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Abstract of the Dissertation

The Positive Mass Theorem with Charge Outside Horizon(s)

by

Robert Abramovic

Doctor of Philosophy

in

Mathematics

Stony Brook University

2018
We start with time-symmetric initial (k = 0) data for the Einstein-Maxwell equations

consisting of a Riemannian asymptotically flat 3-manifold whose boundary consists of either
one connected component, several disjoint components, or finitely many cylindrical ends.
On this Riemannian manifold, we define a vector field E, representing the Electric field,
whose square norm is bounded from above by half the scalar curvature of the Riemannian
manifold (the dominant energy condition). Using the Inverse Mean Curvature Flow (IMCF)
as outlined in [11], we prove that if a natural upper bound on the mean curvature of a
single horizon is satisfied, then the ADM mass of the 3-manifold is bounded from below
by the absolute value of the charge. Equality holds if and only if the spacetime arising
from the initial data contains a subset isometric to a t = 0 slice of an extreme Reissner-
Nordström spacetime. If the boundary has multiple components, the IMCF is no longer
appropriate to a get a strong result. We instead use an idea outlined in a paper of M.
Herzlich [6] involving spinors to prove that if a slightly modified upper bound on the mean
curvature of each component is satisfied, then the ADM mass of the 3-manifold has same
lower bound. This technique involves solving a charged Dirac equation on the 3-manifold,
which is in turn is applied to proving the positive mass theorem on an asymptotically flat
3-manifold with finitely many cylindrical ends. For multiple boundary components, equality
only leads to a subset of an IWP black hole spacetime, while for cylindrical ends, it leads to
the standard subset of the Majumbdar-Papapetrou spacetime. In the non-time symmetric
case (k 6= 0), the manifold has multiple asymptotically flat ends, in addition to a bounded
interior domain. Around the boundary of this domain, the regularity of the metric and of k
are reduced (manifold with corners). Assuming natural matching conditions for the interior
and exterior mean curvatures, the normal components of the electric and magnetic vector
fields, as well as certain components of k, we then prove a positive mass theorem relating the
ADM mass of each end to its momentum (defined in terms of k), and electric and magnetic
charges (assuming an analogous dominant energy condition is satisfied). This result extends
the work of Shi and Tam [16].
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1 Introduction

Chapter 1
Let (M3, g) be an asymptotically flat Riemannian 3-manifold containing a vector field E
representing the Electric field. Here, asymptotically flat means that there exists a compact
subset K ⊂ M3, a real number r1 > 0, and a diffeomorphism, Φ : R3 − Br1(0) → M3 −K
such that the pull-back metric Φ∗g satisfies

|(Φ∗g)ij − δij| ≤
C

r
(1)

and

|(Φ∗g)ij,k| ≤
C

r2
(2)

where r denotes the radial coordinate (r2 = x2+y2+z2) for the point < x, y, z >∈ R3−Br1(0)
and δij the Euclidean metric, respectively, on the manifold R3 − Br1(0). Br1(0) denotes a
ball of radius r1 centered at the origin in R3.

(M3, g, E) will serve as initial data for the Einstein-Maxwell Equations in the time-symmetric
case. An important global invariant of such a manifold is the ADM mass, representing the
strength of the gravitational field at infinity, defined as in [7] (p. 373, equation 1.1.32) by

EADM = lim
r→∞

1

16π

∫
S(0,r)

(∂lglj − ∂jgll)dSj (3)

where S(0, r) = ∂(Φ(R3−Br(0)) denotes the boundary of the complement of a coordinate
ball of radius r > r1 in M3. In the following sections, we will also set B(0, r) = Φ(R3−Br(0)).

Let ν denote a unit normal vector field on S(0, r), pointing towards the asymptotically
flat end of M3. We then define the total charge, Q, on M3 by

Q =
1

4π
lim
r→∞

∫
S(0,r)

E(ν) (4)

Further, R will denote the scalar curvature of M3.

It is a well-known result (cf. [10]) that if the boundary of M3 consists of only one con-
nected component that is a trapped surface, then, assuming the dominant energy condition,
R ≥ 2|E|2g, EADM is bounded from below by |Q| (this is called the charged positive mass
theorem). The case of equality occurs if and only if the metric on M3 is the spatial part
of an extreme Reissner-Nordström metric, which will be defined in the next section. Note
that in the time-symmetric case, k = 0, the trapped surface condition is equivalent to non-
positive mean curvature of the boundary, H ≤ 0 on ∂M3. Our goal here is to extend this
result to the case where the boundary is not necessarily a trapped surface, but instead, its
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mean curvature satisfies an appropriate upper bound. Also, we assume the boundary, ∂M3

is outer minimizing, meaning that it minimizes area among all surfaces in M3 that enclose
∂M3. This actually implies that the mean curvature of ∂M3 is nonnegative, H ≥ 0. Again,
equality leads to an extreme Reissner-Nordström metric. In particular, we have the following
theorem:

Theorem 1. Assume that M3 is an asymptotically flat Riemannian 3-manifold (with bound-
ary) with divergence free vector field E satisfying the dominant energy condition R ≥ 2|E|2g.
Assume further that the boundary is outer minimizing and that the mean curvature, H, of
the boundary ∂M3, satisfies the inequality:

1

2
H ≤ |

√
4π

A
− 4π|Q|

A
| (5)

Then

EADM ≥ |Q| (6)

and equality holds if and only if (M3, g, E) agrees with the initial data set for the Einstein-
Maxwell equations of an extreme Reissner-Nordström spacetime.

The proof of this theorem uses the inverse mean curvature flow (IMCF) and Geroch mono-
tonicity as outlined in [10]. The main difference is finding the appropriate upper bound for
H and showing that the same rigidity result holds.

If M3 instead has interior boundary consisting of multiple components, then the IMCF
is no longer appropriate since it will give a lower bound on EADM in terms of the charge of
a particular boundary component instead of the total charge. In [6], Herzlich was able to

show that in the absence of the electric field, E = 0, H ≤
√

4π
A

implies that EADM ≥ 0 and

equality holds if and only if the metric on M3 arises a spatial portion of the Schwarzchild
metric. He did this by building on Witten’s proof of the positive mass theorem using spinors.
Including charge in in this case involves modifying the boundary Dirac operator and finding
a lower bound for its first eigenvalue. This leads to a modified, albeit reasonable, upper
bound for the mean curvature of each connected component. Rigidity in this case is also
weakened as it only leads to an IWP metric, not necessarily the Majumbdar Papapetrou
metric:

Assume that M3 contains multiple boundary components, each of which is diffeomorphic
to a sphere; ∂M3 = ∪mj=1Nj, where each Nj is diffeomorphic to S2. g will also denote the
restriction of the metric on M3 to Nj. Let Aj denote the the area of each Nj. Further, let
ν denote a unit normal vector field to Nj, pointing towards the asymptotically flat end. We
set E(ν) = g(E, ν). Define the charge of each component, Qj by the following equation:
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Qj =
1

4π

∫
Nj

E(ν) (7)

Note: If each each Nj were an actual horizon (H = 0), then a standard result on charged
black holes shows that Qj would then satisfy the following inequality in relation to Aj:

4π(Qj)
2 < Aj (8)

If E(ν) were in addition constant on Nj, then E(ν) =
4πQj
Aj

, and
∫
Nj

(E(ν))2 =
16π2Q2

j

Aj
.

Combined with equation (8), this reads

∫
Nj

(E(ν))2 < 4π (9)

We shall show that in fact that a slightly more relaxed upper bound on
∫
Nj

(E(ν))2 is a

sufficient condition, combined with an associated upper bound for mean curvature, to prove
the following positive mass theorem:

Theorem 2. Let M3 is an asymptotically flat Riemannian 3-manifold with vector field E
satisfying the dominant energy condition R ≥ 2|E|2g, with R−2|E|2g ∈ L1(Mext). Assume that
the boundary, ∂M3 of M3 consists of finitely many connected components, Nj, each of which
is diffeomorphic to a sphere (S2). Further, assume that on each component of the boundary,
Nj, the normal component of the electric field E(ν) satisfies the following inequality with
respect to the charge Qj of that boundary:

∫
Nj

(E(ν))2 ≤ 4π +
16π2Q2

j

Aj
(10)

and the mean curvature, Hj of each horizon Nj, satisfies the inequality:

1

2
Hj ≤

√
4π

Aj
+

16π2Q2
j

A2
j

− 1

Aj

∫
Nj

(E(ν))2 − 4π|Qj|
Aj

(11)

Then

EADM ≥ |Q| (12)
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Further, if equality holds then the spacetime arising from the initial data (M3, g, E) contains
a neighborhood diffeomorphic to an open subset of an IWP black hole spacetime.

Note: We will see in section 2 that if Nj is a coordinate sphere in an extreme RN space-

time, then E(ν) is constant, so that E(ν) =
4πQj
Aj

and therefore
∫
Nj

(E(ν))2 = Aj
16π2Qj
(Aj)2

=
16π2Qj
Aj

. Therefore, strict inequality in (10) is satisfied. However, we will see that 1
2
Hj =√

4π
Aj
− 4π|Q|

Aj
on any coordinate sphere of radius r in extreme RN, so that the inequality

(12) is saturated. Since the horizons in a standard Majumbdar-Papapetrou spacetime have
the same properties as the horizon in an extreme RN spacetime, we obtain the same results
for coordinate spheres in a standard MP spacetime. Since both of these spacetimes have
EADM = |Q|, they show that equality can hold in (13) without the inequality (11) being
saturated. However, we will see using spinors that equality holding in (13) implies equality

must hold in (12), provided

√
4π
Aj

+
16π2Q2

j

A2
j
− 1

Aj

∫
Nj

(E(ν))2 − 4π|Qj |
Aj

> 0 for that particular

Nj. On the other hand, if

√
4π
Aj

+
16π2Q2

j

A2
j
− 1

Aj

∫
Nj

(E(ν))2 − 4π|Qj |
Aj
≤ 0 on a particular Nj

then then the boundary conditions imposed on the spinor restricted to that Nj will actually
force H = 0 on Nj (cf. [17]).

If each interior boundary component is replaced with a cylindrical end, then rigidity in
stronger in the sense that it leads to a standard Majumbdar-Papapetrou spacetime:

Theorem 3. Assume that (M3, g, E) is initial data for the Einstein-Maxwell equations con-
sisting of a Riemannian 3-manifold M3 containing one asymptotically flat end and m cylin-
drical ends. Assume further that the scalar curvature R and the Electric field E defined on
M3 satisfy the dominant energy condition: R ≥ 2|E|2g, with R− 2|E|2g ∈ L1(Mext). Then

EADM ≥ |Q| (13)

and equality holds if and only if the the spacetime arising from the initial data contains a
neighborhoood diffeomorphic to an open subset Majumbdar-Papapetrou spactime.

All of the above cases assumed time symmetry, k = 0. It turns out that the boundary
Dirac operator becomes too complicated to get a useful result like theorem 2 if k 6= 0. How-
ever, we do have the following extension of Shi and Tam’s result [15], which allows allows
the positive mass theorem to include a manifold with corners in its hypothesis, along with
multiple asymptotically flat ends, instead of just one. On this manifold, it is possible to
define a charged energy density, µEB, and a charged momentum density, JEM = (JEM)iei
(in some orthornormal frame ei defined on M3). If each asymptotically flat end is indexed
by j, one can define the ADM energy, (EADM)j, the electric and magnetic charge, QE

j and
QB
j , and the spacelike vector portion of the ADM four-momentum, pj. On each end the

inequality relating these is summarized in the following:

4



Theorem 4. Assume that (M3, g) is a Riemannian 3-manifold containing m asymptotically
flat ends, indexed by j. Define vector fields, E ∈ Γ(TM3), B ∈ Γ(TM3), and a symmetric
two-tensor k on M3 satisfying the following:

(1). The charged energy density, µEM = R − |k|2g + (trgk)2 − 2|E|2g − 2|B|2g, satisfies the

dominant energy condition, µEM ≥
√
|JEM |2g + |div E|2 + |div B|2.

(2). There is a bounded domain Ω ⊂ M3 such that we assume that g is continuous on
M3, smooth on M3−Ω and Ω̄, and Lipschitz near ∂Ω. Let en, n = 2, 3 define an orthonor-
mal frame for T (∂Ω), and let ν denote the outer unit normal vector field on ∂Ω (directed
towards M3 − Ω̄).

(3). We assume that H|Ω̄−|Tr∂Ω(kΩ̄)| ≥ H|M3−Ω̄+|Tr∂Ω(kM3−Ω̄)|, kΩ̄(ν, en) = kM3−Ω̄(ν, en),
for n = 2, 3, BΩ̄(ν) = BM3−Ω̄(ν), and EΩ̄(ν) = EM3−Ω̄(ν).

(4). The components, Ei of E = Eiei and Bi of B = Biei satisfy the following decay
conditions: Ei ∈ o(r−1), Bi = o(r−1). Further, E, B, k ∈ W 1,1

loc (M3) and E, B, k and
their weak partials are bounded near ∂Ω.

Then

(EADM)j >
√
|pj|2g + (QE

j )2 + (QB
j )2 (14)

The mean curvatures, H|Ω̄ and H|M3−Ω̄ with respect to Ω̄ and M3 − Ω̄, the charged
momentum density, JEM , and the momentum, pj, of the jth asymptotically flat end will be
defined precisely in section 9 where this theorem is proved.

2 A Manifold with a Single Connected Boundary Com-

ponent and the Inverse Mean Curvature Flow

equationsection thmsection
In this section, we prove theorem 1 using the Inverse Mean Curvature Flow.

Let A denote the area of ∂M and define the charge, given in Q, of ∂M , by

Q =
1

4π

∫
∂M

E(ν) (15)

Note: If div E = 0, then by the divergence theorem, this is equal to the total charge,
Q, given by (4), as well as the charge,

∫
S
E(ν) on any closed two-surface S ⊂ M3 that also
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bounds ∂M3, (i.e. ∂M3 ⊂M3 − S):

Assume that the scalar curvature, R, of M3 satisfies the dominant energy condition, R ≥
2|E|2g, at each point of M3. From now on, we will let H denote the mean curvature of
any two-surface S ⊂ M3 with respect to the outward pointing unit normal vector field ν,
pointing toward spatial infinity. Let A(S) denote the area of S.

