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In statistics cumulants are defined to be functions that measure the linear
independence of random variables. Cumulants can be described as functions
that measure deviation of a map between algebras from being an algebra mor-
phism. In Algebraic topology maps that are homotopic to being algebra mor-
phisms are studied using the theory of A∞ and C∞ algebras. In this thesis
we will explore the link between these two points of views on maps between
algebras that are not algebra maps.
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Chapter 1

Introduction

In statistics cumulants are defined to be functions that measure dependence
of random variables. If the random variables are independent the cumulants
are zero. These cumulants can be defined in general for linear maps between
commutative algebras which do not respect the algebraic structure.

The first few cumulants for a map e between two commutative algebras
are defined as follows.

k1(a) = e(a)

k2(a, b) = e(ab)− e(a)e(b)

k3(a, b, c) = e(abc)− e(ab)e(c)− e(a)e(bc)− e(ca)e(b) + 2e(a)e(b)e(c)

In general, kn is defined as follows.

kn(a1, a2, . . . , an) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
b∈π

e(
∏
i∈b

ai)

The sum is taken over all partitions of {1, . . . , n}. Knowing the cumulants
allows you to calculate the expectations of products. For example

e(ab) = k2(a, b) + k1(a)k1(b)

e(abc) = k3(a, b, c)+k2(a, b)k1(c)+k2(b, c)k1(a)+k2(c, a)k1(b)+k1(a)k1(b)k1(c)

For a linear maps e between associative algebras we define Boolean cu-
mulants to measure the deviation of e from being an algebra map [11]. The
Boolean cumulants are a family of maps Kn : V ⊗n → K defined as follows.

K1(a) = e(a)

K2(a, b) = e(ab)− e(a)e(b)
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K3(a, b, c) = e(abc)− e(a)e(bc)− e(ab)e(c) + e(a)e(b)e(c)

Kn in general is given by the following formula.

Kn(a1, a2, . . . , an) =
∑
±e(a1, . . . , ai)e(ai+1, . . .) . . . e(. . . , an)

The above sum is taken over all ordered partitions of n. The even partitions
occur with negative signs and the odd partitions occur with positive signs.
Expectations of products can also be computed using Boolean cumulants. If
e is a map of algebras then the cumulants are all zero.

More generally cumulants can be defined using the above formulas for chain
maps between differential graded algebras. Furthermore for linear maps be-
tween A∞ algebras Boolean cumulants can be defined up to homotopy and for
maps between C∞ algebras the usual cumulants can be defined up to homo-
topy.

For instance, consider the differential forms Ω(M) on a manifold M and
the cochains C∗(M) on a discrete simplicial structure on the manifold. There
is a chain map I from Ω(M) to C∗(M) given by integrating forms on the
simplices. This map induces an isomorphism on the cohomologies of the two
complexes. The differential forms have an algebra structure given by the wedge
product. An associative cup product can be defined on C∗(M) but I is not a
map of algebras for this product. Both the products however induce products
on cohomology and the isomorphism induced by I on cohomology respects
the induced products. Thus while the cumulants exist at the level of cochain
complexes they vanish on cohomology.

Alternatively, the algebra structure of differential forms can be transferred
to an A∞ algebra structure on C∗(M). This implies C∗(M) has a product
m2 which is (infinitely) homotopic to being associative. This transfer depends
on several choices including an appropriate choice of a homotopy inverse to
I. For this A∞ structure on C∗(M), I is the first term of an A∞ map. We
can define Boolean cumulants of I up to homotopy. In fact for appropriate
choices of homotopies, the transferred structure is C∞ and I is the first term
of a C∞ morphism. Thus regular cumulants are defined up to homotopy. All
of the above mentioned cumulants vanish for the isomorphism that is induced
on cohomology.

We have the following two theorems which relate the Boolean cumulants
to A∞ morphisms and regular cumulants to C∞ morphisms.

Theorem 1. Let A and B be two A∞ algebras. Let p be a chain map from
A to B. Let K2, K3 and so on be the Boolean cumulants of p defined up to
homotopy. Suppose p is the first term of an A∞ morphism (p, p2, p3, . . .) where
pn : A⊗n → B. Then the following statements hold.
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i) p2 gives a homotopy from the second Boolean cumulant K2 to zero. All
the different ways of defining the higher Boolean cumulants Kn are also
homotopic to zero using maps created by p2 and p1.

ii) p3 gives a homotopy between different ways of making K3 homotopic
to zero. For all the higher Boolean cumulants, homotopies between the
multiple different ways of making them homotopic to zero are homotopic
to each other using p3, p2 and p1.

iii) In general any cycles that are created using the homotopies {pj}nj=1 are

made homotopic to zero using maps made by {pj}n+1
j=1 .

The above theorem means that if p is the first term of an A∞ morphism
then the cumulants of p completely collapse. That is, they are not only homo-
topic to zero, multiple homotopies are homotopic to each other. In particular,
the above statement holds when A and B are differential graded associative
algebras and p is a chain map which does not respect the algebra structure
but is the first term of an A∞ morphism. A similar theorem holds in case of
C∞ algebras and the regular cumulants.

Theorem 2. Let A and B be two C∞ algebras. Let p be a chain map from
A to B. Let k2, k3 and so on be the regular cumulants of p defined up to
homotopy. Suppose p is the first term of an C∞ morphism (p, p2, p3, . . .) where
pn : A⊗n → B. Then the following statements hold.

i) p2 gives a homotopy from the second cumulant k2 to zero. All the differ-
ent ways of defining the higher cumulants kn are also homotopic to zero
using maps created by p2 and p1.

ii) p3 gives a homotopy between different ways of making k3 homotopic to
zero. For all the higher cumulants, homotopies between the multiple
different ways of making them homotopic to zero are homotopic to each
other using p3, p2 and p1.

iii) In general any cycles that are created using the homotopies {pj}nj=1 are

made homotopic to zero by maps made using {pj}n+1
j=1 .
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Chapter 2

A∞ and C∞ algebras

2.1 Differential graded algebas and coalgebras

Definition 1. A differential graded associative algebra or a dga is a triple
(A, d,m) such that

i) A =
⊕

n∈ZAn is a graded vector space.

ii) m : A ⊗ A → A is an associative product of degree zero. That is m is
associative and for a ∈ An and b ∈ Am, m(a⊗ b) is in An+m.

iii) d : A → A is a linear map of degree 1 (for a ∈ An, d(a) ∈ An+1) such
that d2 = 0.

iv) (Leibniz Rule) d and m satisfy the following compatibility relationship

d(m(a⊗ b)) = m(d(a)⊗ b) + (−1)|a|m(a⊗ d(b))

Definition 2. An differential graded commutative algebra or a dgca is a dga
(A, d,m) such that m is graded commutative. That is

m(a⊗ b) = (−1)|a||b|m(b⊗ a)

Remark 1 (Koszul sign convention). Given two linear maps f and g of graded
vector space we can define the f ⊗ g to be a map from the tensor product
of the domain to the tensor product of the range. We use the Koszul sign
convention when applying tensor products of linear maps. That is

f ⊗ g(x⊗ y) = (−1)|x||g|(f(x)⊗ g(y))

4



Definition 3. A differential graded coalgebra or a dg-coalgebra is a triple
(C, δ,∆) where

i) C =
⊕

n∈ZCn is a graded vector space.

ii) ∆ : C → C ⊗ C is a co-associative coproduct of degree zero. Coassocia-
tivity implies that

(∆⊗ 1) ◦∆ = (1⊗∆) ◦∆

iii) δ : C → C is a linear map of degree −1 (for a ∈ Cn, δ(a) ∈ Cn−1) such
that δ2 = 0.

iv) (Leibniz Rule) δ and ∆ satisfy the following compatibility relationship

(δ ⊗ 1 + 1⊗ δ) ◦∆ = ∆ ◦ δ

Remark 2. Sweedler’s notation for coalgebras is a way of describing the co-
product ∆ on an element c of C.

