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Abstract of the Dissertation

The Yamabe invariant of Inoue surfaces and their blowups

by

Michael Albanese

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

The Yamabe invariant of a closed smooth manifold is a real-valued diffeomorphism

invariant coming from Riemannian geometry. Using Seiberg-Witten theory, LeBrun

showed that the sign of the Yamabe invariant of a Kähler surface is determined by

its Kodaira dimension, a complex-geometric invariant of the surface. It is not hard

to see that the simplest non-Kähler surfaces, namely Hopf surfaces and their blowups,

follow the pattern laid out by LeBrun’s theorem. However, we will show that the non-

Kähler analogue of LeBrun’s theorem does not hold. In particular, we prove that the

Yamabe invariants of Inoue surfaces and their blowups are all zero. This is achieved by

developing a result which rules out the existence of positive scalar curvature metrics on

a larger class of examples.
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1. THE YAMABE INVARIANT

Let M be a closed, connected, smooth manifold of dimension n ≥ 2. For a Riemannian

metric g on M , we denote the Ricci curvature by Ricg, the scalar curvature by sg,

and the Riemannian volume density by dµg. Another Riemannian metric g̃ on M is

conformal to g if g̃ = ug for some positive smooth function u; if u is constant, we say g̃

is homothetic to g. If g̃ = f∗g for some diffeomorphism f ∶M →M , we say g̃ is isometric

to g. The conformal class of g, denoted [g], is the set of Riemannian metrics conformal

to g, i.e. [g] = {ug ∣ u ∈ C∞(M), u > 0}.

The Uniformisation Theorem states that every closed, connected surface admits a con-

stant sectional curvature metric. One might hope that this result generalises to higher

dimensions. The analogous statement is not true beyond dimension two because an

n-dimensional manifold which admits a constant sectional curvature metric has univer-

sal cover diffeomorphic to Rn or Sn, see Theorem 11.12 of [67]. So, for example, the

manifold S2 × S1 does not admit a constant sectional curvature metric.

If one replaces the constant sectional curvature requirement with constant scalar curva-

ture, which are equivalent requirements in dimension two, then the higher dimensional

analogue does hold. In fact, we have a much stronger statement.

Theorem 1.1. Let M be a closed smooth manifold. Every conformal class contains a

constant scalar curvature metric.

The task of establishing this result was known as the Yamabe problem due to the fact

that Yamabe [111] had claimed to prove the statement, but a gap in the argument was
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later pointed out by Trudinger [108]. Subsequent work by Aubin [8] and Schoen [89]

closed the gap.

In dimension two, constant sectional curvature is also equivalent to constant Ricci cur-

vature. More precisely, a Riemannian metric g is said to have constant Ricci curvature

if Ricg = λg for some constant λ ∈ R; such a metric is more commonly called an Einstein

metric. In dimension three, a metric is Einstein if and only if it has constant sectional

curvature, see Proposition 1.120 of [13]. So, for example, the manifold S2 ×S1 does not

admit an Einstein metric. In dimension four, there are topological obstructions to the

existence of Einstein metrics such as the Hitchin-Thorpe inequality [41].

Theorem 1.2. Let M be a closed orientable smooth four-manifold which admits an

Einstein metric. Then χ(M) ≥ 3
2 ∣σ(M)∣ with equality if and only if M is finitely covered

by a torus or a K3 surface.

So, for example, the manifolds S2 × Σg do not admit Einstein metrics for g > 0. It is

worth noting that the Hitchin-Thorpe inequality has been strengthened several times;

see [34] page 87, [57], and [58]. Moreover, the Hitchin-Thorpe inequality is itself an

improvement of an earlier result by Berger [12] which states that a closed smooth four-

manifold M which admits an Einstein metric satisfies χ(M) ≥ 0 with equality if and

only if M is flat.

In higher dimensions, it is not known if the existence of an Einstein metric has any

topological implications, which naturally leads to the following question.

Question 1.3. Does every closed smooth manifold of dimension at least five admit an

Einstein metric?

In the early twentieth century, Hilbert found a variational characterisation of Ricci-flat

metrics in terms of the total scalar curvature. More generally, Einstein metrics can

be characterised in terms of the normalised total scalar curvature, now known as the

Einstein-Hilbert functional. Explicitly, the Einstein-Hilbert functional on the space of
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Riemannian metrics on M is given by

E(g) =
∫
M
sgdµg

Vol(M,g)n−2
n

.

The exponent in the denominator has been chosen so that E(cg) = E(g) for all constants

c > 0, i.e. homothetic metrics have the same value. Moreover, for every diffeomorphism

f , we have E(f∗g) = E(g), i.e. isometric metrics have the same value; a functional

with this property is called a Riemannian functional. Hilbert showed that for n ≥ 3,

a Riemannian metric is a critical point of E if and only if it is an Einstein metric, see

Theorem 4.21 of [13]. Note that when n = 2, the scalar curvature is twice the sectional

curvature which is itself the Gaussian curvature, so we have E(g) = ∫M sgdµg = 4πχ(M)

by the Gauss-Bonnet Theorem, so every metric is a critical point, even if it isn’t Einstein.

One might hope to find global maxima and minima of E in the search for critical points,

but in general, the functional is neither bounded above or below. If one is willing to

restrict to a conformal class however, we obtain the following.

Proposition 1.4. When restricted to a conformal class, the Einstein-Hilbert functional

E is bounded below. More precisely, for any g̃ ∈ [g], we have

E(g̃) ≥ −(∫
M

∣sg ∣
n
2 dµg)

2
n

.

Equality occurs if and only if g has constant non-positive scalar curvature and g̃ is

homothetic to g.

Proof. The conformal Laplacian is Lgu = 4n−1
n−2∆gu + sgu where ∆g = d∗d + dd∗ is the

Laplace-Beltrami operator (with non-negative spectrum). If g̃ = u
4

n−2 g, then sg̃ =

u−
n+2
n−2Lgu.
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The total scalar curvature of g̃ is

∫
M
sg̃dµg̃ = ∫

M
u−

n+2
n−2 (4

n − 1

n − 2
∆gu + sgu)u

2n
n−2dµg

= ∫
M

4
n − 1

n − 2
u∆gu + sgu2dµg

= ∫
M

4
n − 1

n − 2
∣du∣2 + sgu2dµg

≥ ∫
M
sgu

2dµg

≥ −∫
M

∣sgu2∣dµg

≥ −(∫
M

∣sg ∣
n
2 dµg)

2
n

(∫
M
u

2n
n−2dµg)

n−2
n

where the final inequality is Hölder’s inequality with p = n
2 and q = n

n−2 . Note that

dµg̃ = u
2n
n−2dµg, so

Vol(M, g̃)n−2
n = (∫

M
u

2n
n−2dµg)

n−2
n

,

and therefore

E(g̃) = ∫M sg̃dµg

Vol(M, g̃)n−2
n

≥
− (∫M ∣sg ∣

n
2 dµg)

2
n (∫M u

2n
n−2dµg)

n−2
n

(∫M u
2n
n−2dµg)

n−2
n

= −(∫
M

∣sg ∣
n
2 dµg)

2
n

.

The first inequality in the initial computation is an equality if and only if du = 0 (i.e.

u is constant), while the second inequality is an equality if and only if sg ≤ 0. Equality

occurs in Hölder’s inequality if and only if the integrands are constant multiples of one

another, so if u is constant, we see that sg is constant.

In view of this proposition, we define the Yamabe constant of a conformal class C to be

Y (M,C) = inf
g∈C
E(g).

Note that the critical points of the Einstein-Hilbert functional restricted to a conformal
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class need not be critical points for the Einstein-Hilbert functional itself. In fact, for

n ≥ 3, a Riemannian metric is a critical point of the restricted functional if and only if it

has constant scalar curvature, see Proposition 4.25 of [8]. The aforementioned Yamabe

problem was solved by showing that the above infimum is actually attained, i.e. the

Einstein-Hilbert functional has a minimum when restricted to [g]. Such metrics are

called Yamabe minimisers. The following proposition shows that if Y (M, [g]) ≤ 0 and

n ≥ 3, Yamabe minimisers are effectively unique.

Proposition 1.5. Let M be a closed, connected manifold with a conformal class C,

and suppose g, g̃ ∈ C are constant scalar curvature metrics. If Y (M,C) ≤ 0, then g̃ is

homothetic to g. In particular, there is a unique unit-volume constant scalar curvature

metric in C.

Proof. Suppose that g̃ = e2ϕg. Then

sg̃ = e−2ϕ(sg + 2(n − 1)∆gϕ − (n − 1)(n − 2)∥∇ϕ∥2
g).

where ∆g = d∗d + dd∗ is the Laplace-Beltrami operator.

Suppose sg < 0. If p is a global maximum of ϕ, then (∇ϕ)(p) = 0 and (∆gϕ)(p) ≥ 0 so

sg̃ ≥ e−2ϕ(p)sg. If q is a global minimum of ϕ, then (∇ϕ)(q) = 0 and (∆gϕ)(q) ≤ 0 so

sg̃ ≤ e−2ϕ(q)sg. As e−2ϕ(p)sg ≤ e−2ϕ(q)sg and sg < 0, it follows that ϕ(p) ≤ ϕ(q) and hence

ϕ is constant so g̃ is homothetic to g.

If sg = 0, then the above argument shows that sg̃ = 0 and hence ∆gϕ = 1
2(n−2)∥∇ϕ∥2 ≥ 0,

so ϕ is subharmonic. By the maximum principle, the function ϕ is constant, so g̃ is

homothetic to g.

One might suspect that the above proposition follows from the equality case of Proposi-

tion 1.4, together with the existence of Yamabe minimisers. This is not quite the case.
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If one took g to be a Yamabe minimiser and assumed E(g̃) = E(g), then the conclusion

would follow, but a priori, we could have E(g̃) > E(g).

A natural question to ask is whether the above proposition also holds for conformal

classes C for which Y (M,C) > 0. As the following example demonstrates, it doesn’t in

general.

Example 1.6. Note that Y (S2, [ground]) = 4π > 0 where ground denotes the round metric.

If f ∶ S2 → S2 is a conformal diffeomorphism, then f∗g = ug for some smooth positive

function u, and f∗g has constant scalar curvature as sf∗g = sg○f = sg. If u were constant,

we would have sf∗g = sug = u−1sg. Therefore, if f∗g is homothetic to g, we must have

u = 1, i.e. f is an isometry of (S2, g). So for any conformal diffeomorphism which is

not an isometry, f∗g is a constant scalar curvature metric which is not homothetic to

g. To see that such maps f exist, first note that an orientation-preserving conformal

diffeomorphism is precisely a biholomorphism of CP1, so the conformal diffeomorphism

group is an extension of PGL(2,C) by Z2 while the isometry group of ground is O(3).

As the isometry group is three-dimensional and the conformal diffeomorphism group is

six-dimensional, there are many conformal diffeomorphisms which are not isometries.

The conformal classes C for which Y (M,C) > 0 have the following useful characterisa-

tion.

Proposition 1.7. The Yamabe constant of a conformal class C is positive if and only

if C contains a positive scalar curvature metric.

This proposition can be established without resorting to the existence of Yamabe min-

imisers, but for simplicity, we will do exactly that.

Proof. One direction is fairly straightforward. Let g̃ be a unit-volume Yamabe min-

imiser of C, so that Y (M,C) = E(g̃) = ∫M sg̃dµg̃. As g̃ has constant scalar curvature,

we see that ∫M sg̃dµg̃ = sg̃ Vol(M, g̃) = sg̃ and hence sg̃ = Y (M,C) > 0, so g̃ is a positive
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scalar curvature metric.

For the opposite direction, suppose C contains a positive scalar curvature metric g. Let

g̃ be a Yamabe minimiser of C, then g̃ = e2ϕg for some function ϕ and sg̃ = e−2ϕ(sg +

2(n − 1)∆gϕ − (n − 1)(n − 2)∥∇ϕ∥2). If p is a local maximum of ϕ, then (∇ϕ)(p) = 0

and (∆gϕ)(p) ≥ 0 so sg̃(p) = e−2ϕ(p)(sg(p) + 2(n − 1)(∆gu)(p)) ≥ e−2ϕ(p)sg(p) > 0. As sg̃

is constant, we see that sg̃ = sg̃(p) > 0, so g̃ is a positive scalar curvature metric.

Now we see that Example 1.6 generalises to higher dimensions. More precisely, as ground,

the round metric on Sn, has positive scalar curvature, we have Y (Sn, [ground]) > 0

by Proposition 1.7. The conformal diffeomorphism group of (Sn, [ground]) is O(n +

1,1)/{±I} which has dimension (n+2
2
), while the isometry group of ground is O(n + 1)

which has dimension (n+1
2
). As (n+1

2
) < (n+2

2
), there are many conformal diffeomorphisms

which are not isometries of ground. For such a conformal diffeomorphism f , the metric

f∗ground has constant scalar curvature but is not homothetic to ground.

Note that f∗ground is not only a constant scalar curvature metric, it is also Einstein

(in fact, constant sectional curvature). So f∗ground and ground are conformal Einstein

metrics which are not homothetic if f is a conformal diffeomorphism which is not an

isometry. It follows from the next result that this is the only case where such metrics

can exist.

