = 0. This implies that the strictly semi-stable

locus M ss
v,C is isomorphic to J .

We now describe the strictly stable locus M s
v,C ⊂Mv,C .

Lemma 3.3.5. The locus of strictly stable sheaves M s
v,C is parameterized by

isomorphism classes of kernels of surjective maps β : ix∗L1⊕ i−x∗L2 → Oθx∩θ−x

where L1 and L2 are degree-(χ′+2) line bundles on C0 satisfying
∑

c2(ix∗L1)+
c2(i−x∗L2) = 0 and the restriction of β to each summand is already surjective.

Proof. If F ∈ Mv,C is stable, then by Lemma 3.3.2, F sits in a short exact
sequence

0→ F
α−→ ix∗L1 ⊕ i−x∗L2

β−→ Oθx∩θ−x → 0,

with deg(L1) = deg(L2) = χ′ + 2 and the restriction of β to each summand
is already surjective. Lemma 3.3.3 implies that given L1 ∈ Picχ′+2(C0)), there
exists a unique L2 ∈ Picχ′+2(C0) such that the kernel F is in M s

v,C .
Conversely, given such an L1, L2 ∈ Picχ′+2(C0), any kernel F of a surjec-

tive map ix∗L1 ⊕ i−x∗L2 → Oθx∩θ−x is seen to be stable using Equation 2.7.
Moreover, given two such kernels, they are isomorphic if and only if they differ
by an automorphism of ix∗L1 ⊕ i−x∗L2.

Remark 3.3.6. As mentioned by Rapagnetta in the proof of Proposition 2.1.4
in [Rap07], for a fixed pair of line bundles L1, L2, the isomorphism classes of
kernels are parameterized by C∗ if C ∈ R(1) and by C if C ∈ R(2).
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Lemma 3.3.7. Fix an even Mukai vector of the form v = 2v′ with v′ =
(0, θ, χ′) with χ′ 6= 0.

1. If C ∈ R(1), then the strictly stable locus M s
v,C ⊂Mv,C is isomorphic to

a C∗-bundle over the Abelian surface J .

2. If C ∈ R(2), then the strictly stable locus M s
v,C ⊂Mv,C is isomorphic to

a C-bundle over the Abelian surface J .

Proof. By Lemma 3.3.5, the strictly stable locus M s
v,C ⊂Mv,C is parameterized

by isomorphism classes of kernels of of surjective maps β : ix∗L1 ⊕ i−x∗L2 →
Oθx∩θ−x where L1 and L2 are degree-(χ′+2) line bundles on C0, L2 is uniquely
determined by L1, and the restriction of β to each summand is already surjec-
tive. By Remark 3.3.6, if C ∈ R(1), isomorphism classes of such kernels are
parameterized by C∗ and if C ∈ R(2), isomorphism classes of such kernels are
parameterized by C.

We conclude this section by describing the fibers GC ,MC , and M̃C .

Proposition 3.3.8. If C ∈ R(1) ∪R(2), then

1. the fiber GC is isomorphic to a C∗-bundle over J if C ∈ R(1) and GC is
isomorphic to a C-bundle over J if C ∈ R(2),

2. the fiber MC is irreducible, reduced, Cohen-Macaulay of dimension three,
and has an open dense subset parameterizing line bundles whose restric-
tion to each component has degree 1.

3. the fiber M̃C has two irreducible components.

Proof. By definition, the fibers GC is contained in the stable locus M s
v,C where

v = (0, 2θ,−4) is an even Mukai vector. Conversely, given a stable sheaf
F ∈ M s

v,C , F is the kernel of a surjective map ix∗L1 ⊕ i−x∗L2 → i∗Oθx∩θ−x

by Lemma 3.3.5. It follows that every fiber of F has rank one, which implies
that F is the pushforward of a line bundle on its support. In particular, we
see that GC can be identified with the stable locus Mv,C . Lemma 3.3.7 then
gives the first claim.

Noting that MC is a fiber of the form Mv,C where v = (0, 2θ,−2) is an
even Mukai vector, following the same argument as above shows that the stable
locus M s

C can be identified with the locus parameterizing sheaves which are the
pushforwards of line bundles on C. Lemma 2.5.2 implies that the restriction
of the line bundle to either component of C has degree one. Lemmas 3.3.7 and
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3.3.4 together then imply that the stable locus M s
C is connected and dense in

MC . The proof of reducedness and Cohen-Macaulayness follow from the same
argument as in Proposition 3.2.10.

To determine the number of irreducible components for M̃C , recall from
Remark 2.4.1 that the restriction of the symplectic desingularization map
π : M̃ →M to Σ is a P1-bundle outside of the 256 points in Ω where the fibers
are smooth three-dimensional quadrics. Moreover, recall that the strictly semi-
stable locus M ss

C = MC ∩ Σ ' J by Lemma 3.3.4. It follows that M̃C consists
of two irreducible components, namely the strict transform of MC under the
symplectic resolution and the exceptional divisor restricted to the fiber over
C, which is isomorphic to a P1-bundle over J .

3.3.2 The Odd Mukai Vector Case
When the Mukai vector v is odd, i.e. v = (0, 2θ, χ) with χ = 2χ′ + 1, every
sheaf in Mv,C is stable. As in the even Mukai vector case, the stable locus
can be characterized in terms of kernels of certain surjective maps. The proof
of the following lemma is analogous to the proof of Lemma 3.3.5 and will be
omitted.

Lemma 3.3.9. The locus of strictly stable sheaves M s
v,C is parameterized by

isomorphism classes of kernels of surjective maps β : ix∗L1⊕i−x∗L2 → Q where
L1 and L2 line bundles on C0 with either

1. Q = Oθx∩θ−x, deg(L1) = χ′ + 2, or deg(L2) = χ′ + 3,

2. Q = Oθx∩θ−x, deg(L1) = χ′ + 3, or deg(L2) = χ′ + 2,

3. Q = Op for some p ∈ J , deg(L1) = deg(L2) = χ′ + 2.

Moreover, L2 is uniquely determined by L1 and the restriction of β to each
summand is already surjective.

Proposition 3.3.10. If C ∈ R(1)∪R(2), then the fiber NC has two irreducible
components, is reduced, Cohen-Macaulay of dimension three, and has an open
dense subset parameterizing line bundles.

Proof. Since N parameterizes sheaves with odd Euler characteristic, Lemma
3.3.9 implies that a sheaf in the fiber NC corresponds to an isomorphism class
of a kernel of a surjective map β : ix∗L1 ⊕ i−x∗L2 → Q. By Remark 3.3.6,
isomorphism classes of such kernels in cases (1) and (2) are parameterized by
a C∗-bundle over the Abelian surface J in C ∈ R(1) and by a C-bundle over
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the Abelian surface J if C ∈ R(2).Finally, if C ∈ R(1)∪R(2), the isomorphism
classes of kernels in case (3) of the lemma are parameterized by just the Abelian
surface J .

If F ∈ N is a kernel of type (1) or (2), then every fiber of F has rank
one. This implies that F is the pushforward of a line bundle on its support.
Conversely, Lemmas 3.3.9 and 2.5.2 imply that the every sheaf which is the
pushforward of a line bundle is either a kernel of type (1) or (2). It follows
that the locus in NC parameterizing pushforwards of line bundles consists of
two connected components and is dense in NC . The proof of reducedness
and Cohen-Macaulayness follow from the same argument as in the proof of
Proposition 3.2.10.

3.4 Irreducible Components over
Non-Reduced Curves

In this section, we study the irreducible components of the fibers of the La-
grangian fibrations m̃ : M̃ → B and n : N → B over the locus of non-reduced
curves, i.e. over the stratum NR (cf. Diagram 3.1). We remark that the
analysis in this section is simpler than the analysis over the non-reduced locus
in the OG10 case since the underlying reduced curves in our case are always
smooth.

As in the case of reduced, but reducible curves, the fibers of M̃ and N will
differ over the locus of non-reduced curves. The fibers of M̃ over this locus
have already been described by Rapagnetta in [Rap07, Proposition 2.1.4]. We
give a slight generalization of Rapagnetta’s proof which will allow us to also
describe the fibers of N over this locus. The main result of this section is
Proposition 3.4.14.

We initially work with an arbitrary Mukai vector v = (0, 2θ, χ) with χ 6= 0

and will later deal with the cases M̃ and N separately. Again, recall that Mv

denotes the moduli space of semi-stable sheaves on J with Mukai vector v,
Mv := Mv ∩ a−1

v (OJ , 0) where av : Mv → J∨ × J is the morphism defined in
Equation 2.15.

Fix C ∈ NR and recall that C = 2Cred where Cred = θp for some p ∈ J [2].
Let I ⊂ OC be the ideal sheaf Cred in C. Then I2 = 0, I is an OCred-module,
I ' OCred(−Cred) ' ω∨

Cred
, and deg(I) = −2.

Remark 3.4.1. Consider two curves C = 2θp, C
′ = 2θp′ ∈ NR for some p, p′ ∈

J [2]. Translation by the 2-torsion point p+p′ on J induces an automorphism of
B = |2θ| which takes C to C ′ (cf. [Keu99, §5]). This induces an isomorphism
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between the fibers Mv,C and Mv,C′ for any Mukai vector of the form (0, 2θ, χ)
with χ 6= 0.

As in the case of O’Grady 10, the sheaves parameterized by the fibers
Mv,C can be divided into two types, namely sheaves of type I and type II (see
[dCRS21, §4.2.3]). We recall the definitions below.

Definition 3.4.2. A F be sheaf on J with Fitting support C = 2θp is said to
be of type I if the composition of the natural morphisms OJ → OC → EndJ(F )
factors via the natural surjection OJ → OCred. If this does not hold, the sheaf
F is said to be of type II. The locus of sheaves in the fiber Mv,C of type I will
be denoted by M I

v,C and the locus of sheaves in the fiber Mv,C of type II will be
denoted by M II

v,C. Note that by definition, Mv,C = M I
v,C tM II

v,C = M I
v.C ∪M II

v,C.

In particular, sheaves of type I are sheaves on J with schematic support
Cred and sheaves of type II are sheaves on J with schematic support C.

In what follows, we will need the following proposition from [dCRS21].

Lemma 3.4.3. [dCRS21, Proposition 4.3.8] Let C = 2Cred ∈ NR and suppose
F ∈ Mv,C is a stable sheaf of type II. Let F := F |Cred/T where T :=
Tors(F |Cred) is the torsion subsheaf of F |Cred. Then there is a commutative
diagram of short exact sequences (note that the zeros have been omitted from
the vertical ones):

T

0 F ⊗Cred I F F |Cred 0

0 K F ired∗F 0

T

id (3.8)

where T = 0 if χ(F ) is even, or T = Ox for a point x ∈ Cred if χ(F ) is odd.

Proof. Although stated for double curves in a K3 surface, the proof of Propo-
sition 4.3.8 in [dCRS21] applies in our case since it only relies on the notion
of stability for sheaves of type II and the double structure of the curve.

In particular, this implies that NC does not contain any sheaves which are
the pushforwards of line bundles on C.
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Corollary 3.4.4. Let F be a sheaf with Fitting support C = 2Cred ∈ NR with
odd Euler characteristic. Then F is not the pushforward of a line bundle on
C.

Proof. If F is of type I, then F cannot be locally free on its schematic support.
If F is of type II, then by Lemma 3.4.3, F |Cred

is not locally free since χ(F )
is odd. Thus, F cannot be the pushforward of a line bundle on C.

The sheaf K appearing in Equation 3.8 can be described more explicitly
as follows.