∆(c) =
∑
(c)

c(1) ⊗ c(2)

Definition 4. A differential graded commutative coalgebra or a dgc-coalgebra is
a dg-coalgebra (C, δ,∆) such that ∆ is graded co-commutative. In the Sweedler
notation this means

∆(c) =
∑
(c)

c(1) ⊗ c(2) =
∑
(c)

c(2) ⊗ c(1)

Definition 5. Let (A, dA) and (B, dB) be two differential graded complexes.
A chain map of degree i is a linear map f : A → B such that f(An) ⊆ Bn+i

and f ◦ dA = (−1)idB ◦ f .

Remark 3. A dga (or a dgca) is in particular a cochain complex (degree 1
differential) with some additional product structure while a dg-coalgebra or a
dgc-coalgebra is a chain complex (degree −1 differential) with an additional
coproduct structure. For a cochain complex (A, d) the cohomology groups are
defined to be

Hn(A) = (ker(d) ∩ An)/(Im(d) ∩ An)

Similarly the homology groups for a chain complex (C, δ) are defined to be

Hn(C) = (ker(δ) ∩ Cn)/(Im(δ) ∩ Cn)

A chain map of complexes induces a map of the same degree on the cohomology
or the homology.
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Remark 4 (Tensor product of dg-complexes is a dg-complex). Suppose (A, dA)
and (B, dB) are non-negatively graded differential cochain (or chain) com-
plexes. That is for n < 0, An and Bn are zero. Then A⊗B is also a differential
graded complex. The nth grading of A⊗B is

(A⊗B)n =
⊕
i+j=n

Ai ⊗Bj

The differential on this complex is given by dA ⊗ 1 + 1 ⊗ dB. Note that the
Leibniz rule condition in the definition of a dga (or a dg-coalgebra) is equivalent
to saying that the product (or the co-product) is a degree zero chain map of
the two complexes.

Remark 5 (Hom-complex). Suppose (A, dA) and (B, dB) are two cochain (or
chain) complexes. Then the complex of graded linear maps from A to B,
Hom(A,B) is also a differential graded complex. The grading on the complex
is given by the linear maps being graded and the differential ∂ acts on a map
p as

∂(p) = dB ◦ p+ (−1)|p|p ◦ dA
Example 1. One of the first non-trivial example of a dgca is the algebra of
differential forms on Ω∗(M) on a manifold M . The differential d has degree
one as d of an n form is an n + 1 form. The product m is the wedge product
which has degree zero as the wedge product of an m-form with an n-form is
a (m+ n)-form. This algebra is also graded commutative as give two forms ω
and η,

ω ∧ η = (−1)|ω||η|η ∧ ω

The wedge product induces the graded commutative cup product on the co-
homology of the manifold.

Example 2. Consider the chains C∗ on a finite simplicial decomposition of a
space X. There is a coproduct map ∆ : C∗ → C∗ ⊗ C∗ called the Alexander-
Whitney map which is given by the following formula on a simplex [v0, v1, . . . , vn].

∆([v0, v1, . . . , vn]) =
∑
i

[v0, v1, . . . , vi]⊗ [vi, . . . , vn]

This product dualizes to an associative product µ on the cochains C∗. The
associativity follows from the fact that the coproduct ∆ is coassociative. Also
the coproduct satisfies the co-Leibniz property with respect to the boundary
operator ∂. That is, for a simplex σ

∆(∂(σ)) = (1⊗ ∂ + ∂ ⊗ 1)(∆(σ))

6



This implies that the co-boundary map δ is a derivation of the dual product µ
on the cochains C∗. Thus (C∗, δ, µ) is a differential graded algebra. Unlike the
differential forms the cochains are not graded commutative, but the product
µ also induces a graded commutative product on the cohomology of the space.

2.2 A∞ algebras and morphisms

In 1963 James Stasheff defined a notion of an algebra that was associative up
to ’infinite homotopy’.

Definition 6. An A∞ algebra is a graded vector space A with a collection of
linear maps

mn : A[1]⊗n → A[1]

such that mn have degree 1 on and they satisfy the following equations for
every n ∑

i+j=n

mi(1⊗ 1⊗ . . .mj . . .⊗ 1) = 0 (2.1)

The equations in 2.1 imply the following statements.

• m1 is a linear map of degree 1 that squares to zero. Thus m1 is a
differential on A.

• m2 is a binary product and m1 is a derivation of this binary product.

• Since m2 is not associative, that associator m2(m2 ⊗ 1) − m2(1 ⊗ m2)
is not zero. m3 is a map whose boundary is the associator. That is m3

makes m2 homotopic to being associative.

• mn, for n larger than 3, makes cycles created by mk, for k less than n,
homotopic to zero.

The homotopies given by mn can be described using polyhedrons described
by Stasheff. For instance m3 is a homotopy between the two terms of the
associator and is described by a line. There are five different ways of combining
four terms using a binary product and they correspond to five vertices of
a pentagon that is used to describe m4. The first three associahedra are
described as follows.

7



Figure 2.1:

Definition 7. For a differential graded complex V we define the cofree conilpo-
tent coalgebra without a co-unit as follows.

T (V ) =
∞⊕
n=1

V ⊗n

The coproduct of the coalgebra is defined on monomials as

∆(x1 ⊗ . . .⊗ xn) =
n∑
j=0

x1 ⊗ . . . xj
⊗

xj+1 ⊗ . . . xn

From this point onward, in order to avoid confusion between the two dif-
ferent kinds of tensor signs, we will use a comma instead of ⊗. For example,
x⊗ y in T (V ) will be denoted by (x, y) and

∆(x, y) = 1⊗ (x, y) + x⊗ y + (x, y)⊗ 1

The grading on V gives a grading on T (V ). The degree of a monomial
(x1, . . . , xn) is |x1| + . . . + |xn|. T (V ) has the universal property that given
any linear map f from a conilpotent coalgebra C to V there exists a unique
non-counital coalgebra map f̃ from C to T (V ) such that the following diagram
commutes.

