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Abstract of the Dissertation

Quaternionic Geometry and Special Holonomy

by

Joseph Thurman

Doctor of Philosophy

in

Mathematics

Stony Brook University

2018

This thesis studies connections with special holonomy group arising from
quaternionic manifolds. The focus is on two previously described constructions
that produce such connections from positive quaternion-Kähler manifolds with
an isometric and quaternionic circle action. The first, due to Hitchin [17],
yields quaternionic connections with a preferred complex structure, while the
second, due to Haydys [14], yields Kähler metrics. In particular, both construc-
tions produce Kähler metrics in real dimension four, and therefore generalize
a theorem of Pontecorvo [38] that produces scalar-flat Kähler metrics from
anti-self-dual Hermitian surfaces in real dimension 4.

The goal of this work is to explore the relationship between these two
constructions. Although they are superficially similar, the main result of this
dissertation shows that they are in fact distinct. This result is obtained by
describing a simplification of Haydys’s construction that allows for explicit
computation of the Levi-Civita connection of the Kähler metric. Hitchin’s
methods are also generalized to give a construction of quaternionic complex
manifolds from quaternionic manifolds without a metric.
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1 Introduction and Summary of Results

This thesis concerns quaternionic geometry, which we define broadly as the
study of connections with holonomy contained in the group GL(k,H)Sp(1).
Our study begins with quaternion-Kähler manifolds, defined to be Riemannian
manifolds with holonomy contained in the group Sp(k)Sp(1). These mani-
folds were considered due to Berger’s classification of the holonomy groups of
irreducible, non-symmetric Riemannian manifolds [8], where they appear as
one of the possible groups. Quaternion-Kähler manifolds have a number of
geometric properties that make them particular interesting to study. From
the perspective of Riemannian geometry, quaternion-Kähler metrics are nec-
essarily Einstein, and therefore provide interesting examples of constant Ricci
curvature metrics in higher dimensions. These manifolds also have a fruit-
ful connection to complex geometry and algebraic geometry via their twistor
spaces, and in this sense quaternion-Kähler manifolds are natural generaliza-
tions of anti-self-dual conformal manifolds in four dimensions.

Our interest in such manifolds arises from two different constructions on
quaternion-Kähler manifolds admitting isometric circle actions that preserve
the quaternionic structure. The first is due to Hitchin [17], who used such
actions to construct connections with holonomy contained in SL(k,H)U(1) on
subsets of the underlying manifold. Closely related is a construction due to
Haydys [14], who similarly uses circle actions on quaternion-Kähler manifolds
to construct Kähler metrics on the same subset of the underlying manifold.

The goal of this thesis is to clarify the relationship between these two
constructions. Understanding this relationship is especially important in that
both constructions could conceivably be considered as generalizations of a
theorem of Pontecorvo [38] that gives the conditions under which the conformal
class of an anti-self-dual Hermitian 4-manifold contains a scalar-flat Kähler
manifold. In particular, Hitchin’s construction in four dimensions in actually
yields scalar-flat Kähler manifolds, although the connections he obtains in
higher dimensions are not a priori connections arising from a metric. Similarly,
Haydys’s construction yields Kähler metrics, although the curvature properties
of such metrics, including any special features of the scalar curvature, are
not considered in Haydys’s original work. Our main goal is to consider how
the special connections arising in either case might generalize the geometric
properties of scalar-flat Kähler surfaces.

The most interesting possibility, and the motivation for our investigations,
is that the Haydys and Hitchin constructions could actually coincide, in the
sense that the connection with holonomy contained in GL(k,H)U(1) consid-
ered by Hitchin could in fact be the Levi-Civita connection for the Kähler
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metric constructed by Haydys. In this case, the holonomy of the connection
would in fact be contained in the group Sp(k)U(1), which is not one of the
groups on Berger’s list, so that the resulting metric would have to be either
hyperkähler (with holonomy in Sp(k)), locally symmetric, or decomposable as
a Riemannian product. Any of these cases would put a strong restriction on
the geometry of the resulting manifold which could be used to gain insight
into the structure of the original quaternion-Kähler manifold.

Unfortunately, the main result of this thesis is to show that the connections
produced by Haydys and Hitchin do not coincide (see Corollary 5.11, as well
as the example considered in Section 5.5). Still, the investigations that led to
that conclusion have themselves been fruitful, and so along with this negative
result we are able to provide further clarifications and generalizations of the
Haydys and Hitchin constructions.

The basic structure of this thesis is as follows. We begin with a review of
the background material necessary for the thesis. Section 2 gives the neces-
sary definitions of the various geometries studied in this thesis, first in terms
of tensor fields and then using the equivalent language of G-structures and
holonomy groups. Next, Section 3 reviews the construction and properties of
the twistor space for both quaternionic and quaternion-Kähler manifolds.

After these two sections, we present the main results of the thesis. We be-
gin by considering Hitchin’s construction in Section 4. After briefly reviewing
his construction, we show how his methods can be generalized to give spe-
cial holonomy connections related to quaternionic manifolds without a metric.
Next, we turn to Haydys’s construction in Section 5. The first result of this
section is an alternate proof of the existence of Kähler metrics on subsets
of quaternion-Kähler manifolds with U(1) actions that uses more elementary
methods than the original proof given by Haydys. The resulting expressions
for the Kähler metric are explicit enough to allow for direct comparison of the
Haydys and Hitchin connections, which we demonstrate are distinct. We also
verify the difference between the two constructions in a simple example.
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2 Quaternionic Geometries

We begin by giving definitions of the various quaternionic geometries con-
sidered in this thesis. The definitions can be given in two equivalent and closely
related formulations, either in terms of tensor fields preserved by torsion-free
connections (Section 2.1), or in terms of G-structures and holonomy groups
(Sections 2.2 and 2.3).

A more thorough introduction to the various geometries discussed here is
given in Besse [9, Chapter 14], which tends to emphasize the tensor viewpoint.
Salamon [41], conversely, develops much of the same material from the per-
spective of G-structures. Alekseevsky and Marchiafava [2] also develop much
of the same material from the perspective of G-structures. In the Riemannian
case, Salamon [40] also gives a good introduction to the quaternion-Kähler
case, while Hitchin et. al. [18] is the main source for hyperkähler geometry.
Most of of the propositions and theorems in this section will be presented
without a proof, unless the details of the proof are important for later results.
We refer to the sources above for the full details, or will make specific further
references when relevant.

2.1 Definitions and Basic Properties

Definition 2.1. Let M be a smooth manifold. Then an almost quaternionic
structure on M is a rank-three subbundle Q ⊂ End(TM) such that any x ∈M
has a neighborhood U and a local frame I, J,K : TM |U → TM |U such that
I, J,K satisfy the quaternion relations I2 = J2 = K2 = − Id, IJ = K = −JI.
Such a choice {I, J,K} is called a local compatible frame for Q.

Note. We will sometimes write {I1, I2, I3} = {I, J,K} for a local compatible
frame, as it allows for more compact formulas.

A choice of a local compatible frame gives TxM the structure of a left H-
module, for given X ∈ TxM and q = q0 + q1i + q2j + q3k ∈ H, we can define
the action of q on X as

q ·X = (q0 + q1I + q2J + q3K)X

Note that the choice of a left action here is important because of the non-
commutativity of the quaternions. We will see in Section 2.2 that it will be
better, for our conventions, to consider most modules over the quaternions as
right modules. We can define a right action by having the right action by
q ∈ H be equivalent to left action by q∗ the quaternionic conjugate, defined by
q∗ = q0 − q1i− q2j − q3k for q = q0 + q1i+ q2j + q3k. We use q∗ instead of the
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somewhat more common notation q to distinguish the conjugation operation
on H from the conjugation operation on C. The quaternionic conjugate has
the property that (qp)∗ = p∗q∗, and so the right action given by X · q = q∗ ·X
is well-defined.

Since TxM can be given the structure of an H-module, the dimension of
an almost quaternionic manifold is always divisible by 4, and so we will write
n = 4k for the dimension of an almost quaternionic manifold, where k is the
quaternionic dimension. Because of various special aspects of these geometries
in low dimensions, it is often necessary to distinguish the case of k = 1 from the
case k ≥ 2. For the following, we therefore generally assume that k ≥ 2, and
will consider the case of k = 1 separately at the end of this section, although
some definitions remain valid in the k = 1 case.

Whether acting from the left or right, we have that this quaternionic action
depends on a choice of local compatible frame forQ, and such a choice is clearly
local in nature and also non-canonical. We can consider when such frames are
in fact defined globally on M to define an almost hypercomplex structure on
a manifold.

Definition 2.2. Let M4k be a smooth manifold. An almost hypercomplex
structure on M consists of three globally-defined almost complex structures
I, J,K on M satisfying the quaternionic relation IJ = −JI = K.

A hypercomplex structure is an almost hypercomplex structure in which
the almost complex structures I, J,K are in fact integrable.

In order to study the geometry of these spaces, we consider connections on
these manifolds that preserve these structures.

Definition 2.3. Let (M4k,Q) be an almost quaternionic manifold with k ≥ 2.
We say that this manifold is weakly quaternionic if M admits a torsion-free
connection ∇ that preserves Q, that is,

∇S ∈ Γ(T ∗M ⊗Q)

for S ∈ Γ(Q) a local section. Such a connection is called quaternionic.
A quaternionic manifold (M,Q,∇) consists of a weakly quaternionic man-

ifold together with a choice of a quaternionic connection.

Implicit in the definition above is that there are many quaternionic con-
nections possible on a weakly quaternionic manifold, which is in fact the case.
The structure of the space of quaternionic connections is well understood, and
choosing a quaternionic connection essentially amounts to choosing a 1-form
on the M , see Lemma 4.1.
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We can also consider connections preserving (almost) hypercomplex struc-
tures. If (M,J) is any almost complex manifold and ∇ is a connection on
M such that ∇J = 0, then the Nijenhuis tensor for J can be associated to a
component of the torsion tensor of the connection (see [31]), and so if the con-
nection is torsion-free then the almost complex structure J is in fact integrable.
Therefore if an almost hypercomplex manifold admits a torsion-free connec-
tion that preserves each of the almost complex structures, we have that these
complex structures are integrable and the manifold is in fact hypercomplex.
In that case, Obata has shown that this connection is unique.

Theorem 2.4 ([34]). Let (M4k, I, J,K) be a hypercomplex manifold. Then
there exists a unique torsion-free connection ∇ on M , called the Obata con-
nection such that

∇I = ∇J = ∇K = 0

There is also an intermediate structure in which there is a single parallel
almost complex structure.

Definition 2.5. A quaternionic complex manifold is a quaternionic manifold
together with a globally-defined almost complex structure I ∈ Γ(Q) that is
parallel with respect to the quaternionic connection.

Such manifolds have not been well studied, and so this terminology, which
is due to Joyce [20], is not widely used.

Given an almost quaternionic or hypercomplex structure on a manifold,
we can also consider related geometrical structures on M that are compatible
with the quaternionic geometry. The most important additional structure we
will consider are volume forms and Riemannian metrics.

Considering volume, we first observe that any almost quaternionic or hy-
percomplex manifold is orientable. A local compatible frame {I, J,K} induces
a local orientation by declaring local frames of TM of the form

{X1, IX1, JX1, KX1, . . . , Xk, IXk, JXk, KXk}

for {X1, . . . , Xk} nonvanishing and linearly independent to be positively ori-
ented. This orientation is independent of the choice of local compatible frame
since any two choices of a local compatible frame are related by an element of
SO(3), see Corollary 2.19. Note that in the hypercomplex case, this orienta-
tion is the same as the orientation induced by any of the complex structures
on M .
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Definition 2.6. A scale on a weakly quaternionic manifold is a choice of a
fixed non-vanishing volume form µ on M . If M is quaternionic, we say that
the scale is compatible with the quaternionic structure if ∇µ = 0, where ∇
is the quaternionic connection. In this case, we call (M,Q,∇, µ) a scaled
quaternionic manifold. Similarly, a scaled quaternionic complex manifold is
a quaternionic complex manifold for which the connection that preserves the
fixed almost complex structure also preserves a volume form.

A scale for a weakly quaternionic manifold induces a unique choice of
quaternionic connection, see Proposition 4.2. Evidently one could also define a
concept of a scale for hypercomplex manifolds, but in this case the uniqueness
of the Obata connection means that scales are no longer associated to a choice
of connection.

Finally, we can consider how almost quaternionic and hypercomplex struc-
tures interact with Riemannian metrics.

Definition 2.7. A Riemannian metric g on an almost quaternionic manifold
(M,Q) is quaternion-Hermitian if the metric g is compatible with the almost
complex structures I, J,K, for every choice of local compatible frame for Q,
that is,

g(IX, IY ) = g(X, Y )

for all tangent vectors X, Y , and similarly for J,K.
Similarly, if (M, I, J,K) is hypercomplex and the metric g is compatible

with the complex structures, then we say the manifold is almost hyperkähler.

An almost quaternionic manifold admits many quaternion-Hermitian met-
rics, for if g is an arbitrary metric then the metric

g̃(X, Y ) = g(X, Y ) + g(IX, IY ) + g(JX, JY ) + g(KX,KY )

is well-defined (that is, does not depend on the choice of local compatible
frame) and evidently quaternion-Hermitian. A quaternion-Hermitian structure
gives a natural connection on the almost quaternionic manifold, the Levi-
Civita connection, which is torsion-free but in general is not compatible with
the quaternionic structure. When this is the case, we arrive at the geometry
that is of central importance to this thesis, quaternion-Kähler metrics.

Definition 2.8. Let (M4k,Q, g) be a quaternion-Hermitian manifold with
quaternionic dimension k ≥ 2. If additionally we have that the Levi-Civita
connection is quaternionic, then the metric is called quaternion-Kähler.

Let (M, g, I, J,K) be an almost hyperkähler manifold. Then g is called
hyperkähler if the Levi-Civita connection for g coincides with the Obata con-
nection.
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Note that in the quaternion-Kähler case, the Riemannian volume form
associated to g is a scale compatible with the quaternionic structure.

Some of the naming conventions around quaternion-Kähler and hyper-
kähler metrics are unfortunate. First, we note that a hyperkähler manifold
is itself quaternion-Kähler, but with the additional property that the bundle
of compatible almost complex structures is globally trivialized in the hyper-
kähler case. (In terms of the holonomy definition, we similarly have that
Sp(k) ⊂ Sp(k)Sp(1), see Proposition 2.20). We adopt the standard conven-
tion of using “quaternion-Kähler” to refer only to those metrics that are not
additionally hyperkähler. Both quaternion-Kähler and hyperkähler manifolds
are Einstein (see, for example, Theorem 5.3), and any quaternion-Kähler man-
ifold with scalar curvature s = 0 is then (locally) hyperkähler, so our termi-
nology amounts to assuming that the scalar curvature of a quaternion-Kähler
manifold is not zero. We call a quaternion-Kähler manifold “positive” or “neg-
ative” according to the sign of the scalar curvature. Second, quaternion-Kähler
manifolds are themselves not actually Kähler manifolds in the sense of complex
geometry, and many do not even admit globally-defined almost complex struc-
tures. Conversely, hyperkähler manifolds are Kähler, and are in fact Kähler
with respect to many different complex structures defined on the manifold.

Both quaternion-Kähler and hyperkähler metrics can also be defined using
differential forms in a manner analogous to the definition of a Kähler mani-
fold. Given a quaternion-Hermitian metric and a choice {I, J,K} of a local
compatible basis, one can construct local proto-Kähler 2-forms ωI , ωJ , ωK in
the standard way, as

ωI(X, Y ) = g(IX, Y )

and similarly for ωJ , ωK . Let G denote the bundle with local sections spanned
by ωI , ωJ , ωK , so that G ⊂ Λ2T ∗M corresponds to Q ⊂ End(TM) under the
isomorphism TM ∼= T ∗M induced by the metric g. Although these 2-forms
are only defined locally, they give a globally-defined 4-form, introduced by
Kraines [25].

Proposition 2.9 ([25]). Let ωI , ωJ , ωK be the 2-forms defined above for M4k

a quaternion-Hermitian manifold. Then the 4-form

Ω = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK

is independent of the choice of local compatible basis and is therefore globally
defined. This form is known as the fundamental or Kraines 4-form.

Moreover, if k ≥ 2 then the metric is quaternion-Kähler if and only if
∇Ω = 0, where ∇ is the Levi-Civita connection for the metric.

7



In the case of an almost hyperkähler manifold, the forms ωI , ωJ , ωK are in
fact globally defined, and are Kähler forms if the metric is in fact hyperkähler:

Proposition 2.10 ([16]). Let (M, I, J,K, g) be an almost hypercomplex man-
ifold equipped with a quaternion-Hermitian metric. Then the metric is hyper-
kähler if and only if the 2-forms ωI , ωJ , ωK are closed. In particular, if the
forms are closed then the almost complex structures are integrable.

As mentioned earlier, the case of k = 1 (real dimension n = 4) must be
treated separately, and so far we have not defined quaternionic or quaternion-
Kähler structures in this case. (The definitions for hypercomplex or hyper-
kähler manifolds are consistent in all dimensions). The theory of quaternionic
geometries in higher dimensions is in many ways a generalization of aspects of
4-dimensional conformal geometry developed by Penrose [37] and later Atiyah,
Hitchin, and Singer [4], and so the definitions of quaternionic geometries in
dimension 4 are given in those terms.

If M is an oriented 4-manifold with a fixed conformal structure [g], then
the Hodge star operator ∗ : ΛpT ∗M → Λ4−pT ∗M has the property that ∗2 =
Id when operating on 2-forms. This leads to the splitting Λ2T ∗M = Λ+ ⊕
Λ− into the +1 and −1-eigenspaces of ∗, giving the bundles of self-dual and
anti-self-dual 2-forms, respectively. Both are rank 3 bundles, and fixing a
metric g in the conformal class gives a method to transform a self-dual 2-
form into an orthogonal and orientation-preserving endomorphism of TM ,
and this related bundle will have local frames of the form I, J,K satisfying
the standard quaternionic relations. The bundle Λ+ on an oriented, conformal
4-manifold is therefore analogous to the bundle G on a quaternion-Hermitian
manifold. In this way any oriented 4-manifold has a natural analog of an
almost quaternionic structure obtained by fixing a conformal class. Choosing
a torsion-free connection that preserves that conformal class, e.g. the Levi-
Civita connection of a metric in that conformal class, then yields an analog of
a quaternionic structure.

However, quaternionic manifolds in higher dimensions have some extra
properties that do not necessarily hold true for any oriented conformal 4-
manifold. In particular the unit sphere bundle of Q always has a natural
complex structure making this space into a complex manifold known as the
twistor space (see Proposition 3.4 and Theorem 3.5). In the four-dimensional
case, the unit sphere bundle of Λ+ has a natural almost complex structure,
and this structure is integrable exactly when the self-dual part of the Weyl
curvature of [g] vanishes ([4], see also Proposition 3.4 and following discussion),
leading to the following definitions:

8



Definition 2.11. In real dimension n = 4, a weakly quaternionic manifold
is an oriented manifold equipped with an anti-self-dual conformal structure.
A quaternionic manifold is a manifold with a chosen anti-self-dual metric. A
quaternionic complex manifold is an anti-self-dual Kähler surface.

We note that anti-self-dual Kähler surfaces are equivalent to scalar-flat
Kähler surfaces [26], which gives an equivalent definition of quaternionic-
complex 4-manifolds.

The definition of a quaternionic manifold in real dimension 4 is analogous
to that of a quaternion-Kähler manifold in quaternionic dimension k ≥ 2, in
that a quaternionic 4-manifold already has a chosen compatible metric. This
fact, however, does not make the category of quaternion-Kähler manifolds
redundant in quaternionic dimension k = 1. As mentioned earlier, quaternion-
Kähler metrics in higher dimension are necessarily Einstein (see Theorem 5.3),
and so we include this requirement in defining quaternion-Kähler manifolds in
dimension 4.

Definition 2.12. In real dimension n = 4, a quaternion-Kähler manifold is
an oriented manifold equipped with an anti-self-dual Einstein metric.

We end by considering a few examples of quaternion-Kähler and hyper-
kähler manifolds. For quaternion-Kähler manifolds, much of the interest is
focused on the positive case. In that case, Myers’s theorem gives that any
complete, connected quaternion-Kähler manifold with positive scalar curva-
ture is compact. Positive quaternion-Kähler manifolds are also simply con-
nected, which can be shown by considering the twistor space (see Corollary
3.8). The only known examples of positive quaternion-Kähler manifolds are
the so-called Wolf spaces [43]. These are all Riemannian symmetric spaces,
and are organized into three main families, namely

HPk =
Sp(k + 1)

Sp(k)Sp(1)
Gr(2,Ck+2) =

SU(k + 2)

S(U(k)× U(2))

G̃r(4,Rk+4) =
SO(k + 4)

SO(k)SO(4))

(1)

Note that in the case k = 1 we have the isomorphisms HP1
∼= G̃r(4,R5) ∼= S4

and Gr(2,C3) ∼= CP2, where each space has its standard anti-self-dual met-
ric. There are also five Wolf spaces corresponding to exceptional Lie groups,
namely

G2

SO(4)
,

F4

Sp(3)Sp(1)
,

E6

SU(6)Sp(1)
,

E7

Spin(12)Sp(1)
,

E8

E7Sp(1)

9



LeBrun and Salamon [30] have shown that in any given dimension there are
only finitely many quaternion-Kähler manifolds with positive scalar curvature,
which led them to make the conjecture that the Wolf spaces are in fact the
only positive quaternion-Kähler manifolds. This conjecture has been verified
in low dimensions. For k = 1, it is a well-known theorem of Hitchin [15],
and for dimension k = 2 it was verified by Poon and Salamon [39] (see also
[30]). More recently, the cases of k = 3, 4 have been verified by Buczyński
and Wísniewski [10]. In the negative case, the non-compact duals of the Wolf
spaces described above are symmetric spaces with negative scalar curvature
quaternion-Kähler metrics, also considered by Wolf [43], while Alekseevsky [1]
has constructed negative quaternion-Kähler metrics that are homogeneous but
not symmetric. More generally, LeBrun [28] has shown that the moduli space
of negative quaternion-Kähler metrics on R4k is infinite, so that the landscape
of possible negative quaternion-Kähler manifolds is much larger.

For examples of hyperkähler manifolds, the definition gives that hyper-
kähler four-manifolds are exactly Calabi-Yau surfaces, including for example
the K3 surfaces. In higher dimensions, families of compact hyperkähler metrics
have been constructed by Mukai [33] and Beauville [6]. Non-compact exam-
ples are also in abundance. The most notable is the Calabi metric on T ∗CPn
[11], which was the first example of a metric with holonomy exactly Sp(k).
The hyperkähler reduction construction of Hitchin, Karlhede, Lindström, and
Rǒcek [18] provides a method to construct a wide variety of hyperkähler met-
rics. There is also a similar reduction operation in the quaternion-Kähler case,
due to Galicki and Lawson [13], that produces quaternion-Kähler orbifolds.

2.2 Representation Theory for Quaternionic
Geometries

As we have already mentioned, the various quaternionic geometries defined
in Section 2.1 can also be described in terms of G-structures and holonomy
groups. In this section we define the groups and representations relevant to this
description. Setting some notation for this section, we use q, p to denote generic
quaternions, the letters z, w for complex numbers, and x, y for real numbers.
We will use boldface to denote k-dimensional vectors of these objects, e.g.,
z ∈ Ck, which we will consider as column vectors so that linear transformations
can be represented by matrix multiplication on the left.

In particular, if we wish to identify quaternion-linear transformations of
Hk with left matrix multiplication, we are required to consider Hk as a right
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H-module, so that if A ∈Mk×k(H) and p ∈ H we have

(Aq) · p = Aqp = A(q · p)

that is, left matrix multiplication commutes with right scalar multiplication.
Note that the non-commutativity of the quaternions requires us to choose
whether scalar multiplication acts on Hk from the left or the right.

As R ⊂ C ⊂ H, we can restrict scalar multiplication to consider Hk as a 2k-
dimensional complex vector space or a 4k-dimensional real vector space. In the
real case, this gives the standard identification H ∼= R4 via q = x1 +y1i+x2j+
y2 ∼ (x1, y1, x2, y3), which extends immediately to an identification Hk ∼= R4k

as q = x1 + y1i+ x2j + y2k. In the complex case, this gives the identification
H ∼= C2 via q = (x1 + y1i) + j(x2− y2i) = z1 + jz2 ∼ (z1, z2), or more generally
q = z1 + jz2. This scheme is somewhat unsatisfying, in that it induces the
non-standard identification of R4 ∼= C2 as (x1, y1, x2, y2) ∼ (x1 + y1i, x2− y2i).
Some authors therefore use the opposite convention and identify q = z1 + z2j.
This has the effect that the standard multiplication by i on C2 agrees with left
multiplication by the quaternion i, and would therefore necessitate viewing
quaternion-linear maps as arising from right-multiplication by matrices acting
on row vectors.

If we consider the identification H ∼= C2k as a complex vector space, then
the map JC : C2k → C2k induced by right multiplication by j is a conjugate-
linear map defined by

JC(z1, z2) = (−z2, z1) (2)

Similarly, the identification H ∼= R4k as a real vector space induces R-linear
maps I, J,K : R4k → R4k corresponding to right multiplication by i, j, k.

The quaternion conjugate operation induces a norm on H via

|q|2 = qq∗ = q2
0 + q2

1 + q2
2 + q2

3

that is equal to the Euclidean norm on R4 under the standard identification
H ∼= R4. Let Sp(1) denote the set of quaternions with unit norm. One can
easily check from the properties of the norm that Sp(1) is then a group under
quaternionic multiplication, with q−1 = q∗ for q ∈ Sp(1), and it is straight-
forward to check that Sp(1) is in fact a Lie group. Note that topologically
Sp(1) ∼= S3, as it is the unit sphere in R4. If we let H× = H− {0} denote the
set of non-zero quaternions, then evidently H× ∼= Sp(1)× R>0.