In [10], Khuri and Disconzi introduced the charged Hawking Mass, defined on any closed
two-surface S by:

MCH(S) =

√
A(S)

16π
(1 +

4πQ2

A(S)
− 1

16π

∫
S

H2) (16)

This charged Hawking mass is useful because it satisfies Geroch monotonicity (it is non-
decreasing) under surfaces solving the inverse mean curvature flow (IMCF) (defined in [11]).
In fact, if Sτ denotes a one-parameter family of surfaces solving the IMCF then (cf. inequal-
ity (4.1) in [10]), we have the following inequality:

d
dτMCH(Sτ )≥− 1

2

√
π

A(Sτ )
Q2+ 1

16π

√
A(Sτ )
16π

∫
Sτ

(R+2
|∇τH|2
H2 +|II|2− 1

2
H2)

where II denotes the second fun-

damental form on Sτ with respect to the induced metric and the unit normal vector (ν)
pointing toward spatial infinity.

Since (cf. top of p.7 in [10]), |II|2 − 1
2
H2 = 1

2
(λ1 − λ2)2, where λ1 and λ2 denote the

two principal curvature of Sτ , the last three terms appearing in the second term of the in-
equality (2.18) will always be non-negative.

By the dominant energy condition R ≥ 2|E|2g and by Hölder’s inequality (cf. inequality

[4.2] in 10),
∫
Sτ
|E|2g ≥

16π2Q2

A(Sτ )
, and therefore MCH(Sτ ) is monotonically non-decreasing:

d

dτ
MCH(Sτ ) ≥ 0 (17)

Further, like the Hawking mass, if Sτ denotes the one-parameter family of surfaces solving
the inverse mean curvature flow, then, because, A(Sτ ) grows exponentially in τ ,

lim
τ→∞

MCH(Sτ ) = EADM (18)

Therefore, if MCH(S0) ≥ C for some constant C, this inequality will extend to EADM ≥
C. For an apparent horizon boundary, which in the time-symmetric case, corresponds to
H = 0 on ∂M , Khuri and Disconzi [10] used (2.20) along with Geroch monotonicity (2.19)
and the charged Jang transformation to prove the charged Riemannian Penrose inequality

EADM ≥
√

A
16π

+
√

π
A
Q2 assuming that the dominant energy condition is satisfied. Our goal
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here is to move slightly outside of the apparent horizon boundary, replacing the condition
H = 0 in the time-symmetric case with an appropriate upper-bound for mean curvature.
We derive this upper bound in the following:

Proposition 5. Assume that the mean curvature H on S satisfies the following inequality:

1

2
|H| ≤ |

√
4π

A(S)
− 4π|Q|
A(S)

| (19)

Then

MCH(S) ≥ |Q| (20)

Proof. We start by rewriting the inequality, MCH(S) ≥ |Q|:

|Q| ≤
√
A(S)

16π
(1 +

4πQ2

A(S)
− 1

16π

∫
S

H2)) (21)

Multiplying both sides of equation (2.23) by 16π
A(S)

, we obtain

√
16π

A(S)
|Q| ≤ (1 +

4πQ2

A(S)
− 1

16π

∫
S

H2) (22)

Adding 1
16π

∫
S
H2 −

√
16π
A(S)
|Q| to both sides of the (2.24) yields:

1

16π

∫
S

H2 ≤ 1−

√
16π

A(S)
|Q|+ 4πQ2

A(S)
(23)

Upon completing the square, 1−
√

16π
A(S)
|Q|+ 4πQ2

A(S)
= (1−

√
4π
A(S)
|Q|)2. Therefore, (2.25)

becomes

1

16π

∫
S

H2 ≤ (1−

√
4π

A(S)
|Q|)2 (24)

If we multiply both sides of the above equation (2.26) by 16π, we obtain

∫
S

H2 ≤ 16π(1−

√
4π

A(S)
|Q|)2 (25)
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We have therefore shown that the inequality MCH ≥ |Q| is equivalent to the inequality

(2.27) above. Now, notice that if H2 ≤ 16π
A(S)

(1−
√

4π
A(S)
|Q|)2, then (2.27) will hold automat-

ically.

The expression 16π
A(S)

(1 −
√

4π
A(S)
|Q|)2 can be rewritten as (

√
16π
A(S)
−

√
64π2

(A(S))2
)2, which is

equivalent to (2
√

4π
A(S)
− 8π

A(S)
)2 = [2(

√
4π
A(S)
−

√
4π
A(S)

)]2. Taking the square root of both

sides, the condition H2 ≤ 16π
A(S)

(1 −
√

4π
A(S)
|Q|)2 is equivalent to |H| ≤ 2|

√
4π
A(S)
− 4π|Q|

(A(S)
|, or

1
2
|H| ≤ |

√
4π
A(S)
− 4π|Q|
|A(S)| |, which is precisely the condition (2.21)

Therefore, if we start an inverse mean curvature flow at the boundary, that is, if S0 =

∂M3, and if the mean curvature satisfies 1
2
|H| ≤ |

√
4π
A
− 4π|Q|

A
| on ∂M3, then MCH(S0) ≥ |Q|

by proposition 2.5 and by Geroch monotonictiy (2.19) combined with (2.10), EADM ≥ |Q|.
If EADM = |Q|, then the spacetime is identical to a t = 0 slice of an Extreme Reissner-
Nördstrom spacetime, which is defined along the lines of [13] below:

Definition 6. Let m > 0 denote a positive constant and p ∈ R3 denote a point in space,
and let r denote the Euclidean distance from p ∈ R3. Set u = (1 + |m|

r
)1/2. A time slice

t = 0 of the Reissner-Nördstrom spacetime is characterized by initial data consisting of a
the topological manifold M3 = R3 − p, on which we define the spatial metric

g = u4(dr2 + r2dσ2) (26)

and electric field

E = 2∇[lnu] (27)

This spatial metric will be a slice of the Extreme Reissner-Nördstrom spacetime precisely
when m = |Q|.

It is important to note the following properties of extreme Reissner-Nördstrom spacetime
given in the following proposition:

Proposition 7. The second fundamental form II, charge, Qr, and mean curvature, H of any
coordinate sphere Sr in extreme Reisssner-Nördstrom spacetime are given by the following
two formulas:

II =
1

2
[r2∂ru

4

u2
+ 2ru2]dω2 (28)

Qr = −m = −|Q| (29)

8



and

H(Sr) =

√
4π

A
− 4π|Q|

A
(30)

Proof. We calculate

II = 1
2Lu−2∂r

g= 1
2

(u−2∂r(u4)(dr2+r2dω2)+u4(2dr(d(u−2))+2ru−2dω2)−2u−3∂rudr=
1
2

(u−2∂r(u4)(dr2+r2dω2)+u4(2dr(−2u−3∂rudr)+2ru−2dω2)= 1
2

(4udr2−4udr2+[r2
∂r(u4)

u2
+2ru2]dω2= 1

2
[r2

∂r(u4)

u2
+2ru2]dω2

and therefore,

H(Sr) = TrSrII = u−4r−2(r2 ∂ru4

u2
+ 2ru]

= ∂ru4

u6
+ r−1u−3

= 4∂ru
u3

+ 2
ru2

Since ∂ru = 1
2
(1 + m

r
)−1/2 · −m

r2
= −m

2ur2
, and so we have

H(Sr) =
2

r +m
− 2m

(r +m)2
(31)

Now, notice that, because E = 2∇(ln u) in extreme RN , we have the following formula for
the normal component of the electric field:

E(ν) = 2∇u−2∂r(ln u)
= 2u−2 ∂ru

u

= 2∂ru
u3

= −m
(r+m)2

Now, notice that, with respect to the metric g, the area of Sr, A(Sr), is

A(Sr) =

∫
Sr

r2u4dω2 = 4π(r +m)2 (32)

and therefore the flux or charge, Qr, through Sr is

Qr = 1
4π

∫
Sr
E(ν) = (r +m)2 −m

(m+r)2
= −m

Notice that this value does not depend on r, and in particular, limr→∞Qr = Q = −m, or
m = |Q| since m > 0.

Therefore, (2.33) becomes

H(Sr) =

√
4π

A
− 4π|Q|

A
(33)

9



Lemma 8. If EADM = |Q|, then the metric g arises as a time slice of an extreme Reissner-
Nordström Spacetime. As a consequence (2.32) holds on each Sτ . Further, in this spacetime,
inequality (2.19) is an equality for each coordinate sphere Sτ .

Proof. EADM = |Q|, then since MCH(Sτ ) is monotonically non-decreasing, we must have
MCH(Sτ ) = |Q| = EADM , for all τ , and therefore d

dτ
MCH(Sτ ) = 0, so that (2.19) holds on

each Sτ . It then follows from the inequality (2.17)-(2.18) that
∫
Sτ

(R+2 |∇τH|
2

H2 +|II|2− 1
2
H2) =

0; since it was shown in [10] that |II|2 − 1
2
H2 is always non-negative, we must have:

∇τH = 0 on Sτ (34)

and

|II|2 =
1

2
H2 on Sτ (35)

These two equations in turn imply that H and II are constant on Sτ . Further, equality
in (2.18)-(2.19) implies that we must have

R = 2|E|2g (36)

and further that equality must hold in Hölder’s inequality, so that
∫
Sτ
|E|2g = 16πQ2

A(Sτ )
. There-

fore, we must have
E = f(τ)ν (37)

for some smooth function f(τ), i.e. E (and therefore also R) is constant on each Sτ . Here,
ν denotes the outer unit normal to Sτ pointing towards spatial infinity (cf. Equation (5.4)
of [10]). By equation (1.3) in [11], we further have

∂H

∂τ
= −∆Sτ (H

−1)− (|II|2 +Ric(ν, ν))H−1 (38)

Since H is constant (and assumed to be nonzero in order for a smooth solution of IMCF to
exist) on each Sτ , we have ∆Sτ (H

−1) = 0 and therefore

∂H

∂τ
= −(|II|2 +Ric(ν, ν))H−1 (39)

Since both H and II depend only on τ , it follows that Ric(ν, ν) is constant on each Sτ .
A standard formula obtained by taking two traces of the Gauss equation allows us to write
the Gauss curvature K of each Sτ as follows (cf. equation preceeding 5.5 in [10]):

K =
1

2
R−Ric(ν, ν) +

1

2
H2 − 1

2
|II|2 (40)

10



Since every term on the right hand side of (2.42) is constant on Sτ , it follows that K is
also constant on Sτ . Therefore, the induced metric on Sτ is identical to r2(τ)dσ2 for some
function r(τ) satisfying 4πr2(τ) = A(Sτ ) = A(S0)eτ (cf. the equation following 1.1 of [11]).
Using the Gauss Lemma and the fact that dτ = 2r−1dr, we can rewrite g as follows (cf.
equation (5.5) of [10]):

g =
4H−2

r2
dr2 + rdσ2 (41)

Now, note that equation (2.16) applied to Sτ (with MCH = |Q|) can be rewritten as

1

16π

∫
Sτ

H2 = −

√
16π

A(Sτ )
|Q|+ 1 +

4πQ2

A(Sτ )
(42)

Since H2 is constant on Sτ , and since 4πr(τ)2 = A(Sτ ), this equation becomes

H2 4πr2(τ)

16π
= −

√
16π

4πr2(τ)
|Q|+ 1 +

4πQ2

4πr2(τ)
(43)

Solving (2.45) for H2, and writing r for r(τ) yields

H2 =
4

r2
(−2|Q|

r
+
Q2

r2
+ 1) (44)

which can be simplified further as

H2 =
4(r − |Q|)2

r4
(45)

Plugging the formula (2.47) for H into equation (2.43) for g gives

g =
r2

(r − |Q|)2
dr2 + r2dσ2 (46)

To get this into the form of a slice of standard Reissner-Nordström Spacetime, we make
the coordinate transformation, r = r′ + |Q|. Since dr = dr′, this turns equation (2.48) into

g =
(r′ + |Q|)2

(r′)2
dr′2 + (r′ + |Q|)2dσ2 (47)

Rewriting (r′+ |Q|)2 as (1+ |Q|
(r′)2

)2(r′)2 and (r′+|Q|)2
(r′)2

= (1+ |Q|
r′

)2, equation (2.49) becomes

g = (1 +
|Q|
r′

)2dr′2 + r′2dσ2] (48)

11



This is precisely equivalent to the induced spatial metric on the t = 0 slice of an extreme
Reissner-Nordström Spactime with u = (1 + |Q|

r′
)1/2 and m = |Q|. In this spacetime, the

electric field is given by E = 2∇[lnu], where ∇ denotes the gradient operator acting on a
function. In terms of the metric above, in this reads

E =
−|Q|

(r′ + |Q|)2

1

1 + |Q|
r′

∂r (49)

Now, notice from equation (2.39) that E(ν) = f(τ) on Sτ in light of A(S(τ)) = 4πr2(τ), we
have

4πQ =

∫
Sτ

f(τ) = 4πr2(τ)f(τ) (50)

from which we can solve for f(τ), (after making the replacement r(τ) = r′ + |Q|):

f(τ) =
Q

(r′ + |Q|)2
(51)

It then follows that E = Q
r′(τ)+|Q|ν on Sτ . Since Sτ is simply a sphere of radius r(τ) = r′+|Q|,

the spatial infinity-pointing unit normal ν (with respect to the g given by (2.49)) is simply
ν = 1

1+
|Q|
r′
∂r′ . Hence the original electric field E defined on M3 is identical to the one arising

from the extreme Reissner-Nordström metric, with Q = −|Q| (notice how this agrees with
the point charge of an electron). Furthermore, equation (2.47) under the replacement of
r = r(τ) with r′ + |Q| gives the following:

H =
2(r′)2

(r′ + |Q|)2
(52)

On the other hand, note that since A(Sτ ) = 4π(r′ + |Q|)2, we have

√
4π

A(Sτ )
− 4π|Q|
A(Sτ )

=
1

r′ + |Q|
− |Q|

(r + |Q|)2
(53)

Combining the right-hand side of equation (2.55) as one fraction gives:

√
4π

A(Sτ )
− 4π|Q|
A(Sτ )

=
(r′)2

(r + |Q|)2
(54)

It thus follows that

1

2
H =

√
4π

A(Sτ )
− 4π|Q|
A(Sτ )

(55)
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on Sτ as claimed.