C

T (V ) V

f
∃f̃

π

(2.2)

8



In the above diagram π, is the projection from T (V ) to V . Any linear
map l : V ⊗k → V can be extended to a coderivation l̃ on T (V ) given by the
following formula.

l̃(x1, . . . , xn) =
n−k∑
i=0

±(x1, . . . , d(xi+1, . . . , xi+k), . . . , xn)

where the sign of the ith term is (−1)(|x1|+...+|xi|)(|l|). The degree of l̃ is equal
to the degree of l. Thus if V is a differential graded complex with a derivation
d : V ⊗V where the degree of d id 1 and d2 = 0, d̃ is a coderivation of degree 1
on T (V ). d2 = 0 implies d̃2. Thus (T (V ), d̃) is a differential graded coalgebra.

Let (A, d,m) be a differential graded algebra (dga). Consider the complex
A[1] which is A shifted down by 1. A product m[1] is defined on A using the
follwoing formula.

m[1](x[1], y[1]) = (−1)|x|m(x, y)

m[1] has a degree 1 when m has degree 0. The map d and m[1] can both be
lifted to coderivations d̃ and m̃[1] on T (A[1]) and together give a coderivation
D = d̃+ m̃[1]. Consider the following equation.

D2 = d̃2 + d̃ ◦ m̃[1] + m̃[1] ◦ d̃+ m̃[1]2

The following observations follow from straight forward computations.

i) d2 = 0 if and only if d̃2 = 0.

ii) d is the derivation of the product m if and only if d̃ ◦ m̃[1] + m̃[1] ◦ d̃.

iii) m is associative if and only if m̃[1]2 = 0.

These imply that D2 = 0. Also note that d̃ preserves the monomial grading
of T (A[1]) and m̃[1] reduces it by 1. Thus the above three conditions have to
be true if D2 = 0.

In general for a graded complex V any coderivation DV on T (V ) is of the
form

DV = d̃1 + d̃2 + d̃3 . . .

where dn is a linear map from V ⊗n to V and d̃n are their lifts. The maps
dn are called the Taylor coefficients of DV . The above discussion shows that
a differential graded algebra is a graded complex A with a coderivation D
of degree 1 on T (A[1]), where only the first two Taylor coefficients of D are
non-zero. An A∞ algebra is the generalization of a differential graded algebra
in the following way.

9



Definition 8. An A∞ algebra (A,D) is a graded vector space A with a
coderivation D of degree 1 on T (A[1]) such that D2 = 0. The differential
graded coalgebra (T (A[1], D) is called the bar construction of A.

A morphism of A∞ algebras is a map that preserves this structure.

Definition 9. An A∞ morphism from an A∞ algebra (A,DA) to an A∞ al-
gebra (B,DB) is a map of differential graded coalgebras from (T cA[1], DA) to
(T cB[1], DB).

Suppose D = m̃1 +m̃2 +m̃3 + . . ., where mn : A[1]⊗n → A[1] are the Taylor
coefficients of D. Then squaring D gives us

D2 = m̃2
1 + m̃1 ◦ m̃2 + m̃2 ◦ m̃1 + m̃2

2 + m̃1 ◦ m̃3 + m̃3 ◦ m̃1 + . . .

From monomial degree considerations we get that if D2 = 0 then the following
equations must hold.

m̃2
1 = 0

m̃1 ◦ m̃2 + m̃2 ◦ m̃1 = 0

m̃2
2 + m̃1 ◦ m̃3 + m̃3 ◦ m̃1 = 0

and so on. In general we have ∑
i+j=n

m̃i ◦ m̃j = 0

Thus we get the following equivalent definition of an A∞ algebra.
Now consider an A∞ morphisms P : (T cA[1], DA) → (T cB[1], DB). Let

pn : A[1]⊗n → B[1] be a map given by restriction of P to A[1]⊗n followed by a
projection from T cB[1] to B[1]. As P is a map of coalgebras, it is completely
determined by the maps {pn}. For monomials of lengths one, two and three
P is given using p1, p2 and p3 using the following formulas.

P (x) = p1(x)

P (x, y) = p2(x, y) + (p1(x), p1(y))

P (x, y, z) = p3(x, y, z)+(p2(x, y), p1(z))+(p1(x), p2(y, z))+(p1(x), p1(y), p1(z))

In general for a monomial of length n

P (x1, x2, . . . , xn) =
∑

(pii(x1, . . . , xi1), pi2(. . .), . . . , pik(. . .))

where the sum is taken over all ordered partitions of n. Since P is an A∞
morphism P commutes with the differentials on T cA[1] and T cB[1]. This
relation induces certain relations between pn and mn and we get the following
equivalent defination for A∞ morphisms.

10



Definition 10. An A∞ morphism P between A∞ algebras (A,mA
1 ,m

A
2 , . . .)

and (B,mB
1 ,m

B
2 , . . .) is a collection of linear maps

pn : A⊗n → B

such that
n∑
k=1

∑
n1+...+nk=n

mB
k (pn1 ⊗ . . .⊗ pnk

)

=
n∑
k=1

n−k∑
j=0

pn−k+1(1⊗ . . .mA
k . . .⊗ 1)

2.3 C∞ algebras and morphisms

An A∞ algebra is a generalization of an associative algebra and an A∞ mor-
phism is a generalization of an algebra morphism. One way to generalize
commutative associative algebras is to define C∞ algebras and morphisms. A
C∞ algebra is an A∞ algebra such that the maps mn satisfy certain equations
involving (q, r)-shuffles, where q + r = n.

Definition 11. A (q, r)-shuffle is a permutation σ of (1, 2, . . . , q+r) such that

• if 1 ≤ i ≤ j ≤ q, then σ(i) ≤ σ(j)

• if q + 1 ≤ i ≤ j ≤ q + r, then σ(i) ≤ σ(j)

For any vector space V , the tensor coalgebra T (V ) also has a product µ
on it called the shuffle product defined as follows.

µ((x1, . . . , xq)⊗(xq+1, . . . , xq+r)) =
∑

σ∈(q,r)−shuffles

±(xσ−1(1), xσ−1(2), . . . , xσ−1(q+r))

The sign of each term is determined by the degrees of xi and the permutation
σ. For just two terms x and y

µ(x⊗ y) = (x, y) + (−1)|x||y|(y, x)

T (V ) with the shuffle product and the coproduct ∆ defined earlier is a Hopf
algebra.

Suppose (A, d,m) is a differential graded associative algebra. Then since
m is an associative product A is in particular an A∞ algebra. This implies
D = d̃ + m̃[1] is a coderivation of the coproduct on the bar construction
T (A[1]).

11



Lemma 1. A dga A is also a dgca (that is the product m is graded commu-
tative) if and only if D = d̃+ m̃[1] is a derivation of the shuffle product.