Given q ∈ H, we have that q acts naturally on R4 by considering p ∈ H as
an element of R4 and having q act on p by either left or right multiplication.
In fact, it will better match our conventions to consider the right action of
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q as right multiplication by the conjugate. With this choice, we define maps
L,R : H× → GL(4,R) by considering p ∈ H as an element of R4 and taking

Lq(p) = qp Rq(p) = pq∗,

Note that the map Lq is in fact H-linear and therefore both C and R-linear. We
will use L to denote the embedding into real-linear transformations, and write
LC : H× → GL(2,C) when we wish to consider the embedding into complex-
linear transformations. On the other hand, Rq is in general only R-linear, and
is C-linear if an only if q ∈ C ⊂ H. In particular, if we consider C ⊂ H to
be the set of quaternions with no j, k part, then R yields the standard action
of scalar multiplication on C2 when restricted to C×. The maps L,R, and LC

have useful explicit formulas in terms of matrices, as given below.

Proposition 2.13. Let L,R : H× → GL(4,H) and LC : H× → GL(2,C) be
the maps described above. Then

1. The maps L,R, and LC are Lie group homomorphisms.
2. For q = q0+q1i+q2j+q3k, the transformations Lq and Rq are represented

by the matrices

Lq =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 , Rq =


q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

 (3)

3. Writing q = z1 + jz2, the transformation LC
q is represented by the matrix

LC
q =

(
z1 −z2

z2 z1

)
4. Restricting L and R to Sp(1) yields Lie group homomorphisms L,R :

Sp(1)→ SO(4).
5. Restricting LC to Sp(1) yields a Lie group isomorphism LC : Sp(1) →

SU(2).

Proof. That these maps are Lie group homomorphisms follow immediately
from their definitions, noting that the conjugation action is necessary in defin-
ing R so that Rq1q2 = Rq1◦Rq2 . The matrix expressions for Lq and Rq are easily
confirmed by expanding the expressions qp and pq∗ in the {1, i, j, k} basis for
H ∼= R4, while the formula for LC follows from the identification H ∼= C2.

By inspection, we see that the columns of the matrices Lq, Rq are pairwise
orthogonal, and that the determinants of these matrices are both
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(q2
0 + q2

1 + q2
2 + q2

3)2, so that restricting to Sp(1) yields maps into SO(4). In
the complex expression, if q ∈ Sp(1) then |z1|2 + |z2|2 = 1, and so LC maps to
SU(2). This map is easily seen to be bijective.

The above representations extend easily to actions of H× and Sp(1) on
R4k ∼= Hk, so that we can consider, in particular, the maps R : Sp(1) → Hk

where Rq corresponds to right-multiplication by q∗ = q−1. Let U(1) be the
group of unit complex numbers, which we can consider as a subgroup U(1) ⊂
Sp(1) via the inclusion C ⊂ H, so that we can also consider R(U(1)) ⊂
GL(4k,R) as well. In fact by the above we have that R(U(1)) ⊂ GL(2k,C) ⊂
GL(4k,R). With these action in higher dimensions, we have

Definition 2.14. Consider R(U(1)) ⊂ R(Sp(1)) ⊂ SO(4k) ⊂ SL(4k,R) ⊂
GL(4k,R). Then we define the following Lie groups:

1. Let GL(k,H) denote the centralizer of R(Sp(1)) in GL(4k,R) .
2. Let SL(k,H) denote the centralizer of R(Sp(1)) in SL(4k,R)
3. Let Sp(k) denote the centralizer of R(Sp(1)) in SO(4k).
4. Let GL(k,H)Sp(1), resp. SL(k,H)Sp(1), denote the subgroup product

of GL(k,H), resp. SL(k,H), with R(Sp(1)) in GL(4k,R).
5. Let Sp(k)Sp(1) denote the subgroup product of Sp(k) and R(Sp(1)) in
SO(4k).

Note that each of GL(k,H), SL(k,H) and Sp(k) defined above is in fact con-
tained in GL(2k,C) ⊂ GL(4k,R) since quaternion-linear transformations are
necessarily C-linear, so that we can define two more groups of complex-linear
transformations.

6. Let GL(k,H)U(1), resp. SL(k,H)U(1), denote the subgroup product of
GL(k,H), resp. SL(k,H), with R(U(1)) in GL(2k,C).

The notation we have used for the above groups agrees with the more stan-
dard definitions for these objects. For example, an H-linear map on Hk ∼= R4k

is by definition an R-linear transformation that commutes with right quater-
nion multiplication, which is equivalent to commuting with right multiplication
by Sp(1) since H× = Sp(1)×R>0, and thus the group GL(k,H) defined above
does in fact represent the group of bijective H-linear transformations on Hk.
Similarly, the standard definition of Sp(k) is as the subgroup of GL(k,H) that
preserves the standard quaternion-Hermitian inner product

〈p,q〉H =
k∑
i=1

piqi,
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and so for this reason the group Sp(k) is sometimes also denoted by U(k,H)
and considered as the quaternionic unitary group. The real part of this H-
valued inner product is exactly the Euclidean inner product on R4k ∼= Hk, and
so quaternion-linear transformations that preserve the H-valued inner product
are naturally elements of SO(4k), and conversely elements of SO(4k) that
commute with Sp(1) and are therefore quaternion-linear are elements of Sp(k).
Additionally, this alternate description of Sp(k) ⊂ GL(k,H) makes clear that
Sp(k)Sp(1) ⊂ GL(k,H)Sp(1).

Note that SL(k,H) has no well-defined meaning independent of an of em-
bedding of GL(k,H) into either GL(2k,C) or GL(4k,R). Although GL(k,H)
can be considered as the group of invertible k × k-matrices with quaternionic
entries, the non-commutativity of the quaternions means that there is no
quaternion-valued determinant function on such matrices, and so SL(k,H)
must be defined by reference to complex or real determinants.

We can express the product groups above via the alternate description

GL(k,H)Sp(1) ∼= (GL(k,H)× Sp(1))/Z2

SL(k,H)Sp(1) ∼= (SL(k,H)× Sp(1))/Z2

GL(k,H)U(1) ∼= (GL(k,H)× U(1))/Z2

SL(k,H)U(1) ∼= (SL(k,H)× U(1))/Z2

Sp(k)Sp(1) ∼= (Sp(k)× Sp(1))/Z2,

(4)

where in each case the Z2-action is generated by multiplication by (−1,−1)
In addition to the Lie group isomorphism Sp(1) ∼= SU(2) given in Proposi-

tion 2.13, there are two other Lie group isomorphisms relevant in quaternionic
geometry.

Proposition 2.15. We have the following Lie group isomorphisms:
1. Sp(1)× Sp(1) ∼= Spin(4)
2. Sp(1) ∼= Spin(3)

Proof. Consider the map Φ : Sp(1)× Sp(1)→ SO(4) defined by

Φq1,q2(p) = q1 p q
∗
2,

or equivalently Φq1,q2 = Rq2 ◦ Lq1 . It is straightforward to check that this
map is a local diffeomorphism, hence the universal cover as Sp(1) × Sp(1) is
compact and simply connected. Note that the kernel of this map is (±1,±1).

Similarly, we can consider the map Ψ : Sp(1) → SO(3) ⊂ SO(4) defined
by

Ψ(q) = Φ(q, q)
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A priori the image of Ψ is in SO(4), but we observe that the action of Ψ
preserves the three-dimensional subspace Im(H) = spanR({i, j, k}) of purely
imaginary quaternions, which is equivalently the set of all p ∈ H with p∗ = −p.
That is if q ∈ Sp(1) and p ∈ Im(H), we have

(Ψq(p))
∗ = (qpq∗)∗ = (q∗)∗p∗q∗ = qp∗q∗ = −qpq∗ = −Ψq(p), (5)

and so by restricting to Im(H) we can consider Ψ(Sp(1)) ⊂ SO(3). It is once
again straightforward to check that this map is the universal cover. Note that
the kernel here is ±1.

By considering Sp(1) ⊂ H as the unit sphere, we have that the Lie algebra
sp(1) = T1H is naturally Im(H), with the Lie bracket being given the commu-
tator with respect to quaternionic multiplication. It then follows easily from
the definitions and the computations above that the adjoint representation of
Sp(1) on sp(1) = Im(H) is via conjugation, that is, for q ∈ Sp(1) the adjoint
representation Adq : sp(1)→ sp(1) is simply

Adq(p) = qpq∗ (6)

for p ∈ Im(H). Therefore the representation Ψ defined above is precisely the
adjoint representation of Sp(1).

On the other hand, the map Ψ also defines an isomorphism sp(1) ∼= so(3).
The standard definition of so(3) is as the set of 3 × 3 skew-symmetric real
matrices, with the Lie bracket being the commutator with respect to matrix
multiplication. The following proposition relates these two descriptions, and is
easily proved by using the explicit matrix representation for the actions Lq, Rq

in Equation (3).

Proposition 2.16. The isomorphism (dΨ)e : sp(1)→ so(3) is given explicitly
by

i 7→

0 0 0
0 0 −2
0 2 0

 j 7→

 0 0 2
0 0 0
−2 0 0

 k 7→

0 −2 0
2 0 0
0 0 0


2.3 Quaternionic Geometries via G-Structures

We defined a variety of quaternionic geometries in Section 2.1 in terms
of tensors and connections, while in Definition 2.14 we have defined a num-
ber of Lie groups. In this section, we see that our definitions of quaternionic
geometries are equivalent to specifying G-structures on manifolds where G
is one of the Lie groups we have considered. Besse [9, Chapter 10] and
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Joyce [21, Chapters 2-3] give good summaries of the necessary background
on principal bundles, G-structures, and holonomy groups.

First, we have that each of the quaternionic geometries we have defined
induce a G-structure on M .

Proposition 2.17. Let M be a smooth manifold. If M is equipped with one
of the quaternionic geometries of Section 2.1, then the structure group of the
frame bundle of TM can be reduced to a subgroup of GL(4k,R) according to
the correspondence:

Geometry Group

(almost) quaternionic GL(k,H)Sp(1)
(almost) hypercomplex GL(k,H)

Scaled (almost) quaternionic SL(k,H)Sp(1)
Quaternionic complex GL(k,H)U(1)

Scaled quaternionic complex SL(k,H)U(1)
Quaternion-Kähler Sp(k)Sp(1)

Hyperkähler Sp(k)

Proof. We consider only the proof for the reduction of the structure group
of an almost quaternionic manifold, as the proofs for the others are similar.
Let (M,Q) be an almost quaternionic manifold, and let {I, J,K} be a local
compatible frame for Qx. We will call a real-linear bijection u : Hk → TxM
a quaternionic frame with respect to {I, J,K} if u is quaternion-linear with
respect to the right H-action on TxM determined by the choice of {I, J,K}.
More generally, we will say that a real-linear map u : Hk → TxM is an almost
quaternionic frame if there exists a choice of local frame {I, J,K} for Q that
makes u a quaternionic frame. Then a frame u is almost quaternionic if and
only if for every f ∈ Qx, the transformation of the form u−1 ◦ f ◦ u : Hk → Hk

is equivalent to the action on Hk induced by right-multiplication by a some
purely imaginary quaternion [36]. From equation (4), we can consider an
element of G = GL(k,H)Sp(1) as a pair (A, q) ∈ GL(k,H) × Sp(1) up to
multiplication by (−1,−1), and by Definition 2.14 we have that (A, q) acts on
R4k ∼= Hk by (A, q) ·p = Apq∗. We can therefore define a right action of G on
almost quaternionic frames by having (A, q) act on a frame u via composition,
that is,

(u · (A, q))(p) = u((A, q) · p) = u(Apq∗). (7)

This action does in fact preserve almost quaternionic frames, for if we take u
an almost quaternionic frame and assume that u−1fu corresponds to right-
multiplication by the imaginary quaternion p, then a simple computation
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shows that ũ−1fũ for ũ = u · (A, q) acts on p ∈ Hk as right-multiplication
by the quaternion q∗pq, which is purely imaginary by equation (5), so that ũ
is again an almost quaternionic frame. One can then verify that this action
on frames is free and transitive, so that the collection of almost quaternionic
frames is in fact a principal G-subbundle of the frame bundle of TM .

We can equivalently consider the frames u : Hk → TxM above as choices of
a preferred basis for TxM . Taking the standard quaternionic basis {e1, . . . , ek}
for Hk, we have that the elements {e`, ie`, je`, ke`}k`=1 give a real basis for
R4k ∼= Hk, and thus the map u identifies a corresponding basis for TxM .
Thus, given an almost quaternionic manifold and a local compatible frame
{I, J,K}, we can always choose local vector fields {X1, . . . , Xk} such that the
vector fields

{X1, IX1, JX1, KX1, . . . , Xk, IXk, JXk, KXk}

form a local frame for TM . If the almost quaternionic manifold has a preferred
scale, we can assume that the volume form evaluates this local frame to 1, while
if the manifold is in fact quaternion-Kähler we can assume that this basis is
orthonormal. Similar statements apply to the hypercomplex geometries by
fixing the choice of local compatible frame.

It’s also important to point out a special feature of the frames we consider
in the quaternionic complex case. In this case, we have a complex structure
on M , and so we only want to consider frames u : Hk → TxM that are
complex-linear while also being quaternion-linear with respect to the chosen
local compatible quaternionic frame. This amounts to assuming that the lo-
cal quaternionic frames are only of the form {I, J,K} where I is no longer
arbitrary, but instead the fixed preferred complex structure. The choice of
such frames therefore amounts to choosing the remaining local almost complex
structures J,K, which must satisfy the standard relations of the quaternion
algebra. Under the identification R4 ∼= C2 ∼= H this amounts to choosing the
element j as a unit vector in the plane in R4 orthogonal to C under the usual
Euclidean inner product. Hence all possible choices of J,K are related by a
rotation, yielding the U(1) rotation part of the action on frames. (This is also
clearer after Corollary 2.19, which shows that all local compatible frames are
associated by an SO(3)-action, so that the compatible frames with I fixed are
all related by a rotation of the J,K part). Equivalently, a frame u is compat-
ible with the quaternionic complex structure if and only if transformations of
the form u−1◦f ◦u are equivalent to the action on Hk induced by multiplication
by a purely imaginary complex number. In this case, the map u is necessarily
complex-linear.
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We can also consider the converse of the above theorem, and consider how
a reduction of the structure group of a smooth manifold gives rise to a quater-
nionic geometry. In the case of geometries without a preferred connection, this
is relatively straightforward.

Proposition 2.18. Let M be a smooth manifold. Then
1. an almost quaternionic structure on M is equivalent to a reduction of

the structure group of TM to GL(k,H)Sp(1).
2. an almost hypercomplex structure on M is equivalent to a reduction of

the structure group of TM to GL(k,H).

Proof. Again we only consider the almost quaternionic case, as the almost
hypercomplex case is very similar. If we assume that TM admits a reduction of
its structure group to G = GL(k,H)Sp(1), we can consider the frame bundle F
of TM as a principal G-bundle and consider the vector bundle on M associated
to the representation of G on R3 determined by the map

(±A,±q)→ Ψ(q)

where Ψ : Sp(1)→ SO(3) is defined in Proposition 2.15. Recall that the kernel
of Ψ is ±1 so that the above representation is well-defined. This representation
is essentially equivalent to the adjoint representation on sp(1) = so(3) =
Im(H), via equation (6), and so the resulting rank-three bundle has a local
compatible frame {I, J,K} arising from the standard basis i, j, k of Im(H) =
sp(1), and therefore is the bundle Q giving an almost quaternionic structure.
The converse is proved in Proposition 2.17.

Corollary 2.19. Let (M,Q) be an almost quaternionic manifold. Let P de-
note the bundle of local compatible frames {I, J,K} of Q. Then P is a principal
SO(3)-bundle.

Proof. This is immediate in light of the previous proposition showing that Q
arises from a representation of SO(3). We give a second, more elementary,
proof that will be useful when we compute examples.

Assume that {I, J,K} and {Ĩ , J̃ , K̃} are two different choices of local com-
patible frame for Qx. Then we can write the latter uniquely in terms of the
former,

Ĩ = a11I + a21J + a31K

J̃ = a12I + a22J + a32K

K̃ = a13I + a23J + a33K
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so that the matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


gives the change of frame transformation from {Ĩ , J̃ , K̃} to {I, J,K}. The
fact that this matrix is an element of SO(3) follows from the fact that both
of these frames satisfy the quaternion algebra relations. For example, the fact
that Ĩ2 = − Id implies that a2

11 + a2
21 + a2

31 = 1, and similarly for the other

columns of the matrix. We also have that the fact that Ĩ J̃ = −J̃ Ĩ implies
that the standard inner product of the first two columns of A vanishes, and
similarly can show that this holds for other distinct pairs and therefore that A
is an orthogonal matrix. Finally, a simple computation shows that the relation
Ĩ J̃K̃ = −1 implies that detR(A) = 1. Conversely, the above arguments show
that given an element A of SO(3) and {I, J,K} a compatible frame, then the

endomorphisms Ĩ , J̃ , K̃ defined by the formulas above will yield another local
compatible frame.

We can consider converse statements characterizing the remaining geome-
tries in terms of structure groups as well. In this case, the requirement that
there is a connection compatible with the relevant geometry is equivalent to
requiring the existence of a principal connection on the reduced frame bundle,
which is related to the holonomy of the connection.

Proposition 2.20. Let ∇ be a torsion-free connection on a smooth manifold
M . If the holonomy of ∇ is contained in one of the groups below, then M has
the structure of the corresponding quaternionic geometry.

Holonomy Group Geometry

GL(k,H)Sp(1) with k ≥ 2 Quaternionic
GL(k,H) Hypercomplex

SL(k,H)Sp(1) with k ≥ 2 Quaternionic with scale
GL(k,H)U(1) with k ≥ 2 Quaternionic complex
SL(k,H)U(1) with k ≥ 2 Quaternionic complex with scale
Sp(k)Sp(1) with k ≥ 2 Quaternion-Kähler

Sp(k) Hyperkähler

Proof. Let F be the frame bundle for TM , considered as a principalGL(4k,R)-
bundle. The connection ∇ on TM induces a principal GL(4k,R)-connection
on the frame bundle F with the same holonomy group. By the Reduction The-
orem [23, Theorem 7.1], this connection gives a principal Hol(∇)-subbundle
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of F , and the connection moreover reduces to a principal Hol(∇)-connection
on this subbundle. The almost quaternionic or hypercomplex structures then
arise from Proposition 2.18, and general theory of principal bundles gives that
when the holonomy of the connections are additionally included in SL(4k,R)
or SO(4k,R), then there are volume forms and metrics on M that will be
compatible with the connection and quaternionic structures. Similarly, since
GL(k,H)U(1) and SL(k,H)U(1) are both contained in GL(2k,C), the connec-
tions in these cases will preserve a complex structure on M , which is therefore
integrable.

Quaternionic, quaternionic complex, and quaternion-Kähler manifolds in
four dimensions cannot be defined in terms of holonomy. For example, in the
quaternion-Kähler case we have Sp(1)Sp(1) ∼= SO(4) (see Proposition 2.15),
and so a connection on a 4-manifold with holonomy Sp(1)Sp(1) only gives the
structure of an oriented Riemannian manifold. The holonomy condition does
not yield the extra requirement that the associated metric be anti-self-dual and
Einstein as required in Definition 2.12. Similarly, holonomy GL(1,H)Sp(1),
GL(1,H)U(1), and SL(1,H)U(1) structures are equivalent to conformal, con-
formally Kähler, and Kähler structures, respectively, on the 4-manifold M but
do not yield the extra anti-self-duality condition required by Definition 2.11.
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3 Twistor Spaces of Quaternionic Geometries

One of the most important techniques for studying quaternionic geome-
tries is via their related twistor spaces. These spaces are complex manifolds
for which aspects of the holomorphic geometry are closely related to the differ-
ential geometric properties of the original quaternionic space. This allows for
the study of quaternionic manifolds using techniques of complex and algebraic
geometry. In this section, we define twistor spaces for the various geometries
we have considered and explain the necessary correspondences.

We begin in Section 3.1 by presenting a convenient method to study quater-
nionic manifolds via certain complex vector bundles associated to the reduced
frame bundle. We use this framework to define the twistor space associated
to a quaternionic manifold in Section 3.2, which also describes the additional
properties of twistor spaces of quaternion-Kähler manifolds. Section 3.3 then
describes the inverse process, which takes a twistor space and recovers the
original quaternionic geometry.

The twistor theory of quaternionic geometries was developed independently
by Bérard-Bergery [7] and Salamon [40, 41]. Their work built on the the twistor
theory of conformal 4-manifolds developed by Atiyah, Hitchin, and Singer [4],
who in turn were bringing Penrose’s twistor theory of Minkowski space [37]
to the Riemannian setting. Our treatment of these results is mostly based on
the work of Salamon [40]. Once again, we will not always provide full details
except when necessary, and so refer to the above references for rigorous proofs.

3.1 Complex Bundles Associated to Quaternionic
Geometries

If a manifold M admits a reduction of its structure group to one of the
groups listed in Proposition 2.17, then we can construct a number of associ-
ated vector bundles on M using representations of that group. We begin by
focusing on the group G = GL(k,H)Sp(1). In this case, there are two basic
representations for this group, which we will write as E and H, that yield
a number of interesting and relevant bundles on M . This “EH formalism”
was developed by Salamon [40, 41], but see also Pederson, Poon, and Swann
[36] for a useful generalization. The material of this section is essentially an
adaptation of Salamon’s arguments in [40] to the quaternionic case.

The group G = GL(k,H)Sp(1) has a double cover, namely the group

G̃ = GL(k,H) × Sp(1), and therefore instead of considering G itself we will
consider representations of the factors GL(k,H) and Sp(1). If F represents the
frame bundle for TM , considered as principal G-bundle, then we can consider
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a covering bundle F̃ , a principal G̃-bundle, although in general this lifting is
only locally defined over M . We can define complex representations ρE∗ and
ρH∗ of G̃ on C2k and C2, respectively, as follows. If (A, q) ∈ G̃, then we define
ρE∗ by making the identification C2k ∼= Hk, and the action on p ∈ Hk will be
given by

ρE∗(A, q)p = Ap,

which is complex-linear. The representation ρH∗ will be given by LC◦π2, where
π2 : GL(K,H)×Sp(1)→ Sp(1) is projection onto the second factor and LC is
the conjugate of the representation LC : Sp(1)→ SU(2) given in Proposition
2.13.

Note that both of these representations are quaternionic, that is, the map
JC defined in Equation (2) corresponding to right multiplication by j is equiv-
ariant under the action of the representation. Since ρH∗ is additionally a
unitary representation, this implies that it is in fact isomorphic to its dual
(hence, conjugate) representation, see also Proposition 3.2.

Let E∗,H∗ denote the vector bundles over M associated to F̃ via the rep-
resentations ρE∗ , ρH∗ . The quaternionic structures for the representations
ρE∗ , ρH∗ induced quaternionic structure on E∗,H∗ that we will denote by
JE, JH . Each map preserves the fibers of the respective bundle and is con-
jugate linear on fibers, with J2

E = − IdE∗ and , J2
H = − IdH∗

Just like F̃ , the bundles E∗,H∗ are generally only locally defined. However,
tensor products of these bundles may be globally defined, and in particular we
have

Proposition 3.1. The tensor product bundle E∗H∗ = E∗⊗CH∗ is isomorphic
to the complexified tangent bundle TM ⊗R C of M . Under this isomorphism,
the real structure on TM ⊗R C arising from complex conjugation on C corre-
sponds to the map on E∗H∗ induced by quaternionic structures on the factors.

Proof. In order to obtain the real structure, we observe that the tensor product
JE ⊗ JH of the quaternionic structures on the factors defines a real structure
on E∗H∗, since this map is conjugate-linear on each tensor factor and squares
to (− IdE∗)⊗ (− IdH∗) = IdE∗ ⊗ IdH∗ since there are an even number of tensor
factors.

Checking that the related real bundle obtained as the elements of E∗H∗

fixed by JE ⊗ JH is in fact TM is somewhat tedious, but can be carried out
directly by considering the actions of A ∈ GL(k,H) and q ∈ Sp(1) on the
tensor product space using the explicit formulas given in Proposition 2.13.
The resulting representation will in fact coincide with the representation of
(A, q) on Hk ∼= R4k that defines TM from the frame bundle as described in
equation (7) of Proposition 2.17.
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As an important corollary, we have that the cotangent bundle will be given
by

T ∗M ⊗R C ∼= EH

More generally, we observe that we can take tensor products of the bundles
E,H, and their duals to obtain a wide variety of vector bundles on a manifold
with structure group G for the frame bundle. As in the previous proposition,
the quaternionic structures on the bundles E,H will induce either quaternionic
or real structures on these tensor products, according to whether there are an
odd or even number of tensor factors. In the case that a real structure exists,
we will use unbolded letters to denote the underlying real bundle, so that, for
example, we have

T ∗M = EH

although this should not be interpreted as a tensor product. Moreover, the
resulting bundles will be globally defined in these cases, for (−1,−1) will act
trivially on tensor products of E,H with an even number of factors, and so
the relevant representation of G̃ = GL(k,H) × Sp(1) will in fact descend to
a representation of G = GL(k,H)Sp(1). The above discussion also applies to
symmetric and exterior products of these bundles, so that, for example, the
bundle S2H is globally defined and yields a real subbundle S2H, related to
the bundle Q, see Proposition 3.2 below.