Theorem 1.8. (Obata [79]) Let M be a compact, connected n-dimensional manifold

with an Einstein metric g, and let g̃ ∈ [g] be a constant scalar curvature metric. If

(M, [g]) is not conformally diffeomorphic to (Sn, [ground]), then g̃ is homothetic to g.

In particular, there is a unique unit-volume constant scalar curvature metric in [g].

If Y (M, [g]) ≤ 0, the above statement follows from Proposition 1.5. For Y (M, [g]) > 0,

see Proposition 6.2 of [79].

In the same paper, Obata shows that the constant scalar curvature metrics on Sn

7



constructed above are the only such metrics conformal to ground, see Proposition 6.1

of [79]. That is, every constant scalar curvature metric g ∈ [ground] is of the form

f∗ground for some diffeomorphism f ∶ Sn → Sn, i.e. g is isometric to ground. In particular,

although there is not a unique unit-volume constant scalar curvature metric in [ground],

they all have the same value of scalar curvature and are therefore Yamabe minimisers.

Both Proposition 1.5 and Theorem 1.8 allow one to compute the Yamabe constant of

certain conformal classes. More precisely, if g is a constant non-positive scalar curvature

metric or an Einstein metric, then g is a Yamabe minimiser so Y (M, [g]) = E(g). The

following lemma gives an upper bound on the possible value of the Yamabe constant of

every conformal class.

Lemma 1.9. (Aubin [8]) Let M be a closed smooth n-dimensional manifold. Then for

any conformal class [g], the Yamabe constant of C satisfies Y (M,C) ≤ Y (Sn, [ground])

with equality if and only if (M,C) is conformally diffeomorphic to (Sn, [ground]).

For many conformal classes, namely those in the purview of Proposition 1.5 and The-

orem 1.8, there is a unique unit-volume Yamabe minimiser. Anderson has shown that

this is also true for a generic conformal class, see Theorem 1.1 of [5]. Now suppose C is

a conformal class with Y (M,C) > 0. Even if C has a unique unit-volume Yamabe min-

imiser g, it need not have a unique unit-volume constant scalar curvature metric. That

is, there could be a unit-volume constant scalar curvature metric g̃ with sg̃ ≠ sg which is

equivalent to E(g̃) > E(g). This descrepancy makes the computation of Y (M,C) more

difficult in the positive case.

Example 1.10. Let M be a closed m-dimensional smooth manifold which admits a

constant positive scalar curvature metric1 gM and let N be a closed n-dimensional

smooth manifold which admits a scalar-flat metric, i.e. a metric with constant zero

1 This is equivalent to requiring M to admit a positive scalar curvature metric. To see this, note
that if g′M has positive scalar curvature, then Y (M, [g′M ]) > 0 by Proposition 1.7, so if gM is a Yamabe
minimiser for [g′M ], then gM is a constant positive scalar curvature metric.
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scalar curvature. Consider the family of metrics ht = gM + tgN on M ×N . Note that

sht = sgM + stgN = sgM + t−1sgN = sgM and Vol(M × N,ht) = Vol(M,gM)Vol(N, tgN) =

tn/2 Vol(N,gN) = tn/2. So for every t > 0, the metric gt has constant scalar curvature and

satisfies E(gt) = sg1t−n/2. For small enough t, we see that E(ht) ≥ Y (Sn+m, [ground]) so

by Lemma 1.9, the constant scalar curvature metrics ht cannot be Yamabe minimisers

for their conformal class. In particular, we must have E(ht) > E(h) where h is a Yamabe

minimiser for [ht].

For conformal classes where unit-volume constant scalar curvature metrics are not

unique, one could ask how many possible scalar curvature values can occur. It fol-

lows from section 2 of [90] that for any N , there are conformal classes on Sn × S1 for

which the number of values is at least N ; also see [87] for a more general statement.

For n ≥ 25, there exist conformal classes on Sn for which the number of such values is

infinite, see [19] and [20].

Thanks to Lemma 1.9, the following quantity is finite:

Y (M) = sup
[g]

Y (M, [g]).

This is known as the Yamabe invariant ofM . It was defined independently by Kobayashi

[55], who denoted it by µ, and Schoen [90], who denoted it by σ. The following result

is immediate by Proposition 1.7.

Proposition 1.11. The Yamabe invariant of M is positive if and only if M admits a

positive scalar curvature metric.

The Yamabe invariant is a diffeomorphism invariant, but it is not a homeomorphism

invariant, see Example 3.27 and Example 4.2. So it can be used to distinguish smooth

structures on a topological manifold. It can be viewed as a refinement of the Z2-valued

invariant which detects whether or not a manifold admits a positive scalar curvature
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metric. In particular, it can be used to distinguish smooth structures when neither one

admits positive scalar curvature metrics, see Example 4.2.

Given the min-max definition of the Yamabe invariant, one might hope that if M admits

a Yamabe minimiser g realising the Yamabe invariant, that is Y (M, [g]) = Y (M), then

g is a saddle point of the Einstein-Hilbert functional and hence an Einstein metric;

note that Einstein metrics are always saddle points, see page 9 of [109]. If Y (M) ≤ 0,

this is true, see Lemma 1.9 of [55]. If Y (M) > 0, it is unknown in general. One case

where it is known to be true is when
sg
n−1 is not an eigenvalue of the Laplace-Beltrami

operator ∆g, see Proposition 4.47 of [13]. By Theorem 1.8, if g is an Einstein metric

and (M, [g]) is not conformally diffeomorphic to (Sn, [ground]), then any constant scalar

curvature metric is homothetic to g. In the converse direction, if Y (M, [g]) = Y (M)

and every constant scalar curvature metric in [g] is homothetic to g, then g is Einstein,

see Lemma 1.4 of [71].

1.1 Values of the Yamabe Invariant

Although the Yamabe invariant is a useful diffeomorphism invariant, it is notoriously

difficult to compute, especially if the manifold admits positive scalar curvature metrics

due to the potential existence of constant scalar curvature metrics which are not Yamabe

minimisers as demonstrated in Example 1.10.

It follows from Obata’s results that an Einstein metric g is a Yamabe minimiser, so

Y (M, [g]) = E(g). In particular, if g is a unit-volume Einstein metric with Ricg = λg,

then E(g) = λ. This allows us to compute the Yamabe invariant of Sn:

Y (Sn) = Y (Sn, [ground]) = E(ground) = n(n − 1)Vol(Sn, ground)
2
n .

10



It follows from Lemma 1.9 that Y (M) ≤ Y (Sn) but unlike the case for the Yamabe

constant of a conformal class, equality can occur withoutM and Sn being diffeomorphic.

For example, Schoen proved Y (Sn−1 × S1) = Y (Sn), see pages 132-135 of [90]. More

generally, Kobayashi showed that Y (M) = Y (Sn) for any mapping torus of Sn−1, see

Theorem 2 (b) of [55].

In a fixed dimension, the value of the Yamabe invariant is bounded above by the

Yamabe invariant of the corresponding sphere. However, if we consider manifolds of

varying dimension, there is no upper bound for the Yamabe invariant.

Proposition 1.12. The values of the Yamabe invariant are not bounded above. In

particular lim
k→∞

Y (S2k) =∞.

Proof. We have

Y (Sn) = n(n − 1)Vol(Sn, ground)
2
n = n(n − 1)( 2π

n+1
2

Γ(n+1
2 ))

2
n

.

So for n = 2k we have

Y (S2k) = 2k(2k − 1)( 2πk
√
π

Γ(k + 1
2)

)
1
k

.

By 6.1.8 and 6.1.12 of [2], we have

Γ(k + 1

2
) = (2k − 1)!!

2k
√
π.

As (2k − 1)!! < (2k)!! < (2k)k < 2(2k)k, we see that

Γ(k + 1

2
) < 2(2k)k

2k
√
π = 2kk

√
π.
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Therefore

Y (S2k) > 2k(2k − 1)(2πk
√
π

2kk
√
π
)

1
k

= 2k(2k − 1)(π
k

kk
)

1
k

= 2k(2k − 1)π
k
= (4k − 2)π

and hence lim
k→∞

Y (S2k) =∞.

For a surface of genus g we have Y (Σg) = 4πχ(Σg) = 8π(1− g), so there is also no lower

bound on the Yamabe invariant.

One might wonder whether every real number arises as the Yamabe invariant of some

closed smooth manifold – this is far from true. The following theorem implies that only

countably many real numbers arise.

Theorem 1.13. There are countably many closed smooth manifolds up to diffeomor-

phism.

Every closed smooth manifold admits a compatible piecewise linear structure, this is due

to Cairns [22] and Whitehead [110]. Moreover, a PL manifold only admits finitely many

possible smoothings, see page 221 of [93]. As closed PL manifolds are in particular finite

simplicial complexes, there are only countably many. Combining these facts, Theorem

1.13 follows. Alternatively, the result also follows from Cheeger’s Finiteness Theorem,

see [25] and [86].

An approach to produce more values of the Yamabe invariant is to take the connected

sum of two manifolds M1 and M2 whose Yamabe invariants are known, with the hope

that Y (M1#M2) can be computed in terms of Y (M1) and Y (M2). In general, there

is no formula relating Y (M1#M2) with Y (M1) and Y (M2), however, there is a lower

bound for Y (M1#M2).

Theorem 1.14. (Kobayashi [55]) If M1 and M2 are compact connected manifolds of
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dimension n ≥ 3, then

Y (M1#M2) ≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(∣Y (M1)∣n/2 + ∣Y (M2)∣n/2)2/n if Y (M1), Y (M2) ≤ 0

min{Y (M1), Y (M2)} otherwise.

As we have seen previously, metrics with special curvature properties (namely constant

non-positive scalar curvature and Einstein) can be used to compute the value of the

Yamabe constant of a conformal class. One might hope that a metric with even more

restrictive curvature properties could be used to compute the Yamabe invariant directly.

Conjecture 1.15. Let M be a closed smooth manifold which admits a metric g of

constant sectional curvature. Then Y (M) = E(g).

As a metric of constant sectional curvature is Einstein, we have Y (M) ≥ Y (M, [g]) =

E(g) by Theorem 1.8.

If π ∶M ′ →M is a k-sheeted covering, and g is a Riemannian metric on M , then

E(π∗g) = ∫M ′ sπ∗gdµπ∗g

(∫M ′ dµπ∗g)
n−2
n

= ∫M ′ π∗(sgdµg)
(∫M ′ π∗dµg)

n−2
n

= k ∫M sgdµg

(k ∫M dµg)
n−2
n

= k2/nE(g).

So, if G is a finite group of order k acting by isometries on Sn, the above conjecture

asserts that Y (Sn/G) = k−2/nY (Sn). The only case with k > 1 which has been verified

is that of RP3 which was computed by Bray & Neves [18]. Using the inverse mean

curvature flow, they were able to show that Y (RP2×S1) = Y (RP3) = 2−2/3Y (S3) = 6π4/3.

Using the above computation, if E(g) > 0 and k > 1, then E(π∗g) > E(g). More

generally, Aubin’s Lemma (see Lemma 2 and Theorem 8 of [9], or Lemma 3.6 of [4])

states that if Y (M, [g]) > 0 and k > 1, then Y (M ′, [π∗g]) > Y (M, [g]); if Y (M, [g]) ≤ 0,

then Propostion 1.5 shows that Y (M ′, [π∗g]) = k2/nY (M, [g]). Akutagawa & Neves [4]

used Aubin’s Lemma to show that for any non-negative integers k, `,m,n, we have

13



Y (k(RP3)#`(RP2 × S1)#m(S2 × S1)#n(S2×̃S1)) = Y (RP3) provided k + ` ≥ 1; here

S2×̃S1 denotes the non-orientable S2-bundle over S1. If k + ` = 0, that is k = ` = 0, it

follows from Theorem 1.14 that Y (m(S2 × S1)#n(S2×̃S1)) = Y (S3) as Y (S2 × S1) =

Y (S2×̃S1) = Y (S3).

Although very little progress has been made on Conjecture 1.15 in the positive case, it

has been solved for contant sectional curvature zero manifolds, i.e. flat manifolds. This

follows immediately once one knows that such manifolds do not admit positive scalar

curvature metrics; see section 3.2.

In the hyperbolic case, that is constant negative sectional curvature, Conjecture 1.15

has been resolved in dimension three. In [6], Anderson shows that Perelman’s solution

of Thurston’s Geometrization Conjecture [82], [83], [84] can be used to show that for

a closed hyperbolic three-manifold M , we have Y (M) = −6 Vol(M,g−1)2/3 = E(g−1)

where g−1 is the metric of constant sectional curvature −1. More generally, if M is

a three-manifold with Y (M) ≤ 0, see Theorem 3.24 for when this occurs, we have

Y (M) = −6 Vol(H,g−1)2/3 where H is the hyperbolic part of M (with respect to the

splitting given by the geometrization conjecture).

The Yamabe invariant of surfaces is easily computed thanks to the Gauss-Bonnet The-

orem. For three-manifolds, the above collection of results shows that much is known,

although far from everything. In dimension four, the existence of Seiberg-Witten theory

and its implications regarding positive scalar curvature metrics is a special feature, see

section 3.3 for more details. LeBrun in [65] used Seiberg-Witten theory to compute the

value of the Yamabe invariant for most Kähler surfaces, and in [64], he showed that

Y (CP2) = 12
√

2π; see chapter 4 for a more in-depth discussion. Similar techniques were

also used to compute many other examples, see [100] and [101].