Lemma 3.4.5. Let F be a stable sheaf in Mv,C of type II. Let F, T , and K
be as in Lemma 3.4.3.

1. If χ(F ) = 2χ′ is even, then F is a line bundle of degree χ′ + 2 on Cred

and K ' ired∗(F ⊗ I).

2. If χ(F ) = 2χ′ + 1 is odd, then F is a line bundle of degree χ′ + 2 on
Cred and K ' ired∗(F ⊗ I ⊗OCred(x)) where x ∈ Cred is a point.

Proof. Since K is a subsheaf of F , K is pure of dimension one. The second
row of Equation 3.8 implies that c1(K) = c1(F )− c1(ired∗F ) = Cred. Remark
2.3.2 implies that the Fitting support of K is Cred. Remark 2.3.3 implies that
K is the pushforward of a rank one torsion free sheaf on Cred. Since Cred is
smooth, K must be the pushforward of a line bundle on Cred.

If χ(F ) = 2χ′ is even, Lemma 3.4.3 implies that T = 0. The left column
of Equation 3.8 then implies that K ' F ⊗Cred I.

If χ(F ) = 2χ′ + 1 is odd, Lemma 3.4.3 implies that T = Ox for some
x ∈ Cred. Twisting the ideal sheaf sequence for x by the line bundle i∗redK give
the short exact sequence

0→ OCred(−x)⊗ i∗redK → i∗redK → Ox → 0.

Pushing forward by the closed embedding ired and using left column of Equa-
tion 3.8, we see that K ' ired∗(F ⊗ I ⊗OCred(x)) as desired.

Lemma 3.4.6. Let F be a sheaf on J with Fitting support C. Suppose F
sits in an exact sequence of OC modules

0→ K → F → F → 0

where K,F are line bundles on Cred. The F is a sheaf of type II if and
only if the short exact sequence determines a point in P(Ext1C(F,K)) \
P(Ext1Cred

(F,K)).
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Proof. The spectral sequence for the change of coefficient in the Ext groups
[Moz07, Corollary 3.2.2] gives the exact sequence

0→ Ext1Cred
(F,K)→ Ext1C(F,K)→ HomCred(F ⊗ I, K)→ Ext2Cred

(F,K).
(3.9)

If F is a type II sheaf, then F is not an OCred-module which implies that the
extension must be nontrivial. In particular, the extension determines a point
in P(Ext1C(F,K)) \ P(Ext1Cred

(F,K)).
Conversely, a point in P(Ext1C(F,K))\P(Ext1Cred

(F,K)) gives an extension
F which is not an OCred-module. In particular, F must be of type II.
Lemma 3.4.7. Let F be a stable sheaf with Fitting support C of type II. Let
F, T , and K be as in Lemma 3.4.3. Then

1. P(Ext1C(F,K)) \ P(Ext1Cred
(F,K)) ' C3 if χ(F ) is even, and

2. P(Ext1C(F,K)) \ P(Ext1Cred
(F,K)) ' C2 if χ(F ) is odd.

Proof. If χ(F ) is even, then K ' F ⊗ I by Lemma 3.4.5. Since F,K are line
bundles, Ext2Cred

(F,K) = H2(Cred, F
∨ ⊗K) = 0 and HomCred(F ⊗ I, K) = C.

Since F is line bundle on Cred, Ext1Cred
(F,K) = H1(Cred, I) = C3. It follows

from the exact sequence described in Equation 3.9 coming from the spectral
sequence for the change of coefficient in the Ext groups that Ext1C(F,K) ' C4

and P(Ext1C(F,K)) \ P(Ext1Cred
(F,K)) ' C3.

If χ(F ) is odd, then K ' F ⊗ I ⊗ OCred(x) for some x ∈ Cred by Lemma
3.4.5. Since F and K are still line bundles on Cred, we have Ext2Cred

(F,K) = 0.
The description of K also implies that

HomCred(F ⊗ I, K) = H0(Cred,OCred(x)) = C

Since F is line bundle on Cred, Ext1Cred
(F,K) = H1(Cred, I ⊗ OCred(p)) = C2.

It follows from the exact sequence described in Equation 3.9 coming from
the spectral sequence for the change of coefficient in the Ext groups that
Ext1C(F,K) ' C3 and P(Ext1C(F,K)) \ P(Ext1Cred

(F,K)) ' C2.
With these lemmas, we can now describe the fibers Mv,C over C ∈ NR.

We begin by discussing sheaves of type I.

3.4.1 Sheaves of Type I

Lemma 3.4.8. Let C = 2Cred ∈ NR and let ired : Cred → J be the inclusion
map. If F is a sheaf with Fitting support C of type I with Euler characteristic
χ 6= 0 and

∑
c2(F ) = 0, then F = ired∗V where V is a semi-stable rank two

vector bundle on Cred of degree χ+ 2 and fixed determinant.
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Proof. Since Cred is a smooth curve in J , Grothendieck-Riemann-Roch applied
to the inclusion ired : Cred → C implies that

0 =
∑

c2(ired∗V ) = −
∑

(ired∗c1(V ) + [Cred]
2) =

∑
c2(ired∗ det(V )).

where the last equality uses the fact that c1(V ) = c1(det(V )). After fix-
ing an isomorphism Picχ+2(Cred) ' Pic0(Cred) and using the isomorphism
Pic0(Cred) ' J given by sending the degree 0 line bundle L on C0 to the point∑

c2(ired∗L) in J , we see that det(V ) is fixed.
Using this lemma, we can describe the sheaves of type I.

Lemma 3.4.9. Fix an even Mukai vector of the form v = 2v′ with v′ =
(0, θ, χ′) with χ′ 6= 0. Then M I

v,C, with its reduced induced structure, is ir-
reducible and isomorphic to P3. Moreover, the locus of strictly semi-stable
bundles in M I

v,C, with its reduced induced structure, is isomorphic to a Kum-
mer quartic surface K ⊂ P3.

Proof. Narasimhan and Seshadri prove in [NR69] that the moduli space of
semi-stable rank two vector bundles of even degree on a genus two curve with
fixed determinant is isomorphic to P3 and show that the strictly semi-stable
locus is isomorphic to a Kummer quartic surface K ⊂ P3. In fact, they prove
that this moduli space is naturally isomorphic to the linear system |2θ|.
Lemma 3.4.10. Fix an odd Mukai vector of the form v = (0, 2θ, 2χ′+1) with
χ′ 6= 0. Then M I

v,C, with its reduced, induced structure, is irreducible and is
the intersection of two quadrics in P5.

Proof. Narasimhan and Seshadri prove in [NR69] that the moduli space of
semi-stable rank two vector bundles of odd degree on a genus two curve with
fixed determinant is irreducible and is isomorphic to the intersection of two
quadrics in P5.

3.4.2 Sheaves of Type II

We now describe sheaves of type II. We begin by discussing the even Mukai
vector case. For notational simplicity, we will only consider the Mukai vector
v = (0, 2θ,−2) corresponding to M as the other cases are analogous.
Lemma 3.4.11. Let C = 2Cred ∈ NR and let ired : Cred → J be the inclusion
map. If F is any type II sheaf on J with Fitting support C, χ(F ) = −2, and∑

c2(F ) = 0, then
F⊗2 ⊗ I ' OCred (3.10)

where F is the degree-1 line bundle F |Cred on Cred.
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Proof. Recall that the map Pic(Cred)→ J sending a line bundle L on Cred to
the point

∑
c2(ired∗L) ∈ J is a group homomorphism and induces an isomor-

phism of Abelian varieties when restricted to Pic0(Cred).
By Lemma 3.4.5, there is a short exact sequence, viewed as sheaves on J ,

0→ ired∗(F ⊗ I)→ F → ired∗F → 0.

where F = F |Cred is a degree-1 line bundle on Cred. Multiplicativity of the
Chern character implies that 0 =

∑
c2(F ) =

∑
c2(ired∗(F

⊗2⊗I)). Under the
isomorphism Pic0(Cred) ' J described above, this implies that F⊗2⊗I ' OCred

as desired.

Lemma 3.4.12. If C = 2Cred ∈ NR, then M II
C is reduced and consists of 16

connected components, each of which is isomorphic to C3.

Proof. By Lemma 3.4.11, sheaves F in M II
C are parameterized by non-trivial

extensions of the form

0→ ired∗(F ⊗ I)→ F → ired∗F → 0

where F = F |Cred is a degree 1 line bundle on Cred satisfying F⊗2⊗ I ' OCred .
In particular, we see that there are 16 possibilities for F . For a fixed such line
bundle F , Lemma 3.4.7 implies that the possible extensions are parameterized
by P(Ext1C(F,K)) \ P(Ext1Cred

(F,K)) ' C3.

We now discuss sheaves of type II in the odd Mukai vector case. Again
for notational simplicity, we only consider the Mukai vector (0, 2θ,−1).

Lemma 3.4.13. If C = 2Cred ∈ NR, then N II
C is connected and has dimension

three.

Proof. By Lemma 3.4.5, sheaves F in N II
C are parameterized by non-trivial

extensions of the form

0→ ired∗(F ⊗ I ⊗OCred(x))→ F → ired∗(F )→ 0

where F = F |Cred is a degree 1 line bundle on Cred and
∑

c2(F ) = 0. Noting
that the map Pic(Cred) → J sending a line bundle L on Cred to the point∑

c2(ired∗L) ∈ J is a group homomorphism, multiplicativity of the Chern
character implies that

0 =
∑

c2(F ) =
∑

c2(ired∗(F
⊗2 ⊗ I))− ired(x). (3.11)
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The collection of line bundles F on Cred which satisfy Equation 3.11 is precisely
the fiber over 0 of the map

g : Cred × Pic1(Cred)→ J ; (x, F ) 7→
∑

c2(ired∗(F
⊗2 ⊗ I)− ired(x),

Notice that for any (x, F ) ∈ Cred × Pic0(Cred), g(x, F ) = h(F )− ired(x) where
h is the morphism

h : Pic1(Cred)→ J ; F 7→
∑

c2(ired∗(F
⊗2 ⊗ I).

It follows that the fiber of g over 0 ∈ J can be described by the fiber
product diagram

g−1(0) Pic1(Cred)

Cred J

□ h

ired

Since the map Pic0(Cred)→ J sending a line bundle L to the point
∑

c2(i∗L)
is an isomorphism of Abelian varieties, the map h is seen to be a degree 16
isogeny of J . Moreover, since Cred = θp, ired : Cred → J can be identified
with the Albanese morphism. By [Bea96, Remark V.14 (5)], the pullback of
a connected étale cover of the Albanese variety by the Albanese map is con-
nected and we conclude that g−1(0) is connected. For a fixed line bundle F in
g−1(0), Lemma 3.4.7 implies that the possible extensions are parameterized by
P(Ext1C(F,K)) \P(Ext1Cred

(F,K)) ' C2. It follows that N II
C , with its reduced,

induced structure, is isomorphic to a (C2)-bundle over g−1(0).

3.4.3 The Description of the Fibers
In this section, we combine our results about the sheaves of type I and type II
to give a description of the fibers Mv,C when C ∈ NR. Since irreducibility is a
topological notion, it suffices to study Mv,C with its reduced induced structure.

Proposition 3.4.14. Let C ∈ NR. Then

1. the fiber GC is isomorphic to C3 × J [2] ' C3 × (Z/2Z)4,

2. the fiber MC consists of 17 irreducible components and contains a non-
dense open subset parameterizing pushforwards of line bundles from C,

3. the fiber M̃C consists of 34 irreducible components and contains a non-
dense open subset parameterizing pushforwards of line bundles from C,

45



4. the fiber NC has two irreducible components. Moreover, no sheaf in NC

is the pushforward of a line bundle on C.