Proof. Note that d̃ is already a derivation of the shuffle product. Thus if D is
a derivation of the shuffle product then so is m̃[1]. This implies for all x and
y in A

m̃[1](µ(x[1]⊗ y[1]) = 0

=⇒ m̃[1]((x[1], y[1]) + (−1)(|x|−1)(|y|−1)(y[1], x[1]) = 0

=⇒ (−1)|x|m(x, y) + (−1)|x||y|−|x|−1m(y, x) = 0

=⇒ m(x, y) = (−1)|x||y|m(y, x)

Which implies that m is graded commutative.
Conversely, suppose m is graded commutative then

m̃[1]((µ(x1, . . . , xq)⊗ (xq+1, . . . , xq+r))

= m̃[1](
∑

σ∈(q,r)−shuffles

±(xσ−1(1), xσ−1(2), . . . , xσ−1(q+r)))

Note that since m is graded commutative

(xσ−1(1), . . . , m̃[1](xσ−1(i), xσ−1(i+1)), . . . , xσ−1(q+r))

= ±(xσ−1(1), . . . , m̃[1](xσ−1(i+1), xσ−1(i)), . . . , xσ−1(q+r))

If σ−1(i) ∈ 1, . . . , q and σ−1(i+1) ∈ q + 1, . . . , q + r then both the terms in the
above equality occur in m̃[1] of the shuffle product and cancel out. Otherwise,
since σ is a (q, r)-shuffle, σ−1(i+ 1) = σ−1(i) + 1. Thus

(xσ−1(1), . . . , m̃[1](xσ−1(i), xσ−1(i+1)), . . . , xσ−1(q+r))

is a term in µ(m̃[1]⊗1 +1⊗ m̃[1])((x1, . . . , xq)⊗ (xq+1, . . . , xq+r)) and we have

m̃[1]((µ(x1, . . . , xq)⊗ (xq+1, . . . , xq+r)) =

µ(m̃[1]⊗ 1 + 1⊗ m̃[1])((x1, . . . , xq)⊗ (xq+1, . . . , xq+r))

and m̃[1] is a derivation of the shuffle product µ which in turn means that D
is a derivation of the shuffle product.

The above proposition motivates the following definition of a C∞ algebra.
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Definition 12. A C∞ algebra is an A∞ algebra (A,D) where D is also a
derivation of the shuffle product on T (A[1]). Thus (T (A[1]), D,∆, µ) is a
differential graded Hopf Algebra.

For the above definition of a C∞ morphisms are defined as follows.

Definition 13. A C∞ morphism from a C∞ algebra (A,DA) to a C∞ algebra
(B,DB) is a map of differential graded Hopf algebras from (T cA[1], DA) to
(T cB[1], DB).

Lemma 2. Let (A,D) be an A∞ algebra where D = m̃1 + m̃2 + . . .. Then D
is a derivation of the shuffle product on T (A[1]) if and only if for every pair
(q, r) of positive integers and x1, x2, . . . , xq+r ∈ A[1]

mq+r(µ((x1, . . . , xq)⊗ (xq+1, . . . , xq+r)) = 0

Proof. Suppose D is a derivation of the product. Then

D(µ((x1, . . . , xq)⊗ (xq+1, . . . , xq+r)))

= µ ◦ (D ⊗ 1 + 1⊗D)((x1, . . . , xq)⊗ (xq+1, . . . , xq+r))

Then by taking the projection to A[1] on both sides we get

mq+r(µ((x1, . . . , xq)⊗ (xq+1, . . . , xq+r))) = 0

Conversely, suppose the above statement is true for all pairs (q, r) of positive
integers and x1, x2, . . . , xq+r ∈ A[1]. For a fixed (q, r), and a (q, r) shuffle
σ, consider (σ−1(i), σ−1(i + 1), . . . , σ−1(i + k)). This is either a string of k
consecutive intergers in {1, 2, . . . , q} or in {q + 1, . . . , q + r}, or it is a shuffle
of a subset of {1, 2, . . . , q} and a susset of {q + 1, . . . , q + r}. By definition of
m̃k

m̃k(µ((x1, . . . , xq)⊗ (xq+1, . . . , xq+r)))

= m̃k(
∑

σ∈(q,r)−shuffles

±(xσ−1(1), xσ−1(2), . . . , xσ−1(q+r)))

=
∑

σ∈(q,r)−shuffles

±(xσ−1(1), xσ−1(2), . . . ,mk(. . .), . . . , xσ−1(q+r))

The above sum contains mk applied to (q1, r1)-shuffles where q1 +r1 = k which
are zero by hypothesis. All the other terms that occur, also occur in

µ ◦ (m̃k ⊗ 1 + 1⊗ m̃k)((x1, . . . , xq)⊗ (xq+1, . . . , xq+r))

Thus m̃k is a derivation of µ for every k. This implies D is a derivation of µ.

13



Lemma 3. Let A and B be two C∞ algebras and let P = (p1, p2, . . .) be an
A∞ morphism from A to B. Then P is also a C∞ morphism if and only if
every pair (q, r) of positive integers and x1, x2, . . . , xq+r ∈ A[1]

pq+r(µ((x1, . . . , xq)⊗ (xq+1, . . . , xq+r)) = 0

Proof. Suppose P respects the shuffle product µ. Then

P (µ((x1, . . . , xq)⊗ (xq+1, . . . , xq+r))) = µ(P (x1, . . . , xq)⊗ P (xq+1, . . . , xq+r))

Then by taking the projection to A[1] on both sides we get

pq+r(µ((x1, . . . , xq)⊗ (xq+1, . . . , xq+r))) = 0

The proof of the converse is similar to the proof of the previous lemma. The
expression

P (
∑

σ∈(q,r)−shuffles

±(xσ−1(1), xσ−1(2), . . . , xσ−1(q+r)))

contains terms which contain pk applied to shorter shuffles which add up to
zero by hypothesis. All the other terms also appear in µ(P (x1, . . . , xq) ⊗
P (xq+1, . . . , xq+r)). This imples that P is a map of algebras.

The above Lemmas motivate the following alternate definitions for a C∞
algebra and a C∞ morphism.

Definition 14. A C∞ algebra is an A∞ algebra (A,m1,m2, . . .) such that for
every ordered pair of positive integers (q, r) and (x1, x2, . . . , xq+r) where xi ∈ A

mq+r(
∑

σ∈(q,r)−shuffles

(xσ−1(1), xσ−1(2), . . . , xσ−1(q+r))) = 0

Definition 15. A C∞ morphism is an A∞ morphism P = (p1, p2, . . .) such
that for every ordered pair of positive integers (q, r) and (x1, x2, . . . , xq+r)
where xi ∈ A

pq+r(
∑

σ∈(q,r)−shuffles

(xσ−1(1), xσ−1(2), . . . , aσ−1(q+r))) = 0

14



Chapter 3

Cumulants

3.1 Commutative Cumulants vs. Boolean Cu-

mulants

Definition 16. A probability space is a commutative algebra C over a field K
and a linear function e called the expectation to the base field.