In dimensions five and above, very little is known. For example, the only values of the

Yamabe invariant that have been computed are 0 and Y (Sn). In the simply connected
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case, we have the following.

Theorem 1.16. (Petean [85]) Let M be a closed simply connected manifold with

dimM ≥ 5. Then Y (M) ≥ 0.

Note that the above statement is also true of simply connected manifolds in dimensions

two and three, but it is false in dimension four, see Example 4.2.

As we have already seen, there is much we don’t know about the Yamabe invariant. We

end this chapter with a few questions which, as far as I am aware, remain unanswered.

Questions 1.17.

● Is there a description of those manifolds M with Y (M) = Y (Sn)?

● Are there two homeomorphic smooth manifolds M1 and M2 such that Y (M1) and

Y (M2) are positive but not equal?

● Is there a countable collection of smooth manifolds {Mi} such that they are all

homeomorphic but they all have different Yamabe invariants? If such an example

exists, it must be four-dimensional as lower-dimensional manifolds have a unique

smooth structure by Radó [88] and Moise [74], while higher-dimensional manifolds

only admit finitely many smooth structures, see page 221 of [93].

● Are there infinitely many values of the Yamabe invariant in each dimension?

● Are there only finitely many positive values of the Yamabe invariant in each

dimension?

15



2. COMPLEX SURFACES

We begin by recalling some definitions.

Let X be a compact, connected, complex manifold and denote its canonical bundle by

KX . For d ≥ 0, the dth plurigenus of X is Pd(X) ∶= dimH0(X,Kd
X). The Kodaira

dimension of X, denoted κ(X), is defined to be −∞ if all the plurigenera are zero,

otherwise we set

κ(X) = lim sup
logPd
log d

.

The Kodaira dimension satisfies κ(X) ∈ {−∞,0,1, . . . ,dimX} and κ(X × Y ) = κ(X) +

κ(Y ), see Theorem 10.8 and Proposition 10.8 of [46]. A complex manifold with κ(X) =

dimX is said to be of general type.

If Z ⊂ X is a complex submanifold of codimension k, then the blowup of X along

Z is a complex manifold X̃ equipped with a map π ∶ X̃ → X such that π∣π−1(X∖Z)

is a biholomorphism, and E ∶= π−1(Z) is a complex submanifold of codimension 1.

Moreover, π∣E ∶ E → Z is a CPk−1-bundle over Z, namely the projectivisation of the

normal bundle of Z in X. When Z is a point, the blowup is orientedly diffeomorphic

to X#CPn, see Proposition 2.5.8 of [44]. The plurigenera are invariant under blowups,

and hence so is the Kodaira dimension.

We say that a compact complex manifold X is projective if there is an embedding

X → CPN for some N .
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2.1 Kodaira-Enriques Classification

Let us now restrict our attention to dimension two, that is, complex surfaces.

We say that X is minimal if X cannot be obtained as the blowup of another complex

surface. If Y can be obtained from a minimal complex surface X by a series of blowups,

we say that X is a minimal model for Y . As b2 increases by one after a blowup, it follows

that every surface has a minimal model. If κ(Y ) ≥ 0, then Y has a unique minimal

model, see Proposition III.4.6 of [10]. The same is true if κ(Y ) = −∞ and b1(Y ) is

odd, see page 262 of [10]. There are cases where the minimal model is not unique. For

example, both CP1 × CP1 and CP2 are minimal models for the blowup of CP2 at two

points.

We now state the Kodaira-Enriques classification of complex surfaces, see Theorem

blah of [10] for example.

Theorem 2.1. Let Y be a complex surface. Then Y has a minimal model which belongs

to exactly one of the following ten classes: rational, ruled, class VII, K3, Enriques, two-

dimensional tori, hyperelliptic, Kodaira, properly elliptic, general type.

A surface is rational if it projective and birational to CP2. Aside from CP2 itself, the

only other minimal rational surfaces are the Hirzebruch surfaces Σn = P(O ⊕ O(n))

where n = 0 or n ≥ 2, see Proposition VI.3.3 of [10]. We exclude n = 1 as Σ1 is

biholomorphic to the blowup of CP2 at a point, which is not minimal.

A surface is ruled if it is the total space of a holomorphic CP1-bundle over a curve of

positive genus with structure group PGL(2,C). Every ruled surface is the projectivisa-

tion of a rank two holomorphic vector bundle, see Proposition V.4.1 of [10]. It follows

that ruled surfaces are projective.

A surface is said to be of class VII, or is a class VII surface, if it has Kodaira dimension

−∞ and b1 = 1. These surfaces will be discussed more in the next section.
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A K3 surface is a compact complex surface with trivial canonical bundle and b1 = 0.

It follows from the adjunction formula and the Lefschetz Hyperplane Theorem that a

smooth quartic in CP3 is an example of a K3 surface, moreover it is simply connected.

Any two K3 surfaces are deformation equivalent, see Theorem 7.1.1 of [45], so there is

only one diffeomorphism type and it is simply connected. A generic K3 surface is not

projective.

An Enriques surface is a compact complex surface X with b1(X) = 0 such that KX⊗KX

is holomorphically trivial, but KX is not. Every Enriques surface is double covered by

a K3 surface, see Proposition VIII.17 of [11]. All Enriques surfaces are projective and

any two are deformation equivalent, see chapter V, section 23 and Theorem VIII.18.5

of [10] respectively. Therefore there is only one diffeomorphism type and π1(X) ≅ Z2.

A torus is a complex manifold of the form Cn/Λ where Λ is a lattice in Cn, i.e. a free

abelian subgroup of rank 2n. For n > 1, a generic torus is not projective, see pages

36-37 of [77].

A hyperelliptic surface (also known as a bi-elliptic surface) is a surface with b1 = 2 which

admits a holomorphic submersion over an elliptic curve with an elliptic curve as typical

fibre. Every hyperelliptic surface is a quotient of a product of elliptic curves by a free

action of Z2, Z2 ⊕Z2, Z3, Z3 ⊕Z3, Z4, Z4 ⊕Z2, or Z6, see pages 36-37 of [17]. It follows

that every hyperelliptic surface is projective, see Theorem IV.6.8 of [10].

A Kodaira surface is a complex surface of Kodaira dimension 0 with odd b1. A primary

Kodaira surface is a Kodaira surface with trivial canonical bundle, while a secondary

Kodaira surface is a finite quotient of a primary Kodaira surface.

An elliptic surface is a surface which admits a holomorphic submersion to a Riemann

surface with an elliptic curve as a typical fibre. Just by taking the product of an

elliptic curve with other Riemann surfaces, it is easy to see that elliptic surfaces can
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have Kodaira dimension −∞, 0, and 1, although less trivial examples also exist, e.g.

hyperelliptic surfaces. No elliptic surface can have Kodaira dimension 2, see Proposition

V.12.5 of [10]. A properly elliptic surface is an elliptic surface which has Kodaira

dimension one.

A surface is said to be of general type if it has Kodaira dimension 2. It follows from

Corollary IV.6.5 of [10] that they are projective.

The above classes can be organised in the following table:

κ(X) b1(X) even b1(X) odd

−∞ Rational, Ruled Class VII

0 K3, Enriques, Tori, Hyperelliptic Kodaira Surfaces

1 Properly Elliptic Surfaces Properly Elliptic Surfaces

2 General Type

The reason for introducing the parity of b1(X) as a distinguishing factor in the above

table is the following theorem.

Theorem 2.2. Let X be a compact, connected, complex surface. Then X admits a

Kähler metric if and only if b1(X) is even.

This was initially conjectured by Kodaira, see page 85 of [76]. The necessity of b1(X)

even follows from the Hodge decomposition, while sufficiency is much more difficult.

As rational, ruled, Enriques, hyperelliptic, and general type surfaces are all projective,

the Kodaira-Enriques classification tells us that only three cases remain: K3 surfaces,

tori, and properly elliptic surfaces (with b1 even). Tori of every dimension admit Kähler

metrics, for example, the Euclidean metric on Cn is invariant under translations and
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hence descends to any torus. The case of properly elliptic surfaces was proved inde-

pendently by Miyaoka [73], and Harvey and Lawson [39]. The final case of K3 surfaces

was dealt with by Siu [96]. A proof of Kodaira’s conjecture which does not rely on the

classification was later given by Buchdahl [21] and Lamari [59] independently.

2.2 Class VII Surfaces

Of all the classes in the Kodaira-Enriques classification, class VII surfaces are the least

understood. Below we give an exposition of what is currently known.

Let X be a class VII surface. As b1(X) = 1, we have h1,0(X) = 0 and h0,1(X) = 1, see

Theorem 2.7 of [10]. As κ(X) = −∞, we know that h2,0(X) = dimH0(X,KX) = 0 and

hence h0,2(X) = 0 by Serre duality. Moreover, we have b+(X) = 2h2,0(X) = 0 and hence

b−(X) = b2(X), see Theorem 2.7 of [10].

2.2.1 Hopf Surfaces

A Hopf manifold is a complex manifold X of dimension n ≥ 2 whose universal cover is

biholomorphic to Cn ∖ {0}. If π1(X) ≅ Z, then X is called a primary Hopf manifold,

otherwise it is called a secondary Hopf manifold. Sometimes a primary Hopf manifold

is defined to be a quotient of Cn ∖ {0} by the infinite cyclic group generated by a

contraction. These two definitions coincide, as shown by Kodaira in section of 10

of [56]; moreover, he showed that every secondary Hopf manifold is finitely covered by

a primary Hopf manifold1.

When n = 2, we have a normal form for a contraction on C2. Up to an automorphism

of C2, every contraction is of the form (z1, z2) ↦ (α1z1 + λzm2 , α2z2) where m is a

1 Kodaira proved these statements in the case of surfaces, but the proofs work verbatim for the
general case.
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positive integer and α1, α2, λ ∈ C are subject to the conditions (α1 − αm2 )λ = 0 and

0 < ∣α1∣ ≤ ∣α2∣ < 1; see [60] and [98]. It follows that all primary Hopf surfaces are

deformation equivalent to the quotient of C2∖{0} by the infinite cyclic group generated

by the contraction (z1, z2) ↦ (1
2z1,

1
2z2); this is Hopf’s original example2 [43] which is

clearly diffeomorphic to S1 × S3, so all primary Hopf surfaces are diffeomorphic to

S1 × S3. The diffeomorphism types of secondary Hopf surfaces have been classified by

Kato in [50] and [52], see Theorem 4.5.

Note that C∗ × {0} is preserved by a contraction (in normal form), and the image of

C∗ × {0} under the quotient map is isomorphic to C∗/ ∼ where z ∼ α1z, i.e. a one-

dimensional torus. So every primary Hopf surface contains a curve; this is also true of

secondary Hopf surfaces, see Theorem 32 of [56].

2.2.2 Inoue Surfaces

Inoue surfaces are minimal class VII surfaces introduced by Inoue in [47] and [48].

Unlike Hopf surfaces, they do not contain curves. We outline the construction of the

four families of Inoue surfaces: S+M , S−M , S+N,p,q,r,t, and S−N,p,q,r.

Let M ∈ SL(3,Z) be a matrix with one real eigenvalue α > 1 and two complex conjugate

eigenvalues β, β̄ where Im(β) > 0. Let (a1, a2, a3), (b1, b2, b3), and (b1, b2, b3) be eigen-

vectors of M corresponding to the eigenvalues α, β, and β respectively. By replacing

(a1, a2, a3) with its real part if necessary, we can assume it is real.

Proposition 2.3. The vectors (a1, b1), (a2, b2), (a3, b3) ∈ R×C are linearly independent

over R.

Proof. Suppose c1(a1, b1) + c2(a2, b2) + c3(a3, b3) = (0,0) where c1, c2, c3 ∈ R. Then

(c1, c2, c3) ⋅ (a1, a2, a3) = 0 and (c1, c2, c3) ⋅ (b1, b2, b3) = 0. By conjugating the last equa-

2 Hopf actually defined complex manifolds (Cn ∖ {0})/Z where the Z-action is generated by g ∶
(z1, . . . , zn)↦ (2z1, . . . ,2zn). By taking n = 2 and replacing g by g−1, we obtain the stated surface.
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tion, we also have (c1, c2, c3) ⋅ (b1, b2, b3) = 0. As (a1, a2, a3), (b1, b2, b3), and (b1, b2, b3)

are eigenvectors for distinct eigenvalues, they are linearly independent and therefore

(c1, c2, c3) = (0,0,0).

Consider the following biholomorphisms of H ×C:

g0(w, z) = (αw,βz)

gi(w, z) = (w + ai, z + bi), i = 1,2,3.

Let G+
M be the group generated by g0, g1, g2, g3 and let Γ+ be the subgroup of G+

M

generated by g1, g2, g3; as g1, g2, g3 commute with each other, we see that Γ+ ≅ Z3.

Note that the action of Γ+ on (w, z) preserves Im(w) and {(w, z) ∈ H×C ∣ Im(w) = b}/Γ+

is diffeomorphic to (R×C)/Λ+ where Λ+ is the lattice generated by (a1, b1), (a2, b2), and

(a3, b3); the fact that Λ+ is a lattice follows from Proposition 2.3. Therefore (R×C)/Λ+

is diffeomorphic to T 3 and hence (H ×C)/Γ+ is diffeomorphic to (0,∞) × T 3.