We also need the following:

Lemma 9. Assume that the boundary, ∂M2, is outer minimizing. Then there exists a
solution of the IMCF such that A(S0) = A(∂M3).

Proof. This is simply a consequence of remark 1.4 in [18] (cf. theorem 1.2) and the the
existence theorems for the inverse mean curvature flow given in [11]

Note: If ∂M is outer minimizing, then H ≥ 0, so absolute value sign appearing to the left
hand side of inequality (2.21) is unnecessary (cf. Remark 1.2 of [18]).

We therefore have the following proof of theorem 1:

Proof. If we start an inverse mean curvature flow at the boundary, that is, if S0 = ∂M3,

and if the mean curvature satisfies 1
2
H ≤ |

√
4π
A
− 4π|Q|

A
| on ∂M3, then MCH(S0) ≥ |Q| by

proposition 2.5. As a consequence of Geroch monotonicity and the asymptotic behavior of
the Sτ , it follows that limτ→∞MCH(Sτ ) ≤ EADM (cf. Lemma 7.4 of [11]). This proves the
lower bound on EADM in theorem 1. The rigidity result is then simply lemma 2.8.

Note: In [17], Hawking-Horowitz and Perry have already shown that if ∂M is an apparent
horizon, which in the time-symmetric case corresponds to H ≤ 0, then EADM ≥ |Q|, so

the above theorem only gives a new result if both H and |
√

4π
A
− 4π|Q|

A
| are positive. Since

4πQ2 < A when ∂M is an apparent horizon, this is not an unreasonable assumption.

Second Note: In [6], M. Herzlich proved that in the absence of charge (E = 0, Q = 0),

that 1
2
H ≤

√
4π
A

implies the uncharged positive mass theorem: EADM ≥ 0. His proof uses

spinors and is the motivation for the proofs of the theorems 2 and 3 in the next sections.

3 Outline of the Proof of Theorem 2

We break the proof of theorem 2 down into three steps:

Step 1: We write the quantity EADM − |Q| in terms of spinor fields. The Schrödinger-
Lichnerowicz formula combined with the divergence theorem show that this expression is
an integral involving a charged Dirac operator, the charged covariant derivative, and the
function R − 2|E|2g on the ambient manifold, along with a boundary integral involving a
charged boundary Dirac operator and the mean curvature on each connected component of
the boundary. This expression will be nonnegative if the spinor field satisfies the charged
Dirac equation on the ambient manifold and if its restriction satisfies appropriate boundary

conditions depending upon whether
√

4π
Aj

+ 16π2

A2
j
− 1

Aj

∫
Nj
E(ν)− 4π|Qj |

Aj
. This is discussed in

13



section 5. If
√

4π
Aj

+ 16π2

A2
j
− 1

Aj

∫
Nj
E(ν)− 4π|Qj |

Aj
is positive. All of this is explained in section

4.

Step 2: If
√

4π
Aj

+ 16π2

A2
j
− 1

Aj

∫
Nj
E(ν) − 4π|Qj |

Aj
> 0, we use an argument of Hijazi-Bar as

in [1] to show that, assuming the inequality (11) holds for E(ν) on each horizon, the
absolute value of the smallest eigenvalue of the boundary Dirac operator on each Nj is

greater than or equal to
√

4π
Aj

+ 16π2

A2
j
− 1

Aj

∫
Nj
E(ν)− 4π|Qj |

Aj
. This is discussed in section 5. If√

4π
Aj

+ 16π2

A2
j
− 1

Aj

∫
Nj
E(ν) − 4π|Qj |

Aj
, then condition (11) will also imply that H ≤ 0, so that

we can use the boundary conditions imposed by Hawking, Horowitz, and Perry in [17] on
Nj to conclude that the boundary term is nonnegative.

Step 3: Assuming the given upper bound on mean curvature for each component, Nj (in-
equality (11)), we prove the existence of a spinor Ψ satisfying the charged Dirac equation
whose restriction to each component satisfies the appropriate boundary conditions. This is
discussed in the section 6. Section 7 then applies the nontrivial solution to the Dirac equation
with the results of the preceding sections to actually prove the positive mass theorem.

4 Definition of a Manifold with Finitely Many Cylin-

drical Ends

In this section, we consider the case where M3 consists of one asymptotically flat end and
finitely many cylindrical ends. This is of interest in mathematical general relativity because
cylindrical ends can also be used to model a horizon; objects stretch as they enter a black
hole. Let Mext denote a subset of M3 whose induced metric satisfies the decay rates of (1)
and (2). We consider a Riemannian 3-manifold, M3 containing one asymptotically flat end,
Mext and multiple cylindrical ends, which are defined below along the lines of [9]:

Definition 10. A manifold (M3, g) is said to have m cylindrical ends if there exists m
Riemannian 2-manifolds (Sj, gNj), a compact subset K ⊂ M3, a real number r2 > 0, j =
1, 2, ...,m, and a diffeomorpshism Φ : ∪mi=1Sj × (r2,∞) → M3 − (Mext ∪ K) such that the
pull-back metric Φ∗g on each Nj × (r2,∞) satisfies, for all l ≥ 0,

|∇l
j(Φ

∗g − [gSj + dr2])| = O(
1

r
) (56)

where each ∇l
j denotes the Levi-Cevita connection on each Sj × (r2,∞) with respect to

the product metric gSj + dr2. We will denote the subset of M3 that is diffeomorphic to
Sj × (r2,∞) by Mj.

For any r > r2, consider the subset Mj(r) = Φ(Si× (r,∞)) of M3 consisting of everything of
length greater than r down the jth cylindrical end. We will use ∂Mj(r) = ∂Φ(Sj × (r,∞))
to denote the corresponding cross-section.
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5 The charged Dirac Operator, Lichnerowicz Formula,

and ADM Energy

To prove theorems 2 and 3, we first need to define spinors and the charged Dirac Operator. As
outlined in [7], we will rewrite the ADM mass in terms of spinors. Using the Lichnerowicz
formula and divergence theorem, this expression will become a volume integral minus a
boundary integral. The volume integral will be nonnegative if a spinor satisfies the charged
Dirac equation. The boundary integral will consist of a charged boundary Dirac operator
minus a multiple of the mean curvature, and we will see using eigenvalue estimates and other
appropriate boundary conditions that this term will be nonnegative if the inequalities (10)
and (11) are satisfied.

5.1 The Charged Connection and Super-Covariantly Constant Spinors

Since any Riemannian 3-manifold is spin, we can choose a spin structure on M3 (cf. chapter
1 [1] for details). This spin structure then defines a spin structure on the spacetime N4

that arises after solving the Einstein-Maxwell equations with (M, g,E) as initial data (cf.
[3]). Let S denote the spinor bundle over N4 restricted to M3 and let Γ(S) denote sections
of S. Elements of Γ(S) are called spinor fields. Now, choose some orthonormal frame, ei
near an arbitrary p ∈ M . e0 will denote the tangent vector in N4 perpendicular to M3

in the direction of forward time. Let Di denote the covariant derivative (induced from the
Levi-Cevita covariant derivative on TM3) acting on spinor fields in the direction of ei (cf
Proposition 1.2.3d of [1]). Further, let c : TN4 → End(Γ(S)) denote the standard Clifford
representation of the tangent bundle of N4 When an electric field, E ∈ Γ(TM3) is defined
on M3, we can define the charged or super covariant derivative ∇i : Γ(S) → Γ(S) in the
direction of ei as follows:

∇i = Di −
1

2
Ekc(ek)c(ei)c(e0) (57)

We are now in the position to define the notion of a super-covariantly constant spinor field
and the Dirac operator:

Definition 11. A section of ψ ∈ Γ(S) is called a super-covariantly constant spinor field if
for almost every p ∈M (that is for all p on M outside of a subset of measure zero) and the
given orthonormal frame, ei near p, we have

∇iψ = 0 (58)

This is often just written

∇ψ = 0 (59)
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5.2 The Dirac Operator

Let ei denote a local orthonormal frame ei on TM3.

Definition 12. The classical Dirac operator, denoted /D is defined by the following equation:

/Dψ = c(ei)Diψ (60)

This definition is actually independent of the choice of local orthonormal frame ei on TM3

(cf. page 10 of [1]) The charged Dirac operator is defined using the charged covariant deriva-
tive ∇i as follows:

Definition 13. Let ei be an orthonormal frame around a given point p ∈M3. The charged
Dirac operator, denoted DM : Γ(S) → Γ(S) is a first order differential operator acting on
spinor fields defined by the equation:

DMψ = c(ei)∇iψ (61)

Note also, that, because of the definition of the charged connection, ∇, the formula for the
charged Dirac operator reduces to:

DMψ = /D − 1

2
c(E)c(e0) (62)

where /D : Γ(S)→ Γ(S) is the classical Dirac operator given by definition 5.2

5.3 The Schrödinger-Lichnerowicz Formula and ADM Energy

For the purposes of proving the positive mass theorem, we need to show that EADM−|Q| can
be written in terms of integrals whose integrands consist of inner products of spinors. First,
we have the Schrödinger-Lichnerowicz formula [equation 3.3.43 of [10]], which we summarize
in the following lemma:

Lemma 14. Assume that the vector field E has vanishing divergence, div E = 0, then the
Schrödigner-Lichnerowicz formula reads:

Di < Ψ,∇iΨ + c(ei)DMΨ >= |∇Ψ|2 − |DMΨ|2 +
1

4
(R− 2|E|2g)|Ψ|2 (63)

Note: This formula shows that the square of the Dirac operator |DMΨ|2 is, aside from a
divergence term, the square of the conformal laplacian, |∇Ψ|2, plus a zeroth-order term (a
function that is merely multiplied by the spinor field and does involve any covariant deriva-
tives of the spinor field), namely, 1

4
(R− 2|E|2g). This charged Dirac operator is thus, modulo
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addition of zeroth-order term (the function 1
4
(R − |E|2g), a formal half-iterate of the confor-

mal laplacian, ∇∗∇, at least in the weak sense when integrating by parts over a manifold
without boundary. Pauli Dirac originally conceived his operator as an observable producing
the rest energy (mc2), whose square needed to satisfy Einstein’s equation E2 − |p|2 = m2c4,
where |p| is the absolute value of the total momentum (in quantum mechanics, the operator
for the observable E2 − |p|2 is the laplacian in Minkowski spacetime, sometimes called the
d’Alembert operator and denoted by �).

In the remainder of this subsection, we will assume that Ψ is constant in a chart around
spatial infinity, say Ψ is identically ψ∞ in some frame in a neighborhood of Mext; assume
further that |ψ∞|2 = 1. Then a standard result, (cf. chapter 3, page 114 of [7]) shows that:

lim
r→∞

∫
S(0,r)

< Ψ, (Di + c(ei) /D)Ψ >= 4πEADM (64)

If we further assume that ψ∞ satisfies, < ψ∞, c(e0)ψ∞ >= −sgn(Q)|ψ∞|2 = −sgn(Q), then
we have the following:

lim
r→∞

∫
S(0,r)

< Ψ, Eic(e0)Ψ > dSi = −4π|Q| (65)

Now, set U i =< Ψ,∇iΨ + c(ei)DMψ >. We can then conclude from lemma 5.4 [cf. 3.3.46 of
[7]] that

lim
r→∞

∫
S(0,r)

U idSi = 4π(EADM − |Q|) (66)

If M3 contains an inner boundary consisting of multiple disjoint components as in the as-
sumptions of theorem 2, then applying the divergence theorem to equation 5.7 in Lemma
5.4, we obtain:

Corollary 15.
∫
M3 |∇Ψ|2 − |DMΨ|2 + 1

4
(R− 2|E|2g)|Ψ|2

− Σm
j=1

∫
Nj
< Ψ, (Di + c(ei) /D + Eic(e0))Ψ > dSi

= 4π(EADM − |Q|)

If instead M3 has finitely many cylindrical ends and one asymptotically flat end as in the
assumptions of theorem 3, then the boundary term is replaced with limit of Ψ along ∂Mi(r):

Corollary 16.
∫
M3 |∇Ψ|2 − |DMΨ|2 + 1

4
(R− 2|E|2g)|Ψ|2

− limr→∞[Σm
j=1

∫
∂Mj(r)

< Ψ, (Di + c(ei) /D + Eic(e0))Ψ > dSi]

= 4π(EADM − |Q|)
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Both corollary 5.5 and 5.6 demonstrate that EADM−|Q|, or more specifically, 4π(EADM−|Q|),
can be rewritten in terms integrals whose integrands consist of inner products of spinor fields.
It is worth noting that the term inside the limit in corollary 5.6 will necessarily vanish if Ψ
is a compactly supported spinor field.

5.4 The charged Boundary Dirac Operator

To deal with the boundary boundary terms
∫
Nj
< Ψ, (Di + c(ei) /D+Eic(e0))Ψ > dSi in the

Corollary 5.5, we first introduce, on each Nj, the classical boundary Dirac Operator /DNj .
Defining this requires defining the boundary spin connection:

Definition 17. The boundary spin connection (2)∇A on Nj is defined by [c.f. 5, p. 3],

(2)∇Xψ = ∂Xψ +
1

4
Γkilc(el)c(ek)ψ (67)

where Γkil, i, l, k = 2, 3 denote the Christoffel Symbols on (Nj, g).