The expectation function does not necessarily respect the product and is
not an algebra map. The cumulants of e are a family of functions kn which can
measure the deviation of e from being an algebra map. kn takes n inputs and
gives an output in the base field. These functions can be used to calculate the
expectations of products of the variables. They are defined using the following
recursive formulas.

e(a) = k1(a)

e(ab) = k2(a, b) + k1(a)k1(b)

e(abc) = k3(a, b, c)+k2(a, b)k1(c)+k1(a)k2(b, c)+k1(b)k2(c, a)+k1(a)k1(b)k1(c)

In general the expectation of the product of n variables is given by

e(a1a2 . . . an) =
∑
π

∏
B∈π

k|B|(B)

where the sum is taken over all the partitions π of 1, 2, . . . , n. As the product
on C is commutative, it can be inductively shown that k|B|(B) is well defined.
This is because the value of kn is independent of the order of the inputs.
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The first few cumulants for a map e between two commutative algebras
can be computed using the following formulas.

k1(a) = e(a)

k2(a, b) = e(ab)− e(a)e(b)

k3(a, b, c) = e(abc)− e(ab)e(c)− e(a)e(bc)− e(ca)e(b) + 2e(a)e(b)e(c)

In general the kn is given by the following formula.

kn(a1, a2, . . . , an) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
b∈π

e(
∏
i∈b

ai)

The cumulants vanish when e is a map of algebras. When the product of
the space is not commutative, the cumulants cannot be defined as above.

Definition 17. An associative probability space is a vector space V over a
field K with an associative product and a function E called the expectation.

Just like in the commutative case, the expectation is not required to satisfy
any compatibility with the product m. This incompatibility can be measured
using the Boolean cumulants of E which are a family of maps Kn : V ⊗n → K.
The first three Boolean cumulants can be defined.

K1(a) = E(a)

K2(a, b) = E(ab)− E(a)E(b)

K3(a, b, c) = E(abc)− E(a)E(bc)− E(ab)E(c) + E(a)E(b)E(c)

Kn in general is given by the following formula.

Kn(a1, a2, , an) =
∑
±E(a1, . . . , ai)E(ai+1, . . .) . . . E(. . . , an)

The above sum is taken over all ordered partitions of n. The even partitions
occur with negative signs and the odd partitions occur with positive signs. If
E is a map of algebras then the cumulants are all zero.

Knowing the Boolean cumulants allows us to compute the expectation of
products. For example

E(ab) = K2(a, b) +K1(a)K2(b)

E(abc) = K3(a, b, c) +K1(a)K2(b, c) +K2(a, b)K1(c) + 3K1(a)K2(b)K1(c)
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Example 3. Let V be the algebra of n×n matrices over R and E be the trace
map from V to R. Then the trace map does not respect matrix multiplication
m. (V,m,E) is a probability space and the cumulants of E are non-zero.

The Boolean cumulants can be defined even in the case where the target of
the expectation function is another vector space with an associative product
instead of the base field. Also the vector spaces can have more structure like
a differential.

Example 4. Consider the algebra of differential forms Ω∗ on a manifold M and
the cochains C∗ on a finite simplicial decomposition of M . The differential
forms are a dgca and the cochains have the Alexander-Whitney cup product
which makes them a dga. Consider the map I : Ω∗ → C∗ defined as follows.
For a differential for ω and a simplex σ

I(ω)(σ) =

∫
σ

ω

From Stoke’s theorem it follows that I is a chain map. This map induces an
isomorphism on cohomology of the complexes. It does not respect the product
structure at the level of complexes. However, by the de Rahm’s theorem I
induces an isomorphism on cohomology. The induced isomorphism is in fact
a map of the algebra structures. Thus the Boolean cumulants of I are defined
on chains, but they vanish on cohomology since the induced map is an algebra
map.

3.2 Boolean cumulants for A∞ algebras

The Boolean cumulants can be defined for A∞ algebras in multiple ways up to
homotopy. Suppose A and B are A∞ algebras and E is a chain map between
them. In an A∞ algebra products of three or more variables are not well
defined thus (abc) can be defined as (ab)c or a(bc). Thus while there is only
one way to define K1 and K2, there are four different ways of defining K3.
All the four ways of defining K3 are homotopic to each other since E((ab)c) is
homotopic to E(a(bc)) and E(a)(E(b)E(c)) is homotopic to (E(a)E(b))E(c).

Lemma 4. Suppose A and B are A∞ algebras. The different ways of defining
the cumulants are homotopic to each other via the maps m2. Multiple homo-
topies given in this manner are all homotopic to each other, the homotopies
of such homotopies are homotopic to each other and so on

Proof. The terms of the cumulants that are defined only up to homotopy
correspond to the vertices of Stasheff associahedra. The different ways of
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defining the cumulants are homotopic to each other via the edges. The two
cells correspond to the homotopies of such homotopies and so on. Since the
associahedra are contractible, the above lemma follows.
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Chapter 4

Transfer of the A∞ and C∞
structure

Given an isomorphism of cochain (or chain) complexes where one of the cochain
(or chain) complexes is a dga (or a dgca), the multiplicative structure can be
transferred and the chain complexes are indeed both algebras and the isomor-
phism is an isomorphism of algebras. In Algebraic topology we often encounter
situations where a map between chain complexes is not an isomorphism but
it induces an isomorphism on cohomology (homology). Since we are work-
ing over field coefficients such a map has in inverse up to homotopy. Such a
map is called a quasi-isomorphisms. In this chapter we will discuss how the
multiplicative structure transfers over quasi-isomorphisms.

4.1 Transferring associative structure

Suppose (A, dA,∧) is a dga and (B, dB) is a cochain complex. Suppose p :
A → B is a map that induces an isomorphism on cohomology. Since we are
working over field coefficients, there exists a map i from B to A such that p ◦ i
is homotopic to identity on A and i ◦ p is homotopic to identity on B. When
p is surjective the map i can be picked so that it is injective and p ◦ i is equal
to identity. If p is injective then i can be picked to be surjective so that i ◦ p
is equal to identity.

Example 5. Suppose A = Ω∗(M) is the algebra of differential forms on a
smooth manifold M and suppose B = C∗(M) is the cochain complex corre-
sponding to a certain fixed regular cell decomposition of M . Consider the
map I defined as follows. For a differential for ω and a cell σ of the cell
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decomposition

I(ω)(σ) =

∫
σ

ω

The cochains C∗(M) have a canonical basis given by the cells of the de-
composition. A basis element σ∗ corresponding to a cell σ is a map such
that

σ∗(σ) = 1

σ∗(τ) = 0

for every cell τ 6= σ.
A map i from C∗(M) to Ω∗(M) can be constructed to have the following

properties.

1) i(σ∗) integrates to 1 on σ.

2) i(σ∗) is supported only in a small neighborhood of the interior of σ.

3) i(σ∗) integrates to zero on all cells that have the same dimension as σ
but are not σ.

The map i is an inclusion of the cochains into differential forms. The map
I ◦ i is equal to identity on C∗(M) and i◦I is homotopic to identity on Ω∗(M).
The homotopy h is a map of degree −1 on Ω∗(M) such that

dh+ hd = i ◦ I − id

h can be constructed inductively on cells and then glued together on the whole
manifold.