The above assumed that we were working with an almost quaternionic man-
ifold, so that the bundle E arises from the defining representation of GL(k,H).
If instead we consider scaled almost quaternionic manifolds, then we can con-
sider E as arising from the defining representation of SL(k,H), and similarly in
the quaternion-Kähler case we can take E to arise from the defining represen-
tation of Sp(k). For quaternionic complex manifolds we generally focus on the
quaternionic aspect of such objects, and so still consider the E,H bundles via
the inclusion GL(k,H)U(1) ⊂ GL(k,H)Sp(1). The preferred complex struc-
ture on such manifolds then gives rise to a subbundle of H, see Proposition
3.3.

The bundles E,H will also carry extra structure in the case that M has
a connection compatible with the reduction of structure group, that is, in the
(scaled) quaternionic and quaternion-Kähler cases. In particular, assume that
(M,Q) is equipped with a fixed quaternionic connection ∇. This connection

induces a principal connection on the frame bundle F , which lifts to F̃ and
therefore induces connections on E,H. The induced connection on E∗H∗ ∼=
TM ⊗ C is then the complexification of the connection on TM .

As mentioned above, the bundles E,H can only be globally defined on
M when the GL(k,H)Sp(1)-frame bundle has a globally-defined double cover.
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The obstruction to global existence of these bundles is the second Stiefel-
Whitney class w2(S2H) of the real rank-3 bundle mentioned above. In the
positive quaternion-Kähler case, this obstruction vanishes only for quater-
nionic projective space HPk, see [40]. The bundle S2H is also important for
its relationship to Q.

Proposition 3.2. Let (M,Q,∇) be a quaternionic manifold with associated
local bundles E,H. Then

1. The bundle Λ2H∗ is trivial, and there is a non-vanishing section ωH
of this bundle with ∇ωH = 0 that is unique up to multiplication by a
constant.

2. The section ωH induces an isomorphism S2H ∼= Q.

Proof. The details of the isomorphism S2H ∼= Q will be important to our
future work, and so we sketch a proof due to Salamon [40]. The representation
yielding the bundle H is essentially the defining representation of Sp(1) ∼=
SU(2) on C2. This representation preserves the standard Hermitian inner
product on C2, and also preserves the quaternionic structure JC : C2 → C2

induced by right multiplication by j. We can therefore consider a C-valued
2-form ωH defined on C2 by

ωH(u, v) = 〈JCu, v〉

where 〈−,−〉 denotes the standard Hermitian inner product. It is straight-
forward to verify that ωH(JCu, JCv) = ωH(u, v) and that ωH(u, JCu) > 0 for
u 6= 0. This 2-form is therefore non-degenerate, and induces an isomorphism
of C2 with its dual via

u 7→ (v 7→ ωH(v, u))

Now the holonomy representation associated to the connection ∇ on H is pre-
cisely the standard representation of Sp(1) on C2, and by identifying Hx with
C2 we have that there exists a 2-form ωH ∈ Λ2H∗x that is fixed by the holon-
omy representation, and therefore by the holonomy principle we can translate
this form using parallel transport to obtain a globally-defined form ωH with
the same properties.

In particular, ωH gives an isomorphism H ∼= H∗ that we use to induce
the isomorphism S2H ∼= Q. On the level of representations, taking the dual
(equivalently, the conjugate) of the standard representation of Sp(1) ∼= SU(2)
on C2 and tensoring yields a representation of Sp(1) on C2⊗(C2)∗ ∼= C4 that is
the complexification of the representation of Sp(1) on R4 given by equation (5),
and therefore by Proposition 2.18 this representation is the complexification
of the representation determining Q.
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More concretely, we can use ωH to consider the embedding of S2H into
End(H) given by

S2H ⊂ H⊗H ∼= H⊗H∗ = End(H)

Note that our convention here is to consider elements of S2H to be embedded
in H⊗H via

h1 � h2 ∈ S2H = (h1 ⊗ h2 + h2 ⊗ h2) ∈ H⊗H

This embedding then yields a right action of S2H on TM ⊗ C ∼= E∗H∗ by
considering

E∗ ⊗H∗ ⊗ S2H E∗ ⊗H∗ ⊗H⊗H∗ E∗ ⊗H∗,

where the second arrow is the contraction of the middle pair of dual tensor
factors. The isomorphism H ∼= H∗ induces an inner product on S2H, and if
J,K are sections of S2H considered as endomorphisms on TM ⊗C, then one
has

J ◦K +K ◦ J = −〈J,K〉 IdTM⊗C (8)

and therefore choosing a basis of real sections of S2H that are orthonormal with
respect to this inner product yields a real subbundle of End(TM) satisfying
the quaternion algebra relations.

It will be useful for later work for us to make this isomorphism even more
explicit. We can choose a local section h1 of H so that ωH(h1, JHh1) = 1.
Let h2 = JHh1 for convenience, so that {h1, h2} is a unitary frame for H. Let
h∗1, h

∗
2 denote the related elements of H∗ via the isomorphism ωH , so that for

example h∗1 = ωH(−, h1). We therefore have that

h∗1(h1) = 0 h∗1(h2) = −1 h∗2(h1) = 1 h∗2(h2) = 0

With respect to this local unitary frame for H, we consider the sections of
S2H ⊂ H⊗H defined by

I = i (h1 ⊗ h2 + h2 ⊗ h1)
J = h1 ⊗ h1 + h2 ⊗ h2

K = i (h1 ⊗ h1 − h2 ⊗ h2)
(9)

These sections give a local compatible frame for Q under the identification
S2H ∼= Q described above. First, each section is invariant under the real
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structure on S2H induced by JH on each factor. For example, denoting this
real structure by conjugation, we have

I = i (JHh1 ⊗ JHh2 + JHh2 ⊗ JHh1) = −i (−h2 ⊗ h1 − h1 ⊗ h2) = I,

where here we use the fact that JH is conjugate-linear. Using the isomorphism
induced by ωH , we have that I2 acts on a generic element e∗1 ⊗ h∗1 + e∗2 ⊗ h∗2 ∈
TM ⊗ C as

(e∗1 ⊗ h∗1 + e∗2 ⊗ h∗2) I2 = i (e∗1 ⊗ h∗1 + e∗2 ⊗ h∗2) (h1 ⊗ h∗2 + h2 ⊗ h∗1) I

= i (−e∗1 ⊗ h∗1 + e∗2 ⊗ h∗2) i (h1 ⊗ h∗2 + h2 ⊗ h∗1)

= − (e∗1 ⊗ h∗1 + e∗2 ⊗ h∗2) ,

that is, as −1. Similar computations show that the remaining quaternionic
relations J2 = K2 = − Id, IJ = K = −JI also hold. Note that with respect to
the Hermitian inner product we have defined on S2H that each of these sections
has norm

√
2, since {h1⊗h1, h1⊗h2, h2⊗h1, h2⊗h2} is by definition a unitary

basis for H ⊗ H. This also agrees with equation (8) above. Therefore the
identification S2H ∼= Q defined above does not preserve the Euclidean inner
products on these bundles, but they are related by a constant scale factor of√

2.
Finally, we observe that choosing a different value of h1 ∈ Hx and following

the above procedure produces a different local compatible frame for Qx. As
the choice of h1 is making a choice of a unit vector in Hx, these possible choices
correspond to elements of Sp(1). But we can observe from equations (9) that
both h1 and −h1 yield the same local basis, so that the set of real compatible
frames is parameterized by Sp(1)/Z2 = SO(3), as necessary.

In the case that we are considering a quaternion-Kähler manifold, instead
of just a quaternionic manifold, then considering E as arising from a repre-
sentation of Sp(k) yields, via a similar argument, that the bundle Λ2E∗ has
a parallel, non-vanishing section ωE. We can consider ωE, ωH as sections of
Λ2H,Λ2E as well using the isomorphisms E ∼= E∗, H ∼= H∗ induced by these
forms. We then have that the tensor

ωE ⊗ ωH ∈ Γ(Λ2E⊗ Λ2H) ⊂ Γ(S2T ∗M) (10)

is precisely the complexification of the metric.
Note that in the 4-dimensional case, where the Levi-Civita connection of

an oriented Riemannian manifold has holonomy contained in Sp(1)Sp(1), the
bundles produced by the process above are the well-known spinor bundles, see
[4] and the related discussion following Proposition 3.4.
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3.2 Twistor Spaces of Quaternionic and Quaternion-
Kähler Manifolds

If (M,Q,∇) is a quaternionic manifold, then, recalling that the bundle Q
has an SO(3)-structure under which any local compatible frame {I, J,K} is
taken to be orthonormal, we can consider the unit sphere bundle Z associated
to Q. This is known as the twistor space associated to M . If we fix a local
compatible frame, writing a local section of Q as A = f1I + f2J + f3K, we
observe that

A2 = −(f 2
1 + f 2

2 + f 3
3 ) IdTM

so that A is an almost complex structure exactly when it has unit norm, and
therefore local sections of Z are precisely the sections of Q that are almost
complex structures. This space Z can also be conveniently described using the
E, H formalism of Section 3.1.

Proposition 3.3 ([40]). The bundle Z is isomorphic to P(H)

Proof. Note that although the bundle H is only locally defined, the projec-
tivization of this bundle is defined globally since projectivizing removes the sign
ambiguity that prevents defining H globally. Therefore proving that Z = P(H)
locally will suffice to give the result globally.

We therefore fix x ∈ M and work locally around x so that the bundles
E,H are well-defined. Then an element h ∈ Hx−0 defines an almost complex
structure Jh on TxM by declaring the (1, 0)-forms in T ∗M ⊗ C to be those of
the form

Λ1,0
x = Ex ⊗C Ch ⊂ Ex ⊗C Hx = T∗xM ⊗ C. (11)

One can check that the (1, 0)-forms given by this method are precisely those
determined by the element Jh ∈ S2Hx

∼= Qx defined by

Jh =
i

ωH(h, JHh)
h� (JHh) ,

using the identifications of Proposition 3.2.
Note from either description of Jh that if we scale h by a non-zero complex

number, the resulting almost complex structure remains unchanged. Thus we
have that the set P(Hx) can be identified with the sphere of radius

√
2 in S2Hx,

or equivalently with the unit sphere in Qx, that is, can be identified with the
fiber Zx.

The twistor space Z admits a natural complex structure that is most easily
understood by considering a related complex structure defined on the total
space H× = H− {0-section} using the isomorphism above.
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Proposition 3.4 ([40]). Let M4k be a quaternionic manifold with k ≥ 2, and
consider the (locally defined) bundle H. Then the total space of the bundle H×

admits a natural complex structure.

Proof. Let h ∈ Hx − {0} be given. As discussed previously, the quaternionic
connection on M induces a connection on the frame bundle of TM , considered
as a principalGL(k,H)Sp(1)-bundle, that descends to a connection on H. This
connection is equivalent to a direct sum decomposition of the tangent space
Th(H− {0}) into vertical and horizontal subspaces Vh ⊕Hh, where Vh can be
identified with the tangent space of the fiber and Hh can be identified with
the tangent space of the base. That is, we have

Th(H− {0}) ∼= Th(Hx − {0})⊕ TxM ∼= Hx ⊕ TxM

As H is a complex vector bundle, there is an almost complex structure on
the summand Hx given by multiplication by i. On the other summand, we
have that h ∈ Hx − {0} determines an almost complex structure on TxM by
Proposition 3.3. Taking the direct sum yields an almost complex structure
on Th(H − {0}), and it is straightforward to check that the resulting almost
complex structure depends smoothly on h and thus defines an almost complex
structure on the entirety of H×.

Using the Newlander-Nirenberg theorem, the integrability of this complex
structure is related to the vanishing of a certain component of the curvature
related to the quaternionic connection ∇. A direct proof, making use of the
curvature properties of quaternionic connections developed in Section 5.1, is
given in Besse [9, Proof 14.70]. Salamon gives a more elegant representation-
theoretic argument in [41]. His proof showing integrability in the quaternion-
Kähler case given in [40] can also be generalized to the quaternionic case.

This discussion is a generalization of the 4-dimensional case considered by
Atiyah, Hitchin, and Singer in [4]. Recall that an almost quaternionic manifold
in four dimensions is equivalent to a choice of oriented conformal class on M ,
as discussed at the end of Section 2.1. Fixing a metric in that conformal
class is equivalent to reducing the structure group of TM to SO(4), and so
by considering the locally-defined double cover, a Spin(4) ∼= Sp(1) × Sp(1)
bundle, we obtain the spinor bundles S+, S− that are exactly analogous to
E,H. In particular, we have S+ ⊗ S− ∼= T ∗M ⊗ C, just as for E,H, and so
the same method that defines the almost complex structure on H× described
above yields an almost complex structure on S+ − {0-section}. In this case,
though, the integrability of these almost complex structures is not automatic,
and instead requires that the conformal structure be anti-self-dual, explaining
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the extra condition in Definition 2.11. Note that we have fixed a metric in
the conformal class for concreteness, but Atiyah et. al. moreover show that
this construction and the resulting complex structure are independent of this
choice.

The action of multiplication by a non-zero complex number on H× is holo-
morphic with respect to this complex structure by definition, and therefore the
quotient Z = P(H), is a complex manifold. Note that, Z has real dimension
4k+2, as it is a sphere bundle over M4k, and therefore has complex dimension
2k + 1. We will use p : Z → M to denote the sphere bundle fibration, which
is also known as the twistor projection.

There a few more important features of this fibration. If we work locally
over an open subset U ⊂M , so that we can assume that H exists globally over
U , then the projectivization P(H) admits a tautological line bundle we will
call L−1. Explicitly, if z ∈ p−1(x) is the equivalence class [h] for h ∈ Hx, the
fiber (L−1)z is exactly the complex span of h in Hx. This gives an inclusion
of L−1 into p∗H over p−1(U). If we let TF = ker dp : TZ → TM denote the
subbundle of the holomorphic tangent bundle of Z that is tangent to the fibers
of the projection, then these bundles fit together into the standard Euler exact
sequence for the projectivization of a vector bundle,

0 L−1 p∗H L−1 ⊗ TF 0

Considering determinant bundles, we then have the isomorphism Λ2p∗H ∼=
L−2 ⊗ TF , which yields L2 ∼= TF since Λ2H is trivialized by the section ωH .
Note that although L−1 is defined only locally, this shows even tensor powers
of this bundle are in fact defined globally. Moreover, since Z = P(H), we
have that the fibers p−1(x) of the twistor projection, which we know to be
spheres from the description of Z as a unit sphere bundle, are in fact complex
submanifolds of Z biholomorphic to CP1, which are therefore called real twistor
lines. In particular, restricting the isomorphism L2 ∼= TF to one of these fibers
yields that L2|CP1

∼= TCP1 = O(2), which partially explains our choice of
notation.

The bundle L2 is also related to the canonical bundle of Z. To see this, we
can work locally, so that L−1 exists, and choose a standard basis h1, h2 for H
associated to the 2-form ωH as in the discussion following Proposition 3.2. Let
z1, z2 be the related coordinate functions, so that an element in Hx is given
by z1h1(x) + z2h2(x). If we write

∇hi = σjihj

for the local connection 1-forms for the bundle H, then we can consider the
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forms
βi = dzi + zjπ∗σij

defined on H×, where π : H → M is the vector bundle projection. These are
in fact the (1, 0)-forms associated to the vertical part of the complex structure
defined on H×, so that the form

α = z2β1 − z1β2

is a (1, 0)-form on H×. The same curvature properties of the quaternionic
connection that insure the integrability of the complex structure on the twistor
space imply that in fact α is a holomorphic 1-form. Note that α is quadratic
in z1, z2, and that β1, β2 are pullbacks of (1, 0)-forms on Z, so that in fact
α descends to a holomorphic 1-form θ on Z with values in the bundle L2.
Considering this as an inclusion of L−2 into Ω1(Z) the set of holomorphic 1-
forms on Z, we have a short exact sequence of holomorphic vector bundles on
Z

0 L−2 Ω1(Z) L−1 ⊗ p∗E 0θ (12)

since the quotient is exactly the bundle of (1, 0) forms at z ∈ p−1(x) in the
horizontal direction, which are given by the forms

p∗(T 1,0
x M) = p∗(Ex ⊗ Ch) = p∗Ex ⊗ (L−1)z

where z = [h] for h ∈ Hx. Note that the above defines a holomorphic structure
for the bundle p∗E over Z. Considering determinant bundles for this short
exact sequence yields an isomorphism

KZ
∼= L−2(k+1) ⊗ Λ2kp∗E

Note that if we assume that our quaternionic manifold has a chosen scale then
the bundle Λ2kp∗E = p∗Λ2kE is canonically trivial as a smooth vector bundle,
so that in a scaled quaternionic manifold we have that L2 is a (k + 1)-root of
the anticanonical bundle of Z.

We can also consider the normal bundle of each fiber. If we fix x ∈ M ,
and consider the fiber Hx − {0} as a submanifold of H×, then the splitting
T ∗hH − {0} ∼= Hx ⊕ TxM and the definition of the complex structure on H×

gives that the holomorphic conormal bundle of Hx − {0} at h consists of the
(1, 0)-forms on TxM determined by h. These (1, 0)-forms are those in the
space Ex ⊗ Ch by equation (11). When we projectivize, we have that the
conormal bundle of p−1(x) in Z is isomorphic to Ex⊗L−1|CP1 = Ex⊗O(−1),
and taking the dual therefore yields that the normal bundle of a twistor fiber
is C2k ⊗O(1).
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Finally, considering Z as the unit sphere bundle in the SO(3)-bundle Q
gives that each fiber of Z has a natural antipodal map induced by multipli-
cation by −1 on the fiber of Q. We can therefore define a map σ : Z → Z
that acts on the fibers of p by this antipodal map. Describing Z as P(H), we
have that σ sends the equivalence class of h ∈ H to the equivalence class of
JHh. Evidently σ2 = IdZ , and we observe that σ has no fixed points, although
it does preserve the fibers of p. This map is also antiholomorphic, for if we
consider a point in Z = P(H) as the almost complex structure Jh on Tp(h)M ,
then σ sends Jh to −Jh. We therefore have that dσ : TZ → TZ changes
the sign of the complex structure defined on Z via Proposition 3.4, so that σ
is antiholomorphic. An antiholomorphic involution on a complex manifold is
also known as a real structure.

Gathering these various properties of the twistor space into a theorem, we
have

Theorem 3.5. Let M4k be a quaternionic manifold. Then the twistor space
Z is a complex manifold of dimension 2k + 1 with the following properties:

(i) There exists a smooth fibration p : Z → M giving Z the structure of a
smooth S2-bundle over M .

(ii) The fibers p−1(x) are complex submanifolds of Z biholomorphic to CP1,
with normal bundle isomorphic to C2k ⊗O(1).

(iii) The manifold Z admits an antiholomorphic involution σ that acts as the
antipodal map on the fibers of p.

(iv) The manifold Z admits a holomorphic line bundle L2 that is isomorphic
as a smooth vector bundle to TF = ker dp, while L2(k+1) is isomorphic as
a holomorphic vector bundle to −KZ, the anticanonical bundle of Z.

Although the above theorem is stated for quaternionic manifolds, it holds
for weakly quaternionic manifolds if we discard property (iv). That is, given a
weakly quaternionic manifold, we can fix a quaternionic connection to define
the complex structure on the twistor space, and the properties of (i) - (iii)
above are in fact invariant under the choice of connection. The isomorphism
L2 ∼= TF , however, depends on the form ωH and therefore will depend on
the choice of connection. This is similar to the conformal invariance in the
four-dimensional case discussed above. This independence is partially demon-
strated in Section 3.3 when we consider the inverse of the twistor construc-
tion. A direct proof that the twistor construction is independent of the chosen
quaternionic connection has also been given by Alekseevsky, Marchiafava, and
Pontecorvo [3]

Unsurprisingly, if M is in fact quaternion-Kähler then the additional struc-
ture of a Riemannian metric gives additional structure to Z, in the form of a
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complex contact structure.

Theorem 3.6 ([7, 40]). Let M4k be quaternion-Kähler manifold. Then the
twistor space Z is a complex manifold of dimension 2k + 1 with the following
properties:

(i) There exists a smooth fibration p : Z → M giving Z the structure of a
smooth S2-bundle over M .

(ii) The fibers p−1(x) are complex submanifolds of Z biholomorphic to CP1,
with normal bundle isomorphic to C2k ⊗O(1).

(iii) The manifold Z admits an antiholomorphic involution σ that acts as the
antipodal map on the fibers of p.

(iv) The manifold Z admits a complex contact structure, a holomorphic 1-
form θ with values in the bundle L2 with the property that the contact
distribution D = ker θ is transverse to the fibers p−1(x) for x ∈M , with
dθ|D a non-degenerate 2-form.

Proof. The first three properties above are the properties of the twistor space
of a quaternionic manifold, which we repeat here only for completeness. We
only need to show the existence of the complex contact structure on Z.

The isomorphism of determinant bundles induced by the short exact se-
quence (12) yields an isomorphism KZ

∼= L−2(n+1), since the determinant
bundle of E is canonically trivial from the scale. Then considering the in-
clusion θ in that short exact sequence as an L2-valued 1-form, we can use
this isomorphism to treat θ ∧ (dθ)n as a holomorphic section of the bundle
L2(n+1) ⊗ KZ

∼= O, that is, as essentially a holomorphic function. This ex-
pression will not depend on the choice of local parallel section of L2 used to
compute the exterior derivative. Again the curvature properties give that this
holomorphic function is a positive multiple of the scalar curvature, so as long
as the scalar curvature is non-zero (which we assume in our terminology for a
quaternion-Kähler manifold) the form θ yields a complex contact structure.

Considered as a line-bundle valued 1-form, we have that θ acts as projection
onto L2 ⊂ TZ. Recalling that L2|p−1(x) = TCP1 when restricted to twistor
fibers, we have that the kernel of θ is transverse to the fibers, while the fact
that θ yields an isomorphism L−2(n+1) ∼= KZ gives that dθ is nondegenerate
on the kernel.

Finally, in the case that M is in fact a positive quaternion-Kähler manifold,
we have

Theorem 3.7 ([40]). Let M be a quaternion-Kähler manifold with scalar cur-
vature s > 0. Then Z admits a complete Kähler-Einstein metric of positive
scalar curvature.
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Proof. Again we work locally over an open set U ⊂ M where we can assume
that the bundle H is well defined, so that we have the tautological bundle L−1

defined on p−1(U). This line bundle has a Hermitian inner product induced by
the inclusion L−1 ⊂ p∗H and the Hermitian inner product already present on
H. Letting ‖s‖2 denote the induced norm of a holomorphic section of the dual
L, the curvature of the Chern connection on this bundle is given by the (1, 1)-
form ∂∂ log ‖s‖2, which is a well-defined form on all of Z, and multiplying by
i yields a positive-definite (1, 1) form. Proving the positive definite property
of this connection is where the hypothesis that s > 0 is necessary.

To see that this metric is Kähler-Einstein, we recall that on a Kähler man-
ifold the Ricci form is i times the curvature of the connection on the canonical
bundle induced by the Levi-Civita connection of the Kähler metric. We also
have the isomorphism KZ

∼= L−2(n+1) from above, and so the Chern connec-
tion on L also induces a connection on KZ , which will in fact coincide from
the uniqueness of the Chern connection. Therefore the Kähler form on Z is a
multiple of the Ricci form.

Corollary 3.8. A positive quaternion-Kähler manifold is simply connected.

Proof. Myers’s theorem gives that the existence of a complete Einstein metric
with positive scalar curvature on Z implies that Z is compact. A theorem of
Kobayashi [22] then gives that Z is simply connected. Since Z is an S2-bundle
over M , this implies M is simply connected as well.

We end by briefly describing the twistor spaces associated to the Wolf
spaces. Wolf [43] showed that the twistor spaces of the symmetric quaternion-
Kähler spaces described in equation (1) are obtained by replacing the second
factor in the quotient group by U(1). For example, the twistor space of the
the quaternionic projective space HPk is

CP2k+1 =
Sp(k + 1)

Sp(k)× U(1)

In particular, if we consider [h] ∈ HPk as the quaternionic line in Hk+1 spanned
by some element h ∈ Hk+1, then the twistor fiber Z[h] is the complex line in
Hk+1 ∼= C2(k+1) spanned by h. The quaternionic line in Hk+1 can be identified
with C2, and so the fiber over [h] in the twistor space is the projectivizaztion
of this C2, namely CP1, and moreover the set of all twistor lines is the set of
all lines in CP1, which are well-known to have the appropriate normal bundle.
The real structure is induced by quaternionic multiplication by j on Hk+1. In
homogeneous coordinates, it is given by

[z0, z1, . . . , z2k, z2k+1] 7→ [−z1, z0, . . . ,−z2k+1, z2k]
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The contact and Kähler-Einstein structures on CP2k+1 are the canonical such
structures on these spaces. In particular, the Kähler-Einstein metric is the
Fubini-Study metric, and the contact structure on CP2k+1 is the one induced
from the canonical complex symplectic form on C2k+2, see [29].

3.3 The Inverse Twistor Construction

The construction yielding a twistor space from either a quaternionic or
quaternion-Kähler manifold can also be inverted, that is, a complex mani-
fold with the same holomorphic properties as a twistor space can be used to
produce a weakly quaternionic or quaternion-Kähler manifold. The inversion
in quaternionic dimension k ≥ 2 is due to Pedersen and Poon [35], while in
inversion in the quaternion-Kähler case was proved independently by LeBrun
[27]. In both cases the process is a generalization of the inverse construction
in quaternionic dimension k = 1 demonstrated by Atiyah et. al. [4].

Theorem 3.9. Let Z be a complex manifold of dimension 2k + 1, with the
additional properties that

(i) Z admits an real structure σ without fixed points.
(ii) Z is fibered by a family of non-singular rational curves that are invariant

under σ, with normal bundle C2k ⊗O(1)
Then Z is the twistor space of a weakly quaternionic manifold.