As (a1, a2, a3) and (b1, b2, b3) are eigenvectors of M for the eigenvalues α and β respec-

tively, we have

(αai, βbi) =
3

∑
j=1

mij(aj, bj).

It follows that the biholomorphism g0 descends to the quotient (H ×C)/Γ+. Under the

identification with (0,∞)×T 3, the induced map g0 restricts to a diffeomorphism between

{1} × T 3 and {α} × T 3. So S+M ∶= (H ×C)/G+
M = ((H ×C)/Γ+)/⟨g0⟩ is diffeomorphic to

a mapping torus of a diffeomorphism f of T 3. By tracing through the identifications

and using the displayed equation above, it is not hard to show that f is just the map

on T 3 induced by MT .

Note that π1(S+M) = G+
M and H1(S+M ;Z) ≅ G+

M/[G+
M ,G

+
M]. For i, j ∈ {1,2,3}, we have
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[gi, gj] = 1, while it follows from the displayed equation above that

[g0, g1] = gm11−1
1 gm12

2 gm13
3

[g0, g2] = gm21
1 gm22−1

2 gm23
3

[g0, g3] = gm31
1 gm32

2 gm33−1
3 .

Recall that there are invertible matrices S,T ∈ GL(3,Z) such that S(M − I)T is diago-

nal; this is called the Smith normal form of M − I, and the entries on the diagonal, say

e1, e2, e3, are the elementary divisors of M −I. Note that e1, e2, e3 ≠ 0 otherwise there is

v ≠ 0 such that S(M −I)Tv = 0 which implies M(Tv) = Tv; this is impossible as Tv ≠ 0

and 1 is not an eigenvalue of M . Using T , we can replace the generators g1, g2, g3 with

ĝ1, ĝ2, ĝ3, and using S, we can reduce the commutator relations so that we obtain

H1(S+M ;Z) ≅ ⟨g0, ĝ1, ĝ2, ĝ3 ∣ ĝe11 = ĝe22 = ĝe33 = [g0, ĝi] = [ĝi, ĝj] = 1⟩

≅ Z⊕ (Z/e1Z)⊕ (Z/e2Z)⊕ (Z/e3Z).

Therefore b1(S+M) = 1. As S+M is diffeomorphic to a mapping torus of T 3, we have

χ(S+M) = χ(T 3)χ(S1) = 0 and therefore b2(S+M) = 0.

The Inoue surface S−M is defined similarly to S+M . Consider the following biholomor-

phisms of H ×C:

h0(w, z) = (αw,βz)

hi(w, z) = (w + ai, z + bi), i = 1,2,3.

Let G−
M be the group generated by h0, h1, h2, h3, and define S−M ∶= (H × C)/G−

M . The

arguments above concerning S+M can be made analagously for S−M . More directly, note

that the map H × C → H × C given by (w, z) ↦ (w, z) descends to a diffeomorphism
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S+M → S−M .

Remark 2.4. There is a little bit of confusion in the literature regarding the Inoue

surfaces S+M and S−M . In [47], for a matrix M ∈ SL(3,Z) with one real eigenvalue α > 1

and two complex conjugate eigenvalues β, β̄, Inoue defined a complex surface SM in the

same way as S+M was defined above. However, Inoue did not indicate how to distinguish

between β and β; note that we required Im(β) > 0. So, depending on the naming of the

eigenvalues, the surface SM could be S+M or S−M . In [48], Inoue separated the two cases

and showed that they are not biholomorphic, or even deformation equivalent. In the

literature which followed, the distinction between S+M and S−M was not always observed.

A potential reason for this oversight is that [47] appears in English while [48] appears

in Japanese.

In what follows, we refer to results in [47] regarding SM , so as explained above, these

results apply to both S+M and S−M .

Inoue proved that H0(SM ,O(L)) = 0 for every non-trivial holomorphic line bundle L,

see the proof of Proposition 2 (i) in [47]. It follows that SM does not contain any curves:

if C is a curve in SM , there is an associated holomorphic line bundle and a section s

such that s−1(0) = C. Moreover, we see that Pd(SM) = dimH0(SM ,Kd
SM

) = 0 unless

Kd
SM

is trivial; Inoue showed that this cannot happen for d ≠ 0, see Lemma 1 (iii) of [47].

It follows that SM has Kodaira dimension −∞.

Recently, Endo and Pajitnov defined higher dimensional analogues of Inoue surfaces of

type SM , see [29] and [30].

The classes S+N,p,q,r,t and S−N,p,q,r are defined in a similar way to S+M and S−M . We will

only briefly cover their properties.

Let N ∈ SL(2,Z) be a matrix with two real eigenvalues α and 1
α where α > 1 > 1

α > 0.

Let (a1, a2) and (b1, b2) be real eigenvectors of N for α and 1
α respectively. Let p, q, r ∈ Z
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with r ≠ 0 and t ∈ C. Consider the following equation for (c1, c2):

(N − I)(c1, c2) = (d1, d2) +
1

r
(b1a2 − b2a1)(p, q)

where di = 1
2ni1(ni1 − 1)a1b1 + 1

2ni2(ni2 − 1)a2b2 + ni1ni2b1a2. As N has eigenvalues

α > 1 > 1
α , the matrix N − I has eigenvalues α − 1 > 0 > 1

α − 1 and is therefore invertible,

so there is a unique solution to the above equation.

Consider the following biholomorphisms of H ×C:

g0(w, z) = (αw, z + t)

gi(w, z) = (w + ai, z + biw + ci) i = 1,2

g3(w, z) = (w, z + 1

r
(b1a2 − b2a1)) .

Let G+
N,p,q,r,t be the group generated by g0, g1, g2, g3 and let Γ be the subgroup generated

by g1, g2, g3. The quotient (H ×C)/Γ is diffeomorphic to (0,∞) ×F where F is a circle

bundle over a two-dimensional torus, and S+N,p,q,r,t ∶= (H×C)/G+
N,p,q,r,t = ((H×C)/Γ)/⟨g0⟩

is a mapping torus of F .

By computing the commutators of the generators of G+
N,p,q,r,t, it can be shown that

H1(S+N,p,q,r,t;Z) ≅ G+
N,p,q,r,t/[G+

N,p,q,r,t,G
+
N,p,q,r,t] ≅ Z⊕ (Z/e1Z)⊕ (Z/e2Z)⊕ (Z/rZ) where

e1, e2 are the non-zero elementary divisors of N −I, so b1(S+N,p,q,r,t) = 1. As χ(S+N,p,q,r,t) =

χ(F )χ(S1) = 0, we see that b2(S+N,p,q,r,t) = 0. Inoue showed that S+N,p,q,r,t does not

contain curves and has Kodaira dimension −∞, see Proposition 3 (i) of [47].

Finally, let N ∈ GL(2,Z) be a matrix with detN = −1 and eigenvalues α > 1 > −1 > − 1
α .

Let (a1, a2) and (b1, b2) be real eigenvectors of N for α and 1
α respectively. Let p, q, r ∈ Z
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with r ≠ 0 and consider the following equation for (c1, c2):

−(N + I)(c1, c2) = (d1, d2) +
1

r
(b1a2 − b2a1)(p, q)

where di are as before. As N has eigenvalues α > −1 > − 1
α , the matrix N + I has

eigenvalues α + 1 > 0 > − 1
α + 1 and is therefore invertible, so there is a unique solution

to the above equation.

Consider the following biholomorphisms of H ×C:

g0(w, z) = (αw,−z)

gi(w, z) = (w + ai, z + biw + ci) i = 1,2

g3(w, z) = (w, z + 1

r
(b1a2 − b2a1)) .

Let G−
N,p,q,r be the group generated by g0, g1, g2, g3. Then the subgroup generated by

g2
0, g1, g2, g3 is isomorphic to G+

N2,p1,q1,r,0
for some p1, q1 ∈ Z. As such, S−N,p,q,r ∶= (H ×

C)/G−
N,p,q,r has S+

N2,p1,q1,r,0
as a double cover. It follows that χ(S−N,p,q,r) = 0, b1(S−N,p,q,r) =

1, and b2(S−N,p,q,r) = 0. Moreover, the surface S−N,p,q,r does not contain curves and has

Kodaira dimension −∞.

The following theorem was first claimed by Bogomolov in [15] and [16]. Later, Li, Yau,

and Zheng [70] used a different method to prove the result, namely the Kobayashi-

Hitchin correspondence, but their argument was incomplete. Shortly after, Teleman

[104] gave a proof using similar ideas.

Theorem 2.5. Every class VII surface with b2 = 0 is biholomorphic to a Hopf surface

or an Inoue surface.
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2.2.3 Class VII Surfaces with b2 > 0

A spherical shell in an n-dimensional complex manifold is a connected open subset which

is biholomorphic to an open neighbourhood of S2n−1 in Cn ∖ {0}. If the complement

of a spherical shell is connected, then it is said to be a global spherical shell. Every

complex manifold admits a spherical shell, but not necessarily a global spherical shell.

For example, a compact connected Riemann surface admits a global spherical shell if

and only if it is not biholomorphic to CP1. In higher dimensions, the existence of a

global spherical shell is a much more restrictive condition.

Theorem 2.6. (Kato [51]) Suppose that a compact complex manifold X of dimension

n ≥ 2 contains a global spherical shell. Then there is a complex family π ∶ X → D such

that π−1(0) = X and for t ≠ 0, each fibre π−1(t) is biholomorphic to a modification of a

primary Hopf manifold at finitely many points.

A modification is a proper surjective holomorphic map f ∶X → Y with a closed nowhere-

dense subset N ⊂ Y such that f ∣X∖f−1(N) ∶ X ∖ f−1(N) → Y ∖N is a biholomorphism;

we also call X a modification of Y . In the context of the above theorem, the set N is

finite. Note that a modification is a special type of bimeromorphic map.

If X is obtained from Y by blowing up a finite collection of points, then the blowdown

map X → Y is a modification. More generally, one could blowup submanifolds of

the exceptional divisors in X, and the composition of the blowdown maps is also a

modification.

In the case of surfaces, every modification is just the composition of blowups of points,

see Theorem 5.7 of [61]. So by Theorem 2.6, a surface with a global spherical shell,

often called a Kato surface, is deformation equivalent to an iterated blowup of a primary

Hopf surface and is therefore diffeomorphic to (S1 × S3)#kCP2 for some k. Note that

such a surface has fundamental group Z and hence cannot admit a Kähler metric.
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More generally, an arbitrary bimeromorphic map is a composition of blowups and blow-

downs of smooth submanifolds, see Theorem 0.3.1 of [1]. In particular, a bimeromorphic

map induces an isomorphism on fundamental groups, so if X admits a global spherical

shell and dimX > 1, then π1(X) ≅ Z and hence X does not admit a Kähler metric.

Blownup primary Hopf manifolds contain global spherical shells. For example, consider

X = (Cn ∖ {0})/ ∼ where z ∼ λz where ∣λ∣ > 1. Then Uε = {z ∈ Cn ∣ 1 < ∥z∥ < 1 + ε}

projects to a global spherical shell in X provided 1+ ε < ∣λ∣. If X is blownup at finitely

many points p1, . . . , pk, then one can choose ε small enough so that the projection of Uε

doesn’t contain the points p1, . . . , pk, and this will give rise to a global spherical shell in

the blowup. Not every complex manifold with a global spherical shell is a modification

of a primary Hopf surface; as we will see shortly, examples already exist in dimension

two.

By Theorem 2.5, aside from Hopf and Inoue surfaces, all other minimal class VII sur-

faces must have b2 > 0. Examples of such surfaces have been constructed, for example

Enoki surfaces [28], Inoue-Hirzebruch surfaces and half-Inoue surfaces [49] – note, Inoue-

Hirzebruch surfaces are sometimes called parabolic and hyperbolic Inoue surfaces, such

as in [78]. However, minimal class VII surfaces with b2 > 0 remain unclassified. If the

following were true, we would have a classification up to deformation by Theorem 2.6.

Conjecture 2.7. (Global Spherical Shell) Every minimal class VII surface with

b2 > 0 contains a global spherical shell; i.e. it is a Kato surface.

By analysing the moduli space of stable holomorphic bundles on class VII surfaces,

Teleman has verified the conjecture for small values of b2, namely b2 = 1 and 2, see [105]

and [106] respectively. In [107], Teleman has announced the case b2 = 3 with the “long

and technical” details to follow in an upcoming paper.

All the known examples of minimal class VII surfaces have been shown to possess global

spherical shells. For Inoue-Hirzebruch surfaces and half-Inoue surfaces, this was shown
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by Kato in [51], while for Enoki surfaces, the existence of global spherical shells follows

from [27].
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3. OBSTRUCTIONS TO POSITIVE SCALAR CURVATURE

The following theorem follows from the work of Trudinger [108] and Aubin [7] on the

Yamabe problem.

Theorem 3.1. Every closed smooth manifold of dimension at least three admits a

Riemannian metric of (constant) negative scalar curvature.

In fact, Lohkamp [69] has shown that every such manifold admits a metric of negative

Ricci curvature.

On the other hand, there are obstructions to the existence of positive scalar curvature

metrics.