/DNj = −c(νj)c(eA)(2)∇A (68)

where (2)∇A denotes the covariant derivative on Nj inherited from the metric on M3, νj
denotes the outer unit normal vector field on each respective Nj (pointing toward the asymp-
totically flat end, Mext), and where A ranges from 2 to 3, e2 and e3 being chosen as the two
orthonormal unit vectors fields in Γ(TNj). These vector fields are chosen so that they agree
with the orthonormal frame ei mentioned in section 5.1, i.e. e1 = νj on Nj when we choose
the point p to live on Nj, i.e. p ∈ Nj. We then have the following:

Lemma 18. Let Ψ denote a harmonic spinor, DMΨ = 0, then, on each component Nj of
∂M3.

(D1 + c(e1) /D + E1c(e0))Ψ = (− /DNj + E(ν)c(e0) +
1

2
H)Ψ (69)

where H denotes the mean curvature of Nj with respect to the outer normal vector field νj.

Proof. This is a simple calculation; in [5] and [6] it has already been shown thatD1+c(e1) /D =
− /DNj if DMΨ = 0.

On each Nj, define the charged boundary Dirac operator DNj as

DNj = /DNj − E(ν)c(e0) (70)

Note: DNj is self-adjoint.
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Then equation (5.13) in Lemma 5.8 becomes

(D1 + c(e1) /D + E1c(e0))Ψ = (−DNj +
1

2
H)Ψ (71)

Applying Lemma 5.8 to Corollary 5.5, we obtain

Corollary 19.
∫
M3 |∇Ψ|2 − |DMΨ|2 + 1

4
(R− 2|E|2g)|Ψ|2

+ Σm
j=1[

∫
Nj
< Ψ, DNjΨ > −

∫
Nj

1
2
H|Ψ|2]

= 4π(EADM − |Q|)

Note: Assume for now that each DNj has only positive eigenspinors; we will denote the
lowest such eigenspinor by λ1j and assume further that Ψ solves the charged Dirac equation,
DMΨ = 0. Let Ψ = anjΨnj, n ≥ 1, denote the decomposition of Ψ along the eigenspaces
of DNj corresponding to the eigenvalues λnj. Since the eigenspinors of a self-adjoint elliptic
operator are orthogonal, we have:

Σm
j=1[

∫
Nj
< Ψ, DNjΨ > −

∫
Nj

1
2
H|Ψ|2]

= Σm
j=1[λnj(a

nj)2
∫
Nnj
|Ψnj|2 −

∫
Nj

1
2
H|Ψ|2]

≥ Σm
j=1[λnj − 1

2
supNj H](anj)2

∫
Nj
|Ψnj|2

It follows that the term Σm
j=1[

∫
Nj

< Ψ, DNjΨ > −
∫
Nj

1
2
H|Ψ|2] in Corollary 5.9 will be

nonnegative if 1
2
H ≤ λ1j on each Nj. In the following section, we derive a lower bound for

the eigenvalue λ1j assuming that

√
4π
Aj

+
16π2Q2

j

A2
j
− 1

Aj

∫
Nj

(E(ν))2− 4π|Qj |
Aj

> 0 (which actually

amounts to the inequality (9))

6 A Lower Eigenvalue Bound for the Charged Bound-

ary Dirac Operator

Consider the charged Dirac operator defined in section 5.4 (equation (5.12))

DNj = /DNj − E(ν)c(e0) (72)

Our goal is to find a lower bound for the eigenvalue λ1j of this operator assuming

√
4π
Aj

+
16π2Q2

j

A2
j
− 1

Aj

∫
Nj

(E(ν))2−
4π|Qj |
Aj

> 0. Note that this inequality is actually equivalent to
∫
Nj

(E(ν))2 < 4π, which is ac-

tually equivalent to the inequality
∫
Nj

(E(ν))2 < 4π, which is (9).

Note: For the purposes of proving the charged positive mass theorem, what we really
care about is the restriction of the spinor bundle on the spacetime N4, first to M3 and then
to the boundary of M3, whose components are Nj. However, because of the discussion in
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[3], a spin structure M3 will determine a spin structure on N4 and likewise a spin structure
∂M3, which amounts to a spin structure on each Nj, will determine a spin structure on
M3. Therefore, it is sufficient to consider the spin structures on each Nj and in this section
S will denote the spinor bundle on each Nj, and Γ(S) will denote its respective sections.
c : TNj → End(Γ(S)) will denote the standard representation of the Clifford Algebra of
TNj

6.1 The Relationship Between Lower Eigenvalues of the Charged
Boundary Dirac Operator and those of a Dirac-Schrödinger
Operator

A Dirac-Schrödinger operator is simply a Dirac operator plus a function. In this subsection,
we prove that analyzing the eigenvalues of DNj reduces to analyzing the eigenvalues of either
the Dirac-Schrödinger operator /DNj −E(ν) or the Dirac-Schrödinger operator /DNj +E(ν).

Lemma 20. Assume that c(e0)ψ+ψ is not identically zero on Nj and let ψ be an eigenspinor
of either DNj = /DNj −E(ν)c(e0) with eigenvalue λ. Then λ is also an eigenvalue of /DNj −
E(ν).

Proof. Note first that c(e0) commutes with (2)∇A for A = 2, 3 and anti-commutes with c(eA)
for A = 2, 3. For any spinor field ψ ∈ Γ(S), it follows that

/DNj(c(e0)ψ) = c(e0) /DNjψ (73)

so that c(e0) commutes with /DNj .

Now, let I denote the identity endomorphism on the spinor bundle, sending any section
ψ ∈ Γ(S) to itself, i.e. Iψ = ψ. Let λ be an eigenvalue of /DNj − E(ν)c(e0). From the
relation (I + c(e0))c(e0) = I + c(e0), it follows that
[ /DNj − E(ν)]((I + c(e0))ψ) = /DNj [(I + c(e0))ψ]− E(ν)(I + c(e0))ψ

= /DNj [(I + c(e0))ψ]− [E(ν)(I + c(e0))c(e0)]ψ

= (I + c(e0))[ /DNj − E(ν)c(e0)]ψ
= (I + c(e0))DNjψ
= λ(I + c(e0))ψ

Hence λ is also an eigenvalue of [ /DNj − E(ν)] with eigenspinor (I + c(e0))ψ, which is not
identically zero by the assumption.

Note that if c(e0)ψ = −ψ, then the eigenvalue equation /DNjψ − E(ν)c(e0)ψ = λψ becomes

[ /DNj + E(ν)]ψ = λψ (74)

Therefore, in this case, λ will also be an eigenalue of the Dirac-Schrödinger operator, /DNj +
E(ν).
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6.2 Hijazi-Bär Argument

We follow an argument of Hijazi-Bär [Theorem 3.3.1 and Corollary 3.3.2 of [1]] to obtain a
lower bound for the eigenvalue of this operator in terms of the area of Nj, the charge Qj,
and the average value of (E(ν))2

First, we define the Penrose operator on the spinor bundle.

Definition 21. The Penrose operator P : Γ(S)⊗ Γ(TNj)→ Γ(S) is the map given by

PXψ =(2) ∇Xψ +
1

2
c(X) /DNjψ for all X ∈ Γ(TNj) (75)

Let λ be an eigenvalue of /DNj−E(ν) with corresponding eigenspinor ψ. From the eigenvalue
equation

/DNjψ = (λ+ E(ν))ψ (76)

we have

∫
Nj

| /DNjψ|
2 =

∫
Nj

(λ+ E(ν))2|ψ|2 (77)

In [1] (Chapter 3, equation 3.3), it has been shown that

∫
Nj

| /DNjψ|
2 =

∫
Nj

2|Pψ|2 +K|ψ|2 (78)

where K is the Gauss curvature of (Nj, g), from which it follows that

∫
Nj

2|Pψ|2 +K|ψ|2 =

∫
Nj

(λ+ E(ν))2|ψ|2 (79)

Now, let (Nj, ḡ) denote the boundary component Nj with a conformally changed metric,
ḡ = e2ug for some function or some function u ∈ C∞(Nj). Notice that there is an isometry
of the two tangent bundles T (Nj, g) and T (Nj, ḡ) defined simply by sending X ∈ T (Nj, g)
to e−uX ∈ T (Nj, ḡ) ([1], p. 18). This isometry induces a principal-bundle isomorphism from
SOg(TNj) to SOḡ(TNj) that lifts to an isomorphism from the spinor bundle S (associated
to SOg(TNj)) to the spinor bundle S̄ (associated to SOḡ(TNj)). For a section, φ ∈ Γ(S),
its image under this isomorphism will be denoted by φ̄ ∈ Γ(S̄). Notice that there is, up
to equivalence, one representation, c̄ : T (Nj.ḡ) → S̄ ([1], proposition 1.2.3 part (b)) of the
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Clifford Algebra of TNj on the spinor bundle S̄.

Let /̄DNj denote the Dirac operator and connection on Nj with the conformally equiva-

lent metric e2ug. In particular, we choose an eigenspinor φ of /DNj −E(ν) with eigenvalue λ

(i.e. /DNjφ = (λ + E(ν))φ) and set ψ̄ = e−
u
2 φ̄. From the conformal covariance of the Dirac

Operator (c.f. [1] proposition 1.3.10), we have

/̄DNj(ψ̄) = e−u(λ+ E(ν))ψ̄ (80)

Further, let P̄ denotes the Penrose operator acting on Γ(S̄)⊗ Γ(TNj)), i.e.

PXψ =(2) ∇̄Xψ̄ +
1

2
c̄(X) /̄DNjψ for all X ∈ Γ(T∂M) (81)

Then equation (5.13) becomes

∫
Nj

2|P̄ ψ̄|2 + K̄|ψ̄|2 =

∫
Nj

e−2u(λ+ E(ν))2|ψ̄|2 (82)

from which we derive the inequality

∫
Nj

e−2u(λ+ E(ν))2|ψ̄|2 ≥
∫
Nj

K̄|ψ̄|2 (83)

Since a nonzero spinor field must remain nonzero on a set of positive measure on Nj, there
must exist a p ∈ Nj such that

e−2u(λ+ E(ν))2(p) ≥ K̄(p) (84)

or equivalently

(λ+ E(ν))2(p) ≥ K̄e2u(p) (85)

Notice that in dimension 2, K̄e2u = K + ∆u, so that we get

(λ+ E(ν))2(p) ≥ [K + ∆u](p) (86)

or
λ2 ≥ [K + ∆u− 2λE(ν)− (E(ν))2](p) (87)
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Setting

∆u =
1

Aj

∫
Nj

K −K − 2λ
1

Aj

∫
Nj

E(ν) + 2λE(ν) +
1

Aj

∫
Nj

(E(ν))2 − [E(ν)]2 (88)

(which is possible by Fredholm’s alternative since the R.H.S. has vanishing integral), we
obtain,

λ2 ≥ 1

Aj

∫
Nj

K − 2λ
1

Nj

∫
Nj

E(ν)− 1

Nj

∫
Nj

(E(ν))2 (89)

By Gauss-Bonnet Theorem,

1

Aj

∫
Nj

K =
4π

Aj
(90)

so that inequality 6.23 becomes

λ2 ≥ 4π

Aj
− 2λ

1

Aj

∫
Nj

E(ν)− 1

Aj

∫
Nj

(E(ν))2 (91)

Since 1
Aj

∫
Nj
E(ν) =

4πQj
A

, this becomes, after completing the square,

(λ+
4πQj

Aj
)2 ≥ 4π

Aj
+

16π2Q2
j

A2
j

− 1

Aj

∫
Nj

(E(ν))2 (92)

We can assume without loss of generality that Qj > 0 and λ > 0. Assume further that

E(ν) satisfies the inequality (10), which is equivalent to 1
Aj

∫
Nj

(E(ν))2 < 4π
Aj

+
16π2Q2

j

A2
j

. Then

taking the square root of both sides of the above inequality yields

λ ≥

√
4π

Aj
+

16π2Q2
j

A2
j

− 1

Aj

∫
Nj

(E(ν))2 − 4π|Qj|
Aj

(93)

The right hand side of inequality 6.27 will be non-negative precisely when E(ν) satisfies

1

Aj

∫
Nj

(E(ν))2 <
4π

Aj
(94)
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which is precisely equivalent to the inequality (9).

Note: By Lemma 6.1, (6.27) will be a lower bound on the eigenvalue of DNj −E(ν)c(e0) if
the eigenspinor, ψ, satisfies ψ + c(e0)ψ is not identically zero on Nj. If c(e0)ψ = −ψ, then,
ψ is actually an eigenspinor of the Dirac-Schrödinger operator, /DNj +E(ν). From the same
argument (just with E(ν) replaced with −E(ν) and the assumption that Qj < 0), the (5.27)
is also a lower bound of an eigenvalue of /Dj + E(ν). Hence (6.27) will be a lower bound on
any eigenvalue of DNj = /DNj − E(ν)c(e0). This is summarized in this following theorem:

Theorem 22. Assume that E(ν) satisfies the equality 1
Aj

∫
Nj
E(ν) < 4π

Aj
. Then any eigen-

value λ of DNj = /DNj − E(ν)c(e0) satisfies:

|λ| ≥

√
4π

Aj
+

16π2Q2
j

A2
j

− 1

Aj

∫
Nj

(E(ν))2 − 4π|Qj|
Aj

(95)

7 Solutions to the charged Dirac Equation

In this section, we solve the charged Dirac equation subject to natural boundary conditions
in order to make the terms on the right hand side of the equation in corrollaries 5.6 and 5.9
positive. In corollary 5.9 this involves assuming that the mean curvature satisfies the upper
bound (11). Let Pj− denote the L2 projection onto the space of eigenspinors of DNj on Nj

with negative eigenvalues. We wish to solve the equation

DMψ = 0

subject to the the following boundary conditions:

If
∫
Nj
E(ν) < 4π, then

Pj−ψ = 0 on Nj (97)

(we think of Pj− as acting on ψ restricted to Nj). All this means is that the spinor field
ψ, when restricted to each Nj and decomposed into eigenspinors of DNj will have terms
consisting only of eigenspinors of DNj corresponding to positive eigenvalues. Solving the
charged Dirac equation is done along the lines of pp. 117-120 of [7] and proposition 2.5 in
[6] using the Riesz Representation Theorem/Lax-Milgrim Theorem.