Proof. The fibers GC and MC are of the form Mv,C where v is an even Mukai
vector. Recall that by definition, Mv,C = M I

v,C t M II
v,C . By Lemma 3.4.9,

M I
v,C , with its reduced induced structure, is isomorphic to P3. By Lemma

3.4.12, M II
v,C , which is actually reduced, consists of 16 connected components

which parameterize the pushforwards of line bundles from C. It follows that
MC has 17 irreducible components and that GC is isomorphic to C3 × J [2].

To see that the fiber M̃C has 34 irreducible components, note that by
Lemma 3.4.9, the strictly semi-stable locus M ss

v,C = Mv,C∩Σv, with its reduced
induced structure, is isomorphic to the Kummer quartic surface K ⊂ |2θ|.
It follows that Mv,C ∩ Ωv is isomorphic to a finite set consisting of the 16
nodes of K. Recall that by Remark 2.4.1, the restriction of the symplectic
desingularization map to Σ is a P1-bundle outside of the 256 points in Ω
where the fibers are smooth three-dimensional quadrics. In particular, the
exceptional divisor of the resolution, restricted to the fiber over C, consists
of 17 irreducible components, namely the closure of the P1-bundle over Kreg

in M̃v,C and the 16 smooth 3-dimensional quadrics over the nodes of K. It
follows that M̃v,C consists of 34 irreducible components, namely the strict
transforms of the 17 components in Mv,C and the 17 irreducible components
which constitute the exceptional divisor of the resolution restricted to the fiber
over C.

Finally, to see that the fiber NC hs 2 irreducible components, note that
the fiber NC is a fiber of the form Mv,C where v is an odd Mukai vector
and recall that by definition, Mv,C = M I

v,C tM II
v,C . By Lemma 3.4.10, M I

v,C ,
with its reduced induced structure, is irreducible and is isomorphic to the
intersection of two quadrics in P5. By Lemma 3.4.13, M II

v,C , with its reduced
induced structure, is irreducible of dimension three. It follows that NC has 2
irreducible components. The statement that no sheaf in NC is the pushforward
of a line bundle on C is proved in Corollary 3.4.4.
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Chapter 4

The Top Degree Direct Image
Sheaves

The goal of this chapter is to describe the restriction of the top degree direct
image sheaves to various the strata appearing in Rapagnetta’s stratification
of the linear system B = |2θ|. This description will be the key input into the
proof of Proposition 5.4.2 on the Decomposition Theorems for the fibrations
m̃ : M̃ → B and n : N → B. As in the O’Grady 10 case, we will use some
properties of the trace morphism and the sheaf of irreducible components.

4.1 The Top Degree Direct Image Sheaves
Away from N(2)

We begin by recalling the following facts.

Fact. Let f : X → T be a flat morphism of relative dimension d. Then

1. there is a trace morphism Trf : R2df!QX(d) → QT which is an isomor-
phism if and only if all of the fibers of f have a unique irreducible
component of dimension d (cf. [SGA 4.3, Théorème 2.9 and Remarque
2.10.1]),

2. if f has reduced fibers, then the sheaf R2df!QX(d) is the Q-linearization of
the sheaf of sets of irreducible components of the fibers of f (cf. [Ngô08,
Lemme 7.1.8]).

We now describe the top degree direct image sheaves for the maps m̃ : M̃ →
B, m : M → B, and n : N → B over loci away from the stratum N(2).
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Proposition 4.1.1. Define R6
M := R6m∗QM , R6

M̃
:= R6m̃∗QM̃ and R6

N :=

R6n∗QN . There are canonical isomorphisms of constructible sheaves:

R6
M |S∪N(1) ' R6

M̃
|S∪N(1) ' R6

N |S∪N(1) ' QS∪N(1) (4.1)

R6
M |N(3) ' R6

M̃
|N(3) ' R6

N |N(3) ' Q⊕4
N(3) (4.2)

R6
M |NR ' Q⊕17

NR , R
6
M̃
|NR ' Q⊕34

NR , R
6
N |NR ' Q⊕2

NR (4.3)

R6
M̃
|R0 ' Q⊕2

R0 (4.4)

R6
N |R0 ' QR0 ⊕LR0 (4.5)

where LR0 is the rank one local system on R0 := R \NR corresponding to
the étale double cover J \ J [2]→ R0 sending a point x to the curve θx + θ−x.

Proof. Recall that by Remark 2.4.4, the morphisms m, m̃ and n are all flat.
We begin by proving Equation 4.1. Since the fibers of M, M̃ , and N over

the loci S ∪ N(1) ⊂ B are integral by Proposition 3.2.10, Fact 1 implies the
isomorphisms.

We next prove Equation 4.2. Since N(3) consists of only points, the direct
image in top degree for the morphisms m, m̃ and n are direct sums of the stalks
at points in N(3). Since the fibers of m, m̃, and n all have four irreducible
components by Corollary 3.2.10, the isomorphisms follow.

We next prove Equation 4.3. Since NR consists of only points, the direct
image in top degree for the morphisms m, m̃ and n are direct sums of the stalks
at points in NR. The isomorphisms then follow from Proposition 3.4.14.

We next prove Equation 4.4. Recall that by Lemma 2.4.2, the Decompo-
sition Theorem for the symplectic resolution π : M̃ →M is given by

Rπ∗QM̃ ' I C M ⊕QΣ[−2](−1)⊕QΩ[−6](−3).

Proper base change implies that Rm̃∗QM̃R0
= Rm∗QMR0 ⊕ Rr∗QΣR0 [−2](−1)

where r denotes the restriction of the support morphism m : M → B to ΣR0 .
Thus,

R6m̃∗QM̃R0
' R6m∗QMR0 ⊕R4r∗QΣR0 (−1). (4.6)

Since the fiber MC for any C ∈ R0 is irreducible by Proposition 3.3.1,
Fact 1 implies that R6m∗QMR0 ' QR0 . By Lemma 3.3.4, the fibers of the
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map ΣR0 → R0 are isomorphic to the Abelian surface J and hence irreducible.
Remark 1 then implies that R4r∗QΣR0 ' QR0 . Equation 4.4 then follows from
these isomorphisms and Equation 4.6.

We finally prove Equation 4.5. Recall that the morphism NR0 → R0 is
flat and by Proposition 3.3.1, has reduced fibers each having two irreducible
components. Fact 2 implies that R6QNR0 is the Q-linearization of the sheaf of
sets Irr(NR0) of irreducible components of NR0 which is locally constant with
stalks of cardinality two.

Let N lf
R0 → R0 be the locus parameterizing sheaves which are the pushfor-

wards of line bundles. Again by Proposition 3.3.1, the morphism N lf
R0 → R0

is smooth, dense in every fiber, and surjective with two connected compo-
nents which parameterize line bundles of bidegree (1, 0) and bidegree (0, 1).
It follows that the sheaf of sets Irr(NR0) can be identified with the sheaf of
connected components of N lf

R0 .
Using this interpretation, we now examine the monodromy of Irr(NR0).

There is an étale double cover

J \ J [2]→ R0; x 7→ θx + θ−x (4.7)

There is a monodromy action of π1(R
0) on J\J [2] which interchanges the fibers

of the covering map and there is a natural surjective group homomorphism
π1(R

0) → Z/2Z. It follows that the monodromy action on the family of
curves over R0 swaps the components of the broken curves θx + θ−x. Thus,
the bidegrees of the line bundles are swapped as well and it follows that the
components of N lf

R0,C are swapped. Since (R6n∗QN)|R0 is the Q-linearization of
the sheaf of sets Irr(NR0), we conclude that (R6n∗QN)|R0 ' QR0 ⊕LR0 where
LR0 is the rank one local system on R0 corresponding to the étale double
described in Equation 4.7.

4.2 The Top Degree Direct Image Sheaves
Over N(2)

In this section, we study the top degree direct image sheaves for the maps m̃,
and n over the loci N(2). The analysis of these direct image sheaves over the
loci N(2), particularly of the monodromy of the irreducible components of M̃
and N , is more subtle than the cases above. Our analysis of the direct image
sheaves will follow a strategy communicated to us by A. Rapagnetta. We first
note that it suffices to study the direct image sheaves in top degree for the
maps m and n since M̃ |N(2) 'MN(2).
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Recall that N(2) = ∪p,q∈J [2],p ̸=qNpq where Npq ' P1 and there are
(
16
2

)
=

120 choices for p and q. Let Upq = Npq \ NR ' C∗, and Vpq = Npq \ (NR ∪
N(3)) ' P1 \ {8 points}. In the remainder of the section, we work over a fixed
line Npq. Recall that the curves C ∈ Vpq ⊂ Npq are integral of arithmetic genus
5 with nodes at p and q and smooth otherwise.

We begin with some notation. Consider the commutative diagram

J̃ K̃

J K

ϕ̃

ε τ

ϕ

(4.8)

where J̃ is the blow up of J along the locus of 2-torsion points J [2], K ' J/±1,
and K̃ is the Kummer K3 surface associated to the Abelian surface J . Denote
the exceptional divisors of ε and τ by Fr and Er respectively for r ∈ J [2].

Let Cpq ⊂ J × Vpq and C̃pq ⊂ J̃ × Vpq be the families of curves given by the
incidence varieties

Cpq := {(x, b) ∈ J × Vpq | x ∈ Cb},

C̃pq := {(x, b) ∈ J̃ × Vpq | x ∈ C̃b},
where C̃b is the strict transform of Cb. Let

D̃pq := (φ̃× id)(C̃pq) ⊂ K̃ × Vpq,

denote the corresponding image. Note that Cpq is the family of curves in Vpq

and C̃pq is the family of normalizations. We will denote the fibers of Cpq, C̃pq,
and D̃pq over b ∈ Vpq by Cb, C̃b, and D̃b respectively and will think of them as
curves in their respective surfaces.

For any b ∈ Vpq, let p1,b, p2,b denote the two points in C̃b ∩ Fp lying over
the node p ∈ Cb. In what follows, we will often abuse notation and omit the
dependence of these points on b and simply refer to the points lying over the
node p ∈ Cb by p1 and p2. Similarly, we will denote the two points in C̃b lying
over the node q by q1 and q2.

Recall that by Lemma 3.2.1 the loci N lf
Vpq

and M lf
Vpq

parameterizing sheaves
which are the pushforwards of line bundles can be identified with the fiber
over 0 of the map a : PicdCpq/Vpq

→ J for d = 1, 2 respectively.
There is a commutative diagram

PicdCpq/Vpq
PicdC̃pq/Vpq

J

a

ã

(4.9)
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where for any b ∈ Vpq, the short exact sequence

0→ (C∗)2 → Picd(Cb)→ Pic(C̃b)→ 0

implies that the vertical map in Equation 4.9 is surjective with connected
fibers. It follows that the induced map a−1(0) → ã−1(0) is surjective with
connected fibers. This implies that a−1(0) is irreducible if and only if ã−1(0)
is irreducible.

The families C̃pq and D̃pq both have natural 2-sections. Let

Sp := (Fp × Vpq) ∩ C̃pq ⊂ J̃ × Vpq (4.10)

Tp := (Ep × Vpq) ∩ D̃pq ⊂ K̃ × Vpq (4.11)
and notice that the respective projection maps to Vpq are surjective of degree
2.

Lemma 4.2.1. Given (x, b) ∈ Tp, there exists a unique line `x ⊂ |2θ|∨ and a
unique plane Hb ⊂ |2θ|∨ such that `x ⊂ Hb and φ(q) /∈ `x.