Theorem 3.2. (Lichnerowicz [68]) Let M be a closed spin manifold. If M admits a

metric of positive scalar curvature, then Â(M) = 0.

In dimension four, it follows from the Hirzebruch Signature Theorem that Â(M) =

−1
8σ(M), so Â(K3) = −1

8σ(K3) = 2 ≠ 0 and therefore a K3 surface does not admit a

metric of positive scalar curvature. In the following sections, we outline some more

obstructions to the existence of positive scalar curvature.

What then about zero scalar curvature metrics? Are there obstructions to their exis-

tence? The answer is heavily dependent upon whether the manifold admits metrics of

positive scalar curvature.

Proposition 3.3. On a closed manifold which does not admit a metric of positive scalar

curvature, any metric of non-negative scalar curvature is Ricci-flat.
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This was initially proved by Bourguignon, while another proof was given by Kazdan

and Warner, see Lemma 5.2 of [54]. Combining with Proposition 1.7, this immediately

gives the following result.

Corollary 3.4. Let M be a closed smooth manifold with Y (M) = 0. A Yamabe metric

g realises the Yamabe invariant if and only if g is Ricci-flat.

As the following theorem demonstrates, there are topological restrictions on those man-

ifolds which admit Ricci-flat metrics, so Proposition 3.3 leads to an obstruction to the

existence of zero scalar curvature metrics when no metrics of positive scalar curvature

exist.

Theorem 3.5. (Fischer & Wolf [31]) Let (M,g) be a closed Ricci-flat manifold of

dimension n. Then there is a finite covering π ∶ T k ×M0 where M0 is a closed simply

connected manifold of dimension n−k. Moreover, π∗g = g1+g2 where g1 is a flat metric

on T k and g2 is a Ricci-flat metric on M0.

If g is a Ricci-flat metric on M , then g is flat if and only if M has contractible universal

cover. Therefore, any zero scalar curvature metric on K3 is Ricci-flat but not flat. The

existence of such a metric is guaranteed by Yau’s solution of the Calabi conjecture [112].

Historically, this was the first example of a Ricci-flat metric on a closed manifold which

was not flat.

If the manifold M does in fact admit metrics of positive scalar curvature, then the

existence of zero scalar curvature metrics was proved by Kazdan & Warner as part of

their work on the prescribed scalar curvature problem: which functions f ∈ C∞(M)

arise as the scalar curvatures of a Riemannian metric?

Theorem 3.6. (Kazdan & Warner [53], [54]) Let n ≥ 3. Every smooth closed

connected n-dimensional manifold M falls into one of three types:

I. those which admit a metric of nonnegative scalar curvature which is positive some-

where,
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II. those which don’t but admit a metric of zero scalar curvature,

III. all other closed manifolds.

If M is in class I, then any f ∈ C∞(M) is the scalar curvature of some metric. If M

is in class II, then f ∈ C∞(M) is the scalar curvature of some metric iff it’s identically

zero or negative somewhere. If M is in class III, then f ∈ C∞(M) is the scalar curvature

of some metric iff it’s negative somewhere.

Manifolds in class I have positive Yamabe invariant, manifolds in class II have Yamabe

invariant zero which is realised, and manifolds in class III have non-positive Yamabe

invariant. In the case that the Yamabe invariant of a manifold in class III is zero, the

Yamabe invariant is not realised.

So a necessary condition for a manifold to admit a positive scalar curvature metric

is that it admit a zero scalar curvature metric. At the time of Kazdan and Warner’s

work, it was unknown whether this condition was also sufficient, in particular, they

asked whether T 3 admits a metric of positive scalar curvature, see Question 2 of [54].

The next two sections outline independent attempts to answer the question of whether

tori admit metrics of positive scalar curvature.

3.1 Minimal Hypersurface Technique

Let (M,g) be a Riemannian manifold, and let Σ be submanifold of M . The second

fundamental form of Σ is the pairing II ∶ TΣ×TΣ→ ν given by II(X,Y ) = projν(∇XY )

where ν is the normal bundle of Σ in M ; the projection is defined with respect to the

splitting TM ≅ ν⊕ν⊥ given by the Riemannian metric g and ∇ denotes the Levi-Civita

connection of g. As ∇ is torsion-free, the second fundamental form is symmetric.

We call H = trg(II) ∈ Γ(ν) the mean curvature of Σ in M . The first variation of the area
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functional at Σ along V ∈ Γ(ν) is given by − ∫Σ g(V,H)dµg, see equation (1.45) of [26];

we call a submanifold Σ with H = 0 a minimal submanifold. The second variation of

the area functional at Σ along V is given by − ∫Σ g(V,LV )dµg where L is the Jacobi

operator, a second order self-adjoint operator, see equation (1.143) of [26]. The (Morse)

index of a minimal submanifold Σ is the number of negative eigenvalues of L; if the

index is zero, then we call Σ a stable minimal submanifold.

In low dimensions, one way to produce stable minimal hypersurfaces is to use the

following theorem which is a combination of many results in geometric measure theory

from several authors, see Remark 3.4 of [62].

Theorem 3.7. Let (M,g) be a closed orientable smooth n-dimensional Riemannian

manifold with n ≤ 7. For any non-zero homology class in c ∈ Hn−1(M ;Z), there is a

smooth closed orientable hypersurface Σ with [Σ] = c which minimises area amongst all

such hypersurfaces. In particular, Σ is a stable minimal hypersurface.

In higher dimensions, the techniques used to produce Σ instead produce a subset which

is smooth away from a subset of codimension 7. Smale later showed that for c ∈

Hn−1(M ;Z) with dimM = 8, there is an open dense set of metrics for which c is

represented by a stable minimal hypersurface as in the above theorem, see Theorem 1.1

of [97].

Schoen and Yau proved that the property of admitting positive scalar curvature metrics

is inherited by stable minimal hypersurfaces, see the proof of Theorem 1 of [91].

Theorem 3.8. Let (M,g) be a closed orientable Riemannian manifold with dimM ≥ 3

and Σ a closed orientable stable minimal hypersurface. If g has positive scalar curvature,

then g∣Σ is conformal to a positive scalar curvature metric on Σ, i.e. Y (M, [g∣Σ]) > 0.

Schoen and Yau used the combination of these two results to show that the torus T n

does not admit metrics of positive scalar curvature for n ≤ 7; by Smale’s result, the proof

extends to n = 8. Moreover, the same is true for any manifold which admits a map of
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non-zero degree to a torus (in these dimensions). Recently, Schoen and Yau [92] have

announced that the conclusion is true in any dimension. They show this by dealing with

the singular sets of hypersurfaces in higher dimensions using what they call minimal

k-slicings.

3.2 Enlargeable Manifolds

If (M,g) is a complete Riemannian n-dimensional manifold with Ricg > (n−1)κ > 0, then

Myers’ Theorem states that the diameter is bounded above by πκ−1/2 and is therefore

compact. Applying Myers’ Theorem to the universal cover shows that it is compact and

hence π1(M) is finite. As the scalar curvature is the trace of the Ricci curvature, one

might hope that the assumption of its positivity would similarly have implications for

the diameter and hence fundamental group – this is not the case. For any Riemannian

manifold (M,gM), the product M × S2 admits metrics of the form gM + rground which,

for r small enough, have positive scalar curvature. Moreover, their diameter is at least

as large as that of (M,gM) which can be arbitrary and π1(M × S2) ≅ π1(M) which

could be any finitely presented group.

As the scalar curvature is the trace of the Ricci curvature, its positivity could result

from having a small number of directions of positive Ricci curvature which are large in

comparison to the Ricci curvature of the other directions. The proof of Myers’ Theorem

shows that if the Ricci curvature is positive in a given direction, then the length of a

minimal geodesic in that direction is bounded above. So if the scalar curvature is

positive, there must be some direction in which the manifold is relatively ‘small’. Note,

this is exactly what is occuring in the case of M ×S2, the Ricci curvature is positive in

the S2 directions which are relatively ‘small’. If π ∶M ′ →M is a covering, then π∗g also

has positive scalar curvature, so we can apply the same logic to (M ′, π∗g). One would
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expect that if a manifold admits a positive scalar curvature metric, then its covering

spaces can’t be ‘large’ in every direction; note, the coverings of M ×S2 are of the form

M ′ × S2 and the S2 directions remain ‘small’. Enlargeability is an attempt to make

these notions precise.

Recall that a map f ∶ (M,g) → (N,h) between Riemannian manifolds is said to be

ε-contracting if ∥df(v)∥h ≤ ε∥v∥g. Moreover, it is said to be constant at infinity if it

is constant outside a compact set. If N is compact, then such maps have a notion of

degree.

A compact Riemannian manifold of dimension n is called enlargeable if for every ε > 0,

there exists an orientable Riemannian covering space which admits an ε-contracting

map onto (Sn, ground) which is constant at infinity and is of non-zero degree. If the

coverings can be taken to be finite coverings for every ε, then it is called compactly

enlargeable.

Example 3.9. Consider the torus T n equipped with its standard flat metric g. The

universal cover is Rn equipped with the Euclidean metric. Consider the map fD ∶ Rn →

Sn constructed as follows: for ∥x∥ ≥D, map x to (0, . . . ,0,−1), while for the open disc

centred at 0 of radius D, map radial lines through the origin to great circles through

(0, . . . ,0,1) – intuitively, the disc ‘wraps’ around the sphere. This is a map which is

constant at infinity of degree one and is ε-contracting for some ε inversely proportional

to D. Varying D gives the required family of maps to show that (T n, g) is enlargeable.

Note, the construction of the maps in the above example only requires the existence of

discs of arbitrary large radius which implies the manifold is ‘large’ in every direction.

One could view the property of containing such discs as a heuristic for the enlargeability

hypothesis. Note that we didn’t need to pass to the universal cover of T n to find

larger and larger discs. If T n = Rn/Zn, then it is covered by Rn/(kZ)n; by taking

k large enough, we can find a disc of any radius. It follows that (T n, g) is in fact
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compactly enlargeable. The distinction between these two notions of enlargeability is

not understood. In particular, the following is unknown.

Question 3.10. Is every enlargeable manifold compactly enlargeable?

The collection of enlargeable manifolds is extensive, see Theorems IV.5.3 and IV.5.4

of [63].

Theorem 3.11.

(a) Enlargeability depends only on the homotopy type of the manifold. In particular,

it is independent of the Riemannian metric.

(b) The product of enlargeable manifolds is enlargeable.

(c) Any manifold which admits a map of non-zero degree onto an enlargeable manifold

is itself enlargeable.

(d) Every nilmanifold is enlargeable.

(e) Any manifold which admits a non-positive sectional curvature metric is enlarge-

able.

In view of (a), we will say a compact manifold is, or isn’t, enlargeable.

Proposition 3.12. Let π ∶ M → N be a finite covering of closed orientable smooth

manifolds. Then M is enlargeable if and only if N is.

Proof. As π ∶ M → N is a map of non-zero degree, if N is enlargeable, so is M by

Theorem 3.11 (c).

If M is enlargeable for some metric g, it is also enlargeable for π∗g0 where g0 is a metric

on N by Theorem 3.11 (a). As every Riemannian covering space of (M,π∗g0) is also a

Riemannian covering space of (N,g0), we see that (N,g0) is also enlargeable.

Example 3.13. Let N be an orientable circle bundle over T 2. Then N is the sphere

bundle of some complex line bundle L which is classified by its first Chern class c1(L) ∈
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H2(S1×S1;Z) ≅ Z; let Nk denote the orientable circle bundle of L with c1(L) = k. Note

that c1(L) = −c1(L) and complex conjugation gives rise to a diffeomorphism between

Nk and N−k. If c1(L) = 0, then L is trivial and N0 = T 3. If c1(L) = 1 and c1(L′) = k > 0,

then L′ ≅ L⊗k. The map N1 → Nk given by z ↦ z⊗k is a k-sheeted covering, so by

Proposition 3.12, we see that Nk is enlargeable if and only if N1 is. It follows from the

Serre spectral sequence that H1(Nk;Z) ≅ Z⊕Z⊕Z/kZ. Now note that the Heisenberg

manifold M =H(3,R)/H(3,Z) is a circle bundle over a torus, and as H1(M ;Z) ≅ Z⊕Z,

we see that M = N1. The Heisenberg manifold is a nilmanifold, so by Proposition 3.11

(d), it is enlargeable and hence so is Nk. In conclusion, every orientable circle bundle

over T 2 is enlargeable.

Theorem 3.14. (Gromov & Lawson [35]) An enlargeable spin manifold does not

admit metrics of positive scalar curvature.

In particular, tori do not admit metrics of positive scalar curvature. Moreover, as every

compact manifold is finitely covered by a torus, compact flat manifolds do not admit

metrics of positive scalar curvature.

It should be noted that the spin hypothesis can be weakened. The proof of the above

theorem shows that for ε small enough, the corresponding cover admits a twisted Dirac

operator which, under the assumption of positive scalar curvature, has index zero,

while under the assumption of enlargeability, has non-zero index. The spin condition

is needed to form the Dirac operator, but this only takes place on some cover. So, for

example, if M admits a metric of non-positive sectional curvature, it is enlargeable by

Theorem 3.11 (e), but it may not be spin. However, its universal cover is Rn by the

Cartan-Hadamard Theorem, which is spin, so we see that such manifolds do not admit

metrics of positive scalar curvature.