If
∫
Nj
E(ν) ≥ 4π, then inequality (11) implies that H ≤ 0 on Nj. Hence, we impose
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the boundary condition given in [17]:

c(e1)c(e0)ψ = ψ on Nj (98)

In fact, assuming that the electric field of each Nj satisfies inequality (10) and that the mean
curvature H of each Nj satisfies (11), it suffices to show that the bilinear form B defined
by B(ψ, φ) =

∫
M3 < DM3ψ,DM3φ > is coercive (cf. Lemma 2.4 of [6]). Provided that B is

defined on a Hilbert space containing smooth compactly supported spinors satisfying (7.2)
or (7.3) on each Nj as a dense subset, we have from Corollary 5.9,∫
M3 |DMψ|2 =

∫
M3 |∇ψ|2 + 1

4
(R− 2|E|2g)|ψ|2

+ Σm
j=1[

∫
Nj
< ψ,DNjψ > −

∫
Nj

1
2
H|ψ|2]

The second term on the right-hand side is non-negative from the dominant energy con-
dition. If the normal component of E satisfies (9) (or equivalently (5.28)) on Nj, then the
boundary condition (6.2) will be introduced, so that condition (11) on the mean curvature of
Nj together with theorem 6.3 will imply that the term

∫
Nj
< ψ,DNjψ > −

∫
Nj

1
2
H|ψ|2 will be

non-negative. If
∫
Nj
E(ν) ≥ 4π, then boundary condition (7.3) will be imposed. Now, note

that H ≤ 0 on Nj implies that Nj is an apparent horizon (notice that k = 0 means there is
no distinction between a past or future apparent horizon). From [17] (cf. equation (28) and
the following paragraph), it then follows that the boundary integral,

∫
Nj
< ψ, [DNj− 1

2
H]ψ >

will vanish. It thus follows that ∫
M3

|DMψ|2 ≥
∫
M3

|∇ψ|2 (99)

(c.f. lemma 2.4 of [6]).

Since we are operating under the assumption that M3 admits no super-covariantly con-
stant spinors,

∫
M3 |∇ψ|2 will define a Hilbert norm on the Hilbert space and we have thus

shown that the given form is coercive.

Along the lines of proposition 2.5 of [6] and theorem 3.2.1 of [7], we then have the fol-
lowing:

Theorem 23. Let M3 denote an asymptotically flat Riemannian 3-manifold whose inte-
rior boundary consists of finitely many disjoint components, Nj, j = 1, 2, ...m, and assume
that the electric field E defined on M3 satisfies the dominant energy condition R ≥ 2|E|2g
as well as the inequalities (10) and (11) on each Nj. Let ψ∞ denote a smooth spinor field
on M3 satisfying (7.2) or (7.3) on each Nj, depending on whether

∫
Nj
E(ν) < 4π (9) or∫

Nj
E(ν) ≥ 4π. Assume that ψ∞ is constant in B(0, r3) for a fixed, large r3. Assume further

that DM3ψ∞ ∈ L2(M3). Then there is a nontrivial solution of the Dirac equation of the form
ψ∞ + ψ, where ψ lives in a Hilbert space containing compactly supported spinors as a dense
subset:
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DM3(ψ∞ + ψ) = 0 (100)

We now turn to the case where M3 has finitely many cylindrical ends. In this case, if ψ lives
in Hilbert space containing smooth compactly supported spinors as a dense subset, Corollary
4.9 and continuity show that∫
M3 |DMψ|2 =

∫
M3 |∇ψ|2 + 1

4
(R − 2|E|2g)|ψ|2 and again (4.3) holds. We therefore, have,

assuming the conditions of theorem 3,

Theorem 24. Let M3 denote a Riemannian 3-manifold containing one asymptotically flat
end and finitely many cylindrical ends (as defined in definition 13). Let ψ∞ denote a smooth
spinor field on M3 that is constant in B(0, r3) ⊂ Mext for a fixed, large r3. Assume further
that ψ∞ = 0 on each Mj(r) and that DMψ∞ ∈ L2(M3). Then there is a nontrivial solution of
the Dirac equation of the form ψ∞+ψ, where ψ lives in a Hilbert space containing compactly
supported spinors as a subset:

DM3(ψ∞ + ψ) = 0 (101)

Note: In theorems 7.1 and 7.2, the Hilbert space consists of spinors ψ satisfying the following:∫
M3

|DMψ| <∞ (102)

and ∫
M3

G(r)|ψ|2 <∞ (103)

G(r) is a function of the radial coordinate defined as follows: Let vr3 =< x3, y3, z3 >∈
R3 − Br1(0) denote a fixed point with r2

3 = x2
3 + y2

3 + z2
3 chosen so that r3 > r1, and let

vr =< x, y, z >∈ R3 − Br1(0) denote a variable point of length r, r2 = x2 + y2 + z2 on
Mext, r > r1. Pick a point vr2 =< x2, y2, z2 > with r2

2 = x2
2 + y2

2 + z2
2 chosen so that the

strict inequality r1 < r2 < r3 holds. Let distg(Φ(vr2),Φ(vr)) denote the distance in M3

between the point Φ(vr2) and Φ(vr) with respect to the metric g for any r > r3. We will set
G(r) = [distg(Φ(vr2),Φ(vr))]

−2 for r > r3 and then extend this function smoothly, so that
G(r) = 0 for r1 < r ≤ r2. If M3 contains finitely many cylindrical ends, then we also require
that G(r) = 0 on each cylindrical end, Mj. In this way, the decay condition,∫

M3

G(r)|ψ|2 <∞

is really a condition characteristic on the asymptotically flat end, not the cylindrical ends.

The Lax-Milgrim/Riesz Representation Theorem will give us a nontrivial solution to DM(ψ+
ψ∞) = 0 precisely when

∫
M3 |DMσ|2 < 0 and DMσ = 0 (weakly) for a spinor σ ∈ W 1,2

loc (M2)
implies that σ = 0 (cf. lemma 3.4 of [15]). According to the proof of lemma 3.4 of [15],
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this can be shown to happen when we can find a cutoff function f satisfying the following:
f = 1 on M3 −B(0, r), r > r1, f = 0 on M3 −B(0, 2r), and f = 1 on Mj(r), and f = 0 on
Mj−Mj(2r) for some r ≥ r4. Here, r4 is a number representing the length down a cylindrical
end (for convenience, we can pick this number to be the same for all cylindrical ends).

Let D denote the Levi-Cevita derivative on M3 with respect to g acting on functions,
f : M3 → R by Dif = ∂if (in local coordinates). Then, we further require that |Df | ≤ C

r

in Mext for all r ≥ r2 and |Df | ≤ C
r

in Mj(r) for all r ≥ r4 and some constant C. This is
possible since if r is large enough, the metric on Mext will look like the Euclidean metric,
and the metric on Mj and/or Mj(r) will look like the product metric, so that we can simply
choose a bump function depending only on the r coordinate, whose derivative in that direc-
tion decays as O(1

r
).

Now, note the following equation (cf. Corollaries 5.4 and 5.5, [4], [7], and [16]) for any
compactly supported spinor η ∈ W 1,2

0 (M3).

0 =

∫
M3

< DMσ,DMη >=

∫
M3

< ∇σ,∇η > +
1

4

∫
M3

1

4
[R− 2|E|2g] < σ, η > (104)

Setting η = fσ, we obtain, in analogy to lemma 3.4 of [15],∫
M3−[B(0,r)∪Mj(r)]

|∇σ|2 ≤ C

r

∫
M3

|σ|2 (105)

Letting r →∞, we then see that
∫
M3 |∇σ|2 = 0, implying that σ = 0 as it was assumed that

M3 admits no super-covariantly constant spinors.

Note that, because the only term in ∇ (cf. equation equation (5.1)) affecting the cutoff
function f is D, the above result will hold regardless of the assumption made on the decay
rate of E and g along Mr(r). This is the reason the decay condition was relaxed from O(eβr))
((β < 0)) in [9] to O(1

r
) in definition 4.1 of section 4.

If M3 did admit a nontrival supercovariantly constant spinor, i.e. a spinor σ with ∇σ = 0
then, by definition of the charged Dirac operator, DM , this spinor would solve DMσ = 0.
We shall see in section 8 that existance of such a spinor leads to an open subset of the IWP
black hole spacetime (in the case of finitely many connection boundary componetns) or an
open subset of the Majumbdar-Papapetrou spacetime (in the case of finitely many cylindri-
cal ends).

Note: Here is the reason that ψ∞ + ψ is a nontrivial solution in theorems 7.1 and 7.2:

If ψ∞ is constant, say ψ∞ = 1 on B(0, r5) for r5 > r3 large enough, then we have∫
B(0,r3)

|ψ∞|2

[distg(Φ(vr2),Φ(vr))]2
≥

∫
B(0,r5)

1

[distg(Φ(vr2),Φ(vr))]2
(106)
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However, note that
∫
B(0,r5)

1
[distg(Φ(vr2 ),Φ(vr))]2

cannot be finite for the following reason. Since

the pull-back metric Φ∗g approaches the Euclidean metric on R3−Br1(0), distg(Φ(vr2),Φ(vr))
grows like r, so that [distg(Φ(vr2),Φ(vr)]

−2 = O(r−2), but the volume of B(0, r) − B(0, r3)
in M3 with respect to g grows like r3, i.e. V olg(B(0, r3)−B(0, r)) = O(r3). Therefore,∫
B(0,r5)

1
[distg(Φ(vr2 ),Φ(vr)]2

= limr→∞
∫
B(0,r5)−B(0,r)

c2

[distg(Φ(vr2 )Φ(vr)]2

= limr→∞
r3

r2

= limr→∞ r =∞

It follows that
∫
B(0,r3)

|ψ∞|2
[distg(Φ(vr2 ),Φ(vr))]2

is not finite, so that it would be impossible for ψ∞

to be equal to −ψ a.e. on M3 as G(r) = 1
[distg(Φ(vr2 ),Φ(vr))]2

on B(0, r3).

8 Proof of Theorems 2 and 3

In this section, we use the nontrivial solution of the charged Dirac equation on the ambient
manifold of theorems 7.1 and 7.2 to prove theorems 2 and 3, which were stated in the intro-
duction.

8.1 Proof of Theorem 1.51

We start proving theorem 2 for an asympotically flat Riemannian 3-manifold whose interior
boundary contains finitely many disjoint components Nj:

First, notice that corollary 5.5 holds for the spinor ψ∞ in theorem 7.1 (without loss of
generality, we can assume that |ψ∞|2 = 1 on B(0, r3). As in [7], equation 3.2.34, it can be
show that the functional F : Γ(S)→ R defined by

F(ψ) =
∫
M3 |∇(ψ + ψ∞)|2 − |DM(ψ + ψ∞)|2 + 1

4
(R− 2|E|2g)|ψ + ψ∞|2,

− Σm
j=1

∫
Nj
< ψ + ψ∞, (D

i + c(ei) /D + Eic(e0))(ψ + ψ∞) > dSi.

is continuous on the Hilbert space of the last section. In particular, if ψk is a sequence of
compactly supported spinors converging to ψ, then F (ψk) must converge to F (ψ). Since ψk
is compactly supported, F (ψk) = F (0) = 4π(EADM − |Q|) by corollary 5.5. Therefore, if ψ
is a spinor satisfying (7.5) in theorem 7.1, then we have the identity:∫
M3 |∇(ψ + ψ∞)|2 + 1

4
(R− 2|E|2g)|ψ + ψ∞|2

− Σm
j=1

∫
Nj
< ψ + ψ∞, (D

i + c(ei) /D + Eic(e0))(ψ + ψ∞) > dSi

= 4π(EADM − |Q|)
Assuming the dominant energy condition, R ≥ 2|E|2g holds on M3, the normal component of
the electric field E satisfies (10) on each Nj and that the mean curvature of each Nj satisfies
(11), then the preceedings sections show that every term in the integrands of the left-hand
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side of (8.2) are non-negative. It therefore follows that EADM − |Q| ≥ 0, or equivalently
EADM ≥ |Q|.

8.2 Proof of Theorem

We now move on to the case where M3 contains one asymptotically flat end and finitely
many cylindrical ends, as in the assumption of theorem 3. The proof follows the preceeding
section, except that now the functional F of (8.1) no longer has any interior boundary terms:

F (ψ) =

∫
M3

|∇(ψ + ψ∞)|2 − |DM(ψ + ψ∞)|2 +
1

4
(R− 2|E|2g)|ψ + ψ∞|2 (107)

Again, an analogy to equation 3.2.34 of [7], this is a linear functional can be shown to be
continuous on the Hilbert space of theorem 7.2. Since compactly supported smooth spinors
are dense in this Hilbert space, we have, if ψk denotes compactly supported smooth spinors
approaching ψ, that F (ψk) = F (0) = 4π(EADM − |Q|) by corollary 5.6. Therefore, a spinor
satisfying (7.6) in theorem 7.2 produces the following identity:∫
M3 |∇(ψ + ψ∞)|2 + 1

4
(R− 2|E|2g)|ψ + ψ∞|2

= 4π(EADM − |Q|)
It follows that if the metric g on M3 and the electric field E satisfy the dominant energy

condition: R ≥ 2|E|2g, then every term on the left-hand side of (8.4) must be non-negative,
and therefore, the term 4π(EADM − |Q|) is also nonnegative, from which we can conclude,
assuming |ψ∞|2 = 1 near infity, EADM ≥ |Q|.