Proof. Again the curves described in (ii) above are known as real twistor lines,
while generically a curve with the specified normal bundle that is not necessar-
ily fixed by σ is simply a twistor line. If we fix C ∈ Z such a twistor line, then
the normal bundle is N = C2k ⊗O(1) and therefore we have the vanishing of
the cohomology group

H1(C,N) ∼= H1(CP1,C2k ⊗O(1)) = C2k ⊗H1(CP1,O(1)) = 0,

Therefore the methods of Kodaira [24] give that the parameter space of twistor
lines in Z is a complex manifold. Moreover, if we call this family X, then,
then for x ∈ X corresponding to the curve Cx ⊂ Z we have

TxX ∼= H0(Cx, N) ∼= H0(CP1,C2k ⊗O(1)) ∼= H0(CP1,C2k)⊗H0(CP1,O(1))

Denoting these vector spaces by E∗x and H∗x, respectively, for reasons that will
become clear momentarily, we observe that these vector spaces have dimen-
sions 2k and 2, respectively, so that X is a complex manifold of dimension 4k.
Considering a neighborhood of x ∈ X, we then obtain locally-defined bundles
E∗,H∗ on X, along with the isomorphism TX ∼= E∗ ⊗H∗.
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Let M ⊂ X denote the set of real twistor lines, which is then a real
submanifold of X of dimension 4k. We claim that M has the structure of a
quaternionic manifold, with associated twistor space Z. Let p : Z →M denote
the fibration that sends a point z ∈ Z to the real twistor line containing it.

To construct the weakly quaternionic structure on M , fix x ∈ M ⊂ X
representing the curve Cx. Since σ(Cx) = Cx by assumption, we have that
the derivative σ∗ preserves the normal bundle of Cx, and since σ is anti-
holomorphic we have a real structure on TxX ∼= H0(Cx, N), with the related
real subspace being TxM .

Considering the tensor factors TxX ∼= E∗x ⊗H∗x, the derivative σ∗ can be
factored into maps σE∗ , σ

H
∗ acting on each tensor factor, which are conjugate

linear and must satisfy (σE∗ )2 = ± Id, (σH∗ )2 = ± Id, with the sign being
identical in each case so that σ2

∗ = (σE∗ ⊗ σH∗ )2 = Id∗ = 1, since σ2 = Id is
a real structure. In order to chose the sign, we observe that we can identify
P(Hx) = Cx by identifying a section s ∈ H0(CP1,O(1)) with the set s−1(0),
which consists of a single point since s is a holomorphic section of O(1). Under
this identification, the map σH∗ is then identified with the antipodal map by
assumption. This implies that (σH∗ )2 = − Id, for if (σH∗ )2 = Id then ±1
would be eigenvalues of σH∗ , and so the induced map on the projectivizations
would have fixed points, which the antipodal map does not have. The maps
σE∗ , σ

H
∗ therefore determine quaternionic structures on the bundles E∗,H∗, by

declaring multiplication by j to act by these maps.
Combining all of the above, we have that as TM ⊗C ∼= TX|M , we have a

(locally defined) isomorphism

TM ⊗ C ∼= E∗ ⊗H∗,

where the bundles on the right-hand side have structure groups GL(k,H) and
GL(1,H), respectively. Restricting to the real subbundle, we have that TM
has structure group GL(k,H)GL(1,H) ∼= GL(k,H)Sp(1) via the isomorphism

Aq ∈ GL(k,H)GL(1,H)↔ (A|q|)
(
q

|q|

)
∈ GL(k,H)Sp(1)

Therefore M has the structure of an almost quaternionic manifold by Propo-
sition 2.18, and that the bundle E∗,H∗ are precisely the bundles associated to
that almost quaternionic manifold via the construction defined in Section 3.1.

It remains to show that the almost quaternionic structure on M is in fact
weakly quaternionic, that is, the GL(k,H)Sp(1)-structure on M above is pre-
served by some torsion-free connection. Using Proposition 3.4 the desired
connections on M are related to choices of complex structure on H× via the
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choice of a connection on the bundle H itself. We therefore fix a connection
on H, and use this connection to define an almost complex structure on P(H).
Once again the identification P(Hx) ∼= Cx discussed above yields a diffeomor-
phism from Z to P(H) as a smooth bundle map. This diffeomorphism can in
fact be shown to be holomorphic with respect to the complex structures on
each space, regardless of the choice of connection made on H. In particular, all
of the complex structures so defined on P(H) are integrable, and therefore the
exterior derivative of any (1, 1)-form on P(H) will have no (0, 3)-part. Thus,
if we have a 2-form α on M that is of type (1, 1) with respect to all of the
possible almost complex structures associated to the GL(k,H)Sp(1)-structure
on M , this pulls back to a (1, 1) form on P(H) so that d(p∗α) = p∗(dα) has
no (0, 3)-part. Salamon [41] has shown that the obstruction to the existence
of torsion-free quaternionic connections on a GL(k,H)Sp(1)-structure is pre-
cisely this (0, 3)-part associated to the exterior derivatives of a (1, 1) form.
Therefore M has a weakly quaternionic structure.

As in the case of quaternionic manifolds, the twistor construction for
quaternion-Kähler manifolds is also invertible, as was shown by Pedersen and
Poon [35], and independently by LeBrun [27]. We will not need this inversion
in our work, and therefore will not state it precisely here, but the process is
essentially to carry out the inversion described in Theorem 3.9 to obtain a
weakly quaternionic manifold, and then show that the contact structure on
Z then induces a quaternion-Kähler metric. If θ is the contact form, then dθ
is nondegenerate when restricted to the contact distribution, and this non-
degenerate 2-form induces the 2-form ωE on the fibers of E. The form ωH can
be chosen on H, as in the inversion for quaternionic manifolds, so that the
symmetric complex 2-form ωE ⊗ ωH yields a complexified metric, as in equa-
tion (10), that will define a Riemannian metric when taking real parts. Note
that in this case the contact structure then determines a preferred quater-
nionic connection from the many possible connections available in the weakly
quaternionic structure, namely the Levi-Civita connection.
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4 Construction of Quaternionic Complex

Manifolds

This section focuses on the construction of quaternionic complex manifolds,
which are by our definition quaternionic manifolds with a preferred parallel
complex structure. In principle, there are two methods for constructing such
manifolds. Beginning with a quaternionic manifold, we can search for sections
of Q that are parallel with respect to the given connection. Conversely, one
could begin with a weakly quaternionic manifold and a fixed complex structure,
and attempt to find a quaternionic connection that preserves that complex
structure. Note that in either case the resulting complex structure may only
be locally defined, since quaternionic manifolds need not admit any global
almost complex structure.

Our method is the latter one, and so to begin we study the space of quater-
nionic connections on a weakly quaternionic manifold in Section 4.1. In Section
4.2 we summarize Hitchin’s construction of quaternionic complex manifolds,
which uses Killing fields on quaternion-Kähler manifolds to produce the can-
didate complex structure. Our main result is to give a generalization of this
procedure that can produce candidate complex structures on any quaternionic
manifold, not just one with a metric. This result is presented in a local,
coordinate-dependent treatment in Section 4.3, and then reconsidered in the
more general framework of paraconformal structures in Section 4.4. Finally,
we end by giving a twistorial interpretation of these results in Section 4.5.

4.1 The Space of Quaternionic Connections

Definition 2.3 of weakly quaternionic and quaternionic manifolds implies
that a weakly quaternionic manifold can admit many quaternionic connections.
Given a fixed quaternionic connection ∇, it is well known that any other
(not necessarily quaternionic) connection on TM can be written as ∇̂XY =
∇XY +A(X, Y ) for some (2, 1)-tensor A. The following lemma gives necessary

and sufficient conditions on the tensor A to ensure that ∇̂ is also a quaternionic
connection.

Lemma 4.1 ([2, 36]). Let M4k be a weakly quaternionic manifold, and let ∇
be a fixed quaternionic connection on TM . Then ∇̂ is a quaternionic connec-
tion on M if and only if it is of the form ∇̂XY = ∇XY + AΥ(X, Y ), where
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Υ ∈ Ω1(M) is an arbitrary 1-form and the (2,1)-tensor AΥ is defined by

AΥ(X, Y ) =
1

2

(
Υ(X)Y + Υ(Y )X −

3∑
i=1

(Υ(IiX)IiY + Υ(IiY )IiX)

)
(13)

for any local compatible frame {I1, I2, I3} = {I, J,K}.

Proof. It is well-known that if ∇ is torsion free then ∇̂XY = ∇XY +A(X, Y )
will be torsion-free if and only if A(X, Y ) = A(Y,X), and we observe that AΥ

as defined above is in fact symmetric. The main condition to consider, though,
is the requirement that the new connection ∇̂ preserves sections of Q.

If S is any local section of Q, then we have

(∇̂XS)(Y ) = (∇XS)Y + AΥ(X,SY )− SAΥ(X, Y ) (14)

Since ∇XS is by assumption a local section of Q, we have that (∇̂XS) will
be a local section of Q if an only if the the endomorphism defined by Y 7→
AΥ(X,SY )− SAΥ(X, Y ) is a local section of Q. A direct computation using
the definition of AΥ above and choosing S = I, J,K yields

AΥ(X, IY )− IAΥ(X, Y ) = −Υ(KX)JY + Υ(JX)KY
AΥ(X, JY )− JAΥ(X, Y ) = Υ(KX)IY −Υ(IX)KY
AΥ(X,KY )−KAΥ(X, Y ) = −Υ(JX)IY + Υ(IX)JY

(15)

In each case we see that the transformation on the right-hand side, considered
as an endomorphism acting on Y , is local section of Q, and so by linearity any
connection ∇̂ determined by the expression above is in fact quaternionic. The
converse statement is more tedious to justify, so we will not give it here and
instead refer to the citations above.

This variability in the space of quaternionic connections is greatly reduced
when we consider quaternionic manifolds with scale.

Proposition 4.2 ([2, 17]). Let (M4k,Q) with k ≥ 2 be a weakly quaternionic
manifold. If µ is any volume form on M , then there exists a unique quater-
nionic connection ∇ such that ∇µ = 0.

Let (M4k,Q,∇, µ) be a scaled quaternionic manifold for k ≥ 2. If ∇̂ is a

different choice of quaternionic 1-form related to ∇ by the 1-form Υ, then ∇̂
preserves a scale if and only if Υ is exact.

Proof. We begin by understanding how changing a connection via a choice of
1-form Υ changes the connection when acting on volume forms. Let Ei for
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i = 1, . . . 4k be a local quaternionic frame as in the discussion following Propo-
sition 2.17, that is, the basis is generated by k linearly independent vector fields
and the endomorphisms I, J,K so that, for example, E2 = IE1, E3 = JE1,
etc. Then we have

(∇̂Ejµ)(E1, . . . , E4k) = Ej · µ(E1, . . . , E4k)−
4k∑
i=1

µ
(
E1, . . . , ∇̂EjEi, . . . , E4k

)
= Ej · µ(E1, . . . , E4k)−

4k∑
i=1

µ
(
E1, . . . ,∇EjEi + AΥ(Ej, Ei), . . . , E4k

)
= (∇Ejµ)(E1, . . . , E4k)−

4k∑
i=1

µ (E1, . . . , AΥ(Ej, Ei), . . . , E4k)

From the definition of AΥ and the fact that µ is a volume form and therefore
alternating, we have that only the Ei component of AΥ(Ej, Ei) will appear in
this sum.

To simplify the argument, assume for now that j ≡ 1 (mod 4), so that
Ej+1 = IEj, Ej+2 = JEj, and Ej+3 = KEj. Considering the sum over i above,
if i 6= j, j+1, j+2, j+3, that is, if Ej and Ei are not in the same quaternionic
subspace, then the Ei component of AΥ(Ej, Ei) is exactly 1

2
Υ(Ej)Ei. For

i = j, j + 1, j + 2, j + 3, the Ei components of AΥ(Ej, Ei) are all Υ(Ej), by a
direct computation. Therefore if j ≡ 1 (mod 4) we have that

∇̂Ejµ = ∇Ejµ−
(

4(k − 1)

2
+ 4

)
Υ(Ej)µ = ∇Ejµ− 2(k + 1)Υ(Ej)µ

Similar arguments hold for the other possible equivalence classes of j, so that
by linearity we ultimately have

∇̂µ = ∇µ− 2(k + 1)Υ⊗ µ

Turning to the first part, as M is weakly quaternionic we can begin by
choosing an arbitrary quaternionic connection ∇. Then as µ is a volume form
we have that there exists a 1-form η such that ∇µ = η ⊗ µ. Then if we set
Υ = 1

2(k+1)
η, we have

∇̂µ = η ⊗ µ− 2(k + 1)
1

2(k + 1)
η ⊗ µ = 0

giving the desired connection, and evidently this is the only possible choice of
Υ, giving uniqueness.
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For the second part, if we now consider ∇ to be the connection compatible
with a fixed volume form µ, then we have for any other quaternionic connection
∇̂ and any smooth function f > 0 that

∇̂(fµ) = df ⊗ µ+ f∇̂µ
= df ⊗ µ+ f (∇µ− 2(k + 1)Υ⊗ µ)

= (df − 2(k + 1)fΥ)⊗ µ

Therefore if ∇̂ preserves the scale fµ, we have that df − 2(k + 1)fΥ = 0,
that is,

Υ =
1

2(k + 1)
d(log f), (16)

so that Υ is exact. Conversely, if Υ is exact, we can write Υ = dh, and if we
set

f = exp(2(k + 1)h), (17)

we have that df = 2(k + 1)fdh and therefore ∇̂fµ = 0, so that ∇̂ preserves
the scale fµ.

In much of the work in the following sections we will restrict to an open
subset of a quaternionic manifold M with a fixed compatible frame {I, J,K}
for Q, and so we will need the following lemmas to describe quaternionic
connections with respect to this local frame.

Lemma 4.3. Let {I, J,K} be a compatible frame for a quaternionic manifold
(M,Q,∇). With respect to this local frame, the local connection 1-forms for
∇, considered as a connection on Q, are of the form

∇XI = a(X)J − b(X)K
∇XJ = −a(X)I + c(X)K
∇XK = b(X)I − c(X)J

(18)

Proof. From Corollary 2.19, we have that the structure group of Q is SO(3)
and the connection ∇ is compatible with this structure, so that the connection
1-forms a, b, c can be considered as an so(3)-valued 1-form

a(X) =

 0 −a(X) b(X)
a(X) 0 −c(X)
−b(X) c(X) 0


where this matrix acts on Q via standard matrix multiplication with respect
to the chosen basis {I, J,K}. Note the signs here are chosen to be compatible
with the isomorphism of Proposition 2.16.
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This can also be verified more directly by observing that ∇XI,∇XJ,∇XK
are by assumption sections of Q, and so each section can be expressed in terms
of the compatible frame {I, J,K}. The quaternionic relations among I, J,K
then induces the relationships between the coefficients for these derivatives
with respect to that frame, which are precisely the relationships given above.

Lemma 4.4. Let a, b, c be the connection 1-forms for ∇ a quaternionic connec-
tion with respect to the compatible frame {I, J,K}. Let ∇̂ be the quaternionic

connection associated to the 1-form Υ via Lemma 4.1, and let â, b̂, ĉ be the as-
sociated connection 1-forms for ∇̂ with respect to the same compatible frame.
Then

â = a−Υ ◦K
b̂ = b−Υ ◦ J
ĉ = c−Υ ◦ I

Proof. Combining equation (14) with S = I and the first equation of (15)
above yields the local expression

â(X)J − b̂(X)K = ∇̂XI

= (∇XI)−Υ(KX)J + Υ(JX)K

= (a(X)−Υ(KX)) J − (b(X)−Υ(JX))K

The equality for ĉ is proved similarly.

With this framework for understanding how to change the quaternionic
connection on a weakly quaternionic manifold, we can now state conditions
under which a given almost complex structure I is preserved by a quaternionic
connection.

Lemma 4.5. Let (M,Q,∇) be a quaternionic manifold, and let {I, J,K} be

a local compatible frame for Q. There exists a quaternionic connection ∇̂ with
∇̂I = 0 if and only if

a ◦K = b ◦ J

where a, b, c are the local connection 1-forms of Lemma 4.3. In this case, the
connection is unique and given by the 1-form

Υ = −(a ◦K) = −(b ◦ J)
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Proof. From equation (18) we have that ∇̂I = 0 if â = b̂ = 0, and so by
Lemma 4.4 this is equivalent to being able to choose Υ such that a = Υ ◦K
and b = Υ ◦ J . Precomposing with K, J , respectively, this requires that
a ◦K = −Υ and b ◦ J = −Υ.

Of course for a general almost complex structure I ⊂ Γ(Q), the conditions
of the above proposition will not hold, as for example, it is necessary that I is
in fact integrable. The following sections give methods for producing sections
of Q satisfying the above properties.

4.2 Quaternionic Complex Manifolds from
Quaternion-Kähler Manifolds

The first method to produce a compatible complex structure I fitting the
requirements of Lemma 4.5 is due to Hitchin [17], who has shown that such
a complex structure can arise from the momentum section associated to a
quaternionic U(1) action on a quaternion-Kähler manifold. We review this
construction in this section.

Definition 4.6. We call a vector field X0 on M a quaternionic Killing field
if LX0g = 0 and LX0Ω = 0, where Ω is the fundamental 4-form of Proposition
2.9.

Quaternionic Killing fields therefore generate isometries that preserve the
quaternionic structure by preserving Ω. Given a quaternionic Killing field X0

and a choice of local compatible frame {I, J,K}, we can construct a G-valued
1-form on M by

ΘX0 = iX0ωI ⊗ ωI + iX0ωJ ⊗ ωJ + iX0ωK ⊗ ωK (19)

This form does not in fact depend on the choice of local compatible frame,
and therefore defines a global G-valued 1-form on M . Moreover, this ΘX0 is
exact in the sense that it can be obtained by taking the covariant derivative
of a unique section of the bundle G, which can be obtained as follows. As X0

is a Killing field, it defines a 2-form on M by g(∇XX0, Y ) = −g(∇YX0, X).
Let αX0 denote the orthogonal projection of this 2-form to G ⊂ Λ2T ∗M .

Theorem 4.7 ([12, 13, 42]). Let X0 be a quaternionic Killing field on M
a quaternion-Kähler manifold. Then there exists a unique section ρX0 of G,
called the momentum section, such that

∇ρX0 = ΘX0 ,
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given by

ρX0 =
4k(k + 2)

s
αX0

We note the constant here arises from the fact that the curvature operator
R : Λ2TM → Λ2TM acts as λ Id when restricted to G for λ = s/(4k(k + 2))
a constant positive multiple of the Einstein constant of the metric (see the
discussion following Corollary 5.4), and so the constant here is 1/λ.

This notion of a quaternion-Kähler momentum map, developed by Galicki
[12] and Galicki and Lawson [13] can be applied in the more general context
of compact Lie group actions on M preserving both the metric and quater-
nionic structure, although here we only make use of 1-dimensional U(1) actions
generated by a Killing field.

Under the correspondence Q ∼= G induced by g, the momentum section
ρX0 ∈ Γ(G) corresponds to a section ρ̃X0 ∈ Γ(Q). If we choose any local com-
patible frame {I, J,K}, then in local coordinates these sections are expressed
as

ρX0 = ρ1ωI + ρ2ωJ + ρ3ωK ρ̃X0 = ρ1I + ρ2J + ρ3K

We can then observe that

ρ̃X0 ◦ ρ̃X0 = −(ρ2
1 + ρ2

2 + ρ2
3) IdTM

so that the momentum section determines a compatible almost complex struc-
ture

IX0 =
1√

ρ2
1 + ρ2

2 + ρ2
3

ρ̃X0

on the open set M0 = M − {ρX0 = 0}. This set is in fact dense, although
we defer the proof of this fact to Theorem 4.24 so that we may use twistor
methods.

Theorem 4.8 ([17]). Let (M, g) be a quaternion-Kähler manifold admitting a
quaternionic Killing field X0 with momentum section ρX0.

Then there exists a unique quaternionic connection ∇̂ on the open, dense
submanifold M0 = M − {ρX0 = 0} preserving the almost complex structure

IX0, that is, (M0,Q|M0 , ∇̂, IX0) is a quaternionic complex manifold.

Proof. We can assume that a local compatible frame {I, J,K} for Q|M0 has
been chosen so that I = IX0 . This is equivalent to assuming that ρX0 = ρ1ωI .
Let ∇ be the Levi-Civita connection associated to g, and let a, b, c be the
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connection 1-forms for ∇ with respect to the local compatible frame {I, J,K}.
Then

∇ρX0 = ∇(ρ1ωI) = dρ1 ⊗ ωI + ρ1∇ωI
= dρ1 ⊗ ωI + ρ1 (a⊗ ωJ − b⊗ ωK) .

Now ρX0 is a momentum section, so that ∇ρX0 = ΘX0 and therefore by equa-
tion (19) we have that

dρ1 = iX0ωI ρ1a = iX0ωJ − ρ1b = iX0ωK . (20)

We then observe

(a ◦K)(X) = ρ−1
1 g(JX0, KX) = ρ−1

1 g(IJX0, IKX)

= −ρ−1
1 g(KX0, JX) = (b ◦ J)(X),

so that the conditions of Lemma 4.5 are satisfied. Therefore the connection ∇̂
associated to the 1-form Υ = −(a ◦K) is the unique quaternionic connection
that preserves I = IX0 , yielding a quaternionic complex structure on M0.

Lemma 4.9. The 1-form Υ defined in the proof of Theorem 4.8 is

Υ = − 1

ρ1

dρ1 = −d(log ρ1) (21)

Proof. Computing directly from the definitions and equation (20), we have

Υ(X) = −(a ◦K)(X) = − 1

ρ1

g(JX0, KX)

= − 1

ρ1

g(IX0, X) = − 1

ρ1

(iX0ωI)(X)

= − 1

ρ1

dρ1(X)

Corollary 4.10. If µ denotes the Riemannian volume form for M , the con-
nection ∇̂ preserves the volume form

µ̂ = ρ
−2(k+1)
1 µ

Proof. Since Υ is evidently exact by equation (21), we have from Proposition
4.2 that it preserves a volume form, the formula for which is given by equation
(17).
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Thus Hitchin’s construction in fact yields a scaled quaternionic complex
manifold, as the connection preserves an almost quaternionic structure, a vol-
ume form, and a complex structure. Equivalently, the holonomy group for
∇ is contained in SL(k,H)U(1), at least in quaternionic dimension k ≥ 2.
In the case of quaternionic dimension k = 1, Hitchin [17] also observes that
the formula (13) for the change in connection is equivalent to the change in
the Levi-Civita connection induced by the conformal change of the metric to
ĝ = ρ−2

1 g on M0. Thus the process yields an anti-self-dual Kähler metric on
M0, which is our definition of a quaternionic complex 4-manifold.

4.3 Quaternionic Complex Manifolds from
Quaternionic Manifolds

As we have discussed, we can construct connections with holonomy con-
tained in GL(k,H)U(1) by finding a local almost complex structure on a
quaternionic manifold M that satisfies the requirements of Lemma 4.5, and
Hitchin’s construction in the previous section gives a way to produce such
almost complex structures from positive quaternion-Kähler manifolds with
U(1)-symmetries. Many aspects of Hitchin’s construction, however, do not
truly require the quaternion-Kähler metric structure, and can be generalized
to make reference only to the underlying scaled quaternionic structure. In this
section, we carry out this generalization to give a method to construct con-
nections with holonomy contained in GL(k,H)U(1) on open subsets of generic
quaternionic manifolds.

The generalization relaxes two aspects of Hitchin’s argument. In his argu-
ment, the desired almost complex structure arose from the momentum section,
a 2-form on M that was related to Q via the metric. Without a metric, we
must instead search for sections of Q directly. The second generalization is to
make use of the identification of S2H ∼= Q described in Section 3.1 to instead
search for real sections of the bundle S2H.

We therefore need to understand conditions on sections of the bundle S2H
that are equivalent to the necessary conditions for the related complex struc-
ture described in Lemma 4.5. To this end, we first recast that proposition in
terms of sections of the bundle S2H.

Lemma 4.11. Let (M,Q,∇) be a quaternionic manifold, and let I, J,K be
real sections of S2H associated to a choice of local compatible frame for Q,
and choose a unitary frame {h1, h2} for H so that I, J,K have the expressions
given in equation (9).
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Let a, b, c be the connection 1-forms with respect to this frame, which can
be decomposed into E,H parts as

a = a1 ⊗ h1 + a2 ⊗ h2 b = b1 ⊗ h1 + b2 ⊗ h2 c = c1 ⊗ h1 + c2 ⊗ h2

where a1, a2, etc. are local sections of E.
Then there exists a quaternionic connection on M that preserves the almost

complex structure associated to I if and only if

b1 = −ia1 and b2 = ia2 (22)

Proof. The equation is simply a restatement of the requirement of Lemma
4.5 that a ◦K = b ◦ J . For, using the expressions for I, J,K in terms of the
unitary basis h1, h2, we have that the evaluation of a◦K on an arbitrary vector
X = e∗1 ⊗ h∗1 + e∗2 ⊗ h∗2 is given by

a(KX) = −(a1 ⊗ h1 + a2 ⊗ h2)(e∗1 ⊗ h∗1 + e∗2 ⊗ h∗2)i (h1 ⊗ h∗1 − h2 ⊗ h∗2)

= −i(a1 ⊗ h1 + a2 ⊗ h2)(e∗1 ⊗ h∗2 + e∗2 ⊗ h∗1)

= −i(e∗1a1 − e∗2a2),

while the evaluation of b ◦ J is

b(JX) = −(b1 ⊗ h1 + b2 ⊗ h2)(e∗1 ⊗ h∗1 + e∗2 ⊗ h∗2) (h1 ⊗ h∗1 + h2 ⊗ h∗2)

= −(b1 ⊗ h1 + b2 ⊗ h2)(−e∗1 ⊗ h∗2 + e∗2 ⊗ h∗1)

= e∗1b
1 + e∗2b

2

Then a(KX) = b(JX) for arbitrary X, that is for arbitrary e∗1 and e∗2, if and
only if the the equalities of (22) hold. Note the extra negative signs above
appear as we have J,K act on the left, hence by the quaternion conjugate of
the right action.