Proof. If b ∈ Vpq, let Cb ⊂ J be the corresponding curve. Then Db = φ(Cb) =
Hb ∩ K for some plane Hb ⊂ |2θ|∨ containing φ(p) and φ(q). Now given
(x, b) ∈ Tp, we see that x ∈ D̃b ∩ Ep. In particular, x corresponds to a
tangent direction to Db at the node φ(p). Let `x be the unique line in |2θ|∨
corresponding to this tangent direction. Since Db = Hb ∩ K, we see that
`x ⊂ Hb.

To see that φ(q) /∈ `x, note that Db ⊂ Hb is a quartic curve which is nodal
at φ(p) and φ(q). Since `x is tangent to Db at the node φ(p), the intersection
multiplicity of `x ∩Db at φ(p) is 3. If φ(q) ∈ `x, then the intersection multi-
plicity of `x∩Db at φ(p) would be strictly larger than 1 since Db is singular at
φ(p). This would imply that the intersection number `x ·Db would be larger
than 5 which contradicts the fact that Db is a quartic curve in Hb.

Lemma 4.2.2. The natural projection f : Tp → Ep is injective.

Proof. Fix a hyperplane H containing φ(q) but not φ(p). Given any (x, b) ∈ Tp,
let `x, Hb be as in Lemma 4.2.1. Let `b ⊂ H be the line Hb ∩H and let y be
the point `x ∩ H. Since φ(q) ∈ Hb for all b and φ(q) ∈ H by choice of H,
φ(q) ∈ `b. Since y and φ(q) are distinct by Lemma 4.2.1, `b is the unique line
through y and φ(q). Now if (x, b), (x′, b′) ∈ Tp with x = x′, then y = y′. It
follows that the lines `b and `′b coincide which implies that b = b′.

Corollary 4.2.3. The 2-section Sp ⊂ C̃pq is irreducible.
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Proof. Since the map φ̃ : J̃ → K̃ restricted to the exceptional divisor Fp ⊂ J̃

is an isomorphism onto the exceptional divisor Ep ⊂ K̃, the map φ̃×id : C̃pq →
D̃pq restricted to Sp is an isomorphism onto Tp. Since Tp is isomorphic to a
Zariski open subset of the irreducible conic Ep by Lemma 4.2.2, Tp is irre-
ducible. It follows that Sp is also irreducible.

Lemma 4.2.4. The fiber of the map ã : Pic1
C̃/Vpq

→ J over 0 is connected.

Proof. We first consider the case where p = 0 ∈ J [2]. Let b ∈ Vpq and C̃b be the
fiber of the family of curves C̃pq at b. Let ãb : Pic1(C̃b)→ J be the restriction
of ã to C̃b. Let p1, p2 be the two points in C̃b lying over the node p ∈ Cb.
Since p1, p2 lie over p = 0, Grothendieck-Riemann-Roch for the composition
C̃b → Cb → J implies that ã(OC̃b

(pi)) = 0 for i = 1, 2.
Recall that by Corollary 3.2.5, the degree 0 line bundle OC̃b

(p1 − p2) is
not in the identity component of kernel of the map a : Pic0(C̃b) → J . This
implies that the degree 1 line bundles OC̃b

(p1) and OC̃b
(p2) must lie in different

connected components of ã−1
b (0).

Now let Sp ⊂ C̃pq be the 2-section described in Equation 4.11. Consider
the base change diagram

Ĉpq C̃pq

Sp Vpq

(4.12)

The preimage of the 2-section Sp ⊂ Cpq in C̃pq splits into two irreducible
components S1 and S2. Using representability of the Picard functor, the
line bundle OĈpq(S1) on CSp defines a section s : Sp → Pic1C̃pq/Vpq

such that
s(pi, b) = OC̃b

(pi). Since s(p1, b) and s(p2, b) are in different connected com-
ponents of a−1(0) and Sp is irreducible, ã−1(0) is connected.

If p 6= 0 ∈ J [2], consider the translation by p morphism tp : J → J . Pull-
back by tp determines an automorphism of the linear system |2θ| sending the
line Npq to the line N0r where r = p + q. The connectivity of ã−1(0) then
follows from the p = 0 case.

Lemma 4.2.5. The fiber of the map ã : Pic2C̃pq/Vpq
→ J over 0 is disconnected.

Proof. Consider the projection π̃pq : C̃pq → J̃ and the line bundle π̃∗
pqOĴ(Fp)

on C̃pq. Using representability of the Picard functor, this line bundle defines
a section s : Vpq → Pic2C̃pq ]/Vpq

such that s(pi, b) = OC̃b
(p1 + p2). Since p1, p2
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lie over the 2-torsion point p ∈ J [2], we see that this section factors through
ã−1(0).

Using these lemmas, we will be able to give the following description of the
top degree direct image sheaves over Vpq.

Proposition 4.2.6. There are canonical isomorphisms of constructible
sheaves:

R6
M |Vpq ' R6

M̃
|Vpq ' Q⊕2

Vpq
, (4.13)

R6
N |Vpq ' QVpq ⊕LVpq , (4.14)

where LVpq is a rank one local system on Vpq corresponding to π1(Vpq) rep-
resentation for which loops around N(3)-points act by the identity and loops
around NR-points act by −1.

Proof. We begin by proving Equation 4.13. The isomorphism R6
M |Vpq ' R6

M̃
|Vpq

in Equation 4.13 follows from the isomorphism MC ' M̃C between fibers for
C ∈ Vpq. For the other isomorphism, we will use argue using the sheaf of
irreducible components as in the proof of Equation 4.5.

Recall that the morphism MVpq → Vpq is flat, and by Proposition 3.2.10, has
reduced fibers each having two irreducible components. Fact 2 from Section
4.1 implies that R6QMVpq

is the Q-linearization of the sheaf of sets Irr(MVpq) of
irreducible components of MVpq . Lemma 4.2.5 implies that the sheaf Irr(MVpq)
is the constant sheaf with stalks of cardinality 2 and the second isomorphism
in Equation 4.13 follows.

We now prove Equation 4.14. Recall that the morphism NVpq → Vpq is flat
and by Proposition 3.2.10, has reduced fibers each having two irreducible com-
ponents. Fact 2 from Section 4.1 implies that R6QNVpq

is the Q-linearization
of the sheaf of sets Irr(NVpq) of irreducible components of NVpq . Lemma 4.2.4
implies that Irr(NVpq) must be a non-trivial locally constant sheaf with stalks
of cardinality two.

We now claim that loops around N(3) points do not interchange the two
irreducible components of a fiber NC . To see this, note that Proposition
3.2.10 implies that the morphism NVpq → Vpq can be extended to a mor-
phism NUpq → Upq which is also flat with reduced fibers. Moreover, the locus
N lf

Upq
parameterizing sheaves which are pushforwards of line bundles is dense

in every fiber. Now fix any F ∈ N lf
C where C ∈ N(3) ∩ Npq = Upq \ Vpq.

Since the Le Potier support morphism is smooth at every point of N lf
C , the

map n, viewed in the analytic topology, is a submersion at F . It follows
that there exists a small disk ∆pq ⊂ Upq about C ∈ N(3) and a local section
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s : ∆pq → N lf
∆pq

such that s(0) = F . Restricting this section to ∆∗
pq gives a

local section of N lf
∆∗

pq
which implies that N lf

∆pq∗ is disconnected. In particular,
loops around N(3) points do not interchange the two irreducible components
of a fiber.

Since Irr(MVpq) is a non-trivial locally constant sheaf and the loops around
N(3) points act trivially on the irreducible components, it extends to a non-
trivial locally constant sheaf on Vpq = Npq \NR ' C∗. We conclude that loops
around both NR points must interchange the two irreducible components of
a fiber and the isomorphism in Equation 4.14 follows.
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Chapter 5

Ngô Strings

In this chapter, we will use our knowledge of the top degree direct image
sheaves for the fibrations m̃ and n and the Ngô Support Theorem to determine
the Decomposition Theorems for Rm̃∗QM̃ and Rn∗QN , which is recorded in
Proposition 5.4.2. We first introduce several relevant strings that will appear
in the Decomposition Theorems for Rm̃∗QM̃ and Rn∗QN .

5.1 The Relevant String over B

In this section, we will introduce the relevant string over the entire base B =
|2θ| and will study some properties of the string.

Consider the group scheme g : G → B described in Section 2.5. Over
the locus S ⊂ B of smooth curves, the map g : GS → S is smooth and the
fibers of G are 3-dimensional Abelian varieties by Proposition 3.2.10. Consider
the higher direct image sheaves Λi

B := Rig∗QGS
. We introduce the following

complex, viewable in DbMHMalg(B) or Db(B,Q), which we will call a string.

IB := ⊕6
i=0I C B(Λ

i
B)[−i]. (5.1)

We will see in Section 5.4 that the string IB appears in the Decomposition
Theorems for M̃ and N .

In the remainder of this section, we will study some properties of the string
IB. It will be useful to first consider the universal family of curves γ : C → B
in the linear system B, where the superscripts denote the dimensions. Note
that the total space C is smooth. Set Λ1

γ := R1γ∗QCS .
Lemma 5.1.1. The Decomposition Theorem for Rγ∗QC takes the following
form:

Rγ∗QC ' QB ⊕
(
iS∗Λ

1
γ)[−1]⊕ iR0∗LR0 [−2]

)
⊕QB[−2](−1).
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Proof. We prove the equivalent
Rγ∗QC[4] ' QB[3][1]⊕

(
iS∗Λ

1
γ)[3]⊕ iR0∗LR0 [2]

)
⊕QB3][−1](−1).

By looking at the regular part of γ, the following summands appear in the
Decomposition Theorem for Rγ∗QC[4]:

QB[3][1]⊕ ICB(Λ
1
γ)[0]⊕Q[3][−1](−1).

The cohomology sheaf H−2(ICB(Λ
1
γ)) contributes to R2γ∗QC. By the support

conditions for intersection complexes, this sheaf is supported in dimension
≤ 1. Since curves over the two dimensional locus R0 have two irreducible
components, there must be a contribution of the form ICR(L) where L is a
rank one local system on some open dense subset R′ of R. The intersection
complex ICR(L) can only have nonzero cohomology sheaves in degrees −2
and −1. However, since H−1(ICR(L)) would contribute to R3γ∗QC, it must
be zero. It follows that ICR(L) = iR′∗L[2] where iR′ : R′ → B is the locally
closed embedding. Since the stalks of R2γ∗QC are one dimensional over NR,
we conclude that the cohomology sheaves of ICB(Λ

1
γ) must vanish in degrees

−2 and −1. It follows that ICB(Λ
1
γ) = iS∗Λ

1
γ[3].

Using this lemma, we make the following observation about the cohomology
sheaves of the string IB.
Lemma 5.1.2. The cohomology sheaf H1(I C B(Λ

5
B)) vanishes. In particular,

H6(IB) = QB ⊕H2(I C B(Λ
4
B)).

where H2(I C B(Λ
4
B)) is a skyscraper sheaf.