Recently, Cecchini and Schick [24] announced that one can remove the spin hypoth-

esis completely from the above theorem. Their proof relies on the minimal k-slicing
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technique introduced in the recent work of Schoen and Yau.

Although they will not be needed, we end by pointing out that there are other notions

of enlargeability, namely weak enlargeability and Â-enlargeability, see sections IV.5 and

IV.6 of [63].

3.3 Seiberg-Witten Theory

Let (M,g) be a closed orientable four-dimensional Riemannian manifold with b+(M) ≥

2, equipped with a spinc structure c, and denote the associated spinor bundles by

V±. The perturbed Seiberg-Witten equations for a unitary connection ∇ on det(V+) ≅

det(V−) and a positive spinor ψ ∈ Γ(M,V+) are

/∂cψ = 0

F +
∇ = σ(ψ) + ih

where

● /∂c is the twisted spinc Dirac operator formed from c and ∇,

● F +
∇ is the self-dual part of the curvature of ∇,

● σ(ψ) = ψ ⊗ ψ∗ − 1
2 ∣ψ∣2 id, and

● h is a self-dual harmonic two-form called a perturbation.

The Seiberg-Witten equations were introduced by Seiberg and Witten in [94] and [95]

We give an extremely brief account of the Seiberg-Witten invariant, see [75] for more

details. For a generic metric g and a generic perturbation h, the moduli space of

irreducible solutions modulo gauge, denotedM, is a finite-dimensional manifold which

can be equipped with an orientation. If dimM = 0, the signed count of the points
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is defined to be the Seiberg-Witten invariant of the spinc structure c. If the moduli

space is of higher dimension, then a different definition is required. The Seiberg-Witten

invariant is independent of the perturbation and the metric. It’s worth noting that

much of the theory can be made to work when b+(M) = 1, but the situation is more

complicated.

The following theorem of Taubes shows that this invariant is not always zero.

Theorem 3.15. (Taubes [102]) Let (M,ω) be a closed symplectic four-manifold with

b+(M) ≥ 2. The spinc structure induced by ω has Seiberg-Witten invariant equal to ±1.

Seiberg-Witten invariants are a useful tool for showing non-existence of positive scalar

curvature thanks to the following result.

Theorem 3.16. Let (M,g) be a closed orientable Riemannian four-manifold. If M has

a non-zero Seiberg-Witten invariant and b+(M) ≥ 2, then M does not admit a positive

scalar curvature metric.

Combining these two results, we conclude the following.

Corollary 3.17. A closed symplectic four-manifold M with b+(M) ≥ 2 does not admit

a metric of positive scalar curvature.

3.4 General Results

We end this chapter by discussing the some general results regarding positive scalar

curvature.

Theorem 3.18. (Gromov & Lawson [36], Schoen & Yau [91]) Let M be a closed

smooth manifold which admits metrics of positive scalar curvature. If M ′ is obtained

from M by a surgery of codimension at least three, then M ′ admits metrics of positive

scalar curvature.

Note that M1#M2 is obtained from M1 ⊔M2 by a codimension n surgery, so the above
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theorem immediately gives the following result.

Corollary 3.19. Let M1 and M2 be closed smooth manifolds which admit metrics of

positive scalar curvature. If dimM1 = dimM2 ≥ 3, then M1#M2 admits metrics of

positive scalar curvature.

Note that the relevant case of Theorem 1.14 can be viewed as a generalisation of the

above corollary.

Gromov and Lawson used Theorem 3.18 to analyse which simply connected smooth

manifolds of dimension at least five admit metrics of positive scalar curvature. In the

non-spin case, they showed that every such manifold could be obtained from a set of

representatives for generators of the oriented cobordism ring ΩSO
∗ by a series of surgeries

of codimension at least three. Moreover, they showed that the representatives admit

positive scalar curvature metrics, and hence every simply connected smooth non-spin

manifold of dimension at least five admits metrics of positive scalar curvature.

In the spin case, the corresponding statement was already known to be false: by The-

orem 3.2, a necessary condition for the existence of a positive scalar curvature metric

is the vanishing of the Â-genus. So for example, the simply connected eight-manifold

K3×K3 does not admit a positive scalar curvature metric as Â(K3×K3) = Â(K3)2 =

22 = 4 ≠ 0. More generally, there is a ring homomorphism α ∶ Ωspin
∗ → KO∗(pt) which

generalises the Â-genus. In particular, for n > 0 we have

KOn(pt) ≅ K̃O(Sn) ≅ πn(BO) ≅ πn−1(O) ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 n ≡ 1,2 mod 8

Z n ≡ 0 mod 4

0 n ≡ 3,5,6,7 mod 8

and when n ≡ 0 mod 4, the homomorphism α ∶ Ωspin
n → Z coincides with the Â-genus.

Hitchin generalised Theorem 3.2 by showing that if X is a closed spin manifold which
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admits a metric of positive scalar curvature, then α(X) = 0, see [42]. As Ωspin
n ⊗Q =

ΩSO
n ⊗Q, Gromov and Lawson were able to show that if X is a simply connected spin

manifold of dimension at least five with α(X) = 0, then for some k > 0, the connected

sum of k copies of X admits metrics of positive scalar curvature. Stolz later showed

that k = 1 is sufficient.

Theorem 3.20. (Gromov & Lawson [36], Stolz [99]) Let M be a simply connected

closed smooth manifold with dimM ≥ 5. Then M admits a metric of positive scalar

curvature if and only if M is not spin or M is spin and α(M) = 0.

Note, the corresponding statement in dimensions two and three is true as M must be

a sphere, but it is false in dimension four. In particular, there are simply connected

non-spin four-manifolds which do not admit metrics of positive scalar curvature, see

Example 4.2. There are also simply connected spin four-manifolds with vanishing Â-

genus which do not admit metrics of positive scalar curvature: apply Theorem A of [65]

to the manifolds in Theorem 5.8 (a) of [103].

Example 3.21. In contrast to Proposition 3.3, note that Ricci-flat metrics can exist

on manifolds which admit positive scalar curvature metrics. If X is a smooth degree

5 hypersurface of CP4, then c1(X) = 0, so X admits a Ricci-flat Kähler metric by

Yau’s solution of the Calabi conjecture [112]. Also note that X is simply connected by

the Lefschetz Hyperplane Theorem, so by Theorem 3.20, the manifold X also admits

metrics of positive scalar curvature because α(X) ∈KO6(pt) ≅ π5(O) = 0.

Let M be a simply connected closed smooth manifold of dimension at least five. By

Theorem 1.16, the Yamabe invariant of M is non-negative. By Theorem 3.20, we see

that Y (M) = 0 if and only if M is spin and α(M) ≠ 0. In this case, the Yamabe

invariant is realised if and only if M admits a Ricci-flat metric by Proposition 3.3. The

following theorem classifies those M for which such a metric exists.

Theorem 3.22. (Futaki [33]) Let M be a simply connected, closed smooth manifold
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of dimension at least five. If M admits a Ricci-flat metric but does not admit a positive

scalar curvature metric, then M = M1 × ⋅ ⋅ ⋅ ×Ml where Mi (or Mi) admits a Ricci-flat

Kähler metric or a metric with Spin(7) holonomy (in which case M is necessarily spin)

and α(M) ≠ 0.

3.5 Aspherical Manifolds

Let G be a group and n a positive integer. A topological space X is called an Eilenberg-

MacLane space of type K(G,n) if πn(X) ≅ G and πi(X) = 0 for i ≠ n. Any two

Eilenberg-MacLane spaces of type K(G,n) are unique up to homotopy, see Proposition

4.30 of [40]. An Eilenberg-MacLane space X of type K(G,1) is called aspherical. If X

has the homotopy type of a CW complex, e.g. a manifold, then X is aspherical if and

only if it its universal cover is contractible.

Proposition 3.23. The fundamental group of an aspherical manifold is torsion-free.

Proof. Let M be an aspherical manifold and suppose π1(M) is not torsion-free. Then

there is a subgroup of π1(M) isomorphic to Zk for some k. Hence there is a manifold

M ′ with π1(M ′) ≅ Zk and a covering M ′ → M . As πi(M ′) ≅ πi(M) for i > 1, we see

that M ′ is also an aspherical manifold. Now note that S∞ is contractible and admits a

free Zk-action. So both M ′ and S∞/Zk are Eilenberg-MacLane spaces of type K(Zk,1)

and are therefore homotopy equivalent. But this is impossible as M ′ is a manifold and

therefore has bounded homology, while Hn(S∞/Zk;Zk) ≅ Zk for all n ≥ 0.

It follows from the Gauss-Bonnet Theorem that the closed surfaces which do not admit

a metric of positive scalar curvature are precisely the aspherical ones. In dimension

three, aspherical manifolds again play a role in the classification of those manifolds

which do not admit positive scalar curvature.
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Theorem 3.24. Let M be a closed orientable three-manifold. Then M admits a positive

scalar curvature metric if and only if M does not contain an aspherical factor in its

prime decomposition.

The necessity of an abscence of aspherical factors was shown by Gromov & Lawson,

see Theorem 8.1 of [37]. However the sufficiency required Thurston’s Geometrization

Conjecture which was resolved by Perelman. In particular, it wasn’t known if every

closed three-manifold with finite fundamental group is the quotient of S3 by a finite

subgroup of SO(4); this was known as the Elliptization Conjecture. Once this had

been established, it was clear that such manifolds must admit positive scalar curvature

metrics (in particular, the round metric on S3 descends).

In arbitrary dimensions, if a manifold admits a metric of non-positive sectional cur-

vature, it is aspherical by the Cartan-Hadamard Theorem, and it fails to admit psc

metrics by enlargeability. These observations naturally lead to the following:

Conjecture 3.25. A closed aspherical manifold cannot admit a metric of positive scalar

curvature. The same is true of any closed manifold which admits a map of non-zero

degree onto an aspherical manifold.

Note that if f ∶M → N is a map of non-zero degree, then bi(M) ≥ bi(N). In particular,

the conjecture is true in dimension two. The first of the two statements holds in

dimension 3 by Theorem 3.24. The second holds thanks to the following result which I

learned from Dennis Sullivan.

Proposition 3.26. Let M and N be closed oriented three-manifolds, with N aspherical.

If f ∶M → N is a map of non-zero degree, then M contains an aspherical factor in its

prime decomposition.

Proof. Suppose that M does not have an aspherical factor in its prime decomposition,

then all of its prime factors are either of the form S3/Gi where Gi is finite, or S2 × S1.
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Therefore π1(M) ≅ G1 ∗ ⋅ ⋅ ⋅ ∗Gm ∗ Fn where Fn denotes the free group of rank n.

If α ∶ S1 →M is a representative of a generator γ of Gi, then f ○α is a representative of

f∗γ ∈ π1(M). As M is aspherical, its fundamental group is torsion-free by Proposition

3.23, so f ○ α is nullhomotopic. Therefore f extends to M ∪α e2 where er denotes an

r-cell. Repeating this process for every generator of G1, . . . ,Gm, we see that there is a

CW complex M1 with π1(M1) ≅ Fn, an inclusion i1 ∶M →M1, and a map f1 ∶M1 → N

such that f = f1 ○ i1.

In a similar fashion, if β ∶ S2 → M1 is a representative for a generator of π2(M1),

then f1 ○ β is nullhomotopic as π2(N) = 0, so f1 extends to M1 ∪β e3. Repeating this

process for all the generators of π2(M1), we see that there is a CW complex M2 with

π1(M2) ≅ Fn and π2(M2) = 0, an inclusion i2 ∶M →M2, and a map f2 ∶M2 → N such

that f = f2 ○ i2. Repeating this procedure for all higher homotopy groups, we see that

there is an aspherical CW complex M∞ with π1(M∞) = Fn, an inclusion i∞ ∶M →M∞,

and a map f∞ ∶M∞ → N such that f = f∞ ○ i∞.

Therefore f ∶ M → N factors through M∞ which is homotopically equivalent to a

bouquet of n circles. As H3(M∞;Z) = 0, the map f has degree zero.

Further evidence for the conjecture is provided by a recent result of Schoen and Yau.

Theorem 5.2 of [92] implies that if a closed manifold admits a map to a torus of non-zero

degree, then it fails to admit metrics of positive scalar curvature.

In dimensions two and three, not only does Conjecture 3.25 hold, manifolds which do

not admit metrics of positive scalar curvature are in fact characterised by the property

of admitting a map of non-zero degree to an aspherical manifold. This is not the case

in higher dimensions; that is, there are manifolds which do not admit positive scalar

curvature metrics, but also do not admit a map of non-zero degree to an aspherical

manifold.
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Example 3.27. Let Θn denote the group of n-dimensional oriented homotopy spheres.

For n > 2 with n ≡ 1,2 mod 8, the map1 α ∶ Θn → KOn(pt) ≅ Z2 is surjective, see [72]

and [3]. That is, there are exotic n-dimensional spheres Σ with α(Σ) ≠ 0; these are

precisely the exotic spheres which do not bound spin manifolds. By Theorem 3.20, they

do not admit metrics of positive scalar curvature, however, for any aspherical manifold

M , every map Σ→M is nullhomotopic.

Note, by combining Proposition 1.11 and Theorem 1.16, we see that Y (Σ) = 0, and by

Theorem 3.22, it is not realised.