9 Case of Equality

In this section, we prove that the equality, EADM = |Q| in theorem 3 implies that the initial
data (M3, g, E) gives rise to a spacetime containing a neighborhood diffeomorphic to an open
subset of the standard Majumdar-Papapetrou space-time. In theorem 2, equality is weaker
in that it only leads to a Israel-Wilson-Perjes (IWP) black hole. It is natural to first define
the metric characterizing standard Majumbdar-Papapetrou spacetime. Along the lines of [8],
we have:

Definition 25. A standard Majumbdar-Papapetrou spacetime or standard MP spacetime
is a spacetime that is topologically the manifold N4 = R× (R3 − (∪ni=1ai)), where ai ∈ R3,
i = 1, 2, ..., n denote n finitely many points in space. Let mi, i = 1, 2, ..., n denote finitely
many positive constants. Define a function

u : R3 − (∪ni=1ai)→ R (108)
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by the equation:

u(x) = 1 +
n∑
i=1

mi

|x− ai|
(109)

The standard MP metric, (4)g, is then the Lorentzian metric given by:

(4)g = u−2dt2 − u2(dx2 + dy2 + dz2) (110)

The Electromagnetic field on this spacetime is given by the Maxwell potential,

A = u−1dt (111)

and the associated Electromagnetic field tensor (Maxwell tensor), F , given by:

F = dA (112)

First, assume that no nontrivial super-covariantly constant spinors exist on M3. Then equal-
ity in (8.4) for ψ satisfying (7.6) of theorem 7.2, gives the equation:

∫
M3

|∇(ψ + ψ∞)|2 = 0 (113)

which gives a contradiction. We therefore conclude that EADM = |Q| if and only if there is
a nontrivial supercovariantly constant spinor φ = ψ + ψ∞ on M3. Note also that from the
equation (8.4), we must have the dominant energy condition R = 2|E|2g.

In [8], Chrusciel, Reall, and Tod show how this super-covariantly constant spinor can be
extended to a a super-covariantly constant spinor field on a neighborhood of (M3, g, E) in
the spacetime N4 arising from it, using what is called the Killing development. This is de-
fined using given Kiling initial data, which is defined below (cf. equation 4.3 of [8]):

Definition 26. Let (M3, g, E) be initial data for the Einstein-Maxwell equations. Let
W : M3 → R and Y ∈ Γ(TM3) be a given function and a given vector field respectively
defined on M3. (W,Y ) forms what is called Killing initial data. The Killing development
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of (M3, g, E) is then defined to be the topological manifold N4 = R ×M3 with Lorentzian
metric:

(4)g = W 2dt2 − gij(dxi + Y idt)(dxj + Y jdt) (114)

Let e0 ∈ Γ(TN4) be the unit normal vector field to M3 (which is necessarliy timelike since
M3 is spacelike), and assume that this vector field is pointing in the direction of positive
time. We then define the Killing vector field as:

X = We0 + Y (115)

Note: In the case of a supercovariantly constant spinor field, φ, the function W and vector
field Y on M3 are given in the spin frame ej by W =< φ, φ > and Y j =< φ, c(e0)c(ej)φ >
respecitvley.

The authors of [8] extended the spinor field φ to a super-covariantly constant spinor field on
the Killing development of M3 as follows. They first extended the electric field to the Killing
development of M3 by requiring that the Lie derivative of the electromagnetic field tensor
Fµν vanish. In this way, they were able to construct a charged connection on the Killing
development. By requring the Lie derivative of the spinor field φ along X to vanish on the
Killing development of M3, they were able to extend φ to the entire Killing development
of M3, and show that this φ is parallel with respect to the charged connection, i.e. super-
covariant.

The associated Killing vector field is then given, with respect to the orthonormal frame
ej, by

X =< φ, φ > + < φ, c(e0)c(ej)φ > ej (116)

The (Dirac) spinor φ on the spacetime N4 can be broken down into two-components (one
right-handed and the other left-handed), each of which lives in a complex vector space of
dimension 2 (ismorphic to C2). Let φ = (αA, βA′) be the decomposition of φ into its two
components. For any w =< a, b >∈ C2, let w̄ =< ā, b̄ >∈ C2 denote its complex conjugate.
Chrusciel et. al. in [8] show that the vector field X =< φ, φ > e0+ < φ, c(e0)c(ej)φ > ej can
be written with respect to these components as follows:

X =
1√
2

(αAᾱA
′
+ β̄AβA

′
)

∂

∂xAA′
(117)

They then set V = αAβ̄
B and show that if the above Killing vector field (9.9)/(9.10) is

timelike at a point p ∈M3, then there exists a one-form ω satisfying curl ω = i(V̄ −1∇V −1−
V −1∇(V̄ −1)) (cf. equation (2.24) of [8]) and the metric (4)g defined above on the Killing

31



development of M3 agrees with the (local) IWP metric defined below (cf. equation (2.13) of
[8]):

(4)g = V V̄ (dt+ ω · dx)2 − (V V̄ )−1dx · dx) (118)

on a neighborhood on p ∈M3) (cf. p. 5 of [8])

In section 4.1 of [8], the authors show that if the ADM four-momentum, pµ = (EADM , p
i) of

the asymptotically flat end is timelike, then the Killing vector field defined above in (9.9) and
(9.10) is strictly timelike (cf. section 3 of [14]). In our case, we have assumed time-symmetry
(k = 0), so that the pi components of the four-momentum are zero (cf. equation equation
3.3.15 in [7]), and therefore, since EADM is the only component of the four-momentum, it is
automatically timelike, as it was already assumed that EADM = |Q| > 0.

9.1 Equality in the case of a Boundary with Multiple Components

In [8], theorem 1.1 assumes the following two conditions:

1. The Killing vector X associated with φ is time-like on M3 − ∂M3.

2. X is null on ∂M3, i.e. (4)gµνX
µXν = 0 on ∂M3,

and concludes that there is a neighborhood of M3 on the spactime N4 arising from it that
is diffeomorphic to an open subset of a standard Majumdar-Papapetrou space-time

We have already seen above that the first condition is satisfied as a consequence of the
time-symmetry of the intial data. It follows that around each point p ∈ M3, there exists
a neighborhood that is a neighborhood whose spacetime metric inherited from the Killing
development of M3 is an IWP metric. That is, we have shown the following:

If equality holds in theorem 2, then the spacetime metric on N4 arising form the initial
data (M3, g, E) is locally an IWP spacetime.

For the second condition, note from equation (9.7), we calculate

(4)g00 = W 2 − gijY iY j

(4)gij = −gij
(4)gi0 = −gijY j

(4)g0j = −gijY i

and therefore

gµνX
µXν = W 2[W 2 − gijY iY j]− gijY iY jW − gijY jW · Y i

= W 4 − gijY iY j[W 2 + 2W + 1]
= W 4 − gijY iY j(W + 1)2
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= W 4 = g(Y, Y )(W + 1)2

The condition that X be null on ∂M3 thus reduces to the equation:

W 4 = g(Y, Y )(W + 1)2 (119)

Note that here W =< φ, φ > and Y j =< φ, c(e0)c(ej)φ > ej.

In the case of an apparent horizon, Bartnik and Chrusciel in [16] imposed the boundary
condition c(e0)c(e1)φ = φ, and were able to show that this implied < φ, c(e0)c(e1)φ >= 0,
so that Y = We1, and g(Y, Y ) = W 2, so the above the equation becomes

W 4 = W 2(W + 1)2 (120)

Obviously this equation does not have a solution as W > 0. However, in [17] (theorem 2), the
Khuri and Weinstein were able to show that, assuming the boundary of M3 is an apparent
horizon, then (M3, g, E) arises as a spacelike hypersurface in the Majumbdar-Papapetrou
spacetime.

However, there is no reason to expect that equation (9.12) hold in theorem 2; there, the
boundary conditions (7.2) and (7.3) were imposed were imposed on each Nj. Therefore, we
can only conclude that equality in theorem 2 gives rise to spacetime arising from the initially
data that is locally an IWP spacetime.

9.2 Equatlity in the case of finitely many cylindrical ends

In [8], theorem 1.2 asserts that any electro-vacuum spacetime containing a nontrivial super-
covariantly spinor field and a simply connected maximal hypersurface, M3, consisting of
one asymptotically flat end and the union of finitely many weakly cylindrical ends contains
a neighborhood of M3 isometrically diffeomorphic to an open subset of a standaard MP
spacetime. Since we have already shown that we can extend the super-covariantly constant
spinor field on M3 to the whole spacetime, N4, arising from it, we need only check that our
initial data in theorem 3 is a maximal hypersurface. This is actually a trivial consequence
of the definition of a maximal hypersurface:

Definition 27. Let (N4,(4) g) be a Lorentzian metric, and let M3 ⊂ N4 be a spacelike
hypersurface, meaning that the induced metric g on M3 consisting of restricting (4)g to TM3

is positive definite (Riemannian). Let k denote the second fundamental form of M3 in N4

with respect to the timelike normal vector, ∂
∂t

. The spacelike hypersurface, M3, is then said
to be maximal if the mean curvature H = TrM3k of M3 in N4 vanishes.

Since we assuemd time-symmetry of the initial data, we have k = 0 and hence H = 0 on
M3, so that M3 is indeed a maximal hypersurface. We have the following conclusion:
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If equality holds in theorem 3, then the spacetime arising from the initial data (M3, g, E)
is contains an open subset diffeomorphic to a standard Majumbdar-Papapetrou spacetime

10 A Manifold with Corners in the Non-Time Sym-

metric Case

In all of the previous sections, we have assumed time-symmetry (k = 0). In [15], Shi and
Tam have shown that the positive mass theorem holds for a 3-manifold with multiple asymp-
totically flat ends containing an interior region with boundary. The metric is allowed to be
Lipschitz near the boundary, but the mean curvature of the interior must agree with the
mean curvature of the exterior (cf. section and theorem 3.1 of [15]). We reiteirate these
conditions in some definitions and then present a theorem extending theorem 3.1 of [15] that
includes charge and a symmetric two-tensor, k.

Definition 28. Let (M3, g) be an orientable, non-compact Riemannian 3-manifold. M3

is said to contain finitely many (say m) asymptotically flat ends if there is a compact set
K ⊂M3 and such that

M3 − K = ∪mj=1Ej. Each Ej is diffeomorphic to R3 − Br1(0) for some r1 > 0. The dif-
feomoprhisms Ψj : R3 −Br1(0)→ Ej satisfy the following property:

If g denote the Riemannian metric inherited on each Ej from the original Riemannian metric
on M3, then we can write:

(Ψ∗g)il = δil + bil (121)

and we require that bil additionally satisfies the following decay condition:

|bil|+ r|∂bil|+ r2|∂∂bil| = O(r−1) (122)

where r is defined by r2 = x2 +y2 +z2 and denotes the Euclidena distance from the origin in
R3 −Br1(0) and ∂ denotes the gradient operator in R3 −Br1(0) (i.e. ∂ : C1(R3 −Br1(0))×
C1(R3 − Br1(0)) → C1(R3 − Br1(0))) is defined by ∂(X, f) = ∂Xf . If the vector field X is
given in local coordinates by X = a1

∂
∂x1

+ a2
∂
∂x2

+ a3
∂
∂x3

, then ∂Xf = a1
∂f
∂x1

+ a2
∂f
∂x2

+ a3
∂f
∂x3

).

As in section 1, for any r > r1, we will set Bj(0, r) = Ψj(R3 − Br(0)) and Sj(0, r) =
∂(Ψj(R3 − Br(0))) for any r > r2. We then define the ADM mass, (EADM)j of the end
Ej in a formula analogous to (1.3):
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(EADM)j = lim
r→∞

1

16π

∫
Sj(0,r)

(∂lglv − gvgll)dSv (123)

Now assume that two vector fields, E ∈ Γ(TM3) and B ∈ Γ(TM3) have been defined on M3.
Let ν denote the outer unit normal vector field pointing toward spatial infinity on Sj(0, r)
and set g(E, ν) = E(ν) and g(B, ν) = B(ν). We then define the electric charge QE

j , and the
magnetic charge QB

j of each end, Ej as follows:

QE
j = lim

r→∞

∫
Sj(0,r)

E(ν) (124)

and

QB
j = lim

r→∞

∫
Sj(0,r)

B(ν) (125)

Further, assume that there in addition has been a symmetric two-tensor, kil defined on M3;
this tensor represents the extrinsic curvature curvature of M3 in the spacetime N4 arising
from it after solving the Einstein-Maxwell equations. We then define the spacelike compo-
nents pij of the the ADM 4-momentum, pj of each end Ej

pij = lim
r→∞

1

2

∫
Sj(0,r)

((Trgk)gil − kil)dSl (126)

(cf. theorem 3.3.3 of [7]).

Let Dl denote the covariant derivative of the Levi-Cevita connection in the direction of
el (for a given orthonormal frame), and let R denote the scalar curvature of M3 with re-
spect to g. We also define the charged energy density, µEM and charged momentum density
JEM = J iEMei by the following (cf. 11.18 of [16]):

µEM = R− |k|2g + (trgk)2 − 2|E|2g − 2|B|2g (127)

and

J iEM = 2Dl(kil − (trgk)δil) + 4εilaE
lBa (128)

The dominant energy condition in this case then becomes

µEM ≥
√
|JEM |2g + |div E|2 + |div B|2 (cf. equation 11.24 of (15)). In order to present our

theorem, we now need to define the mean curvature H|Ω̄ of ∂Ω with respect to the unit nor-
mal of ∂Ω pointing toward the interior of Ω̄ and the mean curvature H|M3−Ω̄ with respect
to the outward unit normal of ∂Ω pointing toward the exterior of Ω̄ (i.e. pointing toward
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M3 − Ω̄).

Definition 29. Let ν denote the outer-unit normal of Ω pointing toward the exterior of Ω̄
(i.e,. pointing into M3− Ω̄). Further let DX denotes the Levi-Cevita conecction on M3 with
respect to the metric g in the direction of X ∈ T (∂Ω). Also, let g|M3−Ω̄ denote the metric g
restricted to M3 − Ω̄ and let g|Ω̄ denote the metric g restricted to Ω̄. As in the preceeding
sections, let e2, e3 be a frame for T∂Ω. We then define H|M3−Ω̄ and H|Ω̄ and by the following
equations:

H|M3−Ω̄ = g|M3−Ω̄(ν,De2e2) + g|M3−Ω̄(ν,De3e3) (129)

and

H|Ω̄ = gΩ̄(ν,De2e2) + gΩ̄(ν,De3e3) (130)

Before proceeding, it is important to introduce the notion of an adapted orthonormal frame
near ∂Ω, defined in pp. 19-20 of [15].