Proof. Let f : Pic0C/S → S be the relative Picard scheme of the universal family
C over the locus of smooth curves S ⊂ B. Recall that by definition, GS is
a subgroup scheme of Pic0C/B. The natural closed embedding GS → Pic0C/S
induces a morphism of semi-simple local systems

R1f∗QPic0C/S
→ R1g∗QGS

. (5.2)

The map on stalks over a point C ∈ S can be identified with the restriction
map H1(Pic0(C),Q)→ H1(GC ,Q), which is surjective since GC is an Abelian
subvariety of Pic0(C). It follows that the map in Equation 5.2 is surjective and
thus by semi-simplicity, Λ1

B := R1g∗QGS
is a direct summand of R1f∗QPic0C/S

.
Noting that R1f∗QPic0C/S

' R1γ∗QC = Λ1
γ, we see that Λ1

B is a direct summand
of R1γ∗QC. Since the intermediate extension functor preserves direct sums,
I C B(Λ

1
B) is a direct summand of I C B(Λ

1
γ). Lemma 5.1.1 then implies that

H1(I C B(Λ
1
B)) = 0. The claim in the lemma then follows from the Relative

Hard Lefschetz isomorphism Λ1
B ' Λ5

B.
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5.2 The Relevant Strings over R

In this section, we will describe the relevant strings over the loci R. Through-
out this section, we use the canonical identification of J∨ ' Pic0(C0) where
C0 is our fixed genus 2 curve.

Consider the support morphism m : M → B. Denote the restriction of m
to the singular locus Σ ⊂M of M by r. The image of r is precisely the locus
R ⊂ B. According to Lemmas 3.3.4 and 3.4.9, the map

J∨ × J → Σ; (L, x) 7→ [ix∗L⊕ i−x∗L
∨]

is a double cover branched along the 256 2-torsion points of J∨×J . Similarly,
the map

J → R; x 7→ θx + θ−x

a double cover branched along the 16 2-torsion points of J .
Letting A := J∨ × J , there is a commutative diagram

A J

Σ R

pr2

q c q

r

(5.3)

where pr2 : A → J is projection onto the second factor, both q maps are the
respective branched covers described above, and r is restriction of the support
morphism m : M → B to Σ.

We introduce the following complexes, viewable in either DbMHMalg(R)
or Db(R,Q), which we will again call strings. Let Λi

R0 := Rir∗QΣR0 ,

I +
R := ⊕4

i=0I C R(Λ
i
R0)[−i], (5.4)

I −
R := ⊕4

i=0I C R(Λ
i
R0 ⊗LR0)[−i], (5.5)

where LR0 is the rank one local system on R0 associated to the étale double
cover JR0 → R0.

In the remainder of this section, we will study the Decomposition Theorems
for morphisms r : Σ→ R and c : A→ R.
Lemma 5.2.1. There is an isomorphism

Rr∗QΣ ' I +
R .

Moreover, the intersection complexes I C R(Λ
1
R) and I C R(Λ

3
R) are sheaves,

i.e.
I C R(Λ

1
R) = iR0∗Λ

1
R (5.6)

I C R(Λ
3
R) = iR0∗Λ

1
R(−1). (5.7)
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Proof. For reasons of bookkeeping, we prove the equivalent:

Rr∗QΣ[4] ' QR[2][2]⊕
1⊕

i=−1

ICR(Λ
i+2
R0 )[−i]⊕QR[2][−2](−2).

By looking at the regular part of r, the summands

QR[2][2]⊕
1⊕

i=−1

ICR(Λ
i+2
R0 )[−i]⊕QR[2][−2](−2)

must appear in the Decomposition Theorem for Rr∗QA/±1[4]. Since all fibers
of r are irreducible, there can be no additional summands in perverse degrees
1 and 2. Relative Hard Lefschetz then implies that the only additional sum-
mands can appear in perverse degree 0. Again using the fact that all fibers of
r are irreducible, the only additional summands can be intersection complexes
of supported on one dimensional subvarieties of R placed in perverse degree 0.
Such a summand would contribute non-trivially to R3r∗QA/±1 in codimension
one. However, since there are only finitely many points in R for which the
fibers of r are not Abelian surfaces, no such summand can exist. We conclude
that there are no additional summands which appear in the Decomposition
Theorem for r.

To see the claim about the intersection complexes being sheaves, notice
that since R ⊂ B is a surface, the intersection complexes I C R(Λ

i
R) can only

have nonzero cohomology sheaves in degrees 0 and 1. The support condition
for intersection complexes implies that the cohomology sheavesH1(I C R(Λ

i
R))

are supported in dimension ≤ 0. Since the fibers of r are all irreducible, we
conclude that H1(I C R(Λ

3
R)) = 0. Equation 5.6 and Equation 5.7 then follow

from the Relative Hard Lefschetz isomorphism Λ1
R ' Λ3

R(1).

We now study the Decomposition Theorem for the map c = r ◦ q : A→ R
described in Equation 5.3. We note that the fibers of c are straightforward to
describe. Using the top right triangle in Equation 5.3, we see that fiber over
a point in R0 consists of two irreducible components, while the fiber over a
point in NR is irreducible.

Lemma 5.2.2. There is an isomorphism

Rc∗QA ' I +
R ⊕I −

R
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Proof. Consider the commutative diagram

AU A J

U Σ R

ΣR0 R0

□

pr2

q c q

jU r

□
r

jΣ jR0

where U ⊂ Σ is the smooth part of Σ. Note that the inclusion ΣR0 ⊂ U holds
since each fiber of r over NR contains precisely 16 nodes.

We begin by describing some local systems that will appear in the proof.
Recall that LR0 is the rank one local system on R0 corresponding to the
representation of π1(R

0) which factors through the Z/2Z character −1. Let
LU be the rank one local system on U corresponding to the representation
of π1(U) associated to the étale double cover AU → U , which factors through
the Z/2Z character −1. Let LΣR0 be the restriction of the local system LU to
ΣR0 . Since the complement of ΣR0 in U has complex codimension 2, there is an
isomorphism of fundamental groups π1(ΣR0) ' π1(U). This implies that the
local system LΣR0 corresponds to the representation of π1(ΣR0) which factors
through the Z/2Z character −1. We claim that there is an isomorphism of
local systems LΣR0 ' r∗LR0 . To see this, consider the commutative diagram

π1(ΣR0) π1(R
0) Aut(Q)

Z/2Z

−1

The right triangle corresponds to the local system LR0 and the large outer
triangle corresponds to the local system r∗LR0 . The left arrow in the top row
is a surjection by the long exact sequence of homotopy groups for a fibration
since the general fiber of r is connected. It follows that the arrow π1(ΣR0)→
Z/2Z is surjective and this gives the desired isomorphism of local systems
LΣR0 ' p∗LR0 .

We now study the Decomposition Theorem for c : A → R. Proper base
change and the fact that q is a finite map imply that Rq∗QA = QA ⊕ jU∗LU .
It follows that Rc∗QA = Rr∗(q∗QA) = Rr∗QΣ ⊕ Rr∗(jU∗LU). Lemma 5.2.1
implies that there is an isomorphism Rr∗QΣ ' I +

R . To finish the proof, we
must show that there is an isomorphism Rr∗(jU∗LU) ' I −

R . To see this,
notice that by proper base change for r, Rr∗(jU∗LU)|0R = Rr∗j

∗
ΣR0

jU∗LU .
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Since jU is an open embedding, there is an isomorphism j∗UjU∗LU ' LU .
This implies that there is an isomorphism Rr∗(jU∗LU)|R0 = Rr∗LΣR0 . Using
the isomorphism LΣR0 ' r∗LR0 combined with the projection formula gives

Rr∗(jU∗LU)|V = Rr∗r
∗LR0 = (Rr∗QΣ)⊗LR0 .

Deligne’s Theorem [dC17b, Theorem 1.5.3], i.e. the Decomposition Theorem
for smooth proper morphisms, combined with the fact that the fibers of r over
NR are irreducible then give the desired isomorphism Rr∗(jU∗LU) ' I −

R .

5.3 The Relevant Strings over Npq

In this section, we will introduce the relevant strings over the loci Npq. These
strings will be direct summands appearing in the Decomposition Theorems for
some special fibrations related to the Kummer K3 surface K̃ associated to J .

Consider the commutative diagram

J̃ K̃

J K

ϕ̃

ε τ

ϕ

where K̃ is the Kummer K3 surface associated to the Abelian surface J . Let
H be a hyperplane section of K and let Ep and Eq be the exceptional divisors
in K̃ over nodes p, q ∈ K. Consider the linear system B′ = |τ ∗H − Ep − Eq|
and note that dimB′ = 1 and B′ is base point free.

Let D̃B′ ⊂ K̃ × B′ be the universal family of curves associated to the
linear system B′. Since B′ is a base point free pencil, the projection morphism
D̃B′ → K̃ is an isomorphism. Under this isomorphism, the family of curves
D̃B′ → B′ can be identified with the elliptic fibration e : K̃ → B′ where e is the
morphism determined by the linear system B′. We note that the base of this
elliptic fibration can be identified with the locus Npq parameterizing curves in
the linear system B = |2θ| with nodes at p and q via the map

Npq → B′; C 7→ τ ∗f(C)− Ep − Eq.

In the remainder of this section, we will always identify Npq with B′.
The elliptic fibration e : K̃ → B′ given by the linear system B′ has six I2

fibers and two I∗0 fibers (in Kodaira’s notation of singular fibers for elliptic
surfaces) and admits a section (cf. [Kum14, §4]). Under the identification
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Npq ' B′, the six N(3) points in Npq are identified with the six points in B′

having I2 fibers and the two NR points in Npq are identified with the two
points in B′ having I∗0 fibers. The section of e, coupled with the isomorphism
D̃B′ ' K̃, induces an identification between the elliptic fibration e : K̃Vpq → Vpq

and the relative Picard scheme Pic0D̃Vpq/Vpq
over the open subset Vpq ⊂ Npq.

We are now ready to introduce some relevant strings over the loci Npq. In
view of Proposition 3.2.10, there is a surjective morphism of smooth commu-
tative group schemes

G0|Vpq ↠ Pic0D̃Vpq/Vpq
(5.8)

where G0|Vpq is the identity component of G|Vpq , which fiber-by-fiber realizes
the Chevalley devissage.

Let Λ1
Vpq

:= R1e∗QK̃Vpq
. We introduce the following complexes, viewable in

DbMHMalg(Npq) or Db(Npq,Q), which we will again call strings.

I +
Npq

:= QNpq ⊕ jpq∗(Λ
1
Vpq

)[−1]⊕QNpq [−2](−1) (5.9)

I −
Npq

:= jpq∗LVpq ⊕ jpq∗(Λ
1
Vpq
⊗LVpq)[−1]⊕ jpq∗LVpq [−2](−1) (5.10)

where LVpq is a rank one local system on Vpq with −1 monodromy around NR
points and trivial monodromy around N(3) points and jpq : Upq → Npq is the
inclusion.

In the remainder of the section, we study the strings I +
Npq

and I −
Npq

.
We begin by describing the Decomposition Theorem for the elliptic fibration
e : K̃ → Npq.

Lemma 5.3.1. Let jpq : Vpq → Npq be the inclusion map. There is an isomor-
phism

Re∗QK̃ ' I +
Npq
⊕ (QNpq∩N(3) ⊕Q⊕4

Npq∩NR)[−2](−1). (5.11)

Proof. For reasons of bookkeeping, we prove the equivalent:

Re∗QK̃ [2] ' QNpq [1][1]⊕
(
jpq∗Λ

1
Vpq

[1]⊕QNpq∩N(3) ⊕Q⊕4
Npq∩NR

)
[0]

⊕QNpq [1][−1](−1)
(5.12)

By looking at the regular part of p, the summands

QNpq [1][1]⊕ jpq∗Λ
1
Vpq

[1][0]⊕QNpq [1][−1](−1)

must appear in the Decomposition Theorem for Re∗QK̃ [2]. Any additional
summand in perverse degree 1 must be a skyscraper sheaf which would con-
tribute non-trivially to R3e∗QK̃ . Since the fibers are curves, no such summands
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can exist. Relative Hard Lefschetz then implies that the only additional sum-
mands that can appear are skyscrapers in perverse degree 0. With Kumar’s
description of the fibers of e : K̃ → B′ and the identification of the base B′ with
Npq, we see that the fiber of e over C ∈ N(3) has two irreducible components
and the fiber of e over C ∈ NR has five irreducible components. Equation
5.12 then follows.