One might be tempted to replace the non-zero degree map in Conjecture 3.25 with an

essential map, i.e. a non-nullhomotopic map. While the conjecture would still hold in

dimension two, it already fails in dimension three. For example, the map f ∶ S2×S1 → T 3

given by (p, z) ↦ (z,1,1) is essential because it induces a non-trivial map on the level

of fundamental groups: after identifying π1(S2 × S1) with Z and π1(T 3) with Z3, the

map f∗ is given by m ↦ (m,0,0). However, the manifold S2 × S1 admits a metric of

positive scalar curvature, e.g. dθ2 + ground.

1 As homotopy spheres in these dimensions are simply connected, they have a unique spin structure,
so there is no ambiguity in regarding Θn as a subset of Ωspin

n .
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4. THE YAMABE INVARIANT OF SOME NON-KÄHLER

SURFACES

We begin by stating what is known for Kähler surfaces.

Using Seiberg-Witten theory, LeBrun established the following relationship between

the Kodaira dimension of a Kähler surface and the sign of the Yamabe invariant of the

underlying smooth four-manifold.

Theorem 4.1. (LeBrun [65]) Let M be a compact connected Kähler surface. Then

● Y (M) > 0 if and only if κ(M) = −∞,

● Y (M) = 0 if and only if κ(M) = 0,1, and

● Y (M) < 0 if and only if κ(M) = 2.

If κ(M) ∈ {0,1} and X is the minimal model of M , then Y (X) is realised if and only

if κ(X) = 0.

If κ(M) = 2 and X is the minimal model of M , then

Y (M) = Y (X) = −4π
√

2c2
1(X) = −4π

√
4χ(X) + 6σ(X).

The higher-dimensional analogue of this theorem does not hold. For example, if X is a

degree 5 hypersurface in CP4, then it has trivial canonical bundle and hence κ(X) = 0.

However, it admits a metric of positive scalar curvature metric, see Example 3.21, and

46



hence has positive Yamabe invariant by Proposition 1.11.

Note that very little is known in the κ(M) = −∞ case. For example, while the Yamabe

invariant of M is equal to the Yamabe invariant of its minimal model if κ(M) ≥ 0,

it is unclear whether this is also true when κ(M) = −∞. One reason to be skeptical

of such a result is the fact that minimal models are not unique for Kähler surfaces

with κ(M) = −∞, e.g. both CP2 and CP1 ×CP1 are minimal models for CP2 blownup

at two points. LeBrun [64] computed the Yamabe invariant of CP2 and found that

Y (CP2) = E(gFS) = 12
√

2π where gFS denotes the Fubini-Study metric. On the other

hand, the Yamabe invariant of S2×S2, the smooth four-manifold underlying CP1×CP1,

remains unknown, although Y (S2 × S2) > Y (S2 × S2, gS2 + gS2) = E(gS2 + gS2) = 16π;

see page 22 of [109]. Note that 12
√

2 ≈ 16.971 > 16, so it could still be the case that

Y (S2 × S2) is equal to Y (CP2).

Example 4.2. Consider the following three smooth manifolds:

● M+ = 3CP2#20CP2,

● M0, the blowup of a K3 surface at one point, and

● M−, the blowup of a1 surface X of general type with h2,0(X) = 1 and c1(X)2 = 1

at two points.

Note that M+ and M0 are simply connected with odd intersection form of signature

(b+, b−) = (3,20); this is also true of M−. The fact that M− is simply connected follows

from the fact that X is simply connected, see Proposition 13 of [23]. As M− is obtained

as a blowup, it has odd intersection form. Moreover, we have b+(M−) = b+(X) =

2h2,0(X) + 1 = 3 while b−(M−) = b−(X) + 2 and from the equation 1 = c2
1(X) = 2χ(X) +

3σ(X), it follows that b−(X) = 18; see Theorem IV.2.7 (ii) and Theorem I.3.1 of [10]

respectively.

1 The existence of such a surface X is not obvious. See [23] and the references therein.
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By Freedman’s Theorem [32], all three manifolds are homeomorphic. However, no two

are diffeomorphic as can be seen by considering their Yamabe invariants. First, as CP2

admits metrics of positive scalar curvature, so does M+ by Corollary 3.19 and hence

Y (M+) > 0 by Proposition 1.11. In fact, as Y (CP2) = 12
√

2π, we have Y (M+) ≥ 12
√

2π

by Theorem 1.14. On the other hand, by Theorem 4.1 we have Y (M0) = 0 and Y (M−) =

−4
√

2π < 0.

We now turn to the non-Kähler world, beginning with Kodaira dimension −∞. That

is, class VII surfaces.

4.1 Class VII Surfaces

Up to diffeomorphism, the known non-Kähler surfaces of Kodaira dimension −∞ belong

to four families:

1. (S1 × S3)#kCP2 where k ≥ 0,

2. X#kCP2 where X is a secondary Hopf surface and k ≥ 0,

3. X#kCP2 where X is an Inoue surface of type S+M or S−M and k ≥ 0, or

4. X#kCP2 where X is an Inoue surface of type S+N,p,q,r,t or S−N,p,q,r and k ≥ 0.

Note, there are infinitely many possibilities for X in families 2, 3, and 4. If the Global

Spherical Shell Conjecture is true, the above list is complete. In particular, any class

VII surface whose minimal model has b2 > 0 would belong to the first family.

First we record what is known about the Yamabe invariant for the first two families

(i.e. Hopf surfaces and their blowups), before moving on to the main result of this

thesis, which is the computation of the Yamabe invariant of the manifolds in the third

and fourth families.
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4.1.1 Hopf Surfaces

As S1 × S3 and CP2 admit metrics of positive scalar curvature, so do the manifolds

(S1 × S3)#kCP2 by Corollary 3.19, and hence they have positive Yamabe invariant by

Proposition 1.11. Better still, as the Yamabe invariant doesn’t depend on orientation,

we have Y (CP2) = Y (CP2) = 12
√

2π while Y (S1 ×S3) = Y (S4) = 8
√

6π, so by Theorem

1.14, the Yamabe invariant of a primary Hopf surface blownup up at k > 0 points is at

least 12
√

2π. For small values of k, we also obtain an upper bound from the following

theorem.

Theorem 4.3. (Gursky & LeBrun [38]) Let k ∈ {1,2,3} and let m be any natural

number. Then

12
√

2π ≤ Y (kCP2#m(S1 × S3)) ≤ 4π
√

2k + 16.

As S1 ×S3 admits an orientation-reversing diffeomorphism, we see that kCP2#m(S1 ×

S3) and kCP2#m(S1 × S3) are diffeomorphic. In particular, we have the following

corollary.

Corollary 4.4. Let M be a primary Hopf surface blownup at k points where k ∈ {1,2,3}.

Then

12
√

2π ≤ Y (M) ≤ 4π
√

2k + 16.

For k ∈ {1,2,3}, we have 4π
√

2k + 16 < 4π
√

2(4) + 16 = 4π
√

24 = 8
√

6π = Y (S4), so the

upper bound is non-trivial. As Y (S1 × S3) = Y (S4), the upper bound also shows that

Y (X) ≠ Y (S1 × S3); that is, the Yamabe invariant of X does not coincide with the

Yamabe invariant of its minimal model.

We now move on to secondary Hopf surfaces. The situation is more complicated than

the primary case as there are many diffeomorphism types.

Theorem 4.5. (Kato [50], [52]) For every Hopf surface X, there is a finite subgroup
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H ⊂ U(2) which acts freely on S3 such that X is diffeomorphic to one of the following

manifolds:

1. S1 × (S3/H)

2. a mapping torus of u ∶ S3/H → S3/H where u ∈ Diff(S3/H) has order two or

three.

It follows from the Elliptization Conjecture that S3/H is a spherical space form. In

order to obtain an anologue of Corollary 4.4 for the corresponding secondary Hopf

surfaces, we need an anologue of Theorem 4.3.

Theorem 4.6. (Gursky & LeBrun [38]) Let X1, . . . ,Xm be three-dimensional spher-

ical space forms, and let

M = kCP2#(S1 ×X1)# . . .#(S1 ×Xm)

for k ∈ {1,2,3}. Then

12
√

2π ≤ Y (M) ≤ 4π
√

2k + 16.

Again, as S1 ×Xi admits an orientation-reversing diffeomorphism, we obtain the fol-

lowing corollary.

Corollary 4.7. Let M be the blowup of a secondary Hopf surface diffeomorphic to

S1 × (S3/H) at k points where k ∈ {1,2,3}. Then

12
√

2π ≤ Y (M) ≤ 4π
√

2k + 16.

A more careful reading of Kato’s papers gives restrictions on the subgroups H and the

diffeomorphisms u in Theorem 4.5. A detailed analysis of these results might lead to

some restrictions on the Yamabe invariants of blowups of secondary Hopf surfaces, in

particular, those diffeomorphic to mapping tori of S3/H.
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Question 4.8. Do all Hopf surfaces have positive Yamabe invariant?

4.1.2 Inoue Surfaces

In this section we prove the main result of this thesis: the Yamabe invariants of Inoue

surfaces and their blowups are all zero. Moreover, the Yamabe invariant is not realised.

We begin by first noting that work of Paternian and Petean implies that the Yamabe

invariant is non-negative.

A T -structure on a closed smooth manifold is a finite open covering {U1, . . . , UN} and a

non-trivial torus action on each Ui such that each intersection Ui1 ∩ ⋅ ⋅ ⋅ ∩Uik is invariant

under the torus actions on Ui1 , . . . , Uik , and the torus actions commute. If all of the

torus actions are locally free and their orbits on intersections are constant, then the

T -structure is called polarised. If the dimensions of the orbits is constant across all

intersections, then the T -structure is called pure and the dimension of the orbits is

called the rank.

Example 4.9. Consider an Inoue surface X of type SM . It is the mapping torus

of the diffeomorphism of T 3 induced by MT . If p ∶ X → S1 is the projection, then let

U1 = p−1(S1∖{1}) and U2 = p−1(S1∖{−1}). Note that U1 and U2 are both diffeomorphic

to (0,1) × T 3 so they admit effective torus actions acting by translations. Moreover,

the intersection U1 ∩U2 is invariant under the torus actions, and as the diffeomorphism

T 3 → T 3 is linear, they commute and hence X has a T -structure. Moreover, the orbits

are always three-dimensional tori (the fibres of p), so X admits a pure polarised T -

structure of rank three.

Paternian and Petean showed that Inoue surfaces of type S+N,p,q,r,t and S−N,p,q,r have pure

polarised T -structures of rank one, see section 3.2 of [81]. In fact, they show a surface

of type S+N,p,q,r,t admits a locally free S1-action.

51



The existence of a T -structure has implications for the Yamabe invariant.

Theorem 4.10. (Paternian & Petean [80]) If M admits a T -structure, then Y (M) ≥

0.

So for any Inoue surface X, we have Y (X) ≥ 0. If M is the blowup of X at k points,

then M is diffeomorphic to X#kCP2. As Y (CP2) = Y (CP2) = 12
√

2π > 0, it follows

from Theorem 1.14 that Y (M) ≥ 0. Alternatively, note that CP2 admits a locally free

S1-action and hence a T -structure, so M =X#kCP2 admits a T -structure by Theorem

5.9 of [80].

Now we just need to show that M does not admit a positive scalar curvature metric.

In order to do this, we will need some preliminary results.

Proposition 4.11. Let F be a closed orientable n-dimensional manifold, and let p ∶

Mf → S1 be the mapping torus of some orientation-preserving homeomorphism f ∶ F →

F . The inclusion F ↪Mf induces an injection Hn(F ;Z)→Hn(Mf ;Z).

Proof. Let U = p−1(S1∖{i}) and V = p−1(S1∖{−i}). Applying Mayer-Vietoris, we have

the following exact sequence in homology (with Z coefficients)

0→Hn+1(Mf)→Hn(U ∩ V ) ((kU )∗,(kV )∗)ÐÐÐÐÐÐÐ→Hn(U)⊕Hn(V ) (`U )∗−(`V )∗ÐÐÐÐÐÐ→Hn(Mf)→ . . .

where kU ∶ U ∩ V → U , kV ∶ U ∩ V → V , `U ∶ U → Mf , and `V ∶ V → Mf are inclusion

maps.

Note that Hn+1(Mf) ≅ Z, Hn(U ∩V ) ≅Hn(F ⊔F ) ≅ Z2, and Hn(U) ≅Hn(V ) ≅Hn(F ) ≅

Z. As each connected component of U∩V includes into both U and V , the map Z2 → Z2

is multiplication by [ 1 1
1 1 ]. The kernel of this map is the span of [ 1

−1 ], so by exactness,

the map Z→ Z2 is multiplication by [ 1
−1 ]. So we have an exact sequence

0→ Z
[ 1
−1 ]

ÐÐ→ Z2
[1 1

1 1 ]

ÐÐÐ→ Z2 αÐ→ Zr → . . .
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where r = bn(Mf); recall that Hn(Mf) is torsion-free.