Definition 30. Let x ∈ ∂Ω, and define a signed distance function, ρ : M3 − ∂Ω → R, by
ρ(p) = d(x, p) if p ∈ M3 − Ω̄ and ρ(p) = −d(x, p) if p ∈ Ω. Let ν = ∂

∂ρ
and let e2, e3

denote an orthornomal basis for Tx(∂Ω). Extend e2, e3 to a neighborhood of ∂Ω by parallel
transport along the integral curves of ∂

∂ρ
. ν, e2, e3 is said to be an adapted orthornomal

frame for ∂Ω.

The goal of this section is to prove theorem 4, which is reiterated below:

Theorem 31. Assume that (M3, g) is a Riemannian 3-manifold containing m asymptotically
flat ends as above. Define vector fields, E ∈ Γ(TM3) and B ∈ Γ(TM3), and a symmetric
two-tensor k on M3 satisfying the following:

(1). The function µEM = R − |k|2g + (trgk)2 − 2|E|2g − 2|B|2g) satisfies te dominant en-

ergy condition, µEM ≥
√
|JEM |2g + |div E|2 + |div B|2.

(1). There is a bounded domain Ω ⊂ M3 such that we assume that g is continuous on
M3, smooth on M3−Ω and smooth on Ω̄ and is Lipschitz near ∂Ω. Let en, n = 2, 3 defines
an orthonormal frame for T (∂Ω), and let ν denote the outer unit normal vector, i.e. directed
towards M3 − Ω̄.

(2). We assume that H|Ω̄−|Tr∂Ω(kΩ̄)| ≥ H|M3−Ω̄ + |Tr∂Ω(kM3−Ω̄)| (where the two mean cur-
vatures are defined by (8.11) and (8.12) respectively). Further, we assume that kΩ̄(ν, en) =
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kM3−Ω̄(ν, en) and that BΩ̄(ν) = BM3−Ω̄(ν) and EΩ̄(ν) = EM3−Ω̄(ν).

(3). The components, Ei of E = Eiei and Bi of B = Biei satisfy the following decay
conditions: Ei ∈ o(r−1), Bi = o(r−1). Further, E, B, k ∈ W 1,2

loc (M3) and E, B, k and
their weak partials are bounded near ∂Ω.

Then

(EADM)j >
√
|pj|2 + (QE

j )2 + (QB
j )2 (131)

To prove this theorem, we need to show that the analogies to lemma 3.1-3.4 and corollary
3.1 of [15] hold. The statement analogous to [15]’s lemma 3.1 holds simply as a consequence
of of the definition of an adapted orthornomal frame. This allows us to show that µEM is
well-defined in the distribution sense, which in turns allows us to write a Lichnerowicz for-
mula for the operator DM . However, proving the lemmas analogous to 3.2, 3.3, and corollary
3.1 requires running through the calculations for the new operator, DM and connection, ∇.
These calculations are done in the next subsection Three Lemmas Lemma 3.4 then follows
from a reiteration of the argument in [15] and an application of the analogous lemmas. Below
is the analogy to lemma 3.1 of [15]:

Lemma 32. Let ν, e2, e3 denote an adapted orthonormal frame for M3 at a given x ∈ ∂Ω.
Let Γbia denote the Christofell symbols of the metric g. Then Γbia is Lipschitz for 2 ≤ a, b ≤ 3
and all i and Γb1a = 0 for all 1 ≤ a, b ≤ 3, where it is understood that e1 = ν = ∂

∂ρ
.

Furthermore, the scalar curvature R of M3 is related to the scalar curvature Rρ of a surface
a distance ρ from ∂Ω, as well as the mean curvature, H, and second fundamental form, IIab
a = 2, 3 of the same surface by the following equation (cf. p. 20 of [15])

R = −∂H
∂ρ
− Σab[IIab]

2 +Rρ. (132)

If HM3−Ω̄ = H|Ω̄, then H is Lipschitz, so that R (and hence also the charged energy distri-
bution, µEB = R − |k|2g + (trgk)2 − 2|E|2g − 2|B|2g)) is well defined in the distribution sense.
(132)

The next three lemmas are based on the following space-time Einstein-Maxwell spin con-
nection and associated Dirac Operator. This connection is a modification of (5.1) to include
the vector field B and the tensor k;

∇i = Di − kil(̧el)c(e0)− 1

2
Elc(el)c(ei)c(e0)− 1

4
εlabB

lc(ea)c(eb)c(ei) (133)

(cf. equation 11.19 of [16]). This connection gives rise the associated Dirac-Operator,
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DM = /D − 1

2
(trgk − c(E))c(e0) +

1

4
εlabB

lc(ea)c(eb) (134)

where /D = c(ei)Di (cf. the equations at the bottom of page (69) of [16]).

Note: The adjoint of this operator (cf. bottom of page (69) of [16]):

D∗M = /D − 1

2
(trgk − c(E))c(e0)− 1

4
εlabB

lc(ea)c(eb) (135)

Note: This is operator is not formally self-adjoint, but differs only in replacing B with −B.

It has been shown ([7], [4] [16]) that the following Lichernorowicz formula holds for DM :

D∗MDM = ∇∗∇+
1

4
(µEM + J iEMc(e0)c(ei)) (136)

10.1 Three Lemmas

In this subsection, we state and prove the three lemmas corresponding to lemma 3.2, lemma
3.3, and corollary 3.1 (in that order) in [15]:

Lemma 33. The Schrodinger-Lichnerowicz Formula for a Manifold with Corners

Let U be any open set of M3 and let η denote a spinor living in W 1,2
0 (U) and Φ denote a

spinor living W 1,2
loc (U). Then∫

U
< DMΦ, DMη >= 1

2

∫
∂Ω∩U < [H|Ω̄ + Tr∂Ω(kΩ̄)c(ν)c(e0)]Φ, η >

− 1
2

∫
∂Ω∩U < [H|M3−Ω̄ + Tr∂Ω(kM3−Ω̄)c(ν)c(e0)]Φ, η >

+
∫
U
< ∇Φ,∇η > +1

4

∫
U
< (µEM + J iEMc(e0)c(ei))Φ, η >

Proof. This formula follows as a direct conseconsequnece of the Schrodinger-Lichnerowicz
formula ([4], [5], [16]) on any open set U that does not intersect ∂Ω because in this case
U ∩ ∂Ω = ∅. If U does intersect ∂Ω, then let T = U ∩ ∂Ω, and applying the Licherowicz
formula (8.21) to U ∩ Ω, we obtain, after multiplying by η and integrating by parts:∫

Ω∩U < DMΨ, DMη > +
∫
T
< ν ·DMΦ +∇νΦ, η >

=
∫

Ω∩U < ∇Φ,∇η > +1
4

∫
Ω∩U < (µEM + J iEMc(e0)c(ei))Φ, η > We can readily calculate

c(ν)DMΦ +∇νΦ = c(ν)
∑3

a=2∇eiΦ
= c(ν)

∑3
a=2 c(ea)(∇eaΨ

I)σI + 1
4
c(ν)(

∑3
a,b,l=2 Γlabc(eb)c(el)) + 2k(ea, ν)c(ν)c(e0)Φ

− [1
2
H|Ω̄Φ + (Tr∂ΩkΩ̄)c(ν)c(e0)]Φ + c(E)c(ν)c(e0)−

∑3
a=2

1
2
εamlB

ac(ν)c(ei)c(em)c(el)
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= c(ν)
∑3

a=2 c(ea)(∇eaΦ
I)σI + 1

4
c(ν)

∑3
b,l=2 Γlabc(eb)c(el)Φ−

∑3
a=2

1
2
k(ea, ν)c(e0)Φ

− 1
2
[H|Ω̄Φ + (Tr∂ΩkΩ̄)c(ν)c(e0)]Φ + c(E)c(ν)c(e0)Φ + 2B(ν)c(ν)c(e3)c(e2)Φ

Note: In the above formula, we thought of T = ∂Ω ∩ U as being the boundary of Ω ∩ U . If
instead, we think of T = ∂Ω ∩ U as being the boudnary of U − Ω̄, then we need to replace
the c(ν) in front of Σ3

a=2∇eiΦ with c(−ν) = −c(ν) in the above formula. This results in
the term 1

2
H|Ω̄Φ being replaced with −H|M3−Ω̄Φ, since we are now calculating the mean

curvature with respect to −ν and g|M3−Ω̄ instead of with respect to ν and Ω̄. Therefore, the
term −1

2
H|Ω̄Φ gets replaced with 1

2
H|M3−Ω̄Φ.

Furthermore, we assumed that k(ea, ν) on Ω̄ agrees with k(ea, ν) on M3 − Ω̄, so that the
terms 1

4
c(ν)2[k(ea, ν)c(ν)]Φ = 2k(ea, ν)c(e0)Φ are replaced with

1
4
c(−ν)2[k(ea, ν)c(ν)]Φ = −1

2
k(ea, ν)c(e0)Φ.

Since we have assumed that E(ν) and B(ν) on Ω̄ agree with E(ν) and B(ν) on M3 − Ω̄, it
follows that c(E) and B(ν) on Ω̄ agree with c(E) and B(ν) on M3− Ω̄ respectively (because
e2 and e3 are tangential to ∂Ω on M3 − Ω̄, so that c(E) = E(ν)c(ν) + E2c(e2) + E3c(e3)
on Ω̄ will agree with c(E) on M3−Ω̄ precisely when E(ν) on Ω̄ agrees with E(ν) on M3−Ω̄).

Therefore, we have

c(-ν)DMΦ+∇−νΦ = −c(ν)
∑3

a=2 c(ea)(∇eaΦ
I)σI−1

4
c(ν)

∑3
b,l=2 Γlabc(eb)c(el)Φ+

∑3
a=2

1
2
k(ea, ν)c(ν)c(e0)Φ

+ 1
2
H|M3−Ω̄Φ + (Tr∂ΩkM3−Ω̄)c(ν)c(e0)Φ + c(E)− c(ν)c(e0)Φ− 2B(ν)c(ν)c(e3)c(e2)Φ

Adding equation (10.19) to equation (10.20), we obtain

c(−ν)DMΦ+∇−νΦ+c(ν)DMΦ+∇νΦ =
1

2
[H|M3−Ω̄+(Tr∂Ω(kM3−Ω̄))c(ν)c(e0)−(H|Ω̄+(Tr∂Ω(kΩ̄))c(ν)c(e0))]Φ

(137)
The Schrödinger-Lichnerowicz formula applied to U − Ω̄ is∫
U−Ω̄

< DMΦ, DMη > +
∫
T
< c(−ν)DMΦ +∇−νΦ, η >

=
∫
U−Ω̄

< ∇Φ,∇η > +1
4

∫
U−Ω̄

< (µEM + J iEMc(e0)c(ei))Φ, η >

Adding (10.18) to (10.22) we obtain, we obtain, since U = [U ∩ Ω̄] ∪ [U − Ω̄],∫
U
< DMΦ, DMη > +

∫
T
< c(ν)DMΦ +∇νΦ + c(−ν)DMΦ +∇−νΦ, η >

=
∫
U
< ∇Φ,∇η > +1

4

∫
U
< (µEM + J iEMc(e0)c(ei))Φ, η >

Replacing the second term of the above equation with the right hand side of equation (10.21),
(10.23) becomes:∫
U
< DMΦ, DMη > +1

2

∫
T
< [H|M3−Ω̄+(Tr∂Ω(kM3−Ω̄))c(ν)c(e0)−(H|Ω̄+(Tr∂ΩkΩ̄)c(ν)c(e0))]Φ, η >

=
∫
U
< ∇Φ,∇η > +1

4

∫
U
< µEM + J iEMc(e0)c(ei)Φ, η > Moving the second term of (10.24)

to the right hand side, we obtain
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∫
U
< DMΦ, DMη >= 1

2

∫
T
< [H|Ω̄+(Tr∂Ω(kΩ̄)c(ν)c(e0)−(H|M3−Ω̄+(Tr∂Ω(kM3−Ω̄))c(ν)c(e0))]Φ, η >

+
∫
U
< ∇Φ,∇η > +1

4

∫
U
< (µEM + J iEMc(e0)c(ei))Φ, η > which is precisely (10.17)

For the next lemma (the analogy of Lemma 3.3 in [15]), we need to define what it means for
a spinor Φ to be a weak solution of D∗MDMΦ = 0:

Definition 34. A spinor Φ ∈ W 1,2
loc (U) is a weak solution of D∗MDMΦ = 0 on an open subset

U ⊂M3 if for every η ∈ W 1,2
0 (U),

∫
U

< DMΦ, DMη >= 0 (138)

We then have the following regularity lemma analogous to lemma 3.3 of [15]:

Lemma 35. Let Φ ∈ W 1,2
loc (U) be a weak solution to D∗MDMΦ = 0. Then Φ ∈ W 2,2

loc (U).

Proof. This is simply a repeat of the argument used to prove lemma 3.3 of [15], but with
the terms ωal(ei)c(ea)c(el) = Γliac(ei)c(ea)c(el) replaced with Γliac(ea)c(el) + 2kilc(ea)c(e0)−
2c(E)c(ei(c(e0))−εamlBac(em)c(el)c(ei). We obtain the same result because kia, B, and E are
bounded, assuming they satisfy th asymptotic fall off conditions, E = o(r−1), B = o(r−1),
and since ei(kia), ei(B), ei(E) exist weakly on M3 − Ω and Ω, and are in L1

loc(M
3).

Lemma 10.6 allows us to prove an analogy of corollary 3.1 of [15] giving regularity for a weak
solution of D∗MDMΦ = 0:

Lemma 36. Let U denote any open set in M3 and let Φ ∈ W 1,2
loc (U) be a weak solution of

D∗MDMΦ = 0. Then DMΦ ∈ W 1,2
loc (U).

Proof. By equation (8.19),

DMΦ = /DΦ− 1

2
(trgk − c(E))c(e0)Φ +

1

4
εlabB

lc(ea)c(eb)Φ (139)

By corollary 3.1 of [15], and lemmas 8.16 and 8.46, the /DΦ ∈ W 1,2
loc (U). It therefore remains

to check that 1
2
(trgk − c(E))c(e0)Φ + 1

4
εlabB

lc(ea)c(eb)Φ is in W 1,2
loc (M3). This follows since

we have assumed that the weak partials of k, E, and B are bounded near ∂Ω and since
Φ ∈ W 2,2

loc by lemma 8.46.