Corollary 5.3.2. There is an isomorphism of rational polarizable Hodge struc-
tures

H∗(Npq,I
+
Npq

) ' Heven(J)⊕Q⊕2(−1). (5.13)

Proof. Taking cohomology in Equation 5.11 gives H∗(K̃) = H∗(Npq,I
+
Npq

) ⊕
Q⊕14(−1). Since K̃ is the Kummer K3 surface associated to J , the Hodge
structure of K̃ is given by H∗(K̃) = Heven(J) ⊕ Q⊕16(−1). The result then
follows by combining these two equations.

To understand the string I −
Npq

, we first need to discuss the existence of a
special double cover of the Kummer K3 surface K̃, described by Mehran in
[Meh11], which is “compatible” with the elliptic fibration e : K̃ → B′. More
precisely, consider the two singular fibers of type I∗0 in the elliptic fibration e.
In each singular fiber of type I∗0 , there are four exceptional curves which appear
with multiplicity one. Denote these exceptional curves by E1, · · · , E8. One
can show that ∆ := E1+· · ·+E8 ∈ 2NS(K̃). In particular, this means that we
can find a double cover q : Z → K̃ branched along ∆. Notice if Fi := q−1(Ei)
denotes the preimage of Ei, then the pullback of Ei is given by q∗(Ei) = 2Fi

and F 2
i = −1. Thus, the Fi are exceptional curves and we can blow them

down to obtain a surface τ : Z → X.
In our case, Mehran shows in [Meh11, Proposition 2.3] that the surface

X is actually the Kummer K3 surface associated to some Abelian surface J ′.
Moreover, Mehran shows the Abelian surface J ′ admits an isogeny J ′ → J
of degree 2. The 16 disjoint rational curves on X are easy to describe. Let
E9, · · · , E16 denote the eight rational curves in K̃ which are not in the branch
locus of q. Since q is an étale double cover outside of the branch locus, for
9 ≤ i ≤ 16, the preimage of a curve Ei ⊂ K̃ must be an étale double cover
of P1 and thus consists of two disjoint rational curves Fi, F

′
i ⊂ Z. The images

of these curves in X under the blow down map τ : Z → X, which we will
also denote by Fi and F ′

i , are the 16 disjoint rational curves on the Kummer
K3 surface X. With this description of X, we make the following observation
about the Hodge structures of X and Z.
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Lemma 5.3.3. There is an isomorphism of rational polarizable Hodge struc-
tures

H∗(Z) ' Heven(J)⊕Q(−1)⊕24 (5.14)

Proof. Since Z is the blow up of X at eight points, there is an isomorphism
of rational Hodge structures H∗(Z) ' H∗(X) ⊕ Q(−1)⊕8. Since X is the
Kummer K3 associated to the Abelian surface J ′, there is an isomorphism of
rational Hodge structures H∗(X) ' Heven(J ′) ⊕ Q(−1)⊕16. The claim then
follows by noticing that the Hodge structure of J ′ is isomorphic to the Hodge
structure of J since J ′ is an étale cover of J .

We are now ready to study the string I −
Npq

. Let q : Z → K̃ be the double
cover branched along ∆ and e : K̃ → B′ denote the elliptic fibration. Recall
that by construction, ∆ is contained within the two I∗0 fibers of e. Let h :=
e ◦ q : Z → B′ denote the composition.

The number of irreducible components of h are straightforward to describe.
The fiber of e over a point of Vpq is a smooth elliptic curve F which is disjoint
from the branch locus. If the pre-image of this elliptic curve under q were
connected, then F admits a degree two isogeny. Since K̃ is is general Kummer
K3 surface, this cannot happen. Thus, the pre-image of a smooth elliptic
curve under the double cover q must split into two disjoint elliptic curves. In
particular, the fiber of h over a point of Vpq has two irreducible components.

The fiber of e over an N(3) point is disjoint from the branch locus and is
a curve of type I2, i.e. consists of two rational curves which meet transversely
at two distinct points. Since q is étale over this fiber, each rational component
must split into two disjoint rational components. It follows that a fiber of h
over an N(3) point has four irreducible components.

Finally, the fiber of e over a NR point intersects the branch locus and is
a curve of type I∗0 . In particular, the fiber contains a non-reduced component
which is a rational curve that intersects the branch locus in precisely four
points. The preimage of this rational curve must be an elliptic curve since it
is a double cover P1 branched at four points. In particular, it is connected
and it follows that the fiber of h over an NR point consists of five irreducible
components.

Using this description of the irreducible components of h : Z → B′, we
describe the Decomposition Theorem for h.

Lemma 5.3.4. There is an isomorphism

Rh∗QZ ' I +
Npq
⊕I −

Npq
⊕

(
Q⊕4

NR ⊕Q⊕2
N(3)

)
[−2](−1) (5.15)
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Proof. Let W = K̃ \∆ and consider the commutative diagram

ZW Z

W K̃ B′

K̃Upq Upq.

□ q h

jW e

□j
K̃

e

jpq

(5.16)

where the top left and bottom right squares are fiber product diagrams. Note
that the inclusion K̃Upq ⊂ W holds since ∆ is contained within the two I∗0 fibers
of e. Since q is a branched double cover, Rq∗QZ = q∗QZ = QK̃⊕jW∗LW , where
LW is the rank one local system on W corresponding to the representation

π1(W ) Aut(Q)

Z/2Z.

−1

It follows that Rh∗QZ = Re∗QK̃ ⊕ Re∗(jW∗LW ). By proper base change for
e, there is an isomorphism j∗pqRe∗(jW∗LW ) ' Re∗(j

∗
K̃
jW∗LW ).

Let LK̃Upq
denote the pullback of the local system LW to K̃Upq . Since jW

is an open embedding, there is an isomorphism j∗W jW∗LW ' LW and this
implies that there is an isomorphism Re∗(j

∗
K̃
jW∗LW ) ' Re∗LK̃Upq

.
We now claim that LK̃Upq

' e∗LUpq where LUpq is the local system cor-
responding to the representation given by the bottom right triangle in the
following commutative diagram.

π1(K̃Vpq) π1(Vpq)

π1(K̃Upq) π1(Upq) Aut(Q)

Z/2Z

−1

We note that the diagonal arrow in the bottom left triangle is defined to be
the composition of the horizontal and vertical arrows. The top arrow in the
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square is a surjection by the long exact sequence of homotopy groups for a
fibration. The left and right arrows in the square are surjections because
the complements of the inclusions are both of complex codimension one. By
commutativity of the diagram, the arrow π1(K̃Upq)→ Z/2Z must be surjective
as well. This implies that the large triangle on the bottom is precisely the
representation which corresponds to the local system e∗LUpq which gives the
desired isomorphism.

The isomorphism LK̃Upq
' e∗LUpq implies that over Vpq,

Re∗LK̃Upq
|Vpq ' (Re∗QK̃Vpq

)⊗LVpq '
2⊕

i=0

(Rie∗QK̃Vpq
⊗LVpq).

where the first equality holds by the projection formula and the second by
Deligne’s Theorem. It follows that the strings I +

Npq
and I −

Npq
must be sum-

mands appearing in the Decomposition Theorem for Rh∗Q.

Corollary 5.3.5. There is an isomorphism of rational Hodge structures

H∗(Npq,I
−
Npq

) ' Q⊕2(−1). (5.17)

Proof. Taking cohomology in Equation 5.15 gives and applying Corollary 5.3.2
gives H∗(Z) ' Heven(J)⊕H∗(Npq,I

−
Npq

)⊕Q(−1)⊕22. The result then follows
from Equation 5.14.

5.4 The Decomposition Theorem for the
Lagrangian Fibrations m̃ and n

In this section, we describe the Decomposition Theorems for the complexes
Rm̃∗QM̃ and Rn∗QN . Similar to the O’Grady 10 case, we fall short of deter-
mining the exact shape of the Decomposition Theorem. However, the short-
coming is also measured by an integer r which appears in both expressions.

We begin with a lemma that restates some facts about the strings IB,
I +

R , I −
R , I +

Npq
, and I −

Npq
we have proved in previous sections.

Proposition 5.4.1.

1. The cohomology sheaf of IB in degree 6 takes the following shape:

H6(IB) = QB ⊕≤0 H2(I C B(Λ
4
B)).
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2. The cohomology sheaves of I +
R and I −

R in degree 4 take the following
shape:

H4(I +
R ) = QR, H4(I −

R ) = iR0∗LR0 .

3. The cohomology sheaves of I +
Npq

and I −
Npq

in degree 2 take the following
shape:

H2(I +
Npq

) = QNpq , H2(I −
Npq

) = iVpq∗LVpq .

Proof. The claim about the string IB is proved in Lemma 5.1.2. The claims
about the strings I +

R and I −
R are proved in Lemma 5.2.1 and Lemma 5.2.2

respectively. The claims about the strings I +
Npq

and I −
Npq

follows immediately
from their definition.

Proposition 5.4.2. Let 〈•〉 := [−2•](−•). The Decomposition Theorems for
Rm̃∗QM̃ , Rn∗QN in DbMHMalg(B) take the following form:

Rm̃∗QM̃ ' IB ⊕I +
R 〈1〉 ⊕

⊕
p,q∈J [2],p ̸=q

I +
Npq
〈2〉 ⊕Q⊕r+16

NR 〈3〉 (5.18)

Rn∗QN ' IB ⊕I −
R 〈1〉 ⊕

⊕
p,q∈J [2],p ̸=q

I −
Npq
〈2〉 ⊕Q⊕r

NR〈3〉. (5.19)

where r = 0 or 1.

Proof. Since the triples (M̃,B,G) and (N,B,G) are δ-regular weak Abelian
fibrations satisfying the assumptions of the Ngô Support Theorem by Propo-
sition 2.6.7, we can apply Theorem 3.

We first deal with Rm̃∗QM̃ . By Proposition 2.4.2, there is an isomorphism

Rm̃∗QM̃ ' Rm∗I C M ⊕R(m|Σ)∗QΣ〈1〉 ⊕ R(m|Ω)∗QΩ〈3〉,

where Σ ' J∨ × J/ ± 1 is the singular locus of M and Ω ' (J∨ × J)[2] is
the singular locus of Σ (cf. Section 5.2). Since the restrictions of the support
morphism m to Σ and Ω have images R and NR respectively, the subvarieties
B,R,NR must be supports for m̃ and the complexes R(m|Σ)∗QΣ, R(m|Ω)∗QΩ

are direct summands of Rm̃∗QM̃ . We note that Lemma 5.2.1 implies that
R(m|Σ)∗QΣ ' I +

R and Lemma 3.4.9 implies that R(m|Ω)∗QΩ ' Q⊕16
NR .

By Proposition 4.1.1, the local systems appearing in Theorem 3 applied
to each of these three supports are constant of some strictly positive ranks
rM̃,B, rM̃,R, and rM̃,NR. It follows that from Theorem 3 that the local systems
appearing in the string I +

R can be identified with the cohomology of the
Abelian part of the identity component of the group scheme G over some
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Zariski open subset of R and the direct sum of the Ngô strings associated with
these three supports is:

I
⊕r

M̃,B

B ⊕I +
R

⊕r
M̃,R〈1〉 ⊕Q

r
M̃,NR

NR 〈3〉.