Example 6. Suppose (A, d,∧) is a dga and B = H∗(A) is it’s cohomology. B
can be considered to be a cochain complex with the zero differential. Then
since H∗(A) = ker(d)/Im(d) and we are working over field coefficients,

ker(d) ∼= H∗(A)⊕ Im(d)

Also, since ker(d) ⊆ A, there exists a subspace of ker(d)⊥ so that

A ∼= ker(d)⊕ ker(d)⊥

Thus we have a decomposition for A

A ∼= H∗(A)⊕ Im(d)⊕ ker(d)⊥
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For a fixed decomposition, there is an inclusion i of B into A and a pro-
jection p from A to B. Since B is actually the cohomology of A with the zero
differential, both of these maps induce an isomorphism on cohomology. p ◦ i
is identity on B. i ◦ p is homotopic to identity via a homotopy h that can be
constructed inductively.

In both of the above examples, the composition p◦ i is exactly equal to the
identity, while i ◦ p it is homotopic to identity. We will first consider this case.

A Bh
p

i

where p ◦ i is identity on B and i ◦ p− idA = dh+ hd.
We define a binary product m2 on B by first including the elements of

B into A and then taking the product and then projecting them back on B.
Thus for a and b in B

m2(a, b) = p ◦ ∧(i(a), i(b))

The map m2 is not associative since. Consider the associater of m2

m2(m2(a, b), c)−m2(a,m2(b, c))

can be diagrammatically expressed as follows.

Figure 4.1:

Even though the associator is not zero it is homotopic to zero since i ◦ p
is homotopic to identity and ∧ is an associative product on A. We define the
map m3 as follows.

21



Figure 4.2:

m3 = p ◦ ∧ ◦ (h⊗ id) ◦ (∧ ⊗ id) ◦ (i⊗ i⊗ i)

−p ◦ ∧ ◦ (id⊗ h) ◦ (∧ ⊗ id) ◦ (i⊗ i⊗ i)

dB, m2, and m3 satisfy the first three equations for an A∞ algebra.
In general we can define mn by taking a signed sum over rooted planer

binary trees with n leaves (inputs) labeled by i, the nodes are labeled by ∧,
the internal edges are labeled by h, and the root is labeled by p.

Figure 4.3:
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Theorem 3 (T. V. Kadeisvili, 1980). Suppose maps mn : B⊗n → B are
defined by the above formulas using a surjective quasi-isomorphism p : A→ B,
an associative produce ∧ on A which makes (A, d,∧) a dga, a right inverse
i : B → A of p, and a homotopy h : A → A. Then (B, dB,m2,m3, . . .) is an
A∞ algebra. [8]

Let us consider the case of Example 6 where A is dga and B is the coho-
mology of A. m2 defined on B by according to the above formula is homotopic
to being associative via the map m3 defined as above. The differential on the
complex B = H∗(A) is zero which implies, that the associator of m2 is zero.

m2(m2(a, b), c)−m2(a,m2(b, c)) = m3 ◦ 0 + 0 ◦m3

m2 is in fact the associative cup product on the cohomology of M . Even
though m2 is associative, m3, m4 and so on are maps that can still be defined
and are usually non-zero. The definitions of these maps depend on the choice
of an inclusion i of the cohomology into the differential forms and a choice of
a homotopy h which makes the i ◦ p homotopic to identity. It is not always
possible to make a choice for i and h which makes the higher products mn

zero. The products mn serve as higher invariants of the space. These products
are called the A∞ Massey products on cohomology.

In case of the Example 5, the map I transfers the associative structure on
differential forms Ω∗(M) to an A∞ structure on the cochains C∗(M). Since
Ω∗(M) is also graded commutative the transferred m2 is also graded commu-
tative. However it is not associative and there are higher products m3, m4 and
so on which make it A∞. Suppose the cell decomposition that C∗(M) corre-
sponds to, is a simplicial decomposition then there is an associative product on
C∗(M) as described in Chapter 1 which is also an A∞ structure. This product
is associative but not graded commutative. Thus the two A∞ structures on
C∗(M) are not the same however they induce the same cup product on the
cohomology of M .

4.2 Transferring A∞ or C∞ structures

The formulas above transfer the associative product structure on A to an A∞
structure on B across a quasi-isomorphism. This can be generalized to give
formulas that transfer an A∞ structure on A to an A∞ structure on B. Suppose
(A, dA,∧2,∧3, . . .) is an A∞ algebra and p is a quasi-isomorphism from A to
a cochain complex (B, dB). Just like in the previous section we pick a map
i : B → A which is a homotopy inverse to p and a map h : A→ A which makes
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i◦p homotopic to identity. We define mn : B⊗n → B using rooted planer trees
with n leaves. The leaves are labeled by i, internal edges are labeled by h, and
the root is labeled with p. An n-valent vertex of this tree corresponds to the
map mn.

Figure 4.4:

The above formulas give us a generalization of Theorem 3.

Theorem 4 (Konstevich, Soibelman). Suppose maps mn : B⊗n → B are
defined by the above formulas using a quasi-isomorphism p : A → B, the
maps ∧n : A⊗n → A, which make A an A∞ algebra, a right inverse i : B → A
of p, and a homotopy h : A→ A. Then (B, dB,m2,m3, . . .) is an A∞ algebra.
[9] [13]

In the example of differential forms, the algebra is in fact graded commu-
tative. In this case the transferred structure defined using planer trees is in
fact C∞.

Theorem 5 (Cheng, Getzler). Suppose A is a C∞ algebra and p : A → B
is a quasi-isomorphism. The transferred A∞ structure defined on B by the
Theorem of Kostevich and Soibelman is in fact a C∞ structure. [5]

4.3 Extending a quasi-isomorphism to an A∞
morphism

In all our examples so far the map i also has the property that p ◦ i is identity
(homotopy retract). In this situation, starting from i1 = i we can define maps
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in : B⊗ → A using formulas that are very similar to the formulas for mn in
the figure 5.1. The sum is taken over planer trees with n leaves, the leaves are
labeled by i, the internal n valent vertices correspond to the map ∧n, internal
edges labeled by h and the root is also labeled by h.

Figure 4.5:

in are actually the terms of an A∞ morphism.

Theorem 6. (Konstevich and Soibelmann) Suppose A, B, p, i, and h are as
in theorem 4. Further suppose that p◦i is identity on B. Then the (i, i1, i2, . . .)
as defined by figure 4.5 is an A∞ morphism from B with the transferred A∞
structure to A. [9]

In fact the quasi-isomorphism p extends to anA∞ morphism P = (p, p2, p3, . . .)
from A to B that is an inverse of I = (i, i2, i3, . . .).

Theorem 7. (K. Lefevre-Hasegawa, 2003) Every A∞ quasi isomorphism ad-
mits an inverse A∞ quasi-isomorphism up to homotopy.