Note that the assumption that the weak partials of k, E, B are bounded near W 1,2
loc (M3)

is necessary because if we assumed only W 1,1
loc (M3) regularity, then weak derivatives of terms

like c(E)c(e0)Φ would include terms such as ei(E)c(ei)c(e0)Φ, which would not necessary be
in L2

loc(U).
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By lemma 8.22, 8.46, and lemma 8.47, we obtain the following analogy to lemma 3.4 in
[15] in the absence of super-covariantly constant spinors:

Lemma 37. Let Φ ∈ W 1,2
loc (U) be a spinor field such that DMΦ = 0 and

∫
M3 |Φ|2 < ∞.

Assume further that M3 admits no non-trivial supercovariantly constant spinors. Then Φ =
0.

Proof. By lemma 8.22, for any η ∈ W 1,2
0 (M3), we have:

0 =
∫
M3 < DMΦ, DMη >

= 1
2

∫
∂Ω
< [H|Ω̄ + Tr∂Ω(kΩ̄)c(ν)c(e0)]Φ, η >

− 1
2

∫
∂Ω
< [H|M3−Ω̄ + Tr∂Ω(kM3−Ω̄)c(ν)c(e0)]Φ, η >

+
∫
M3 < ∇Φ,∇η > +1

4

∫
M3 < (µEM + J iEMc(e0)c(ei))Φ, η > Pick a point p ∈ Ω. Let Br(p)

denote a ball of radius r > 0 centered at p. As in lemma 3.4 of [15], we η = f 2Φ, where f
is a cutoff function satisfying the following f = 1 in Br(p), f = 0 in B2r(p) and there is a
constant C > 0 such that

|Df | ≤ C

r
(140)

where D denotes the Levi-Cevita connection acting on any function f : M3 → R by
Dif = ∂if . Assume that r > 0 is large enough so that Ω̄ ⊂ Br(p). Then, plugging
η = f 2Φ back into to (8.50)-(8.53), we obtain∫
M3 < ∇Φ,∇(f 2Φ) >= −1

2

∫
∂Ω
< [H|Ω̄ + Tr∂Ω(kΩ̄)c(ν)c(e0)]Φ,Φ >

+ 1
2

∫
∂Ω
< [H|M3−Ω̄ + Tr∂Ω(kM3−Ω̄)c(ν)c(e0)]Φ,Φ >

− f2

4

∫
M3 < (µEM + J iEMc(e0)c(ei))Φ,Φ > Assuming the dominant energy condition, µEM ≥

|JEM |g, and the inequality, H|Ω̄ − |Tr∂Ω)kΩ̄| ≥ H|M3−Ω̄ − |Tr∂Ω(kM3−Ω̄)|, each term on the
right-hand side of (8.55)-(8.57) is negative. We deal with the left-hand-side as follows:∫
M3 < ∇Φ,∇(f 2Φ) >=

∫
B2r(p)

< ∇Φ,∇(f 2Φ) >

=
∫
Br(p)
|∇Φ|2 +

∫
B2r(p)−Br(p) f

2|∇Φ|2

+
∫
B2r(p)−Br(p) D

i(f 2) < ∇iΦ,Φ > Note that second term of (8.59) is strictly positive. If we

perform integration by parts to the term (8.60), we find that the asymptotic fall off condi-
tions for E, B, and k imply that

∫
B2r(p)−Br(p)

Di(f 2) < ∇iΦ,Φ >≤ C1

r

∫
B2r(p)−Br(p)

|Φ|2 ≤ C1

r

∫
M3

|Φ|2 (141)

It then follows letting r →∞ that ∇Φ = 0 on M3. Since we have assume that there are no
nontrivial supercovariantly constant spinors on M3, it follows that Φ = 0.

We can now begin with the proof that (EADM)j > 0 assuming the conditions (1)-
(3) in theorem 35 hold. First , we pick a spinor ψ∞ that is zero in a nrighborhood of
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Ω̄, constant on the jth asymptotic end, and satisfies the following asymptotics on that
end, |DMψ∞| = O(r−2) and |D∗MDMψ∞| = O(r−3). We can then solve for a spinor
ψr5 ∈ W 1,2(Bp(r5)) (for some fixed p ∈ M3 and large coordinate r5 on the jth asymp-
totic end) solving D∗MDMψr5 = 0 and ψr5 = ψ∞ on ∂Bp(r5). This turns out to be equiv-
alent to solving D∗MDMσr5 = −D∗MDMψ∞ and σr5|∂Bp(R) = 0. We define a bilinear form,

A : W 1,2
0 (Bp(r5)) × W 1,2

0 (Bp(r5)) → R by A(φ, ψ) =
∫
Bp(R)

< DMφ,DMψ >. Notice by

lemma 8.6 that A is coercive, i.e. there exists a constant C such that A(ψ, ψ) ≥ C|ψ|W 1,2
0

,

where |ψ|W 1,2
0

denotes the norm of the spinor ψ with respect to the norm on the Hilbert

space W 1,2
0 (Bp(r5)) Define a linear functional, F : W 1,2

o (Bp(r5))→ R by F (φ) = −
∫
Bp(r5)

<

DMφ,DMψ∞ >. Note that by Hölder’s inequality, |F (ψ)| ≤ ||DMφ||L2||DMψ∞||L2 . Since we
may assume that ψ∞ is L2 integrable on the jth asymptotically flat end of M3, it then follows
, setting C1 = ||ψ∞||L2 ,that |F (φ)| ≤ C1||DMφ||L2 , and by lemma 8.6, ||DMφ||L2 is bounded
from above by a constant multiple of |φ|W 1,2

0
. By the Lax-Milgrim theorem, we then see that

there exists a σr5 ∈ W
1,2
0 (Bp(r5)) such that A(σr5 , φ) = F (φ) for all φ ∈ W 1,2

0 (Bp(r5)). since
the equation A(σr5 , φ) = F (φ) can be rewritten as

∫
Bp(r5)

< DMσ5, DMφ >= −
∫
Bp(r5)

< DMψ∞, DMφ > (142)

or

∫
Bp(r5)

< DM(σr5 + ψ∞), DMφ >= 0 (143)

This shows that, by defintion, ψr5 = σr5 +ψ∞ weakly satisfies D∗MDMψr5 = 0 on Bp(r5) and
has ψr5 = ψ∞ on ∂Bp(r5). Our goal here is then to let r5 → ∞ and use this obtain a weak
solution

Φ

of D∗MDMΦ = 0 such that Φ is ψ∞ on the jth asymptotically flat end,
∫
M3 |DMΦ|2 < 0 and

then use lemma 8.10 to conclude that DMΦ = 0 on M3. By the regularity lemma 8.9, ψr5 is
bounded, so that |ψr5|2 ∈ W 1,2(Bp(r5)).

To do this, note that if f is a compactly supported function on Bp(r5), with f ≥ 0, then by
lemma 8.6,∫
Bp(r5)

< ∇|ψr5|2,∇f >= 2
∫
Bp(r5)

< ∇ψr5 ,∇(fψr5 > −2
∫
Bp
|∇ψr5|2

=
∫
Bp(r5)

f < [H|M3−Ω̄ + Tr∂Ω(kM3−Ω̄)c(ν)c(e0)]ψr5 , ψr5 >

−
∫
Bp(r5)

f < [H|Ω̄ + Tr∂Ω(kΩ̄)c(ν)c(e0)]ψr5 , ψr5 >

− 2
∫
Bp(r5)

f |∇ψr5|2

− 1
2

∫
Bp(r5)

f < (µEM + J iEMc(e0)c(ei))ψr5 , ψr5 >
≤ 0

Therefore, |ψr5|2 is weakly sub-harmonic and since ψ∞ is uniformly bounded, so is ψr5 by
the maximum principle. Therefore, there exists a sequence ri → ∞ such that the sequence
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ψi = ψri converges in W 1,2
loc (M3) and solves D∗MDMψri = 0 on Bp(ri) and ψri = ψ∞ on

∂Bp(ri). The spinor, ψ to which ψi converges in W 1,2
loc (M3) solves D∗MDMψ = 0.

It can then be shown that this ψ is asymptotically close to ψ∞. More precisely, we show
that

|ψ − ψ∞| ≤ C
ln r

r
(144)

and that ∫
M3

|∇(ψ − ψ∞)|2 + |DM(ψ − ψ∞)|2 <∞ (145)

To prove this, let Ω̄ ⊂ Bp(r5) and ri > r5. Then, since ψi = ψ∞ on ∂Bp(ri),
∫
Bp(ri)

<

DMψi, DM(ψi − ψ∞ >= 0. Therefore,∫
Bp(ri)

< DM(ψi − ψ∞), DM(ψi − ψ∞) >

=
∫
Bp(ri)

< DMψi, DM(ψi − ψ∞) > −
∫
Bp(ri)

< DMψ∞, DM(ψi − ψ∞) >

= 0−
∫
Bp(ri)

< DMψ∞, DM(ψi − ψ∞) >

=
∫
Bp(ri)

|DMψ∞|2 −
∫
Bp(ri)

< DMψ∞, DMψi >

=
∫
Bp(ri)

|DMψ∞|2 −
∫
Bp(ri)

|DMψi|2 From (8.62)-(8.65), we can easily conclude that∫
Bp(ri)

|DM(ψi − ψ∞)|2 ≤
∫
M3

|DMψ∞|2 <∞ (146)

This proves that the first term in (8.61) is positive. To prove that the first term (in
(8.61)) is positive, note that by the dominant energy condition, µ ≥ |JEM |, and lemma
8.6,

∫
Bp(ri)

|∇(ψ − ψi)|2 ≤
∫
Bp(ri)

|DM(ψ − ψi)|2 ≤
∫
M3 |DMψ∞|2 <∞. (8.61) then follows a

simple consequence of letting ri →∞ and noting that ψi converges to ψ∞.

To prove (10.48), note that since both ψi and ψ∞ are uniformly bounded, there is a con-
stant C1 such that |ψi − ψ∞| ≤ C1. We can choose u ≥ 0 to be a solution of ∆u ≤
−|D2

Mψ∞|+ε(E,B, k) outside Bp(r5) and such that u ≥ C1 on ∂Bp(r6) and u(x) ≤ C2r
−1 ln r

for some C2. The function ε(E,B, k) is a small function of E, B, and k chosen so that the
Lichnerowicz formula will make ∆|ψi − ψ∞| ≥ −|DM2ψ∞| hold weakly on Bp(ri) − Bp(r5).
Since ψi → ψ pointwise outside Bp(r5), (10.48) holds.

Therefore, DMψ ∈ W 1,2
loc (M3), and we can apply lemma 10.9 with Φ = DMψ to conclude

that DMψ = 0. This solution can then be used as in section 6 to conclude that

(EADM)j >
√
|pj|2 + (QE

j )2 + (QB
j )2 (147)

References

[1] N.G. Ginoux The Dirac Spectrum. Springer-Verlag Berlin Heidelberg 2009

43



[2] O. Hijazi A Conformal Lower Bound for the Smallest Eigenvalue of the Dirac Operator
and Killing Spinors Communications in Mathematical Physics, Volume 104 pp. 151-162
(1986)

[3] T. Parker and C.H. Taubes On Witten’s Proof of the Positive Energy Theorem Commu-
nications in Mathematical Physics, Volume 84, 223-238 (1982)

[4] C.W. Gibbons and C.M. Hull A Bogolomny Bound for General Relativity and Solitons
in N = 2 Supergravity Physics Letters, Volume 109B, number 3 (1982)

[5] M.A. Khuri Nonexistence of Apparent Horizons in Minkowski Space Classical Quantum
Gravity., 26 (2009) 078001

[6] M. Herzlich A Penrose-like Inequality for the Mass of Riemannian Asymptotically Flat
Manifolds Communications in Mathematical Physics, 188, 121-133 (1997).

[7] P.T. Chrusciel Lectures on Energy in General Relativity University of Vienna (pi-
otr.chrusciel@univie.ac.at) February 22, 2013

[8] P.T. Chrusciel, H.S. Reall, P. Tod On Israel-Wilson Perjes Black Holes arxiv.gr-
qc/0512116v1 20 December 2005

[9] S. Salur Asymptotically Cylindrical Ricci-Flat Manifolds Proceedings of the American
Mathematical Society 134(10) November 2004

[10] M. M. Disconzi M.A. Khuri On the Penrose Inequality for Charged Black Holes Classical
and Quantum Gravity 29 (2012) 245019

[11] G. Huisken T. Ilmanen The Inverse Mean Curvature Flow and the Riemannian Penrose
Inequality J. Differential Geometry 59 (2001) 353-437

[12] S. McCormick and P. Miao On a Penrose Inequality in dimensions less than eight
arXiv:1701.04805

[13] G. Weinstein S. Yamada On a Penrose Inequality with Charge Communications in
Mathematical Physics 257 (2005) 703-723

[14] R. Bieg and P.T. Chrusciel Killing Vectors in aymptotically Flat Spacetimes: I Asymp-
totically translational Killing vectors and the rigid positive energy theorem. Journal of
Mathematical Physics 37 (1996) 1936-1961

[15] Yuguang Shi and Luen-Fai Tam The Positive Mass Thorem and the Boundary Behaviors
of Compact MAnifolds with Nonnegative Scalar Curvature. 2003. Peking University and
the Chinese University of Hong Kong.

[16] P.T. Chrusciel and R. Bartnik Boundary Value Problems for Dirac-type equations with
applications arXiv:math/0307278

[17] G.W. Gibbons, S.W. Hawking, G.T. Horowitz, M. J. Perry Positive Mass Theorems for
Black Holes Communications in Mathematical Physics, Volume 88, pp.295-308 (1983)

44



[18] S. Mccormick P. Miao On a Penrose Inequality in Dimensions Less than Eight
arXiv:1701.04805v1 [mathDG]

45