We note for future reference that the computation for a above shows that
the 1-form (a ◦K) decomposes as

i(a2 ⊗ h1 + a1 ⊗ h2) (23)

Sections of S2H meeting the above condition can be obtained by studying
the twistor operator on M .

Definition 4.12. Let (M,Q,∇) be a quaternionic manifold. The twistor oper-
ator is the differential operator D : S2H→ E⊗S3H given by the composition

S2H T ∗M ⊗ C⊗ S2H = E⊗H⊗ S2H E ⊗ S2H∇

where the final map is symmetrization on the three H factors.
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Theorem 4.13. Let (M,Q,∇) be a quaternionic manifold. Assume that ϕ ∈
S2H is a real section with Dϕ = 0.

Then there exists a unique quaternionic connection ∇̂ on the open, dense
submanifold M0 = M−{ϕ = 0} preserving the almost complex structure associ-

ated to ϕ, that is, the connection ∇̂ has holonomy contained in GL(k,H)U(1).

Proof. As in the proof of Theorem 4.8, we can assume that we have chosen
our fixed unitary frame of H, which in turn gives a local compatible frame
{I, J,K} using equation (9), so that the section ϕ ∈ S2H with Dϕ = 0 is
of the form ϕ = s1I. Note that as ϕ is assumed to be real we have that the
function s1 is real-valued as well, while M0 = {s1 6= 0}. We again defer the
proof of the density of the set M0 until Theorem 4.24.

Let a, b, c be the connection 1-forms with respect to the local compatible
frame I, J,K, with decomposition into E,H parts as described in Lemma 4.11.
Then we can find Dϕ explicitly. We first have

∇ϕ = ds1I + s1∇I = ds1I + s1aJ − s1bK

Expanding the 1-form ds1 as e1⊗ h1 + e2⊗ h2, while using the decomposition
of the remaining terms into E,H parts that has already been described, we
have, dropping the tensor product symbols for brevity,

∇ϕ =
(
e1h1 + e2h2

)
i (h1h2 + h2h1) + s1(a1h1 + a2h2)(h1h1 + h2h2)

− s1(b1h1 + b2h2)i (h1h1 − h2h2)

= s1(a1 − ib1)h1h1h1 + ie1(h1h1h2 + h1h2h1) + s1(a2 − ib2)h2h1h1

+ ie2(h2h2h1 + h2h1h2) + s1(a1 + ib1)h1h2h2 + s1(a2 + ib2)h2h2h2

Symmetrizing on the h factors therefore yields

Dϕ = s1(a1 − ib1)h1h1h1 + (2ie1 + s1(a2 − ib2))(h1 � h1 � h2)

+ (2ie2 + s1(a1 + ib1))(h2 � h2 � h1) + s1(a2 + ib2)h2h2h2

Working on M0 so that s1 6= 0, we have that Dϕ = 0 implies that a1− ib1 = 0
and a2 + ib2 = 0 by inspecting the first and fourth components, which is
equivalent to the required equations (22).

Further inspecting the expression for Dϕ, we have that if Dϕ = 0 then
2ie1 + s1(a2− ib2) = 0 and 2ie2 + s1(a1 + ib1) = 0, which we can rewrite using
(22) as

1

s1

e1 = ia2 1

s1

e2 = ia1
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Then, using equation (23), we have that the 1-forms (a ◦ K) and s−1
1 ds1 are

equal, and therefore Lemma 4.5 gives that the new connection given by The-
orem 4.13 is obtained from the original quaternionic connection ∇ via the
1-form Υ = −d(log s1), c.f. Lemma 4.9. Evidently this form is closed, and
so in the case that the original quaternionic conneciton was compatible with
a scale we have that the resulting connection will also preserve a scale by
Proposition 4.2.

4.4 Quaternionic Complex Manifolds and Paraconfor-
mal Structures

One weakness of the discussion in Section 4.3 is that it relies on local
coordinate expressions, and we have not carefully shown that the results are
independent of the various choices made when using these local expressions. In
this section, we rectify this by using a global, coordinate-free framework, the
theory of complex paraconformal manifolds developed by Bailey and Eastwood
[5]. A complex paraconformal manifold is a complex manifold along with a
splitting of the holomorphic tangent bundle as a tensor product, and therefore
these structures are a complexification of the splitting T ∗M ⊗ C ∼= E⊗H in
the theory of quaternionic geometries.

In order to avoid choosing local frames and coordinates, we will adopt
abstract index notation for this section. The conventions will be as follows.
Lower-case indices will be used to represent tensors involving TM ⊗C and its
dual. Superscripts will be used to denote sections of TM⊗C, while subscripts
will be used to denote sections of T ∗M ⊗ C. For example, Xa represents a
complex vector field, αa represents a complex-valued 1-form, and χ c

ab repre-
sents a complex (2, 1)-tensor. Repeated indices are used to indicate tensor
contractions and evaluations, and we use the “south-east” conventions for
such contractions, so that, for example, Xaαa represents the function α(X)
obtained by evaluating the 1-form α on the vector field X.

We use uppercase letters to denote sections of the bundle E, and upper-
case primed letters to represent sections of H. We choose the subscripts and
superscripts to be compatible with the identification T ∗M ⊗C ∼= E⊗H on a
quaternionic manifold. Therefore βA′ represents a section of H, while νA rep-
resents a section of E∗. We can also use the identification to rewrite lower-case
indices as pairs of unprimed and primed uppercase indices, e.g., αa = αAA′ .

We will use parentheses and square brackets, respectively, to denote
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symmetrization and antisymmetrization operations, so that

α(A1···Ak) =
1

k!

∑
σ∈Sk

αAσ(1)···Aσ(k)

α[A1···Ak] =
1

k!

∑
σ∈Sk

(−1)σαAσ(1)···Aσ(k) ,

where Sk denotes the symmetric group acting on the indices {1, . . . , k}. Fi-
nally, we will use δ to denote the identity, so that, for example, νAδ B

A = νB

represents the action of the identity map on the section ν ∈ Γ(E∗).
Let (M,Q) be a weakly quaternionic manifold. Since M is orientable, we

can for convenience make any choice of volume form µ on M and therefore fix
a quaternionic connection ∇ using Proposition 4.2 to obtain a scaled quater-
nionic manifold. The quaternionic connection then has holonomy contained in
SL(k,H)Sp(1), so we can then consider E∗ and H∗ as bundles with structure
group SL(k,H) and Sp(1), respectively, so that E∗ admits the volume form
ε ∈ Γ(Λ2kE) and H∗ admits the form ωH ∈ Γ(Λ2H) with∇ε = 0 and∇ωH = 0
for the connections on E,H induced by ∇. In order to avoid confusion with
the abstract index notation we have used, we will write ω instead of ωH , or
also ωA′B′ when using abstract index notation. (In particular, we do not want
to confuse ωH with a section of E.) Note that in the case that the manifold is
actually quaternion-Kähler, we have that E∗ also admits a parallel 2-form ωE
with ε = ω∧kE .

We remark that this notation is not traditional. It is more common, es-
pecially in the context of spinors in real dimension 4, to use the letter ε to
denote the top-degree forms on both tensor factors E,H, and rely on indices
for disambiguation. We use ω instead for the top-degree form on H to remain
consistent with the notation introduced in Section 3.1.

We can also consider the converse process. That is, if we vary the connec-
tions on E,H, we will produce new connections on TM ⊗ C. The result will
not in general be a quaternionic connection, but this can be guaranteed by
placing some limitations on how the connections on E,H are modified (c.f. [5,
Section 2.2])

Lemma 4.14. Let (M,Q,∇, µ) be a scaled quaternionic manifold, with related
forms ε, ω, respectively. We also use ∇ to denote the induced connections on
E,H as above. Let f > 0 be a strictly positive real-valued function on M , and
let Υ = d(log f) = f−1df .
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Consider the connections ∇̂ defined on E,H by

∇̂AA′νB = ∇AA′νB −ΥA′BνA

∇̂AA′σB′ = ∇AA′σB′ −ΥAB′σA′

Then the induced connection ∇̂ on TM⊗C is the complexification of a quater-
nionic connection on TM . Moreover, this connection preserves the scale µ̂ =
f 2(k+1)µ.

Proof. Changing the connections defined on E,H as above induces a change
of connection on the bundles Λ2kE and Λ2H as well. For example, we could
represent a section ψB′C′ = ψ[B′C′] of Λ2H as σB′νC′ − σC′νB′ , and use the
above change of connection formulas to derive the formula

∇̂AA′ψB′C′ = ∇AA′ψB′C′ + 2ΥA[B′ψC′]A′ (24)

In particular, we have that Λ2H has the preferred section ωB′C′ that is parallel
with respect to ∇, and using this we observe that

∇̂AA′ (fωB′C′ ) =
(
∇̂AA′f

)
ωB′C′ + f

(
∇̂AA′ωB′C′

)
= ff−1(∇AA′f)ωB′C′ + f

(
∇AA′ωB′C′ + 2ΥA[B′ωC′]A′

)
= f (ΥAA′ωB′C′ + ΥAB′ωC′A′ −ΥAC′ωB′A′ )

= 3fΥA[A′ωB′C′] = 0

since H has dimension 2 and therefore Λ3H = 0. Thus the connection ∇̂
preserves the form ω̂ = fω in Γ(Λ2H).

The above argument makes no use of the special unitary properties of the
bundle H∗, simply the fact that ω is a volume form for that bundle, and so a
similar argument for E∗ yields that the connection ∇̂ also preserves the volume
form ε̂ = fε on E∗. Moreover since f is a real-valued function, the connection
∇̂ will also preserve the quaternionic structure on the bundles E,H as well.

Therefore, if we change the connections on E,H by the proscription in
the lemma, we see that the resulting connections on these bundles yield a
connection on T ∗M ⊗ C that preserves the SL(k,H)Sp(1) structure, which
will moreover be the complexification of a real connection on TM since f is
a real-valued function and therefore ∇̂ will preserve real sections of E ⊗ H.
(This also follows from the formula for the change of connection on T ∗M ⊗C
below).

To show that ∇̂ is quaternionic we must additionally show that it is torsion-
free. To this end, we can express a 1-form as a tensor product νBσB′ and
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apply the change of connection formulas on E,H to show that the change of
connection induced on the cotangent bundle is given by

∇̂aαb = ∇aαb −
(

ΥBA′δ
C

A δ C′

B′ + ΥAB′δ
C

B δ C′

A′

)
αc

where in the above we make free use of the relations a = AA′, etc., among
indices. Next, the definition of the torsion tensor of a connection, given in
abstract index notation, is

T c
ab ∇cf = 2∇[a∇b]f

Letting T̂ denote the torsion tensor associated to ∇̂, we therefore have

T̂ c
ab ∇̂cf = ∇̂a(∇̂bf)− ∇̂b(∇̂af) = ∇̂a (∇bf)− ∇̂b (∇af)

= ∇a (∇bf)−∇b (∇af)−
(

ΥBA′δ
C

A δ C′

B′ + ΥAB′δ
C

B δ C′

A′

)
∇cf

+
(

ΥAB′δ
C

B δ C′

A′ + ΥBA′δ
C

A δ C′

B′

)
∇cf

= T c
ab ∇̂cf

so that the torsion tensors of ∇̂ and ∇ are identical. Since ∇ is torsion free,
we have ∇̂ is as well.

We have that ∇̂ preserves ε̂ and ω̂, and therefore preserves a scale on M
as well. In order to identify the related volume form, we use the isomorphism

Λ4k(T ∗M ⊗ C) ∼= Λ4k(E⊗H) ∼=
(
Λ2kE

)⊗2 ⊗
(
Λ2H

)⊗2k

to observe that the 4k-form ε2 ⊗ ω2k is parallel with respect to the Levi-
Civita connection, and therefore we have µ = ε2 ⊗ ω2k by the uniqueness in
Proposition 4.2. Then the volume form

µ̂ = ε̂2 ⊗ ω̂2k = (f 2ε2)⊗ (f 2kω2k) = f 2k+2ε2 ⊗ ω2k = f 2(k+1)µ

is evidently parallel with respect to ∇̂, and is a real multiple of the real form
µ, hence is the real volume form preserved by ∇̂ by uniqueness.

The above lemma therefore allows us to recast the rescaling of a quater-
nionic manifold from the original setting described in Proposition 4.2 to the
setting of rescaling volume forms on the related bundles E,H. Note this in-
troduces some ambiguity in terminology, which we will address by calling the
choice of ε, ω a choice of paraconformal scale, while calling the choice of µ on
M a choice of quaternionic scale. These notions correspond, as we see that a
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scale on a quaternionic manifold determines a paraconformal scale and vice-
versa. However, changing the paraconformal scale by a factor of f has the
effect of changing the quaternionic scale by f 2(k+1).

Next, we can reinterpret the identification between sections of Q and real
sections of the bundle S2H in Proposition 3.2 in terms of paraconformal struc-
tures. This identification depends on the choice of quaternionic connection,
while Lemma 4.14 gives that a choice of quaternionic connection can be con-
sidered as a choice of a paraconformal scale. The appropriate identification is
then formalized using the so-called paraconformal weight bundles (see [5]).

Let P [−1] denote the bundle Λ2H. A quaternionic connection on M in-
duces a connection on Λ2H as well as a non-vanishing section ωB′C′ of this
bundle that is parallel with respect to this connection, which we can also view
as a chosen trivialization of the line bundle. This in turn induces trivializations
of the tensor power bundles P [−k] = (P [−1])⊗k, and again the trivializations
will be parallel with respect to the induced connections on the bundles. Since
ωB′C′ also yields an isomorphism between H ∼= H∗, we also have a parallel sec-
tion ωB

′C′ of P [1] = Λ2H∗, with similar preferred trivializations for the tensor
power bundles P [k] = (P [1])⊗k. If we consider ωB′C′ and ωB

′C′ as elements of
H⊗H and H∗⊗H∗, respectively, using the identifications of Proposition 3.2,
then we have

ωB
′C′ωB′C′ = 2

Whether k is positive or negative, we call P [k] the bundle of paraconformal
weight k.

More generally, the isomorphism H ∼= H∗ given in Proposition 3.2 can be
written in abstract index notation as mapping νA′ , a section of H, to

νA′ 7→ ωB
′A′νA′ = νB

′

Therefore we have a way to raise and lower primed indices, but at the cost
of changing the paraconformal weight. Raising an index, as we have done
above, adds one to the paraconformal weight. Put another way, we have that
a connection induces an isomorphism H∗ ∼= H ⊗ P [1]. We can also lower
indices, via

σB
′ 7→ σB

′
ωB′A′ = σB′ ,

which subtracts one from the paraconformal weight and gives an identification
H ∼= H∗ ⊗ P [−1]. Raising and lowering indices also agrees with the corre-
spondence between ω = ωB

′A′ considered as a section of Λ2H∗ = P [1] and
ω = ωB′A′ considered as a section of Λ2H = P [−1], in that we can obtain
the latter from the former by lowering two indices, which subtracts 2 from the
paraconformal weight.
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We note that when we use this method to raise a single index to yield
ω C′

B′ = ωC
′A′ωB′A′ , the resulting endomorphism of H∗ is given by

νC
′ 7→ νB

′
ω C′

B′ = νB
′
ωC
′A′ωB′A′ = ωC

′A′νA′ = νC
′
,

that is, ω C′

B′ = δ C′

B′ is the identity.
Using paraconformal weight bundles, the identification of S2H ∼= Q for

quaternionic manifolds is equivalent to raising an index. If ϕB′C′ = ϕ(B′C′)

denotes a section of S2H, then the related endomorphism of TM described in
Proposition 3.2 is obtained by raising the second index. That is, the endomor-
phism J c

b associated to ϕB′C′ is

J c
b = ϕ C′

B′ δ C
B = ωC

′A′ϕB′A′δ
C

B

where on the right-hand-side ϕ with the raised index is then a quantity with
paraconformal weight 1. The norm on S2H as defined in equation (8) also
depends on the isomorphism H ∼= H∗. In particular, given ϕB′C′ , the inner
product of ϕ with itself is given by

ϕB
′C′ϕB′C′ = ωB

′D′ωC
′E′ϕD′E′ϕB′C′

so that the squared norm of a section of S2H is a quantity of paraconformal
weight 2.

Note that in our discussion of the isomorphism S2H ∼= Q in Proposition 3.2
and following, we observed that the real sections of S2H with norm

√
2 were the

sections that corresponded to almost complex structures on the quaternionic
manifold. This can also be observed in the abstract index notation, without
choosing a local frame for H .

Lemma 4.15. Let αA′B′ = α[A′B′] be skew symmetric. Then with respect to
any choice of scale ωA′B′ , we have

αA′B′ =
1

2
α C′

C′ ωA′B′ (25)

Proof. Since H is two-dimensional, a skew 2-form on H must be a multiple
of ω, and one simply needs to find this multiple. Writing αA′B′ = fωA′B′ for
some function f to be determined, we can contract by ωA

′B′ on both sides to
obtain

ωA
′B′αA′B′ = fωA

′B′ωA′B′

α A′

A′ = fω A′

A′ = fδ A′

A′ = 2f

f =
1

2
α A′

A′

and therefore changing the dummy index gives the formula above.
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Lemma 4.16. Let ϕB′C′ be a section of S2H, and assume the scale ω is such
that ϕB

′C′ϕB′C′ = 2. Then

ϕA′B′ϕ
B′

C′ = ωA′C′ ,

so raising an index yields

ϕA′B′ϕ
B′C′ = ω C′

A′ = δ C′

A′

Proof. Considering the first expression, we have

ϕA′B′ϕ
B′

C′ = ϕA′B′ω
B′D′ϕD′C′

We see that this expression is symmetric in the pairs of indices A′B′ and D′C ′,
so the fact that ω is skew in B′, D′ implies that ϕA′B′ϕD′C′ is also skew in A′, C ′.
Therefore equation (25) gives

ϕA′B′ω
B′D′ϕD′C′ =

1

2
ϕE′B′ω

B′D′ϕ E′

D′ ωA′C′ =
1

2
ϕE′B′ϕ

B′E′ωA′C′ = ωA′C′

as desired.

Proposition 4.17. Let ϕB′C′ be a section of S2H, and assume the scale ω
is such that ϕB

′C′ϕB′C′ = 2. Then the tensor J c
b = ϕ C′

B′ δ C
B is an almost

complex structure in the sense that J b
a J

c
b = −δ c

a .

Proof. We have

J b
a J

c
b = ϕ B′

A′ δ B
A ϕ C′

B′ δ C
B = ϕ B′

A′ ϕ C′

B′ δ C
A

= −ϕA′B′ϕB
′C′δ C

A = −δ C′

A′ δ C
A = −δ c

a

using Lemma 4.16.

If ϕ ∈ Γ(S2H) is a real section and is parallel with respect to a given
connection, then it will have constant length in the scale associated to that
connection and therefore, by rescaling by a constant if necessary, we have that
the complex structure related to ϕ by Proposition 4.17 will be parallel as well.
Conversely, if ϕ is an arbitrary real section, then we can choose a scale in
which ϕ will have constant length

√
2, see equation (26) in the second proof of

Theorem 4.13 below. We will still need an extra condition, however, to ensure
that this section is also parallel. As we have already seen in the earlier proof
of Theorem 4.13, this extra condition is the vanishing of the section under the
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twistor operator, which has a particularly simple expression in abstract index
notation as

DAA′ϕB′C′ = ∇A(A′ϕB′C′)

That is, if ϕ has constant norm with respect to a chosen scale and is also in
the kernel of the twistor operator associated to that scale, then in fact ϕ is
parallel with respect to the connection associated to that scale.

Proposition 4.18. Let ϕB′C′ be a section of S2H, and assume the scale ω
is such that ϕB

′C′ϕB′C′ = 2. Then if DAA′ϕB′C′ = 0 we in fact have that
∇AA′ϕB′C′ = 0.

Proof. Since ϕB
′C′ϕB′C′ = 2, taking the derivative yields

0 = ∇AA′(ϕ
B′C′ϕB′C′) = (∇AA′ϕ

B′C′)ϕB′C′ + ϕB
′C′(∇AA′ϕB′C′)

= 2(∇AA′ϕB′C′)ϕ
B′C′

by raising and lowering indices on the first term and rearranging
Taking the expression DAA′ϕB′C′ = 0 and contracting it with the form

ϕA
′B′ yields

0 = (∇AA′ϕB′C′ +∇AB′ϕC′A′ +∇AC′ϕA′B′)ϕ
A′B′

= (∇AA′ϕB′C′)ϕ
A′B′ + (∇AB′ϕC′A′)ϕ

A′B′

= ∇AA′(ϕB′C′ϕ
A′B′)− ϕB′C′∇AA′ϕ

A′B′ +∇AB′(ϕC′A′ϕ
A′B′)

− ϕC′A′∇AB′ϕ
A′B′

= −ϕB′C′∇AA′ϕ
A′B′ − ϕC′A′∇AB′ϕ

A′B′

using Lemma 4.16. We can further rewrite this expression by changing dummy
indices, which yields

0 = ϕB′C′∇AA′ϕ
A′B′ + ϕC′A′∇AB′ϕ

A′B′

= ϕD′C′∇AE′ϕ
E′D′ + ϕC′D′∇AE′ϕ

D′E′

= 2ϕD′C′∇AE′ϕ
E′D′

using the fact that ϕ is symmetric. We can then contract with ϕB
′C′ to obtain

0 = ϕB
′C′ϕD′C′∇AE′ϕ

E′D′ = ωB
′

D′∇AE′ϕ
E′D′ ,

again using Lemma 4.16, and therefore

∇AE′ϕ
E′D′ = 0
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since ωB
′

D′ = −δB′D′ is nondegenerate.
We now consider the expression ∇A[A′ϕB′]C′ . Since this expression is skew-

symmetric in the indices A′, B′, this expression can be rewritten in terms of
the element ωA′B′ , so that

∇A[A′ϕB′]C′ =
1

2
∇AD′ϕ

D′

C′ωA′B′ =
1

2
∇AD′ϕ

D′E′ωE′C′ωA′B′ = 0

by the above.
We therefore have that the expression ∇AA′ϕB′C′ is symmetric in A′ and

B′, and we already have that it is symmetric in B′ and C ′. It is therefore equal
to its own symmetrization on the indices A′, B′, C ′, that is,

∇AA′ϕB′C′ = ∇A(A′ϕB′C′) = DAA′ϕB′C′ = 0

as required.

Proposition 4.18 shows that in order to produce a quaternionic complex
structure from a given section ϕ ∈ S2H, we need to be able to choose a
paraconformal scale in which ϕ both has constant length and is also in the
kernel of the twistor operator. The difficulty is that the twistor operator
is dependent on the connection, and therefore dependent on the choice of
paraconformal scale.

However, the twistor operator will be paraconformally invariant if we give
it a proper paraconformal weight. To see this, recall from the definition of the
paraconformal weight bundles that the choice of a quaternionic connection
gives the bundles P [k] preferred trivializations that are parallel with respect
to the induced connection, via the form ωB′C . Changing the paraconformal
scale by a factor f then leads to new preferred trivializations ω̂B′C′ = fωB′C
for P [−1] = Λ2H and ω̂B

′C′ = f−1ωB
′C′ for P [1] = Λ2H∗. Note the factors

are such that

ω̂B
′C′ω̂B′C′ = f−1ωB

′C′fωB′C = ωB
′C′ωB′C = 2,

and
ω̂ C′

B′ = ω̂C
′A′ω̂B′A′ = f−1ωC

′A′fωB′A′ = δ C′

B′

that is, the special properties of ωB′C′ when raising and lowering indices are
independent of paraconformal scale.

We can then observe how the induced connections on the paraconformal
weight bundles change as we vary the paraconformal scale.
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Lemma 4.19. Let σ be a section of P [k]. Then, under a change of paracon-
formal scale by a factor of f as in Lemma 4.14, we have that

∇̂aσ = ∇aσ + kΥaσ

Proof. We can first observe that the proposition holds for ωB′C′ , the preferred
section of P [−1] = Λ2H with respect to the connection ∇. Considering the
right-hand side of the desired equation, we have

∇aωB′C′ −ΥaωB′C′ = f−1 (∇af)ωB′C′

since ω is parallel with respect to ∇. On the other hand, the fact that ω̂B′C′
is parallel with respect to ∇̂ gives that

∇̂aωB′C′ = ∇̂a

(
f−1fωB′C′

)
=
(
∇̂af

−1
)
fωB′C′ + f−1∇̂a (fωB′C′ )

= −f−2 (∇af) fωB′C′ = −f−1 (∇af)ωB′C′ ,

giving the desired equality when σ = ωB′C′ . Then the Leibniz rule implies that
the proposition holds for general sections of P [−1], and the general formula
follows from considering tensor powers.

Proposition 4.20. Let (M,Q,∇, µ) be a scaled quaternionic manifold. Then
the twistor operator is scale-invariant when acting on sections of S2H with
paraconformal weight 2, that is, on sections of the bundle S2H⊗ P [2].