Now identify F with p−1(1) and let i ∶ F →Mf denote the corresponding inclusion. Note

that i factors as i = `U ○ j where j ∶ F → U is the natural inclusion. Consider the map

(j∗,0) ∶ Hn(F ) → Hn(U) ⊕Hn(V ). Identifying Hn(F ) with Z, this map corresponds

to the map Z → Z2 which is multiplication by [ 1
0 ]. As ((`U)∗ − (`V )∗) ○ (j∗,0) =

(`U)∗j∗ − (`V )∗0 = (`U ○ j)∗ = i∗, we have the commutative diagram

Hn(F ) Hn(U)⊕Hn(V ) Hn(Mf)

Z Z2 Zr.

i∗

(j∗,0)

≅ ≅

(`U )∗−(`V )∗

≅

[1
0 ]

α

Now note that, by exactness of the previous sequence, the kernel of α is the span of [ 1
1 ],

so α is injective on the span of [ 1
0 ]. Therefore i∗ ∶Hn(F )→Hn(Mf) is injective.

Lemma 4.12. Let M be a closed connected smooth manifold with a closed connected

smooth hypersurface Σ. If Σ is non-orientable, or [Σ] ∈ Hn−1(M ;Z) is non-zero, then

M ∖Σ is connected.

Proof. Let U be a tubular neighbourhood of Σ in M , and let V = M ∖ Σ. Then by

Mayer-Vietoris, we have

⋅ ⋅ ⋅→H0(U ∩ V )→H0(U)⊕H0(V )→H0(M)→ 0.

Note that H0(U) ≅H0(M) ≅ Z as Σ and M are connected, and H0(V ) ≅ Zk where k is

the number of connected components of V . Also note that U ∩ V deformation retracts

onto the orientation double cover of Σ, so if Σ is non-orientable we have

⋅ ⋅ ⋅→ Z→ Zk+1 → Z→ 0
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from which it immediately follows that k = 1, i.e. V = M ∖ Σ is connected. If Σ is

orientable, we instead have

⋅ ⋅ ⋅→ Z2 → Zk+1 → Z→ 0

which implies that k ≤ 2. Suppose that k = 2.

As Σ and M are orientable, the normal bundle is trivial, so there is a diffeomorphism

φ ∶ U → (−1,1) × Σ such that φ∣Σ is the inverse of the inclusion i ∶ Σ → M . Let M−

and M+ be the connected components of M ∖ Σ where φ(M− ∩ U) = (−1,0) × Σ and

φ(M+ ∩ U) = (0,1) ×Σ. Let f ∶ (−1,1) → R be a non-decreasing smooth function such

that f ∣(−1,− 1
2
) ≡ 0 and f ∣( 1

2
,1) ≡ 1. Let f̂ be the function given by f̂(p) = f(pr1(φ(p)))

for p ∈ U , and extended by 0 on M− ∖ U and 1 on M+ ∖ U . Then df̂ is a smooth

one-form such that df̂ ∣M∖U = 0 and (φ−1)∗(df̂ ∣U) = g(t)dt where g ∶ (−1,1) → R is a

non-negative smooth function such that g∣(−1,− 1
2
)∪( 1

2
,1) ≡ 0 and ∫

1

−1 g(t)dt = 1. It follows

that for any (n − 1)-form η on M , we have ∫M η ∧ df̂ = ∫Σ i∗η, so df̃ is a representative

of the Poincaré dual of [Σ] under the map Φ ∶ H1(M ;Z) → H1
dR(M) given by change

of coefficients followed by the de Rham isomorphism. As H1(M ;Z) is torsion-free, the

map Φ is injective, so PD([Σ]) = 0 as [df̂] = 0 in H1
dR(M). Finally, as Hn−1(M ;Z) is

torsion-free, we see that [Σ] = 0.

Theorem 4.13. Inoue surfaces and their blowups do not admit positive scalar curvature

metrics.

Proof. As a blownup Inoue surface of type S−N,p,q,r is double covered by a blownup Inoue

surface of type S+N,p,q,r,t, we only need to consider X of type S+M , S−M , or S+N,p,q,r,t. Let

π ∶M →X be the blowdown map and p ∶X → S1 the fibre bundle projection with fibre

F , which is either a three-dimensional torus or a circle bundle over a two-dimensional

torus.
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Let g be a positive scalar curvature metric on M . As [F ] ≠ 0 by Proposition 4.11, there

is a stable minimal hypersurface Σ with [Σ] = [F ] by Theorem 3.7. Let Σ1, . . . ,Σ` be

the connected components of Σ. Recall that Σ minimises area amongst all hypersurfaces

representing [F ], so we must have [Σj] ≠ 0 otherwise Σ1 ⊔ ⋅ ⋅ ⋅ ⊔Σj−1 ⊔Σj+1 ⊔ ⋅ ⋅ ⋅ ⊔Σ` is a

hypersurface with strictly smaller area which also represents [F ]. As b3(M) = b3(X) = 1,

there is a non-zero integer nj such that [Σj] = nj[F ].

As Σj and M are orientable, the normal bundle is trivial, so there is an embedding

φ ∶ (−1,1) × Σj → M such that φ(0, ⋅) is the inclusion i ∶ Σj ↪ M . Note that M ∖ Σj

is a connected non-compact manifold by Lemma 4.12. Let φ− ∶ (−1,0) × Σj → M ∖ Σj

and φ+ ∶ (0,1) ×Σj →M ∖Σj be the embeddings given by restricting φ appropriately.

Let Y = (φ([0,1) × Σj) ⊔ (M ∖ Σj) ⊔ φ((−1,0] × Σj))/ ∼ where φ+(t, p) ∼ φ(t, p) for

(t, p) ∈ (0,1) × Σj and φ−(t, p) ∼ φ(t, p) for (t, p) ∈ (−1,0) × Σj. Note that Y is a

manifold with boundary ∂Y = Σj ⊔Σj and the interior of Y is diffeomorphic to M ∖Σj.

Fix a diffeomorphism f ∶ Σj × {0,1}→ ∂Y . Now let Z = (Y ×Z)/ ∼ where (f(s,1),m) ∼

(f(s,0),m + 1) for all s ∈ Σj and m ∈ Z. Note that the self-map of Y × Z given by

(y,m) ↦ (y,m + 1) descends to a fixed-point free diffeomorphism of Z. The quotient

of Z by the Z-action generated by this diffeomorphism is naturally identified with M ,

so we have a regular covering ρ ∶ Z →M with group of deck transformations Z. Hence,

there is a short exact sequence

0→ π1(Z) ρ∗Ð→ π1(M) αÐ→ Z→ 0.

Using the fact that X is a mapping torus, we can construct another such covering.

First note that there is a regular covering F ×R → X with deck transformation group

Z generated by (x, t) ↦ (f(x), t + 1) where f is the diffeomorphism which gives rise to

the mapping torus X. There is a corresponding regular covering τ ∶M ′ →M where M ′

is diffeomorphic to the connected sum of F ×R with a copy of kCP2 at (p,m + 1
2) for
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some fixed p ∈ F and all m ∈ Z. Hence, there is a short exact sequence

0→ π1(M ′) τ∗Ð→ π1(M) βÐ→ Z→ 0.

As b1(M) = b1(X) = 1, we see that Hom(π1(M),Z) ≅ H1(M ;Z) ≅ Z. As α and β are

non-zero, there is k ∈ Z ∖ {0} such that α = kβ or β = kα; without loss of generality,

suppose α = kβ. As X is aspherical and π1(M) ≅ π1(X), the group π1(M) is torsion-

free by Proposition 3.23, so π1(Z) ≅ ker(α) = ker(kβ) = ker(β) ≅ π1(M ′). Therefore,

the two coverings are isomorphic; let Ψ ∶ Z →M ′ be an isomorphism of covering spaces.

As φ(0, s) = i(s), it follows from the construction of Y and Z that there is an inclusion

ι ∶ Σj → Z such that ρ ○ ι = i. So we have the following commutative diagram:

Σj Z M ′

M

ι

i

ρ

Ψ

τ

As i∗[Σj] = nj[F ] ≠ 0, we see that (Ψ ○ ι)∗[Σj] ≠ 0. In fact, as τ∗ is an isomorphism

on H3, we see that (Ψ ○ ι)∗[Σj] = nj[F ]. Note that there is a map g ∶M ′ → F by first

mapping to F ×R then projecting onto F , and g∗ is an isomorphism on H3. Therefore

g ○Ψ ○ ι ∶ Σj → F is a map of three-manifolds with (g ○Ψ ○ ι)∗[Σj] = nj[F ]; that is, the

map has degree nj ≠ 0. As F is enlargeable, see Example 3.9 and Example 3.13, so is Σj

by Theorem 3.11 (c). Moreover, as Σj is a closed orientable three-manifold, it is spin,

and hence does not admit a metric of positive scalar curvature by Theorem 3.14. This

contradicts Theorem 3.8, and hence M does not admit any metrics of positive scalar

curvature.

Remark 4.14. Note that Theorem 3.8 states that if g were a positive scalar curvature

metric, then the restriction metric g∣Σ would be conformal to a metric with positive

scalar curvature. The above proof demonstrates that cannot occur, but actually shows
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much more. It shows that Σ does not admit any positive scalar curvature metric at all.

Better still, no connected component of Σ admits a positive scalar curvature metric. In

the language of [91], the proof above shows that M is not in the class C ′
4.

Also note that instead of deducing that Σj is enlargeable in order to show it does not

admit metrics of positive scalar curvature, we could have used Proposition 3.26.

The only question which remains is whether the Yamabe invariant is realised. By

Corollary 3.4, it is realised if and only if M admits a Ricci-flat metric.

Theorem 4.15. (LeBrun [66]) Let M be the underlying smooth 4-manifold of a com-

pact complex surface. Then M admits an Einstein metric with λ ≥ 0 if and only if it is

diffeomorphic to one of the following: a del Pezzo surface, a K3 surface, an Enriques

surface, a torus, or a hyper-elliptic surface.

In particular, we have the following.

Corollary 4.16. Non-Kähler surfaces do not admit Ricci-flat metrics.

Therefore, the Yamabe invariants of Inoue surfaces and their blowups are never realised.

Combining all the elements of this section, we finally arrive at the following theorem.

Theorem 4.17. Inoue surfaces and their blowups have Yamabe invariant zero. More-

over, the Yamabe invariant is not realised.

In particular, unlike the Kähler case, the sign of the Yamabe invariant of a non-Kähler

surface is not determined by its Kodaira dimension.

4.2 Kodaira Surfaces

We take this opportunity to record the value of the Yamabe invariant of Kodaira surfaces

and their blowups; the argument was outlined in [65]. Let M be the blowup of a Kodaira

surface X at k points, then M is diffeomorphic to X#kCP2.
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LeBrun showed that every elliptic surface has non-negative Yamabe invariant, see Corol-

lary 1 of [65]. As every Kodaira surface is deformation equivalent to an elliptic surface,

we see that Y (X) ≥ 0. Again, as Y (CP2) = 12
√

2π > 0, we have Y (M) ≥ 0 by The-

orem 1.14. The conclusion also follows from the fact that every elliptic surface has a

T -structure, see Theorem 2.4 of [81].

Proposition 4.18. Every primary Kodaira surface admits a symplectic form.

Proof. Let X be a primary Kodaira surface. As KX is holomorphically trivial, there is

a nowhere-zero holomorphic two-form α; let ω = 2 Re(α) = α + α. As α is holomorphic,

∂̄α = 0 while ∂α = 0 for bidegree reasons, so α is closed and hence so is ω. In local

holomorphic coordinates (U, (z1, z2)), we have α∣U = fdz1 ∧ dz2 where f ∶ U → C is a

nowhere-zero holomorphic function. So ω2∣U = α∧α ∣U = ∣f ∣2dz1∧dz2∧dz̄1∧dz̄2 which is

nowhere-zero, hence ω is a non-degenerate closed two-form, i.e. a symplectic form.

Note that M admits a symplectic form as it is diffeomorphic to the symplectic blowup

of X at k points. As b+(M) = 2h2,0(M) = 2, see Theorem 2.7 (iii) of [10], it follows

from Corollary 3.17 that a blownup primary Kodaira surface does not admit positive

scalar curvature metrics. As blownup secondary Kodaira surfaces are finitely covered

by blownup primary Kodaira surfaces, they also fail to admit positive scalar curvature

metrics. Therefore Y (M) = 0. Again, by Corollary 3.4, if the Yamabe invariant were

realised, it would be Ricci-flat, but this is impossible by Corollary 4.16.

Theorem 4.19. Kodaira surfaces and their blowups have Yamabe invariant zero. More-

over, the Yamabe invariant is not realised.

Note that the arguments used to show that the Yamabe invariants of Kodaira surfaces

and their blowups are non-negative also apply to non-Kähler properly elliptic surfaces

and their blowups. However, the argument to rule out the existence of positive scalar

curvature metrics does not carry over; it was shown by Biquard that non-Kähler prop-
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erly elliptic surfaces are never symplectic, see Theorem 8.2 of [14]. Biquard achieves

this by computing the Seiberg-Witten invariants on such a surface, and showing that

none of them are ±1. However, in order to show that the Yamabe invariant is zero, it

would be enough to know that there is a non-zero Seiberg-Witten invariant – it may be

possible that a more careful analysis of Biquard’s paper may shed light on the existence

of such an invariant.

Question 4.20. Are the Yamabe invariants of non-Kähler properly elliptic surfaces

and their blowups all zero?
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[59] Lamari, A., 1999. Courants kählériens et surfaces compactes. In Annales de lin-
stitut Fourier, volume 49, pp.263-285.
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