Remark 6 (constructing P in the special case of deformation retracts). In the
special case where p ◦ i = id we can construct P such that P ◦ I = id. This
can be done since p ◦ i = id The inclusion of B into A gives a decomposition
of A

A = ker(p)⊕ i(B)

Thus it is enough to define pn(a1, a2, . . . , an) where ai are either in ker(p) or
in i(B). We define pn to be zero whenever any ai are in ker(p). On elements
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of i(B) we can define pn inductively. Recall that

P ◦ I(b1, b2) = P (i2(b1, b2) + (i(b1), i(b2)) =

p(i2(b1, b2)) + p2(i(b1), i(b2)) + (p ◦ i(b1), p ◦ i(b2))

Since P ◦ I = id the right hand side of the above equation should be equal
to (b1, b2). Since we know what p is, since i is an inclusion, and since p ◦ i is
identity p2 is well-defined by the above equation. In general

P ◦ I(b1, b2, . . . bn) = pn(i(b1), . . . , i(bn))

+terms involving pk and ik for k smaller than n

+(b1, b2, . . . bn)

Thus pn is inductively defined.
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Chapter 5

Special case of the integration
Example

5.1 Transferring structure to cochains

Suppose C∗(M) is a cochain complex corresponding to a regular cell decom-
position and D∗(M) is a cochain complex corresponding to another finer cell
decomposition. Every cell of the original cell decomposition can be written as
a union of cells of the finer cell decomposition. Thus there is a map p from
D∗(M) to C∗(M). There are projections pD and pC from the differential forms
to D∗(M) and C∗(M) respectively given by integrating the forms of the cells
of the complexes.

D∗(M)

Ω∗(M) C∗(M)

p

pC

pD (5.1)

We can pick inclusions (right inverses) of D∗(M) and C ∗ (M) into the
differential forms. However, the transfer maps for the transferred structure
might not necessarily commute. For the maps to commute it is necessary to
pick the inclusions and the homotopies appropriately. We first transfer the
multiplicative structure of Ω∗(M) to an A∞ structure on D∗(M). For this we
pick an inclusion iD and a homotopy hD such that dhD + hDd = iD ◦ pD − id

Ω∗(M) D∗(M)hD
pD

iD
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Since the map p is a quasi-isomorphism and since we are working over field
coefficients there is an inverse quasi-isomorphism i up to homotopy. Also since
p is a projection i can be picked to be an inclusion such that p ◦ i is identity
on C∗(M). For this inclusion we can pick a homotopy h on D∗(M) such that
dh+ hd = i ◦ p. We can transfer the structure from D∗(M) to C∗(M) using i
and h.

D∗(M) C∗(M)h
p

i

Consider the map iC = iD ◦ i which is an inclusion of C∗(M) into the
differential forms Ω.

Lemma 5. hC = iD ◦ h ◦ pD + hD is a homotopy from i ◦ p to identity. That
is dhC + hCd = i ◦ p+ id.

Proof.

dhC + hCd = d(iD ◦ h ◦ pD) + (iD ◦ h ◦ pD)d+ dhD + hDd

Since pD and iD are chain maps this is equal to

iD ◦ dh ◦ pD + iD ◦ hd ◦ pD + dhD + hDd

Since h and hD are homotopies this is equal to

iD ◦ i ◦ p ◦ pD − iD ◦ pD + iD ◦ pD − id

= iC ◦ pC − id

Thus we can transfer the structure from the differential forms directly to
C∗(M).

Ω∗(M) C∗(M)hC
pC

iC

Lemma 6. The A∞ structure on C∗(M) that is transferred from Ω∗(M) is
the same as the one transferred from D∗(M).
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Proof. Recall that the formula for the transferred structure using i and h is
as follows.

Figure 5.1:

In the above diagram the nodes of the trees correspond to the maps mn in
the structure transferred on D∗(M) from the differential forms. The formulas
for these are given by

Figure 5.2:

Similarly the formulas for the transferred structure on C∗(M) from the
differential forms is
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Figure 5.3:

Since hC = iD ◦ h ◦ pD + hD and iC = i ◦ iD, and also since pD ◦ iD = id we
get that the above sum is obtained by replacing the nodes in the first diagram
by the trees in the second diagram.

Thus given a finite set of cochain complexes C∗1(M), C∗2(M), and so on,
where C∗n(M) correspond to a finer cell decomposition than C∗n−1(M) we can
transfer the associative structure from the differential forms in a compatible
way.

5.2 A∞ morphism from differential forms to

the associative cochains

Suppose C∗(M) are simplicial cochains on M . Then there is an associative
product on C∗(M) which is not commutative. The map p as described in the
previous example given by integrating the forms on the cells is not an algebra
map for this product either. In 1978 V. K. A. M. Gugenheim constructed an
A∞ morphism whose first Taylor coefficient is p [7]. This construction uses
iterated integrals as defined by Kuo-Tsai Chen [2]. We will consider the special
case of forms and cochains on the interval [0, 1]. The details of the case are
worked out in the paper by Ruggero Bandiera and Florian Schaetz [1]

The 0 cochains on [0, 1] are functions on the set {0, 1} and 1 cochains
are given by one generator corresponding to the one cell. We will call this
generator dt. Thus a 1 cochain is of the form rdt where r is in R. The map p
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is given for a zero form by taking the restriction of the function to the points
0 and 1. On the one forms it is given as follows.

p(f(x)dx) = (

∫ 1

0

f(x)dx)dt

Recall that the associative cup product on the cochains is defined as follows.
For two zero forms the cup product is the product of the two functions. For a
zero form F and a one form rdt we have

F ∪ rdt = F (0)rdt

rdt ∪ F = 0

and the cup product of two one forms is zero. Note that this product is
not associative and the map p is not a map of algebras. We define the map
pn : Ω([0, 1])⊗n → C∗([0, 1] as follows. If any of the inputs of pn is a zero form
then pn is zero. For n one forms

pn(f1(x)dx, f2(x)dx . . . , fn(x)dx)

= (

∫
t1≤t2≤...≤tn

f1(t1)f2(t2) . . . fn(tn)dt1dt2 . . . dtn)dt

(p, p2, p3, . . .) is an A∞ morphism from the differential forms to the cochains.
For a general simplex ∆nof dimension n, and the map p : Ω(∆n)→ C∗(∆n)

maps pn can by defined using iterated integrals in a manner very similar to the
case of [0, 1]. For a simplicial decomposition of a manifold, the maps are locally
defined on each simplex and can be glued together to extend the integral map
to an A∞ morphism.
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Chapter 6

Main Results

6.1 Structure of an A∞ morphism between dgas

Recall that between associative algebras without differentials, every A∞ mor-
phism is in fact an algebra morphism. This is however not necessarily the case
when we consider A∞ morphisms between dgas.

Suppose (A, dA,∧A) and (B, dB,∧B) are two differential graded algebra.
Recall that by definition an A∞ morphism is a collection of maps(p1, p2, . . .),
pn : A⊗n → B where which satisfy the following compatibility relations for
every n.∑
i+j=n

∧B(pi ⊗ pj) + dB ◦ pn =
∑

pn−1(1⊗ . . . ∧A . . . 1) + pn(1⊗ . . . dA . . .⊗ 1)

In particular for n = 1 the compatibility relation is as follows.