Proof. Let f > 0 be the paraconformal scale factor and write Υa = f−1∇af
as usual. Then just as we did for the change of connection on the bundle Λ2H
in the proof of Lemma 4.14, we can express a section ϕB′C′ = ϕ(B′C′) of S2H
as σB′νC′ + σC′νB′ , and use the change of connection formulas to derive the
formula

∇̂AA′ϕB′C′ = ∇AA′ϕB′C′ −ΥAC′ϕB′A′ −ΥAB′ϕC′A′

for the change of connection on S2H under paraconformal rescaling.
If we now consider ϕB′C′ as a quantity with paraconformal weight 2 we

instead have

∇̂AA′ϕB′C′ = ∇AA′ϕB′C′ −ΥAC′ϕB′A′ −ΥAB′ϕC′A′ + 2ΥAA′ϕB′C′

by Lemma 4.19.
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If we symmetrize on A′, B′, C ′, we therefore have

D̂AA′ϕB′C′ = DAA′ϕB′C′ −ΥA(C′ϕB′A′) −ΥA(B′ϕC′A′) + 2ΥA(A′ϕB′C′)

= DAA′ϕB′C′ −ΥA(A′ϕB′C′) −ΥA(A′ϕB′C′) + 2ΥA(A′ϕB′C′)

= DAA′ϕB′C′

so that the twistor operator is scale-invariant when it is considered with this
paraconformal weight.

Using this, we can present a second proof of Theorem 4.13, which we
reproduce here for convenience.

Theorem 4.13. Let (M,Q,∇) be a quaternionic manifold. Assume that ϕ ∈
S2H is a real section with Dϕ = 0.

Then there exists a unique quaternionic connection ∇̂ on the open, dense
submanifold M0 = M−{ϕ = 0} preserving the almost complex structure associ-

ated to ϕ, that is, the connection ∇̂ has holonomy contained in GL(k,H)U(1).

Proof. Let ωB′C be the form associated to the connection∇. Using this, we can
raise indices to consider ϕB

′C′ as an element of S2H∗ using the identification
S2H ⊗ P [2] ∼=ω S

2H∗. We also let f = ϕB
′C′ϕB′C′ be the squared norm of ϕ

induced by ωB′C′ .

Let ∇̂ be the connection obtained on M0 by changing the paraconfor-
mal scale on the H bundle by a factor of (f/2)−1/2. The form ω̂B′C′ =
(f/2)−1/2ωB′C′ is then parallel with respect to this form, and this form also
induces a new isomorphism S2H ⊗ P [2] ∼=ω̂ S

2H∗. Let ϕ̂B′C′ be the section
of S2H associated to ϕB

′C′ under this new isomorphism. That is, we have
ϕ̂B
′C′ = ϕB

′C′ , with the important caveat that we raise indices of the first
using ω̂ and the indices of the second with ω, so that ϕ̂B′C′ 6= ϕB′C′ .

Using Proposition 4.20, we have that D̂AA′ ϕ̂B′C′ = 0. We also have that ϕ̂

has norm
√

2 with respect to the inner product on S2H induced by ∇̂, as

ϕ̂B
′C′ϕ̂B′C′ = ϕ̂B

′C′ϕ̂D
′E′ω̂D′B′ ω̂E′C′

= (f/2)−1ϕB
′C′ϕD

′E′ωD′B′ωE′C′ (26)

= 2f−1ϕB
′C′ϕB′C′ = 2

Therefore Proposition 4.18 gives that ∇̂ϕ̂ = 0, and so the almost complex
structure associated to ϕ̂ via Proposition 4.17 is parallel with respect to ∇̂,
completing the proof. Once again we defer until Theorem 4.24 the proof that
M0 is dense.
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We note that if we assume further that the connection∇ above is associated
to a choice of quaternionic scale, then in the proof above we are changing the
paraconformal scale by a factor of (f/2)−1/2. This means we are changing the
quaternionic scale by (f/2)−(k+1) from Lemma 4.14, and so by equation (16)
we have that the new connection arises from choosing the 1-form

Υ =
1

2(k + 1)
d log

(
(f/2)−(k+1)

)
=
−1

2
d log(f/2) = −1

2
d log f = −d log(

√
f)

Note that this gives a new interpretation of the change of connection obtained
by Hitchin in Theorem 4.8. In that case, the connection arose from the mo-
mentum section ρ = ρ1ωI by choosing Υ = −d log ρ1 (see equation (21)). But
the norm of the momentum section is exactly

√
ρ2

1 = ρ1. Thus Hitchin’s con-
struction can be more generally interpreted as picking the scale for which the
momentum section has norm

√
2 in that scale.

We end by considering the what occurs in the quaternion-Kähler case. In
this case, we have that the bundle E admits a form ωE ∈ Γ(Λ2E) as well,
with ∇ωE = 0 for the Levi-Civita connection. This form has the property
that ω∧kE = ε, where ε is the volume form on E associated to the scale for the
quaternion-Kähler structure.

Then, given a real section ϕB′C′ ∈ Γ(S2H) in the kernel of the twistor
operator, the above theorem gives that we can change the paraconformal scale
to yield a parallel complex structure on M0. Under this change of scale, we
produce new forms ω̂ and ε̂ as in Lemma 4.14.

Our ultimate goal is to compare the Hitchin and Haydys constructions.
So far, we have shown that the Hitchin construction in general only pro-
duces non-metric SL(k,H)Sp(1) connections in the quaternion-Kähler case,
but the Haydys construction produces metrics. In attempting to determine
if the Haydys and Hitchin constructions coincide, it is necessary to see if the
Hitchin construction does in fact produce a metric, which would require the
new connection to preserve a skew-symmetric form on E∗ analogous to ωE,
which would give a metric via equation (10). This problem is what inspired
our use of paraconformal structures to study the Hitchin construction.

Since the new form ω̂E should also be compatible with the new volume
form ε̂ = fε = fω∧kE under a change of paraconformal scale, the most obvious
candidate for the form ω̂E is f 1/kωE. However, we can see that this form is not
parallel with respect to the new connection ∇̂ obtained from paraconformal
rescaling by f .

To avoid confusion in the abstract index notation, we denote the form ωE
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by ω̃ = ω̃AB = ω̃[AB]. We then have

∇̂AA′(f
1/kω̃BC ) =

1

k
f (1/k)−1

(
∇̂AA′f

)
ω̃BC + f 1/k∇̂AA′ω̃BC

=
1

k
f 1/kΥAA′ω̃BC + f 1/k

(
∇AA′ω̃BC + 2ΥA′[Bω̃C]A

)
= f 1/k

(
1

k
ΥA′Aω̃BC + ΥA′Bω̃CA −ΥA′Cω̃BA

)
Note that we use the expression of the new connection ∇̂ in terms of the old
connection∇ obtained from equation (24) by exchanging primed and unprimed
indices.

Evidently we cannot expect this expression to vanish for k ≥ 2. In that
case, the expression we obtain is essentially a section of H⊗Λ3E, but if k ≥ 2
then the bundle Λ3E has nonzero rank and so we cannot expect the right-hand
side to be zero (c.f. the proof of Lemma 4.14). This does explain, however,
the existence of the metric in the case of quaternionic dimension k = 1 in
Hitchin’s construction. For if k = 1 we do have Λ3E = 0, and the right-hand
side is exactly fΥA′[Aω̃BC] = 0, so that there is a parallel skew form on E.

It may still be possible that there are other choices for a parallel skew 2-form
on E that yield a compatible metric structure in particular cases. However,
these forms will not be multiples of the original form ωE arising from the
quaternion-Kähler structure, and so it is unclear how such a structure could
be found. Even if such a metric were found, the metric would be different from
the one obtained by Haydys, as we shall see in Section 5.4.

4.5 Twistorial Interpretation of Quaternionic
Complex Manifolds

The constructions of Sections 4.2, 4.3, and 4.4 provide sufficient conditions
for finding complex structures satisfying the hypothesis of Lemma 4.5 and
therefore yield quaternionic complex manifolds. However, we still need meth-
ods to produce either Killing fields on a quaternion-Kähler manifold or real
sections of S2H that vanish under the twistor operator if these constructions
are to be useful. This is actually fairly straightforward, as both can be pro-
duced using the holomorphic geometry of the twistor space using well-known
methods.

Lemma 4.21 ([40]). Let (M,Q,∇) be a quaternionic manifold. Then the
kernel of the twistor operator is isomorphic to the space H0(Z,O(L2)) of holo-
morphic sections of the bundle L2.
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Proof. If we fix x ∈M and consider the fiber p−1(x) ⊂ Z as P(Hx), then recall
that the bundle L2 when restricted to p−1(x) is isomorphic to O(2) so that
H0(p−1(x),O(L2)) ∼= H0(CP1,O(2)). Moreover, the standard description of
holomorphic sections of O(2) gives that we can consider H0(CP1,O(2)) as the
space of homogeneous polynomials of degree 2 acting on Hx, which is itself
identified with S2H∗x. Now the chosen quaternionic connection on M induces
a section ωH ∈ Λ2H∗ that yields an isomorphism H ∼= H∗ and therefore an
isomorphism S2Hx

∼= S2H∗x.
Putting all of this together, the quaternionic connection on M induces an

isomorphism
H0(p−1(x),O(L2)) ∼= S2Hx

for all x in M . We therefore have an induced homomorphism

ϕ : H0(Z,O(L2))→ Γ(S2H) (27)

that arises from restricting sections to each twistor fiber. We claim that the
image of this homomorphism is the kernel of the twistor operator.

To see this, we can choose as in Section 3.1 a local frame h1, h2 = JHh1 of
H such that ωH(h1, h2) = 1, and let z1, z2 be the related coordinate functions
on H so that an element of H in the fiber over x ∈ M can be expressed as
z1h1(x) + z2h2(x). In order to simplify the computations, we also can assume
without loss of generality that ∇h1|x = 0 = ∇h2|x at a fixed point where we
make all our computations.

Recalling that L−1 ⊂ p∗H is the tautological bundle for the projectivization
H−{0} → P(H), we have that a smooth section of s ∈ Γ(L2) can be considered
as a homogeneous degree 2 polynomial defined on H− {0} of the form

ŝ = s1z
2
1 + 2s2z1z2 + s3z

2
2

where s1, s2, s3 are smooth functions on M . Moreover the section s ∈ Γ(L2) is
holomorphic when the related function ŝ defined on H× is holomorphic with
respect to the complex structure defined in Proposition 3.4. More specifically,
if we consider the decomposition of the forms ds1, ds2, ds3 into E,H parts as
dsi = e1

ih1 + e2
ih2, then the 1-form dŝ can be expressed as

dŝ = z2
1ds1 + 2s1z1dz1 + 2z1z2ds2 + 2s2z1dz2 + 2s2z2dz1 + z2

2ds3 + 2s3z2dz2

= z2
1(e1

1h1 + e2
1h2) + 2z1z2(e1

2h1 + e2
2h2) + z2

2(e1
3h1 + e2

3h2)

+ 2(s1z1 + s2z2)dz1 + 2(s2z1 + s3z2)dz2

= (z2
1e

1
1 + 2z1z2e

1
2 + z2

2e
1
3)h1 + (z2

1e
2
1 + 2z1z2e

2
2 + z2

2e
2
3)h2

+ 2(s1z1 + s2z2)dz1 + 2(s2z1 + s3z2)dz2
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We have assumed for simplicity that, over x ∈M , the covariant derivatives of
h1, h2 vanish. Since the complex structure on H× is defined to be the complex
structure on Hx in the vertical direction, this gives that the vertical fiber coor-
dinates z1, z2 are holomorphic with respect to the complex structure. Therefore
the dz1, dz2 parts of dŝ above are of type (1, 0). Then dŝ is a holomorphic form
precisely when the remaining terms also give a (1, 0) form.

For this, we see from equation (11) that (1, 0) forms in the horizontal di-
rection at h = z1h1(x)+z2h2(x) ∈ H are precisely those that can be expressed
as e ⊗ h for some e ∈ Ex, and so we have that the remaining part terms in
dŝ will be of type (1, 0) if and only if they can be combined into the form
e⊗ (z1h+ z2h2). which requires

z1e
1
1 + 2z2e

1
2 +

z2
2

z1

e1
3 =

z2
1

z2

e2
1 + 2z1e

2
2 + z2e

2
3

that is,
e1

1 = 2e2
2 e2

3 = 2e1
2 e1

3 = e2
1 = 0 (28)

If s is any general section as described above, we have that ϕ(s) is the
section

ϕ(s) = s1(h2 ⊗ h2)− s2(h1 ⊗ h2 + h2 ⊗ h1) + s3(h1 ⊗ h1) (29)

Again computing at x ∈M where we assume the covariant derivatives of h1, h2

vanish, we have that

∇ϕ(s)|x = (e1
1h1 + e2

1h2)h2 ⊗ h2 − (e1
2h1 + e2

2h2)(h1 ⊗ h2 + h2 ⊗ h1)

+ (e1
3h1 + e2

3h2)(h1 ⊗ h1)

Gathering terms and symmetrizing on the h terms yields

Dϕ(s)|x = e1
3h1h1h1 + (e2

3 − 2e1
2)h1 � h1 � h2

+ (e1
1 − 2e2

2)h1 � h2 � h2 + e2
1h2h2h2

and we observe that the condition that Dϕ(s) = 0 is equivalent to the equa-
tions (28) necessary for ŝ to be holomorphic.

We note that as originally stated by Salamon in [40] this lemma had the
additional assumtion that M is a quaternion-Kähler, although the proof given
there, which is identical to the proof given above except for some changes in
notation, clearly generalizes to the quaternionic case. Salamon’s work also
proved a related lemma that shows that if (M, g) is a quaternion-Kähler man-
ifold, then the kernel of the twistor operator is isomorphic to the vector space
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of Killing fields on M . It was these lemmas of Salamon’s that lead to the gen-
eralization of Hitchin’s work obtained in the previous sections, as they imply
that the Killing fields considered by Hitchin can be reinterpreted as sections
in the kernel of the twistor operator.

The crucial point of the above lemma is that the isomorphism ϕ of equation
(27) depends on the form ωH , and therefore on the quaternionic connection
on M , even though the holomorphic structure of Z and therefore the space
of sections H0(Z,O(L2)) are both independent of the choice of connection.
We will write ϕ = ϕ∇ when we need to make the dependence of this map on
∇ explicit. Similarly, the identification of S2H with the complexification of
Q also depends on ωH , so that given a holomorphic section of L2 there are
many possible sections of Q that are associated to it, varying depending on
the choice of quaternionic connection on M .

Our earlier work then implies that if we have a section of H0(Z,O(L2))
that corresponds to a real section of S2H under some choice of connection,
then we should be able to choose a suitable quaternionic connection so that
this section can be identified with a complex structure on M that is parallel
with respect to that connection. In this direction we can first observe that
the requirement that a section of H0(Z,O(L2)) correspond to a real section
of S2H is independent of the choice of connection used to identify S2H and
H0(Z,O(L2)).

Proposition 4.22. Let s ∈ Γ(L2) be any section, and assume that there is a
choice of quaternionic connection ∇ on M so that ϕ∇(s) ∈ Γ(S2H) is a real

section. Then ϕ∇̂(s) is a real section for any other quaternionic connection ∇̂
on M . In this case, we say that the section s is a real section of L2.

Proof. Let s be given and fix any choice of connection ∇. This yields a lo-
cal frame h1, h2 for H in the usual way, and allows us to express ϕ∇(s) in
coordinates using equation (29). The real structure on S2H is induced from
the quaternionic action h1 7→ h2, h2 7→ −h1, so we have that ϕ∇(s) and its
conjugate are given by

ϕ∇(s) = s1(h2 ⊗ h2)− s2(h1 ⊗ h2 + h2 ⊗ h1) + s3(h1 ⊗ h1)

ϕ∇(s) = s1(h1 ⊗ h1) + s2(h2 ⊗ h1 + h1 ⊗ h1) + s3(h2 ⊗ h2),

so that ϕ∇(s) is real if and only if

s1 = s3 s2 = −s2

Then assuming that ϕ∇(s) is real, let ∇̂ be any other quaternionic connec-
tion. As we have seen in Lemma 4.14, this connection arises by a change of
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paraconformal scale, so that ∇̂ is the connection that preserves that section
ω̂H = fωH ∈ Γ(Λ2H∗) for f a non-vanishing, real-valued function. Taking the

square root, we see that the new connection ∇̂ gives ĥ1 = f−1/2h1, ĥ2 = f−1/2h2

as the basis for H compatible with ω̂H .
If we write ŝ1, ŝ2, ŝ3 as the coordinate functions for the section s with

respect to this new basis, then evidently ŝi = fsi for i = 1, 2, 3, and therefore
if ϕ∇(s) is real then ϕ∇̂(s) is real as well.

Since the reality of a section s of L2 is independent of the choice of con-
nection it can be defined purely in terms of the geometry of the twistor space
Z.

Proposition 4.23. A section s ∈ Γ(L2) is real if and only if the set X = {s =
0} is preserved by the real structure σ : Z → Z.

Proof. Fix any quaternionic connection on M so that we can consider a local
frame h1, h2 for H in the usual way and consider a section s ∈ Γ(L2) as a
homogeneous degree 2 polynomial ŝ on H× with the expression ŝ = s1z

2
1 +

2s2z1z2 + s3z
2
2 as in the proof of Lemma 4.21.

The real structure σ on Z = P(H) is induced from the quaternionic struc-
ture on the bundle H that maps h1 7→ h2 and h2 7→ −h1. This action therefore
pulls back to an action on sections of Γ(L2) considered as functions, so that

σ∗ŝ = s1z2
2 − 2s2z2 z1 + s3z1

2

Consider the zero set 0 = s1z
2
1 + 2s2z1z2 + s3z

2
2 . If the zero set is invariant

under the real structure, we then have that 0 = s1z2
2−2s2z2z1 + s3z1

2 as well.
Taking the complex conjugate on both sides, we have that

0 = s1z
2
2 − 2s2z1z2 + s3z

2
1

as well. Comparing coefficients, we have that if the zero set is invariant under
the real structure then s1 = s3 and s2 = −s2, giving reality. By proposition
4.22 this result is independent of the choice of the quaternionic connection.
Conversely, if s1 = s3 and s2 = −s2, reversing the above argument shows that
the zero set the section is invariant under the real structure.

Theorem 4.24. Let M be a quaternionic manifold with twistor space Z, and
let s ∈ H0(Z,O(L2)) be a real, nontrivial section.

Then there exists a unique quaternionic connection ∇̂ on an open, dense
submanifold M0 ⊂M which has holonomy contained in GL(k,H)U(1).
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Proof. By Lemma 4.21 and Proposition 4.22, we have that the section s corre-
sponds to a real section of the bundle S2H in the kernel of the twistor operator
associated to some quaternionic connection on M . Therefore Theorem 4.13
gives the desired quaternionic complex structure, and all that remains is to
show that the set M0 is dense.

Let X denote the subset of Z on which s vanishes. Given any x ∈ M ,
we can consider the intersection p−1(x) ∩ X. Recalling that the restriction
of L2 to any real twistor line is isomorphic to the bundle O(2), we have that
X∩p−1(x) is the divisor corresponding to the vanishing of a section of O(2) on
CP1. Therefore this intersection consists of either two points with multiplicity
1, a single point of multiplicity 2, or the entire twistor line in the case that the
restriction of s to p−1(x) is trivial.

We have by assumption that the section s is real, and therefore the set X is
preserved by the real structure σ. Moreover, this real structure restricts to the
antipodal map on twistor fibers, and therefore implies that if z ∈ X ∩ p−1(x),
then the antipodal point σ(z) is in this intersection as well. This implies that
the intersection X ∩ p−1(x) cannot consist of a single point, and therefore we
have that either X ∩ p−1(x) = p−1(x) or X ∩ p−1(x) = {z, σ(z)}, a pair of
antipodal points.

Let M0 be the set of points in x ∈ M such that X ∩ p−1(x) is a pair
of points. If we assume by contradiction that M0 is not dense, then there
exists some open set U ⊂ M that does not intersect M0. We then have by
assumption that the section s vanishes identically on the open set p−1(U), but
then s vanishes on all of Z since s is holomorphic. Therefore we must have
that M0 is dense.

The discussion in the above proof also allows us to interpret the complex
structure obtained on M0 using the twistor space. We can observe that X|M0

is a double cover, and so in the case that this cover consists of two connected
components, for example, in the case that M0 is simply-connected, we can call
these components Σ,Σ. Each of these components is diffeomorphic to M0 and
exchanged by the real structure σ. A choice of either connected component is
by definition a section of the bundle Z|M0 → M0. Since Z|M0 is evidently the
twistor space of the quaternionic manifold M0, this section gives a choice of a
compatible almost complex structure on M0. Moreover the complex structure
is in fact integrable, since the choice of section embeds M0 with that almost
complex structure into Z as the complex submanifold Σ or Σ. Our work above
shows that there is then a unique connection on M that identifies the section
of S2H associated to s with one of these complex structures.
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This twistorial interpretation is well-understood in the case of quaternion-
Kähler manifolds in dimension four. Hitchin [17] has explicitly computed some
examples, which we discuss further in Section 5.5. Those examples themselves
are special cases of previous work in the four-dimensional by Pontecorvo [38],
who studied real sections of the O(2) bundle on CP3, the twistor space of
S4 ∼= HP1, in order to classify conformally flat hermitian surfaces.

It remains to see whether this more general construction can be fruit-
fully applied to find new examples of interesting GL(k,H)Sp(1)-connections
in other contexts. The examples of quaternionic manifolds that are easiest
to work with explicitly are the weakly quaternionic manifolds underlying the
quaternion-Kähler Wolf spaces, and in this case the resulting connections can
be analyzed in terms of Killing fields via Hitchin’s methods. It is a goal of
future work to see what further insights into quaternionic complex manifolds
can be gained when they are constructed from quaternionic manifolds that are
not themselves quaternion-Kähler, the situation in which our generalization
becomes necessary.
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5 Kähler Metrics Associated to U(1) Actions

In this section, we explore a very similar construction of special connections
on quaternion-Kähler manifolds that arise from isometric circle actions, this
time arising from the work of Haydys [14]. We begin by reviewing some special
properties of the curvature tensor of a quaternionic connection in Section 5.1.
With this background, we show in Section 5.2 how these curvature properties
can be used to construct Kähler metrics on subsets of positive quaternion-
Kähler manifolds using quaternionic Killing fields. These metrics have already
been shown to exist by Haydys, but we give a more direct proof that involves
properties only of the quaternion-Kähler manifold itself, instead of the more
involved construction carried out by Haydys. We show in Section 5.3 that
our metrics are in fact identical to those produced by Haydys. Our simplified
expression is especially useful in that it allows us to directly compare the
Levi-Civita connection of the resulting Kähler metric, which has holonomy
contained in U(2m), to the holonomy GL(k,H)Sp(1) connections constructed
from U(1) actions by Hitchin discussed in Section 4.2. This comparison is
made in Section 5.4, where we prove our main result showing that these two
connections are not identical. We end by considering an example in Section
5.5.

5.1 Curvature of Quaternionic Geometries

If we work locally with a fixed compatible frame {I, J,K}, then we can ob-
tain simple and concrete expressions for the connection and curvature forms
on a quaternionic or quaternion-Kähler manifold, which we derive in the fol-
lowing propositions. These derivations are taken, with some modifications in
notation, from Besse [9, Chapter 14], which is in turn adapted from Ishihara
[19].

Given a quaternionic manifold (M,Q,∇), letR : Ω2(M)→ End(Q) denote
the curvature operator of the connection ∇ considered as a connection on Q.
Similarly, let R : Ω2(M) → End(TM) denote the usual curvature operator
for ∇ when considered as a connection on TM . We then have the following
relations:

Lemma 5.1. Let {I, J,K} be a compatible frame for a quaternionic manifold
(M,Q,∇), and let a, b, c be the connection 1-forms for ∇ acting on Q in this
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compatible frame as is Lemma 4.3 Then

[R(X, Y ), I] = α(X, Y )J − β(X, Y )K
[R(X, Y ), J ] = −α(X, Y )I + γ(X, Y )K
[R(X, Y ), K] = β(X, Y )I − γ(X, Y )J

(30)

where

α = da− b ∧ c
β = db− c ∧ a
γ = dc− a ∧ b

Proof. It is easy to verify from the definition of curvature that, for any S ∈
Γ(Q) ⊂ Γ(End(TM)), one has

[R(X, Y ), S] = R(X, Y )S (31)

where the bracket on the left is the commutator with respect to composition
of R(X, Y ) and S as sections of End(TM). Thus the lemma amounts to
computing the local curvature 2-forms for R with respect to the chosen frame
{I, J,K}.

In the case that M is a quaternion-Kähler manifold, we can relate the local
curvature forms α, β, γ to the Ricci form.