According to Proposition 5.4.1, the combined contribution to the highest
direct image R6

M̃
takes the form:(

Q
⊕r

M̃,B

B ⊕≤0 H2(I C B(Λ
4
B))⊕Q

⊕r
M̃,R

R ⊕Q
⊕r

M̃,NR

NR

)
(−3).

Proposition 4.1.1 then implies that rM̃,|2θ| = rM̃,R = 1 and 16 ≤ rM̃,NR ≤ 34.
For any p, q ∈ J [2] with p 6= q, this contribution restricted to the locus Vpq

is simply QVpq . Since R6
M̃ |Vpq

' Q⊕2
Vpq

(−3) by Proposition 4.2.6, Npq must be a
support and the associated Ngô string is I +

Npq
〈2〉. Thus, we have shown that

the direct sum of the Ngô strings appearing in the Decomposition Theorem
for M̃ associated with the supports S, R, Npq, and NR is

IB ⊕I +
R 〈1〉 ⊕

⊕
p,q∈J [2],p ̸=q

I +
Npq
〈2〉 ⊕Q

⊕r
M̃,NR

NR 〈3〉 (5.20)

According to our description of R6
M̃

, the only other possible support is
N(3). If C ∈ N(3) has nodes at three distinct points p, q, r ∈ J [2], then
{C} = Npq ∩Npr ∩Nqr. It follows that the restriction of Equation 5.20 to C is
Q⊕4. Since R6

M̃
|C ' Q⊕4 by Proposition 4.1.1, C is not a support. It follows

that N(3) is not a support and Equation 5.18 holds. Moreover, we can also
say that the skyscraper sheaf ≤0H2(I C B(Λ

4
B)) is not supported on N(3).

The skyscraper sheaf ≤0H2(I C B(Λ
4
B)) can thus only be supported on NR.

The stalks of this sheaf over different points of NR must all be isomorphic by
Remark 3.4.1. It follows that there exists some integer r2,4 ≥ 0 such that

≤0H2(I C B(Λ
4
B)) = Q⊕r2,4

NR . (5.21)

Although the presence of this skyscraper sheaf prohibits us from determin-
ing the exact shape of the Decomposition Theorem, we can say the following.
Since any C ∈ NR passes through exactly six 2-torsion points, C lies in
15 =

(
6
2

)
lines of the form Npq. It follows that the restriction of Equation 5.20

to C is Q⊕17 ⊕Q⊕r2,4 . It follows that rM̃,NR = 34− 17− r2,4 = 17− r2,4.
We now deal with Rn∗QN . Proposition 4.1.1 implies that B must be a

support and by the Ngô Support Theorem (see Theorem 3), the associated
Ngô string is IB. Proposition 5.4.1 and the fact that the skyscraper sheaf
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≤0H2(I C B(Λ
4
B)) is supported on NR imply that this contribution restricted

to R0 is QR0 . Since R6
N |R0 ' (QR0 ⊕LR0)(−3) by Proposition 4.1.1, we see

that R is must be a support and by Ngô Support Theorem, the associated Ngô
string is I −

R .
Again by Proposition 5.4.1, for any p, q ∈ J [2] with p 6= q, the contribution

of the strings IB and I −
R restricted to Vpq is QVpq . Since R6

N |Vpq ' (QVpq ⊕
LVpq)(−3) by Proposition 4.2.6, we see that Npq must be a support and by
Theorem 3, the associated Ngô string is I −

Npq
. To summarize, we have so far

shown that the direct sum of the Ngô strings appearing in the Decomposition
Theorem for N associated with the supports S, R, Npq, and NR is

IB ⊕I −
R 〈1〉 ⊕

⊕
p,q∈J [2],p ̸=q

I −
Npq
〈2〉. (5.22)

According to our description of R6
N , the only other possible supports are

N(3) and NR. If C ∈ N(3) has nodes at three distinct points p, q, r ∈ J [2],
then {C} = Npq ∩ Npr ∩ Nqr. The description of the local system LVpq give
in Proposition 4.2.6 implies that the restriction of Equation 5.22 to C is Q⊕4.
Since R6

N |C ' Q⊕4 by Proposition 4.1.1, C is not a support. It follows that
N(3) is not a support.

If C ∈ NR, then the description of the local systems LR0 and LVpq imply
that restriction of Equation 5.22 to C is Q. Since R6

N |C ' Q⊕2 by Proposition
4.1.1, C is potential support. Using the description of the skyscraper sheaf
≤0H2(I C B(Λ

4
B)) given in Equation 5.21, we conclude that

rN,NR = 2− 1− r2,4 = 1− r2,4. (5.23)

Letting r = rN,NR = 1 − r2,4, we see that rM̃,NR = r + 16 as desired.
We note that r = 0 or 1 with r = 0 if and only if the contribution from the
skyscraper sheaf r2,4 = 1 and r = 1 if and only if the contribution from r2,4 is
0.

5.5 Proof of Main Theorem 1
Using the description of the Decomposition theorem for m̃ and n given in
Proposition 5.4.2, we can prove our main Theorem 1 on the Hodge numbers of
OG6 type manifolds. We begin by recalling the Fact from [dCRS21, Section
5.5].

Fact. Let A be a semisimple Abelian category where every object has finite
length and the isomorphism classes of simple objects form a set S. Every
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object a ∈ A is isomorphic to a unique finite direct sum of simple objects with
multiplicities

a '
⊕
s∈S

s⊕ns(a)

If we have an identity [a] = [b] − [c] in the Grothendieck group K(A) with
a, b, c ∈ A, then

ns(a) = ns(b)− ns(c)

Let φ : Obj(A) → M be an assignment into a commutative group which is
additive in exact sequences. If [a] = [b]− [c] as above, then

φ(a) = φ(b)− φ(c) (5.24)

In the remainder of this section, we let A = QGPPHS be the category of
rational graded polarizable pure Hodge structures.

Proposition 5.5.1. By abuse of notation, for a projective manifold X, we
denote the graded rational polarizable pure Hodge structure H∗(X,Q) simply
by X. Recall that A is the Abelian four-fold A := J∨×J . Let 〈•〉 := [−2•](−•).
Then we have

b∗(M̃) = b∗(N) + b∗((A/± 1)⊕2[−2])− b∗(A[−2])
+ b∗((J/± 1)⊕120[−4]) + b∗(NR⊕16[−6])

(5.25)

h•,⋆(M̃) = h•,⋆(N) + h•,⋆((A/± 1)⊕2〈1〉)− h•,⋆(A〈1〉)
+ h•,⋆((J/± 1)⊕120〈2〉) + h•,⋆(NR⊕16)〈3〉.

(5.26)

Proof. By Proposition 5.4.2 and Lemma 5.2.1, we have isomorphisms of finite
dimensional rational graded vector spaces, or in fact of rational polarizable
graded pure Hodge structures

H∗(M̃) ' H∗(IB)⊕H∗(I +
R )〈1〉 ⊕

⊕
p,q∈J [2],p ̸=q

H∗(I +
Npq

)〈2〉 ⊕Q⊕r+16
NR 〈3〉,

H∗(N) ' H∗(IB)⊕H∗(I −
R )〈1〉 ⊕

⊕
p,q∈J [2],p ̸=q

H∗(I −
Npq

)〈2〉 ⊕Q⊕r
NR〈3〉,

H∗(A/± 1) ' H∗(I +
R ),

H∗(A) ' H∗(I +
R )⊕H∗(I −

R ),

H∗(I +
Npq

) ' H∗(J/± 1)⊕H∗(I −
Npq

).
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Working in the Abelian category QPPHS, we obtain the the identity

H∗(M̃) = H∗(N) +
(
H∗(A/± 1)⊕2 −H∗(A)

)
〈1〉

+H∗(J/± 1)⊕120〈2〉
+H∗(NR)⊕16〈3〉

(5.27)

in the Grothendieck group K(A). Applying Equation 5.24 gives the result.

Proof of Main Theorem 1. Recall that the Betti and Hodge numbers of a man-
ifold in the deformation class OG6 can be computed from any representative
and in paticular, from the representative M̃ .

The Betti and Hodge numbers of all varieties appearing on the right hand
side of Equations 5.25 and 5.26 are known. We record the Hodge diamond of
N , which follows Göttsche-Soergel formula [GS93], below for convenience

1
0 0

1 5 1
0 4 4 0

1 6 37 6 1
0 4 24 24 4 0

1 5 37 372 37 5 1.

We note that b0(NR) = h0,0(NR) = 16 since the finite set NR has cardi-
nality 16. It then follows from Equation 5.26 that the Hodge diamond of M̃
is given by

1
1 6 1

1 12 173 12 1
1 6 173 1144 173 6 1

(5.28)

as desired.

5.6 Proof of Main Theorem 2
The graded pure polarizable Hodge structures of all varieties on the right
hand side of Equation 5.27 are known and can be expressed in terms of of the
Hodge structure of the underlying Abelian surface J . Let V := H∗(J,Q) be
the rational Hodge structure of the Abelian surface J . Let U = Heven(J,Q) =
H∗(J/± 1,Q) and W = Hodd(J,Q). Let 〈•〉 := [−2•](−•).

70



In [GS93, §6], Göttsche and Soergel express the rational Hodge structure
of N × J in terms of the rational Hodge structure of J . The rational Hodge
structure of just N can also be described in terms of the rational Hodge struc-
ture of J and can be read off from the LLV decomposition of the cohomology
of N described in Corollary 3.6 of [GKLR22]. More precisely, there is an ac-
tion of the LLV algebra g ' so(4, 5) on the full cohomology H∗(N). Since g
is semi-simple, H∗(N) decomposes as a direct sum of irreducible g-modules of
highest weight µ. This decomposition, called the LLV decomposition, for N is
given as

H∗(N) = V(3) ⊕ V(1,1) ⊕ V ⊕16 ⊕Q⊕240 ⊕ V( 3
2
, 1
2
, 1
2
, 1
2
), (5.29)

where
V = Q⊕H2(N)[−2]⊕Q〈2〉 (5.30)

is the standard representation of g. We note that the special Mumford-Tate
algebra m ' so(2, 3) is contained in the LLV algebra g and that the Hodge
structure of H∗(N) is determined by the m-module structure. In particular,
this implies that the LLV decomposition can be interpreted as a decomposition
of Hodge structures.

To express the Hodge structure of N in terms of the Hodge structure of J ,
we have the following Lemma.
Lemma 5.6.1. There is an isomorphism of weight two Q-Hodge structures

H2(N) = H2(J)⊕Q(−1). (5.31)

Proof. Recall that sheaves in N have Mukai vector w = (0, 2θ,−3). By [Yos01,
Theorem 0.2], there is an isomorphism of weight two Q-Hodge structures

(w⊥, (·, ·)) = (H2(N), BN), (5.32)

where w⊥ := {x ∈ Heven(J) | (w, x) = 0}, (·, ·) is the Mukai pairing (cf. Sec-
tion 2.4), and BN is the Beauville-Bogomolov-Fujiki form. If x = (x0, x2, x4)
is a vector in Heven(J), then

(w, x) = −2θ · x2 − 3x0. (5.33)

We note that the weight two Hodge structure on w⊥ is inherited from the
weight two Hodge structure on Heven(J), which is defined to be

H2,0 = H2,0(J)

H1,1 = H0(J)(−1)⊕H1,1(J)⊕H4(J)(1)

H0,2 = H0,2(J)

From Equation 5.33, we see that x ∈ w⊥ if and only if either
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1. x2 ∈ T ⊂ H2(J) and x4 ∈ Q, where T is transcendental weight two
Hodge structure of J , i.e. T is the subspace in H2(J) orthogonal to θ
with respect to the intersection pairing.