Lemma 5.2. Let M be a quaternion-Kähler manifold with quaternionic di-
mension k ≥ 2, with local compatible frame {I, J,K} and local curvature 2-
forms α, β, γ as in Lemma 5.1. Then

α(X, Y ) =
1

k + 2
r(X,KY )

β(X, Y ) =
1

k + 2
r(X, JY )

γ(X, Y ) =
1

k + 2
r(X, IY )

Proof. Taking the third equality from (30), we apply the endomorphism to Z
and then take the inner product of the result with JZ to obtain, after some
rearranging

γ(X, Y )g(Z,Z) = g(R(X, Y )Z, IZ) + g(R(X, Y )JZ,KZ) (32)

making use of the compatibility of I, J,K with g as well as the symmetries of
the Riemann curvature tensor. Next, we can choose a local orthonormal and
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quaternionic frame Ej for j = 1, . . . , 4k as in the proof of Proposition 4.2, that
is we can take E2 = IE1, E3 = JE1, etc. Substituting each basis element in
place of Z in equation (32) and taking the sum yields

4kγ(X, Y ) =
4k∑
j=1

g(R(X, Y )Ej, IEj) + g(R(X, Y )JEj, KEj)

= 2
4k∑
j=1

g(R(X, Y )Ej, IEj),

since the collections of pairs (Ej, IEj) and (JEj, KEj) are the same, for exam-
ple, (JE1, KE1) = (JE1, IJE1) = (E3, IE3). Using the first Bianchi identity
and the symmetries of the curvature tensor, the right-hand side can be rewrit-
ten to yield

2kγ(X, Y ) =
4k∑
j=1

g(R(X,Ej)Y, IEj)− g(R(X, IEj)Y,Ej)

We similarly have that the collections of pairs (Ej, IEj) and (IEj,−Ej) are
the same, for example, (IE1,−E1) = (IE1, I

2E1) = (E2, IE2), and so we have

kγ(X, Y ) =
4k∑
j=1

g(R(X,Ej)Y, IEj) = −
4k∑
j=1

g(IR(X,Ej)Y,Ej)

Taking the first equality from (30), we have

kγ(X, Y ) =
4k∑
j=1

−g(R(X,Ej)IY, Ej) + g(α(X,Ej)JY,Ej)− g(β(X,Ej)KY,Ej)

= r(X, IY ) + α(X, JY )− β(X,KY )

Finally, replacing Y with IY and rearranging we have

kγ(X, IY ) + α(X,KY ) + β(X, JY ) = −r(X, Y )

We can repeat the above computations for the 2-forms α and β to yield
the equalities

kγ(X, IY ) + α(X,KY ) + β(X, JY ) = −r(X, Y )

γ(X, IY ) + kα(X,KY ) + β(X, JY ) = −r(X, Y )

γ(X, IY ) + α(X,KY ) + kβ(X, JY ) = −r(X, Y )
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If we subtract the second equation from the first, we have the equality

(k − 1)γ(X, IY ) = (k − 1)α(X,KY )

and therefore we have γ(X, IY ) = α(X,KY ) as long as k ≥ 2. The same
argument with the latter two equations gives that α(X,KY ) = β(X, JY ),
and therefore we have

α(X,KY ) = β(X, JY ) = γ(X, IY ) =
−1

k + 2
r(X, Y )

Replacing Y with KY, JY, and IY therefore gives the desired equalities.

Theorem 5.3. Let M be a quaternion-Kähler manifold with quaternionic di-
mension k ≥ 2. Then M is Einstein.

Proof. From the result of the previous lemma, along with equation (32), we
have

r(X,X)g(Z,Z) = (k + 2)γ(X, IX)g(Z,Z)

= (k + 2) (g(R(X, IX)Z, IZ) + g(R(X, IX)JZ,KZ))

for any vectors X,Z. Replacing X with JX yields

r(JX, JX)g(Z,Z) = (k + 2)γ(JX, IJX)g(Z,Z)

= (k + 2) (g(R(JX,KX)Z, IZ) + g(R(JX,KX)JZ,KZ))

On the other hand, r(X,X) = r(JX, JX), as

r(JX, JX) = −(k + 2)β(JX, J2X) = (k + 2)β(JX,X)

= −(k + 2)β(X, JX) = r(X,X),

so adding the above equations yields that

r(X,X)g(Z,Z) = 2(k + 2)
(
g(R(X, IX)Z, IZ) + g(R(X, IX)JZ,KZ)

+ g(R(JX,KX)Z, IZ) + g(R(JX,KX)JZ,KZ)
)

for any X,Z. Using the symmetries of the Riemann curvature tensor, we
observe that the right-hand side is symmetric in X,Z, and therefore we have

r(X,X)g(Z,Z) = r(Z,Z)g(X,X)⇒ r(X,X) =
r(Z,Z)

g(Z,Z)
g(X,X)

assuming Z is non-vanishing. Therefore Schur’s lemma gives that the metric
is Einstein.
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Corollary 5.4. Let M be a quaternion-Kähler manifold with scalar curvature
s, which is constant by Theorem 5.3 for k ≥ 2. Then given a local compatible
frame {I, J,K} with local connection 1-forms a, b, c, we have

da− b ∧ c =
−s

4k(k + 2)
ωK

db− c ∧ a =
−s

4k(k + 2)
ωJ (33)

dc− a ∧ b =
−s

4k(k + 2)
ωI

where ωI , ωJ , ωK are the local proto-Kähler forms associated to the local com-
patible frame.

Proof. Considering the first equation, we have

(da− b ∧ c)(X, Y ) = α(X, Y ) =
1

k + 2
r(X,KY ) =

s

4k(k + 2)
g(X,KY )

=
−s

4k(k + 2)
ωK(X, Y )

The first equality is Lemma 5.1, the second is Lemma 5.2, and the third
equality follows as quaternion-Kähler manifolds are Einstein. The equalities
for ωJ , ωK are proved similarly.

The equations (33) of Corollary 5.4 above can be reinterpreted slightly. The
curvature R of the bundle Q is by definition a mappingR : Λ2TM → End(Q).
The connection is compatible with the SO(3) structure on the bundle, so in fact
R takes values in the set of skew-symmetric endomorphisms of Q. Moreover,
the Euclidean inner product on Q allows us to identify SkewEnd(Q) ∼= Q via
the cross product, while Q ∼= G via the metric, so that we can consider the
curvature as an operator R : Λ2TM → G. On the other hand, we can consider
the curvature R of the bundle TM as an operator R : Λ2TM → Λ2TM as
well, and the fact that the connection preserves the bundle G implies that the
restriction of R to G still has image contained in G, while equation (31) implies
that that R|G is the same as map R|G. That is, the equations of Corollary 5.4
are equivalent to stating that R|G = λ IdG, where λ = s

4k(k+2)
(c.f. Galicki and

Lawson, [13]).
This essentially gives a second characterization of quaternion-Kähler man-

ifolds in dimensions k ≥ 2, as those quaternionic-Hermitian manifolds for
which R|G = λ IdG. This definition in fact generalizes to quaternionic dimen-
sion k = 1 as well, under the identification G = Λ+ identifying the quaternionic
structure with the self-dual 2-forms.
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Lemma 5.5. Let (M4, g) be a Riemannian manifold. Then M is quaternion-
Kähler if and only if R|Λ+ = s

12
IdΛ+. Moreover, if M is quaternion-Kähler

then the equalities (33) still hold.

Proof. For an arbitrary 4-dimensional Riemannian manifold we can consider
the curvature tensor as a self-adjoint operator on 2-forms, and the decompo-
sition Λ2T ∗M = Λ+ ⊕ Λ− into the self-dual and anti-self-dual 2-forms gives a
block-diagonal decomposition of the curvature operator into

R =

(
W+ + s

12
Id r̊

r̊t W− + s
12

Id

)
where W+,W− are the self-dual and anti-self-dual portions of the Weyl tensor,
r̊ is the trace-free Ricci curvature, and s is the scalar curvature. Thus R
restricts to a multiple of the identity on Λ+ if and only if W+ = 0 and r̊ = 0,
that is, if and only if the metric is anti-self-dual and Einstein, the definition of
a quaternion-Kähler manifold in dimension 4. The discussion above shows that
the equations of Lemma 5.2 are equivalent to the stated curvature property.

We end by noting a few more properties of the equations (33). The left-
hand side expression here is invariant under constant rescalings of the metric,
in that a, b, c depend only on the choice of quaternionic connection for the
underlying weakly quaternionic manifold, and rescaling a metric by a constant
factor does not change the associated Levi-Civita connection. The right-hand
side is therefore invariant under constant rescalings as well. We can also ob-
serve this directly. If we rescale the original metric g by a positive constant C,
then the new metric g̃ = Cg remains quaternion-Kähler with scalar curvature
s̃ = s/C, and for any given quaternionic almost complex structure the associ-
ated proto-Kähler form is also rescaled by c. Applying the proposition to this
new metric yields, for example, that

da− b ∧ c =
−s̃

4k(k + 2)
ω̃K =

−s
C · 4k(k + 2)

CωK =
−s

4k(k + 2)
ωK

We will therefore generally assume via rescaling that any quaternion-Kähler
metric we consider has constant scalar curvature s = ±4k(k + 2) so that the
above equations can be simplified to remove the extraneous constants. In
particular, in the positive scalar curvature case we obtain the simplifications

da− b ∧ c = −ωK
db− c ∧ a = −ωJ (34)

dc− a ∧ b = −ωI
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5.2 Construction of the Kähler Metrics

In this section, we make the same hypothesis and assumptions as those
in Theorem 4.8. In particular, let (M, g) be a quaternion-Kähler manifold
admitting a quaternionic Killing field X0 with momentum section ρX0 . Let
M0 = M − {ρX0 = 0}, and choose a local compatible frame {I, J,K} for Q
over M0 so that I is the complex structure associated to ρX0 , and fix the 1-
form Υ defined by equation (21) on M0. For convenience, we note the following
properties of the forms a, b,Υ:

Lemma 5.6. Let ρ = ρ1ωI be the momentum section associated to the quater-
nionic Killing field X0. Then the forms a, b,Υ satisfy the equations

a(X) = ρ−1
1 ωJ(X0, X) b(X) = −ρ−1

1 ωK(X0, X)
a(IX) = b(X) b(IX) = −a(X)
a(JX) = ρ−1

1 g(X0, X) b(JX) = −Υ(X)
a(KX) = −Υ(X) b(KX) = −ρ−1

1 g(X0, X)

(35)

In particular, evaluating on the Killing field X0 gives

a(X0) = 0 b(X0) = 0
a(IX0) = 0 b(IX0) = 0
a(JX0) = ρ−1

1 g(X0, X0) b(JX0) = 0
a(KX0) = 0 b(KX0) = −ρ−1

1 g(X0, X0)

(36)

Proof. The first row of (35) above is a restatement of equation (20), and the
remaining entries in that table follow from the definitions and the properties
of the orthogonal transformations I, J,K, for example,

a(IX) =
1

ρ1

g(JX0, IX) =
−1

ρ1

g(KX0, X) = −b(X)

With this setup, we consider the 2-form W = −dc.

Theorem 5.7. If M is a positive quaternion-Kähler manifold, then W is a
Kähler form with respect to the complex structure I on the open, dense set
M0 ⊂M .

Proof. If is immediate that W is closed, as dW = −d2c = 0. It remains to
check that the related bilinear form g̃(X, Y ) = W (X, IY ) is a Riemannian
metric.
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We have that g̃ is symmetric if W (IX, IY ) = W (X, Y ) for all X, Y , for
this implies that

g̃(X, Y ) = W (X, IY ) = W (IX, I2Y ) = −W (IX, Y ) = W (Y, IX) = g(Y,X)

We have from Corollary 5.4 that W can be expressed as

W =
s

4k(k + 2)
ωI − a ∧ b

Considering the first summand, the fact that I and g are compatible gives

ωI(IX, IY ) = g(I2X, IY ) = g(IX, Y ) = ωI(X, Y ),

while the equalities from (35) give that

(a ∧ b)(IX, IY ) = ((a ◦ I) ∧ (b ◦ I)) (X, Y )

= (b ∧ (−a))(X, Y ) = (a ∧ b)(X, Y ),

so that W (IX, IY ) = W (X, Y ) and g̃ is symmetric.
To see that g̃ is positive definite, we have

W (X, IX) =
s

4k(k + 2)
ωI(X, IX)− (a ∧ b)(X, IX)

=
s

4k(k + 2)
g(IX, IX)− a(X)b(IX) + a(IX)b(X)

=
s

4k(k + 2)
g(X,X) + a(X)2 + b(X)2

so the assumption that s > 0 gives that W (X, IX) ≥ 0, while the fact that g
is positive-definite implies that W (X, IX) is as well.

Corollary 5.8. The metric

g̃ =
s

4k(k + 2)
g + a⊗ a+ b⊗ b

is a Kähler metric on M0.

5.3 Equivalence to Kähler Metrics Constructed by
Haydys

Theorem 5.7 gives a way to construct a Kähler metric on a subset of a
quaternion-Kähler manifold from an isometric and quaternionic U(1)-action.
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Haydys [14, Section 5] has already given such a construction, and in this section
we show that the metrics obtained through Theorem 5.7 are identical to those
obtained via Haydys’s method.

To do so, we first review the construction as carried out by Haydys. Given
a quaternion-Kähler manifold M , there exists a natural H×/{±1}-fibration
over M known as the Swann bundle [42], which we denote by U(M). This
bundle always has a natural pseudo-hyperkähler structure, which is in fact
hyperkähler in the case that M is a positive quaternion-Kähler manifold. An
isometric and quaternionic U(1)-action on M then lifts to a hyperkähler action
on the Swann bundle U(M), that is, an isometric action that preserves the
Kähler forms associated to the hyperkähler structure.

Using the work of Hitchin et. al. [18], this action yields a hyperkähler mo-
mentum map % : U(M) → Im(H), analogous to the quaternionic momentum
map of Galicki and Lawson described in Theorem 4.7. If the j, k component of
this map is considered as a complex-valued function %c, then %c is holomorphic
with respect to the complex structure on U(M) associated to the i component,
so that %−1

C (0) is a Kähler submanifold of U(M).
In addition to the U(1) action on U(M) lifted from M , the Swann bundle of

a positive quaternion-Kähler manifold also admits a natural, isometric Sp(1)
action that permutes complex structures in the sense that, if the Kähler forms
of the hyperkähler bundle U(M) are gathered into an Im(H)-valued 2-form
ω = ωIi + ωJj + ωKk, then the left action of q ∈ Sp(1) pulls back ω as
L∗qω = qωq∗. In particular, there is a U(1) action on U(M), distinct from the
one lifted from M , obtained from U(1) ⊂ Sp(1) as the subset of unit complex
numbers. By the permuting property this action preserves the Kähler form ωI ,
and so, after making some mild assumptions about the compatibility of the
actions of Sp(1) and the lifted U(1) on U(M), we obtain a Kähler metric on
a subset of M0 ⊂M by considering a Kähler reduction of %−1

C (0) with respect
to a non-zero value of the Kähler momentum map for the second U(1) action.
For details of hyperkähler moment maps and Kähler reductions we refer to
[18, 32].

Haydys also remarks on an alternative way to obtain the Kähler form
associated to the above metric, as the curvature of a principal circle bundle over
M0 constructed from Q. We describe this procedure below, and show that it
produces the Kähler form W of Theorem 5.7. That theorem therefore reproves
Haydys’s result on the existence of Kähler metric on subsets of quaternion-
Kähler manifolds, but without making use of the more complicated machinery
of the Swann bundle.

We again use the notation and assumptions of Section 5.2, letting M be a
positive quaternion-Kähler manifold with quaternionic Killing field X0, taking
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M0 = M − {ρX0 = 0} as the set where the associated momentum section
is nonzero, and choosing a local compatible frame {I, J,K} so that I is the
complex structure associated to ρX0 .

Next, we recall from Corollary 2.19 that the bundle P of local compatible
frames for Q is a principal SO(3)-bundle. The choice of local frame {I, J,K}
for Q over M0 allows us to consider the local connection 1-forms a, b, c associ-
ated to ∇ on Q, which we can consider collectively as an so(3)-valued 1-form
denoted by a as in Lemma 4.3.

The local frame {I, J,K} for Q over M0 is equivalent to a local section of
P over M0, which we can also consider as a trivialization P |M0

∼= M0×SO(3).
The Levi-Civita connection ∇, considered as a connection on Q, therefore lifts
to a principal SO(3)-connection on P . By definition such a connection is an
so(3)-valued 1-form b on P that pulls back under the principal action via the
adjoint representation and acts as the identity on vectors that are vertical with
respect to the principal bundle projection using the standard identification of
vertical vectors with the Lie algebra. The fact that this connection is a lift of
the connection on Q implies that if we consider the local frame {I, J,K} as
a section s : M0 → P , then s∗b = a. These properties uniquely determine b,
which we can see is given by the formula

b(m,g)(X, q · g) = g−1 (a(X) + q) g

where m ∈ M0, X ∈ TmM0, g ∈ SO(3), and q ∈ so(3) so that q · g represents
the right translation of q ∈ so(3) = T1SO(3) to TgSO(3) via g. By definition
the kernel of this 1-form defines the horizontal distribution for the connection,
so that a vector (X, q · g) will be horizontal if and only if q = −a(X).

Although we have fixed a local compatible frame, only the complex struc-
ture I is determined by the momentum section ρX0 , and so in fact we have a
freedom to choose the remaining almost complex structures J,K in the frame.
In terms of the SO(3) structure, the collection of all possible frames including
I is then an U(1)-subbundle of P |M0 that we will call I, consisting of frames

of the form {I, J̃ , K̃} where J̃ , K̃ are a rotation of {J,K}. In terms of the
trivialization determined by {I, J,K}, we have

I ∼= M0 ×

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


for θ ∈ R the angle of rotation from the fixed choice of J,K. We write the
second element of the product here as R(θ) for the matrix of rotation θ, noting
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that R(θ)−1 = R(−θ). This leads to an inclusion of U(1) ⊂ SO(3), which after
differentiating gives an inclusion u(1) ⊂ so(3) on the level of Lie algebras via

iθ 7→

0 0 0
0 0 −θ
0 θ 0

 (37)

Using this we see that T(m,R(θ))I ⊂ T(m,R(θ))P consists of vectors of the form
(X, q ·R(θ)), where q is a matrix of the form0 0 0

0 0 −q1

0 q1 0


Therefore the restriction of b to I is the so(3)-valued form

b(m,R(θ))(X, q1 ·R(θ)) = R(θ) (a(X) + q)R(−θ),

The right-hand side of the above, written explicitly as a matrix, is 0 −a(X) cos θ − b(X) sin θ b(X) cos θ − a(X) sin θ
a(X) cos θ + b(X) sin θ 0 −c(X)− q1

−b(X) cos θ + a(X) sin θ c(X) + q1 0


Note that the part of this matrix associated to u(1) via equation (37) does not
depend on the U(1) action, and therefore determines a u(1)-valued 1-form on
I, which we will call c, by

c(m,R(θ))(X, q1 ·R(θ)) = c(X) + q1

Here we are considering u(1) ∼= R, instead of the more usual iR.

Proposition 5.9. We have the following properties of the 1-form c
1. c is a connection 1-form for a principal U(1)-connection on I.
2. The curvature of c, considered as a 2-form W on M0, is dc.

Proof. Since U(1) is an abelian Lie group with Lie algebra R, a connection
1-form is simply a standard R-valued 1-form on I with the additional property
that it acts as the identify on vertical vectors, which is evidently the case for
c, as

c(m,R(θ))(0, q1 ·R(θ)) = q1

and so the first property is immediately verified.
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For the second, given X, Y ∈ TmM , the 2-form on M0 determined by the
curvature of c is by definition the form

W(X, Y ) = dc(X̃, Ỹ ),

where X̃, Ỹ are horizontal lifts of X, Y to I with respect to the connection
determined by c. This horizontal lift is given by

X̃(m,R(θ)) = (Xm,−c(Xm) ·R(θ)) ∈ TmM × TR(θ)U(1)

We observe that

dc(X̃, Ỹ ) = X̃ · c(Ỹ )− Ỹ · c(X̃)− c([X̃, Ỹ ]) = −c([X̃, Ỹ ])

since X̃, Ỹ are horizontal and therefore c(X̃), c(Ỹ ) ≡ 0. The Lie bracket on
the right hand side can be decomposed as

[X̃, Ỹ ] = [(X,−c(X)), (Y,−c(Y ))]

= [(X, 0), (Y, 0)] + [(X, 0), (0,−c(Y ))] + [(0,−c(X)), (Y, 0)]

+ [(0,−c(X)), (0,−c(Y ))]

For the first and last terms in this expression, we have

[(X, 0), (Y, 0)] = ([X, Y ], 0)

[(0, c(X)), (0, c(Y ))] = (0, [c(X), c(Y )]) = (0, 0)

For the middle terms, we have

[(X, 0), (0,−c(Y ))] = (0,−X · c(Y ))

and so a similar argument for [(0,−c(X)), (Y, 0)] gives that

[X̃, Ỹ ] = ([X, Y ], 0) + (0,−X · c(Y )) + (0, Y · c(X))

and therefore

W(X, Y ) = −c
(

([X, Y ], 0) + (0,−X · c(Y )) + (0, Y · c(X)
)

= −c([X, Y ]) +X · c(Y )− Y · c(X)

= dc(X, Y )
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This gives the relationshipW = −W between the curvature of the connec-
tion on the principal bundle I and the Kähler form W we found in Section 5.2.
This relationship is, up to changes in conventions, the relationship obtained by
Haydys, see Remark 15 in [14]. The connection considered by Haydys actually
arises from a U(1) bundle associated to the double cover Sp(1) of SO(3) via
the Swann bundle, and therefore the curvature form he considers is a multiple
of the form we consider by 1/2. The above proposition can therefore be con-
sidered as an alternate proof of Remark 15 in [14] without making reference
to the Swann bundle.

5.4 Comparison of Haydys and Hitchin Connections

We now arrive at the central problem that motivated the studies in this
thesis. As we have reviewed above, Haydys and Hitchin each have a proce-
dure that takes a quaternionic killing field X0 on M a (positive) quaternion-
Kähler manifold and produces a connection on the subset M0 where the mo-
mentum section is non-zero. Hitchin constructs a quaternionic connection ∇̂
with holonomy contained in SL(k,H)U(1), while Haydys’s procedure gives the

Levi-Civita connection ∇̃ of g̃ a Kähler metric, which therefore has holonomy
contained in U(2k). Both connections preserve the same complex structure I
that is determined by the momentum section associated to the Killing field,
and so both give an additional geometric structure on the same underlying
complex manifold M0.

Were these two connections to coincide, the holonomy group would there-
fore be contained in the intersection SL(k,H)U(1) ∩ U(2k) = Sp(k)U(1),
which is not one of the holonomy groups on Berger’s list. This would imply
that the Kähler metric obtained by Haydys is either hyperkähler, with holon-
omy contained in Sp(k), or is a product or symmetric space, which could lead
to further interesting insights into the structure of the original quaternion-
Kähler manifold. Unfortunately, these connections are distinct, as evidenced
by the following proposition.

Proposition 5.10. Let (M, g) be a quaternion-Kähler manifold with constant
scalar curvature s = 4k(k + 2) and quaternionic Killing field X0, and let
M0 = M −{ρX0 = 0} be the subset on which the momentum map associated to
X0 is nonvanishing. Let g̃ be the Kähler metric on M0 obtained via Theorem
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5.7 and Corollary 5.8. Then the Levi-Civita connection ∇̃ for g̃ is given by

∇̃XY = ∇XY −
1

2

(
a(X)KY + a(Y )KX + b(X)JY + b(Y )JX

)
+

1

2

(
B(X, Y )JX0 −B(X, IY )KX0

)
,

where ∇ is the Levi-Civita connection for the original quaternion-Kähler met-
ric g on M and B is a symmetric (2, 0)-tensor defined by the formula

B(X, Y ) =
1

(ρ1 + ρ−1
1 g(X0, X0))

(
− 2a (∇XY ) + 2

(
X · a(Y )

)
+ 2b(Y )c(X)

+ g(KX,Y ) + a(X)a(KY ) + a(Y )a(KX) + b(X)a(JY ) + b(Y )a(JX)
)

(38)

The proof of this proposition is a lengthly and tedious, if straightforward,
application of the Koszul formula for the Levi-Civita connection which we
relegate to the appendix in Section A.1.

The assumption that s = 4k(k + 2) is made to simplify the expression of
the Levi-Civita connection by removing extraneous constant factors. Following
the remarks after Corollary 5.4, we can always assume that a given positive
quaternion-Kähler metric has this scalar curvature after rescaling, and in this
case the Kähler form and metric on M0 are

W = ωI − a ∧ b
g̃ = g + a⊗ a+ b⊗ b (39)

Evidently the change of connection is not of the form described in Lemma
4.1, and so the connection ∇̃ is not quaternionic and therefore cannot coincide
with the connection ∇̂ obtained by Hitchin. We can easily compute their
difference.

Corollary 5.11. Let ∇̃ be the connection for the Kähler metric associated to
X0 via Theorem 5.7, and let ∇̂ be the quaternionic connection that preserves
I associated to X0 via Theorem 4.8. Then we have

∇̃XY = ∇̂XY −
1

2

(
Υ(X)Y + Υ(Y )X −Υ(IX)IY −Υ(IY )IX

−B(X, Y )JX0 +B(X, IY )KX0

) (40)

Therefore ∇̃XY and ∇̂XY never coincide.
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Proof. We can write the difference between the two connections as

∇̃XY − ∇̂XY = (∇̃XY −∇XY )− (∇̂XY −∇XY )

and use Proposition 5.10 and Lemma 4.1 to expand the two terms on the right-
hand side, which yields the desired equation after some cancelations, using the
equations of (35) to relate the form Υ to a and b.

To be sure that there are no hidden cancelations in equation (40) or some

set of very special circumstances in which ∇̃ and ∇̂ may actually coincide,
we can consider this equation in the particular case of X = Y = X0, the
given Killing field. Then using the evaluations in equation (36), we have in
particular that Υ(X0) = 0 and Υ(IX0) = −ρ−1

1 g(X0, X0), so that

∇̃X0X0 − ∇̂X0X0 = −ρ−1
1 g(X0, X0)IX0

+
1

2
(B(X0, X0)JX0 −B(X0, IX0)KX0)

In particular, the IX0 component is nonzero, and so the difference between
the two connections will never be identically zero.

5.5 Examples Arising from HP1
∼= S4

We end by considering an explicit example of the special holonomy con-
nections and Kähler metrics obtained in the previous sections by considering
U(1) actions on HP1

∼= S4 with its round metric.
In order to be explicit, we work on R4 ∼= S4 − {pt} using stereographic

projection, although we will use a somewhat non-standard coordinate system,
following the example of Hitchin [17]. Using {x0, x1, x2, x3} for the standard
coordinates on R4, the round metric is given by

g =
48

(1 + x2
0 + x2

1 + x2
2 + x2

3)2

(
dx2

0 + dx2
1 + dx2

2 + dx3
3

)
(41)

Note that we have rescaled this metric from the standard unit sphere so that
we have scalar curvature s = 12 as assumed above, so that we can express
the resulting Kähler metric on M0 as without any extraneous constants as
in equation (39). This metric is well-known to be conformally flat, hence
anti-self-dual, and has constant sectional curvature, so is a quaternion-Kähler
manifold using our definitions. The quaternionic structure can be given by
identifying TxR4 ∼= R4 ∼= H in the usual way and taking the local almost
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complex structures I, J,K defined by left multiplication by the quaternions
i, j, k on H.