2. x2 = kθ, x0 =
−4k
3

for k ∈ Q, and x4 ∈ Q.
Let 〈θ〉 ⊂ H2(J) be the span of θ. It follows that the linear map

〈θ〉 ⊕ T ⊕Q(−1)→ w⊥ (5.34)
sending θ to (−4

3
, θ, 0), x ∈ T to (0, x, 0) and λ ∈ Q(−1) to (0, 0, λ) is an

isomorphism of weight two Q-Hodge structures. Since H2(J) = 〈θ〉 ⊕ T by
definition, we get the desired isomorphism.

We now claim that we can view the right hand side of Equation 5.29 as
an so(4, 4)-module via restriction of scalars. From Lemma 5.6.1 and Equation
5.30, we see that V = U ⊕Q〈1〉 as an so(4, 4) where, as above, U = Heven(J).
Using the branching rules described in [GKLR22, Appendix B.2.1] (one can
also see [FH91, §25.3] for a more in depth discussion), we have that as so(4, 4)-
modules,
H∗(N) = Sym3 U ⊕ U⊗2〈1〉 ⊕ U⊕16〈2〉 ⊕Q⊕256〈3〉 ⊕ (U ⊗ S+ ⊕ U ⊗ S−)〈1〉,

where S+ and S− are the two half spin representations. We note that S+ =
W = Hodd(J). Again using the branching rules, we see that S+ and S− are
isomorphic as m-modules. In particular, this means that they are isomorphic
as Hodge structures. It follows that the rational Hodge structure of N is given
by
H∗(N) = Sym3 U ⊕ U⊗2〈1〉 ⊕ U⊕16〈2〉 ⊕Q⊕256〈3〉 ⊕ (U ⊗W )⊕2〈1〉. (5.35)
Using the identification of the rational Hodge structure H∗(J∨) with H∗(J)

via the principal polarization θ, the rational Hodge structure of A = J∨×J is
H∗(A) = V ⊗2 = U⊗2 ⊕

(
U ⊗W )⊕2 ⊕W⊗2. (5.36)

The rational Hodge structure of A/±1 is the Z/2Z-invariant part of H∗(A),
which is given by

H∗(A/± 1) = U⊗2 ⊕W⊗2. (5.37)

Proof of Theorem 2. Substituting Equations 5.35, 5.36, 5.37 into Equation
5.27 expresses the Hodge structure of M̃ in terms of U and W . Since the
category of rational polarizable Hodge structures is semi-simple, we can make
cancellations and find that

H∗(M̃) = Sym3 U ⊕ (U⊗2)⊕2〈1〉 ⊕W⊗2〈1〉 ⊕ U⊕137〈2〉 ⊕Q⊕512〈3〉. (5.38)
as desired.
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5.6.1 Relation to the LLV Decomposition
In this section, we show that our description of the Hodge structure of M̃ in
Theorem 2 agrees with the LLV decomposition of the Hodge structure given
by Green, Kim, Laza, and Robles in [GKLR22] for manifolds of OG6 type.

We first express the Hodge structure of M̃ purely in terms of U = Heven(J).
To do this, we will need the following lemmas, which use the language of Schur
functors. In particular, for each partition λ of an integer k, let S(λ)(−) denote
the corresponding Schur functor. For more details about the notation and
basic details, see [FH91, Ch. 6]. As discussed in [dCRS21, §6.2], if V is a
rational polarizable Hodge structure, then each Schur module S(λ)(V ) is also
a rational polarizable Hodge structure.
Lemma 5.6.2. Let H1 = H1(J,Q). There are isomorphisms of rational
polarizable Hodge structures

Λ3H1 ⊗H1 = S(2,1,1)(H
1)⊕Q(−2),

Λ2(Λ2H1) = S(2,1,1)(H
1)⊕Q(−2),

Λ2H1 ⊗ Λ4H1 = S(2,2,1,1)(H
1),

Λ3(Λ2H1) = S(3,1,1,1)(H
1)⊕ S(2,2,2)(H

1),

Λ3H1 ⊗ Λ3H1 = S(2,2,2)(H
1)⊕ S(2,2,1,1)(H

1),

S(2,2,2)((H
1)∨) = S(3,1,1,1)(H

1)(6),

S(2,2,1,1)((H
1)∨) = S(2,2,1,1)(H

1)(6).

Proof. The first, third, and fifth statements follow from the Equation 6.9 on
page 79 in [FH91]. The second statement follows from Exercise 6.16 on page
81 in [FH91]. To prove the fourth statement, notice that by Exercise 6.5 on
page 78 in [FH91],

(Λ2H1)⊗3 ' Sym3(Λ2H1)⊕ Λ3(Λ2H1)⊕ S(2,1)(Λ
2H1)⊕2. (5.39)

On the other hand, by Exercise 6.9 on Page 82 in [FH91],

(Λ2H1)⊗3 = S3,3(H
1)⊕ S(2,2,2)(H

1)⊕ S(3,1,1,1)(H
1)⊕ S(1,1,1,1,1,1)(H

1)

⊕ S(3,2,1)(H
1)⊕2 ⊕ S(2,1,1,1,1)(H

1)⊕2

⊕ S(2,2,1,1)(H
1)⊕3.

(5.40)

The dimensions of the Schur modules appearing in the right hand side of
Equation 5.40 can be computed using Exercise 6.4 on page 78 in [FH91].
Comparing dimensions between Equations 5.39 and 5.40 then gives the last
statement. The last two statements follow from Exercise 15.50 on page 233 in
[FH91].
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Lemma 5.6.3. Let U = Heven(J), W = Hodd(J), and W ′ := Hodd(J∨). There
is an isomorphism of rational polarizable Hodge structures

Λ3U ⊕ U(−2) = (W ⊗W ′)(−1). (5.41)

Proof. The idea is to express the right hand side and the left hand side of
Equation 5.41 in terms of various Schur modules associated to H1(J,Q).

We begin with the right hand side of Equation 5.41. Writing W = H1
J⊕H3

J

and W ′ = H1
J∨ ⊕H3

J∨ , there is an isomorphism

(W ⊗W ′)(−1) = (H1
J ⊗H1

J∨)(−1)
⊕

(
(H1

J ⊗H3
J∨)⊕ (H1

J∨ ⊗H3
J)
)
(−1)

⊕ (H3
J ⊗H3

J∨)(−1).

Since J∨ is the dual Abelian surface of J , there is an isomorphism H1
J∨ =

(H1
J)

∨(−1) given by the principal polarization θ. Poincaré duality gives an
isomorphism (H1

J)
∨ = H3

J(2). Combining these gives an isomorphism

H1
J∨ = H3

J(1). (5.42)

Using this isomorphism, we see that

(W ⊗W ′)(−1) = (H1
J ⊗H3

J)

⊕ (H3
J∨)⊗2 ⊕ (H3

J)
⊗2

⊕ (H3
J ⊗H1

J)(−2)

Using the isomorphisms H3
J = Λ3H1

J and H3
J∨ = Λ3H1

J∨ , we see that

(W ⊗W ′)(−1) = (H1
J ⊗ Λ3H1

J)

⊕ (Λ3H1
J∨)⊗2 ⊕ (Λ3H1

J)
⊗2

⊕ (H1
J ⊗ Λ3H1

J)(−2)
(5.43)

Using the isomorphism H1
J∨ = (H1

J)
∨(−1), we can rewrite

(Λ3H1
J∨)⊗2 = (Λ3(H1

J)
∨)⊗2(−6).

Using Lemma 5.6.2 to express Equation 5.43 in terms of Schur modules gives

(W ⊗W ′)(−1) = S(2,1,1)(H
1
J)⊕Q(−2)

⊕ S(3,1,1,1)(H
1
J)⊕ S(2,2,2)(H

1
J)⊕ S(2,2,1,1)(H

1
J)

⊕2

⊕ (S(2,1,1)(H
1
J)⊕Q(−2))(−2)

(5.44)
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We now examine the left hand side of Equation 5.41. Since we only deal
with the cohomology of J and not of J∨, we will denote H i

J simply by H i.
Write U = H0 ⊕H2 ⊕H4 and note that H2 = Λ2H1, and H4 = Λ4H1. There
is an isomorphism

Λ3U = Λ2H2 ⊕
(
H2 ⊗H4 ⊕ Λ3H2

)
⊕ Λ2H2 ⊗H4. (5.45)

Moreover, we also have isomorphisms Λ2H2⊗H4 = Λ2H2(−2) and Λ2H1(−2) =
Λ2H1 ⊗H4. Using Equation 5.45 and these isomorphisms, the left hand side
of Equation 5.41 can be rewritten as

Λ3U ⊕ U(−2) =
(
Λ2(Λ2H1)⊕Q(−2)

)
⊕

(
Λ3(Λ2H1)⊕ (Λ2H1 ⊗ Λ4H1)⊕2

)
⊕
(
Λ2(Λ2H1)⊕Q(−2)

)
(−2).

(5.46)

Using Lemma 5.6.2 to express Equation 5.46 in terms of Schur modules gives

Λ3U ⊕ U(−2) = S(2,1,1)(H
1)⊕Q(−2)

⊕ S(3,1,1,1)(H
1)⊕ S(2,2,2)(H

1)⊕ S(2,2,1,1)(H
1)⊕2

⊕ (S(2,1,1)(H
1)⊕Q(−2))(−2)

(5.47)

Comparing Equations 5.44 and 5.47 and recalling that H1
J = H1 then gives

the desired isomorphism.

Combining Theorem 2 with Lemma 5.6.3 leads to the following Corollary.

Corollary 5.6.4. There is an isomorphism of rational graded polarizable pure
Hodge structures

H∗(M̃) = Sym3 U ⊕ Λ3U ⊕ (U⊗2)⊕2(−1)⊕ U⊕138(−2)⊕Q⊕512(−3). (5.48)

We now show that this description of the Hodge structure of M̃ in terms
of the even cohomology of J agrees with the LLV decomposition for manifolds
of OG6 type given by Green, Kim, Laza, and Robles in [GKLR22]. More
precisely, they show in Theorem 3.39 that

H∗(M̃) = V(3) ⊕ V(1,1,1) ⊕ V ⊕135 ⊕Q⊕240 (5.49)

as g(4, 6)-modules, where V = Q⊕H2(M̃)[−2]⊕Q〈2〉 is the standard represen-
tation of g. Lemma 5.6.1 and Theorem 2 imply that H2(M̃) = H2(J) ⊕ Q⊕2

as Q-Hodge structures. This can also be seen more directly using [Rap08,
Proposition 2.2.1, Corollary 3.5.13]) and using the fact that a birational map
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between two IHS manifolds induces a Z-Hodge structure isomorphism on their
second cohomology (cf. [GHJ03, Part III Section 27.1]). It follows that V can
be identified with U⊕Q⊕2〈1〉 where, as above, U = Heven(J). Using this iden-
tification along with the formulas Sym3(V ) = V(3) ⊕ V and V(1,1,1) = Λ3(V ),
we compute that

H∗(M̃) = Sym3 U ⊕ Λ3U ⊕ (U⊗2)⊕2(−1)⊕ U⊕138(−2)⊕Q⊕512(−3), (5.50)

which agrees with Equation 5.48.
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