Making a first change of coordinates, we can instead write the metric by
writing R4 = R2 × R2 and considering polar coordinates on each factor, with

x0 = ρ cosϕ x1 = ρ sinϕ
x2 = σ cos θ x3 = σ sin θ

(42)

In this coordinate system, the metric is given by

g =
4

(1 + ρ2 + σ2)2

(
dρ2 + ρ2dϕ2 + dσ2 + σ2dθ2

)
(43)

This makes it easier to express the isometric U(1)-action we will consider,
which is the standard rotation action on the second R2 factor. This is generated
by the Killing field X0 = ∂

∂θ
. To find the momentum section, Hitchin observes

that the dual 1-form associated to X0 has the form X[
0 = 4σ2dθ/(1+ρ2 +σ2)2.

In order to simplify this expression, Hitchin makes the change of coordinates

u = σ/(1 + ρ2 + σ2), v = (ρ2 + σ2 − 1)/ρ, (44)

so thatX[
0 can be written more conveniently as 4u2dθ after making a coordinate

change. In the (u, θ, v, ϕ) coordinate system we then have that the metric on
4-sphere is given by

g =
4

1− 4u2
du2 + 4u2dθ2 +

4(1− 4u2)

(v2 + 4)2
dv +

4(1− 4u2)

v2 + 4
dϕ2

Hitchin’s construction then leads to the following metric.

Proposition 5.12 ([17]). The metric on S4 − S1 defined by

ĝ =
4

(1− 4u2)2
du2 +

4u2

1− 4u2
dθ2 +

4

(v2 + 4)2
dv +

4

v2 + 4
dϕ2

is a scalar-flat Kähler metric, and therefore defines a quaternionic complex
structure on S4 − S1.

A few remarks about this metric are in order. It is related to the original
round metric on S4 via the conformal factor (1− 4u2)−1, just as required (see
the discussion of the four-dimensional case of Hitchin’s construction following
Corollary 4.10). This metric is defined on the set where 1 − 4u2 6= 0, or, in
polar coordinates, away from the circle ρ = 0, σ = 1. Hitchin’s construction
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gives that this metric is anti-self-dual Kähler, equivalently scalar-flat Kähler,
but this can also be observed directly from the formula for the metric. The
metric is in fact the product of the constant scalar curvature s = −2 metric on
the first, (u, θ), factor, considered as the hyperbolic plane, and the constant
scalar curvature s = 2 metric on the second, (v, ϕ), factor, considered as the
2-sphere. Both of these factor metrics are Kähler, and so the product metric
is Kähler, with scalar curvature −2 + 2 = 0.

We can also consider the Kähler metric that arises from the same Killing
field using Haydy’s construction using the explicit methods for computation we
derived in Section 5.2. These computations are not difficult, but are somewhat
tedious, and so we give the details in Appendix A.2. The final result of those
computations is the following proposition.

Proposition 5.13. The Kähler metric on S4 − S1 obtained by the Haydys
construction in this case is given explicitly by

g̃ =
4

1− 4u2
du2 + 4u2dθ2 +

4

(4 + v2)2
dv2 +

4

4 + v2
dϕ2 (45)

This metric is very similar to the metric obtained by Hitchin, with some
important differences. It is also product metric, with the second factor iden-
tical to the second factor of Hitchin’s metric. However the first factor of g̃
is distinct, and is also a metric with positive constant scalar curvature 2, al-
though it is not defined on the circle where 1− 4u2 = 0. The two factors are
conformally related by the factor 1− 4u2, though. We therefore have that the
Haydys metric is Kähler, but with constant scalar curvature s = 4 instead of
the scalar-flat metric obtained by Hitchin.
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École Norm. Sup. (4) 19, 1 (1986), 31–55.

[42] Swann, A. Hyper-Kähler and quaternionic Kähler geometry. Math. Ann.
289, 3 (1991), 421–450.

[43] Wolf, J. A. Complex homogeneous contact manifolds and quaternionic
symmetric spaces. J. Math. Mech. 14 (1965), 1033–1047.

87



Appendix

A.1 Proof of Proposition 5.10

This section is devoted to the proof of Proposition 5.10, which we reproduce
below for convenience:

Proposition 5.10. Let (M, g) be a quaternion-Kähler manifold with constant
scalar curvature s = 4k(k + 2) and quaternionic Killing field X0, and let
M0 = M −{ρX0 = 0} be the subset on which the momentum map associated to
X0 is nonvanishing. Let g̃ be the Kähler metric on M0 obtained via Theorem
5.7 and Corollary 5.8. Then the Levi-Civita connection ∇̃ for g̃ is given by

∇̃XY = ∇XY −
1

2

(
a(X)KY + a(Y )KX + b(X)JY + b(Y )JX

)
+

1

2

(
B(X, Y )JX0 −B(X, IY )KX0

)
,

where ∇ is the Levi-Civita connection for the original quaternion-Kähler met-
ric g on M and B is a symmetric (2, 0)-tensor defined by the formula

B(X, Y ) =
1

(ρ1 + ρ−1
1 g(X0, X0))

(
− 2a (∇XY ) + 2

(
X · a(Y )

)
+ 2b(Y )c(X)

+ g(KX,Y ) + a(X)a(KY ) + a(Y )a(KX) + b(X)a(JY ) + b(Y )a(JX)
)

Proof. The Levi-Civita connection for a Riemannian metric can be obtained
using the well-known Koszul formula,

2g̃
(
∇̃XY, Z

)
= X · g̃(Y, Z) + Y · g̃(X,Z)− Z · g̃(X, Y )

+ g̃([X, Y ], Z)− g̃([X,Z], Y )− g̃([Y, Z], X)

We can expand each term on the right-hand side using the definition in equa-
tion (39). The terms involving g are exactly the Koszul formula for the Levi-
Civita connection ∇ associated to g, and so after expanding we have

2g̃
(
∇̃XY, Z

)
= 2g (∇XY, Z) +X · (a(Y )a(Z) + b(Y )b(Z))

+ Y · (a(X)a(Z) + b(X)b(Z))− Z · (a(X)a(Y ) + b(X)b(Y ))

+ a([X, Y ])a(Z) + b([X, Y ])b(Z)− a([X,Z])a(Y )

− b([X,Z])b(Y )− a([Y, Z])a(X)− b([Y, Z])b(X)
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We can expand the first three non-metric terms involving derivatives in the
X, Y, Z directions using the Leibniz rule, to obtain(
X · a(Y )

)
a(Z) + a(Y )

(
X · a(Z)

)
+
(
X · b(Y )

)
b(Z) + b(Y )

(
X · b(Z)

)
+
(
Y · a(X)

)
a(Z) + a(X)

(
Y · a(Z)

)
+
(
Y · b(X)

)
b(Z) + b(X)

(
Y · b(Z)

)
−
(
Z · a(X)

)
a(Y )− a(X)

(
Z · a(Y )

)
−
(
Z · b(X)

)
b(Y )− b(X)

(
Z · b(Y )

)
These terms can be combined with the terms involving the Lie bracket of
vector fields in our expansion of the Koszul formula, for example,

a(Y )
(
X · a(Z)

)
− a(Y )

(
Z · a(X)

)
− a(Y )a([X,Z]) = a(Y )da(X,Z)

Using similar arguments for db, we have that

2g̃
(
∇̃XY, Z

)
= 2g (∇XY, Z) + 2

(
X · a(Y )− da(X, Y )

)
a(Z)

+ 2
(
X · b(Y )− db(X, Y )

)
b(Z) + a(Y )da(X,Z)

+ a(X)da(Y, Z) + b(Y )db(X,Z) + b(X)db(Y, Z)

We can simplify the 2-forms da, db using the equations of (34), for example

da(X, Y ) = −g(KX,Y ) + b(X)c(Y )− b(Y )c(X)

db(X, Y ) = −g(JX, Y ) + c(X)a(Y )− c(Y )a(X)

Using these formulas, making appropriate cancellations, and gathering like
term yields the formula

2g̃
(
∇̃XY, Z

)
= 2g (∇XY, Z)

− g
(
a(X)KY + a(Y )KX + b(X)JY + b(Y )JX,Z

)
+
(

2
(
X · a(Y )

)
+ 2b(Y )c(X) + g(KX,Y )

)
a(Z)

+
(

2
(
X · b(Y )

)
− 2a(Y )c(X) + g(JX, Y )

)
b(Z)

Considering the two terms in the above involving the metric g, both can be
rewritten in terms of the metric g̃ using equation (39). For the first, we have

g̃ (∇XY, Z) = g (∇XY, Z) + a (∇XY ) a(Z) + b (∇XY ) b(Z),

while for the second we have

g̃
(
a(X)KY + a(Y )KX + b(X)JY + b(Y )JX,Z

)
= g
(
a(X)KY + a(Y )KX + b(X)JY + b(Y )JX,Z

)
+
(
a(X)a(KY ) + a(Y )a(KX) + b(X)a(JY ) + b(Y )a(JX)

)
a(Z)

+
(
a(X)b(KY ) + a(Y )b(KX) + b(X)b(JY ) + b(Y )b(JX)

)
b(Z)
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Substituting these two equalities into the expression and rearranging gives that

2g̃
(
∇̃XY, Z

)
is equal to

2g̃ (∇XY, Z)− g̃
(
a(X)KY + a(Y )KX + b(X)JY + b(Y )JX,Z

)
+
(
− 2a (∇XY ) + 2

(
X · a(Y )

)
+ 2b(Y )c(X) + g(KX,Y )

+ a(X)a(KY ) + a(Y )a(KX) + b(X)a(JY ) + b(Y )a(JX)
)
a(Z)

+
(
− 2b (∇XY ) + 2

(
X · b(Y )

)
− 2a(Y )c(X) + g(JX, Y )

+ a(X)b(KY ) + a(Y )b(KX) + b(X)b(JY ) + b(Y )b(JX)
)
b(Z)

Finally, the tensor B(X, Y ) is defined precisely so that the remaining
a(Z), b(Z) terms in this expression can be rewritten as

g̃ (B(X, Y )JX0 −B(X, IY )KX0, Z)

To check this, expanding this expression using the definition of g̃ yields

g̃(B(X, Y )JX0 −B(X, IY )KX0, Z)

= B(X, Y )g(JX0, Z)−B(X, IY )g(KX0, Z)

+B(X, Y )a(JX0)a(Z)−B(X, IY )a(KX0)a(Z)

+B(X, Y )b(JX0)b(Z)−B(X, IY )b(KX0)b(Z)

= B(X, Y )ρ1a(Z) +B(X, IY )ρ1b(Z)

+B(X, Y )ρ−1
1 g(X0, X0)a(Z) +B(X, IY )ρ−1

1 g(X0, X0)b(Z)

=
(
ρ1 + ρ−1

1 g(X0, X0)
)
B(X, Y )a(Z) +

(
ρ1 + ρ−1

1 g(X0, X0)
)
B(X, IY )b(Z)

using the equalities of (20) and (36). Therefore defining B(X, Y ) as in equation
(38) gives that the a(Z) term in this expansion exactly matches the a(Z) term

that remains to be simplified in our expression for 2g̃
(
∇̃XY, Z

)
.

To check the b(Z) terms, we have that (ρ1 + ρ−1
1 g(X0, X0))B(X, IY ) is
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given by the expression

−2a (∇X(IY )) + 2
(
X · a(IY )

)
+ 2b(IY )c(X) + g(KX, IY )

+ a(X)a(KIY ) + a(IY )a(KX) + b(X)a(JIY ) + b(IY )a(JX)

=− 2a ((∇XI)Y )− 2a (I∇XY ) + 2
(
X · b(Y )

)
− 2a(Y )c(X) + g(JX, Y )

+ a(X)a(JY ) + b(Y )a(KX)− b(X)a(KY )− a(Y )a(JX)

=− 2a(X)a(JY ) + 2b(X)a(KY )− 2b (∇XY ) + 2
(
X · b(Y )

)
− 2a(Y )c(X)

+ g(JX, Y ) + a(X)a(JY ) + b(Y )b(JX)− b(X)a(KY ) + a(Y )b(KX)

=− 2b (∇XY ) + 2
(
X · b(Y )

)
− 2a(Y )c(X) + g(JX, Y )

− a(X)a(JY ) + b(Y )b(JX) + b(X)a(KY ) + a(Y )b(KX)

=− 2b (∇XY ) + 2
(
X · b(Y )

)
− 2a(Y )c(X) + g(JX, Y )

+ a(X)b(KY ) + b(Y )b(JX) + b(X)b(JY ) + a(Y )b(KX)

where we make use of the equalities in (35) in order to exchange a and b. This
expression gives exactly b(Z) terms that remain to be simplified.

Combining all of our simplifications, we have

2g̃(∇̃XY, Z) = 2g̃ (∇XY )

− g̃
(
a(X)KY + a(Y )KX + b(X)JY + b(Y )JX,Z

)
+ g̃
(
B(X, Y )JX0 −B(X, IY )KX0, Z

)
Dividing by 2 and gathering terms gives

g̃
(
∇̃XY, Z

)
= g̃
(
∇XY −

1

2

(
a(X)KY + a(Y )KX + b(X)JY + b(Y )JX

)
+

1

2

(
B(X, Y )JX0 −B(X, IY )KX0

)
, Z
)
,

and so we have the desired formula as g̃ is non-degenerate.

As a check of this expression, we can note that the complex structure I is
in fact parallel with respect to the connection ∇̃ determined by this formula,
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as we have

(∇̃XI)Y = ∇̃X(IY )− I∇̃XY

= ∇X(IY )− 1

2

(
a(X)KIY + a(IY )KX + b(X)JIY + b(IY )JX

)
+

1

2

(
B(X, IY )JX0 −B(X, I2Y )KX0

)
− I∇XY +

1

2

(
a(X)IKY + a(Y )IKX + b(X)IJY + b(Y )IJX

)
− 1

2

(
B(X, Y )IJX0 −B(X, IY )IKX0

)
= (∇XI)Y − 1

2

(
a(X)JY + b(Y )KX − b(X)KY − a(Y )JX

)
+

1

2

(
B(X, IY )JX0 +B(X, Y )KX0

)
+

1

2

(
− a(X)JY − a(Y )JX + b(X)KY + b(Y )KX

)
− 1

2

(
B(X, Y )KX0 +B(X, IY )JX0

)
= (∇XI)Y − a(X)JY + b(X)KY

= a(X)JY − b(X)KY − a(X)JY + b(X)KY = 0.

A.2 Proof of Proposition 5.13

In this section, we explicitly carry out the computations in Section 5.2
required to obtain the metric described in Proposition 5.13. Although we give
enough details so that the results can be verified by hand, most of the actual
computations in this section were performed using Mathematica.

We begin by describing the quaternion-Kähler structure on S4. The round
metric on S4 is conformally flat and has constant curvature, hence is Einstein
and therefore by definition quaternion-Kähler. The quaternionic structure
arises from the isomorphism HP1

∼= S4 given by stereographic projection.
In particular, if we consider the diffeomorphism S4 − {pt} ∼= R4 given by
stereographic projection, then we can choose a natural compatible frame for
the quaternionic structure by identifying TxR4 ∼= R4 ∼= H and letting I, J,K
act as i, j, k. This can be expressed as matrices by using standard Cartesian
coordinates {x0, x1, x2, x3} for R4 and taking the matrix expressions for left
quaternion multiplication given by equation (3). The resulting transformations
are then orthogonal with respect to the metric given by equation (41).

Alternately, we could use the fact that for a quaternion-Kähler 4-manifold,
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the bundle Q is related to the bundle Λ+ of self-dual 2-forms, so that choosing
the compatible basis I, J,K for Q is equivalent to choosing a basis for Λ+.
The basis for the self-dual forms associated to the choice of I, J,K described
above is then

ωI =
4

(1 + x2
0 + x2

1 + x2
2 + x2

3)2
(dx0 ∧ dx1 + dx2 ∧ dx3)

ωJ =
4

(1 + x2
0 + x2

1 + x2
2 + x2

3)2
(dx0 ∧ dx2 − dx1 ∧ dx3)

ωK =
4

(1 + x2
0 + x2

1 + x2
2 + x2

3)2
(dx0 ∧ dx3 + dx1 ∧ dx2)

As discussed in Section 5.5, though, it will be more convenient to use
a coordinate system adapted to the Killing field we will consider. We first
change to the double polar coordinates given by equation (42), for which the
metric has the expression already given in equation (43). With respect to these
coordinates, we have that the basis for the self-dual forms considered above is

ωI =
4

(1 + ρ2 + σ2)2
(ρdρ ∧ dϕ+ σdσ ∧ dθ)

ωJ =
4

(1 + ρ2 + σ2)2

(
cos(ϕ+ θ)dρ ∧ dσ − ρσ cos(ϕ+ θ)dϕ ∧ dθ

− ρ sin(ϕ+ θ)dϕ ∧ dσ − σ sin(ϕ+ θ)dρ ∧ dθ
)

ωK =
4

(1 + ρ2 + σ2)2

(
sin(ϕ+ θ)dρ ∧ dσ − ρσ sin(ϕ+ θ)dϕ ∧ dθ

+ ρ cos(ϕ+ θ)dϕ ∧ dσ + σ cos(ϕ+ θ)dρ ∧ dθ
)

The Kähler metric we ultimately obtain is expressed via equation (39)
in terms of the proto-Kähler form ωI as well as the connection 1-forms a, b
associated to the action of the connection on Q. In order to obtain expressions
for these 1-forms in local coordinates, we can first find the Christoffel symbols
associated to the metric in our given coordinate system to compute the action
of the connection on vector fields, and then use the definition (∇XI)(Y ) =
∇X(IY )− I∇XY to find the connection 1-forms. The resulting forms are
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a =
2

1 + ρ2 + σ2

(
σ sin(ϕ+ θ)dρ+ ρσ cos(ϕ+ θ)dϕ− ρ sin(ϕ+ θ)dσ

− ρσ cos(ϕ+ θ)dθ
)

b =
2

1 + ρ2 + σ2

(
σ cos(ϕ+ θ)dρ− ρσ sin(ϕ+ θ)dϕ− ρ cos(ϕ+ θ)dσ

+ ρσ sin(ϕ+ θ)dθ
)

c =
2

1 + ρ2 + σ2

(
−ρ2dϕ− σ2dθ

)
With these explicit expressions, it is straightforward to verify that the equali-
ties of (34) hold.

Of course, the above expressions all depend on the choice of compatible
basis {I, J,K}, and the setup of Theorem 5.7 assumes that the choice of
compatible basis is such that I is the complex structure related to a momentum
section. In order to compute explicit formulas for our metric, we will need to
choose a different local compatible basis, where the first member is related to
the momentum section of a Killing field, and then find new expressions for the
forms ωI , ωJ , ωK , a, b, c with respect to this new basis.

Generically speaking, this process can be carried out as follows. After
specifying the Killing field, find the associated momentum section by taking the
self-dual part of the exterior derivative of the 1-form dual to the Killing field.
Normalize this momentum section to produce the almost complex structure Ĩ
that will ultimately be parallel with respect to the new connection, and then
complete this to a local frame {Ĩ , J̃ , K̃}. This yields a change of basis matrix,
as in Corollary 2.19, that can then be used to transform the proto-Kähler
forms ωI , ωJ , ωK with respect to the original basis into ω̃I , ω̃J , ω̃K with respect
to the new basis. This change of basis matrix also then gives the change of
connection forms in the usual way. Alternately, once could directly recompute
the connection 1-forms from the Christoffel symbols. Finally, expressions in
coordinates for the Kähler form and metric can then be read off directly from
the result using equation (39).

To complete the proof of Proposition 5.13, we carry out this procedure with
the Killing field X0 = ∂

∂θ
. The exterior derivative of the dual 1-form related

to this field is then

dX[
0 =

8σ

(1 + ρ2 + σ2)3

(
−2ρσdρ ∧ dθ + (1 + ρ2 − σ2)dσ ∧ dθ

)
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We then need to take the self-dual part of this 2-form, which can be accom-
plished by taking the inner product of the form above with ωI , ωJ , ωK . The
result is that the momentum section ρX0 is given by ρX0 = ρ1ωI +ρ2ωJ +ρ3ωK ,
where the coordinate functions are

ρ1 =
1 + ρ2 − σ2

1 + ρ2 + σ2
ρ2 =

2ρσ sin(ϕ+ θ)

1 + ρ2 + σ2
ρ3 =

−2ρσ cos(ϕ+ θ)

1 + ρ2 + σ2

These functions allow us to identify the set M0 = M −{ρX0 = 0}. We observe
that the sin(ϕ+ θ), cos(ϕ+ θ) terms in ρ2, ρ3 will never simultaneously vanish,
and so ρ2 = 0 = ρ3 only when either ρ = 0, σ = 0, or both. However, we see
that if σ = 0 then ρ1 will never vanish. Conversely, if ρ = 0 the we have that
ρ1 = 0 only if σ = 1. Therefore in current coordinate system, we have that
M0 = M − {ρ = 0 and σ = 1}. Note that the set we remove is mapped to a
circle in S4 under the stereographic projection.

The desired almost complex structure on M0 and its related 2-form are
then given explicitly in coordinates by

Ĩ =
1√

ρ2
1 + ρ2

2 + ρ2
3

(ρ1I + ρ2J + ρ3K)

ω̃I =
1√

ρ2
1 + ρ2

2 + ρ2
3

(ρ1ωI + ρ2ωJ + ρ3ωK)

Using the Gram-Schmidt process on the basis {Ĩ , J,K} forQ yields a new local

compatible frame {Ĩ , J̃ , K̃}. Alternately, given two vectors in the compatible
basis, one could also use the cross product to obtain the third. With our
choices, we take the compatible frame {Ĩ , J̃ , K̃} given by Ĩ above, with

K̃ =
2ρσ cos(ϕ+ θ)I + (1 + ρ2 − σ2)K√

ρ4 + 2ρ2 + (σ2 − 1)2 + 2ρ2σ2 cos(2(ϕ+ θ))

and J̃ = K̃× Ĩ, when these are considered as coordinated vectors with respect
to the {I, J,K} frame. It is straightforward if tedious to check that this is in
fact a compatible basis.

With respect to this basis, we can once again compute the connection 1-
forms, which we now call ã, b̃, c̃. Before giving expressions for these forms, we
set some notation that will allow us to represent our formulas more compactly.
Let

C1 = 1 + ρ2 + σ2

C2 = 1 + ρ2 − σ2

C3 = (ρ2
1 + ρ2

2 + ρ2
3)C2

1 = ρ4 + (σ2 − 1)2 + 2ρ2(1 + σ2)

C4 =
√
ρ4 + 2ρ2 + (σ2 − 1)2 + 2ρ2σ2 cos(2(ϕ+ θ))
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Using these, we have the following expressions for ã, b̃, c̃, the connection 1-
forms in the local compatible frame {Ĩ , J̃ , K̃}.

ã =
4σ

C1C4

(
C2

2

C3

sin(ϕ+ θ)dρ+ ρ cos(ϕ+ θ)dϕ+
2C2

C3

ρσ sin(ϕ+ θ)dσ

)
b̃ =

4σ

C1C4

√
C3

(C2 cos(ϕ+ θ)dρ− C2ρ sin(ϕ+ θ)dϕ+ 2ρσ cos(ϕ+ θ)dσ)

c̃ =
2

C2
4

√
C3

(
− ρσ2(ρ2 + σ2 − 1) sin(2(ϕ+ θ))dρ

− ρ2(1 + ρ4 − σ2 + ρ2(2 + σ2) + σ2(ρ2 + σ2 − 1) cos(2(ϕ+ θ)))dϕ

+ C1ρ
2σ sin(2(ϕ+ θ))dσ +

σ2C3

C1

(σ2 − 1 + ρ2 cos(2(ϕ+ θ)))dθ
)

With these expressions, we have an explicit formula for the Kähler form
W = ω̃I − ã ∧ b̃ on M0, which, along with the explicit formula for Ĩ given
above, we can use to obtain a formula for the Kähler metric g̃

g̃ =
4(C2

1C
2
2 + 4ρ2σ2C3)

C2
1C

2
3

dρ2 +
4ρ2

C3

dϕ2

+
4

C2
1C

2
3

(
4
(
ρ2 − 1

)
σ6 + 6

(
ρ2 + 1

)2
σ4 + 4

(
ρ2 − 1

) (
ρ2 + 1

)2
σ2+

+
(
ρ2 + 1

)4
+ σ8

)
dσ2 +

4σ2

C2
1

dθ2 +
32C2ρσ

3

C2
1C

2
3

(dρ⊗ dσ + dσ ⊗ dρ)

Although this expression is correct, and can be used to obtain further infor-
mation about the metric (in particular, one can compute the scalar curvature
from this expression), it is clearly not the most enlightening way to write
the metric. Following Hitchin, we can instead make the coordinate change to
(u, θ, v, ϕ) using equation (44). Note from these formulas that the domain of
the coordinate u is 0 ≤ u < 1

2
, as

σ

1 + ρ2 + σ2
<

σ

1 + σ2
≤ 1

2
,

The inverse expression giving ρ, σ in terms of u, v is then

ρ =

√
(1− 4u2) (v2 + 4) + v(1− 4u2)

2u2v2 + 2

σ =
uv
√

(1− 4u2) (v2 + 4) + u(v2 + 4)

2u2v2 + 2
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In these coordinates, the set where the metric is not defined is the set where
1 − 4u2 = 0. We can pull back the expression for g̃ presented above using
this coordinate change, and the result is the formula for the metric g̃ in the
(u, θ, v, ϕ) coordinates presented in equation (45), completing the proof of
Proposition 5.13.
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