∧B (p1 ⊗ p1) + dB ◦ p2 = p1 ◦ ∧A + p2(dA ⊗ 1 + 1⊗ dA) (6.1)

Also recall that for a map pn : A⊗n → B, the differential of pn in the space
Hom(A⊗n, B) and is defines as

(pn) = dB ◦ pn + (−1)n+1pn(1⊗ . . . dA . . .⊗ 1) (6.2)

We call this the boundary of the map pn. Note that since ∂(p1) = 0 which
implies p1 is a chain map.

Lemma 7. The Boolean cumulants K2, K3 and so on of the map p1 : A→ B
are boundaries of maps that can be constructed using the map p2.
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Proof. We will prove this lemma by induction. For a and b in A,

K2(a, b) = p1(∧A(a, b)− ∧B(p1(a), p1(b)))

For simplicity of notation we will suppress ∧A and ∧B. Thus the formula for
the cumulants is now more familiar.

K2(a, b) = p1(ab)− p1(a)p1(b)

Thus from equations 6.1 and 6.2 we have that

∂(p2)(a, b) = K2(a, b)

In general we know that

Kn(a1, a2, . . . , an) =
∑

ordered partitions of n

±p1(a1 . . . ai)p1(ai+1 . . .) . . . p1(. . . an)

In general we can describe Kn in terms of Kn−1 and p1 as follows.

Kn(a1, a2, . . . , an) = Kn−1(a1a2, a3, . . . , an)− p1(a)Kn−1(a2, . . . , an)

Since Kn−1 can be written as a boundary of some map f and ∂(p1) = 0 we
have

Kn = ∂(f ◦ (∧A ⊗ id))− p1 ⊗ ∂(f) = ∂(f ◦ (∧A ⊗ id)− p1 ⊗ f)

This proves that all the cumulants are boundaries in the Hom-complex.

Note that for K3, K4 and so on there is not a unique way to write Kn as a
boundary of a map. Given that K2 is the boundary of p2, K3 can be describes
as the boundary of two different maps.

K3(a, b, c) = ∂(p2(ab, c)− p1(a)p2(b, c))

= ∂(p2(a, bc)− p2(a, b)p1(c))

Similarly K4 can be described as a boundary of multiple different maps.
The terms of the nth cumulant correspond the the ordered partitions of

n. We associate a graph Gn to Kn. The vertices of Gn correspond to terms
of Kn (or equivalently to ordered partitions of n). Two vertices are connected
to each other via an edge for the corresponding partitions, one partition can
be obtained from the other by splitting one of the sub strings. Note that the
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vertices of Gn correspond to all the different ways of combining n− 1 ordered
inputs from A using p and the binary products to give exactly one output in
B. If p were an algebra map all of these ways would be equal.

Figure 6.1:

Lemma 8. The graph Gn is the one skeleton of an n− 1-cube.

Proof. We will prove this by induction. Note that K3 is a square and recall

Kn(a1, a2, . . . , an) = Kn−1(a1a2, a3, . . . , an)− p1(a1)Kn−1(a2, . . . , an)

By induction hypothesis the subgraphs of Gn corresponding to the above two
terms are a n−2-cubes (as Gn−1 is an n−2 cube. Edges that go between these
subgraphs correspond to splitting sub-strings of the form a1a2 . . . ai into a1 and
a2 . . . ai. Thus for these edges give a one to one correspondence between the
vertices of the two n− 2 cubes. It is easy to check that the adjacent vertices
in the first cube go to adjacent vertices in the second cube. Thus the graph of
Gn is an n− 1 cube.

If two vertices ofGn are connected by an edge then they occur with opposite
signs in Kn. Also, the corresponding terms of the cumulant are the boundary
of a map involving p1 and p2. For instance p1(ab)p1(c)− p1(a)p1(b)p1(c) is the
boundary of the map p2(a, b)p1(c) and p1(abc) − p1(a)p1(bc) is the boundary
of p2(a, bc). This is true because the differentials are derivations of the binary
product and p1 is a chain map. Thus we can label the edges of Gn with
the corresponding maps involving p2. Thus cycles in Gn correspond to cycles
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in Hom(A⊗n, B). For instance the following map is the sum of the maps
corresponding to the four edges of G3.

p2(ab, c)− p1(a)p2(b, c)− p2(a, bc) + p2(a, b)p1(c)

This map is a cycle.
Note that this map is essentially all the ways of composing the maps p2

and p1 withe the binary products. From the compatibility relation for p3 we
get that

∂(p3)(a, b, c) = p2(ab, c)− p1(a)p2(b, c)− p2(a, bc) + p2(a, b)p1(c)

Lemma 9. The cycle corresponding to the squares in the cubes Gn are bound-
aries of maps constructed using p3, p2 and p1.

Proof. In general a square in Gn is made with four vertices which differ in
partitions added at two positions. There are two cases to consider. First is
when a single substring is split into three in two different ways. Both these
cases and the maps that give the homotopies to zero are shown in the following
diagrams

Figure 6.2:
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Figure 6.3:

Let gn be an n− 2-dimensional solid cube such that Gn is its one skeleton.
Then from the above lemma we can associate to the 2-cells of gn maps made
using p3 and p2. We are now ready to state and prove our theorem in the
context of associative algebras.

Theorem 8. Let (A,∧A, dA) and (B,∧B, dB) be two dgas. Let p be a chain
map from A to B. Let K2, K3 and so on be the Boolean cumulants of p.
Suppose p is the first term of an A∞ morphism (p, p2, p3, . . .) where pn : A⊗n →
B. Then the following statements hold.

i) p2 gives a homotopy from the second Boolean cumulant K2 to zero. All
the higher Boolean cumulants Kn are also homotopic to zero using maps
created by p2 and p1.

ii) p3 gives a homotopy between different ways of making K3 homotopic
to zero. For all the higher Boolean cumulants, homotopies between the
multiple different ways of making them homotopic to zero are homotopic
to each other using p3, p2 and p1.

iii) In general any cycles that are created using the homotopies {pj}nj=1 are

made homotopic to zero using maps made by {pj}n+1
j=1 .

Proof. The previously proved lemmas prove the first two parts of this theorem.
In general 2 cycles created by p2 and p3 correspond to 2 cycles in gn. Consider
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the boundary of pn in general. Recall that from by definition pn satisfies the
equation.

n∑
k=1

∑
n1+...+nk=n

mB
k (pn1 ⊗ . . .⊗ pnk

)

=
n∑
k=1

n−k∑
j=0

pn−k+1(1⊗ . . .mA
k . . .⊗ 1)

Since in this case mk are all zero except for k = 1 and k = 2 we get

d(pn) +
∑

n1+n2=n

∧B(pn1 ⊗ pn2)

=
n∑
k=1

pn(1⊗ . . . d . . .⊗ 1) +
n−1∑
k=1

pn−1(1⊗ . . . ∧A . . .⊗ 1)

By rearranging the terms of the above equation we find ∂(pn).

d(pn)−
n∑
k=1

pn(1⊗ . . . d . . .⊗ 1)

=
n−1∑
k=1

pn−1(1⊗ . . . ∧A . . .⊗ 1)−
∑

n1+n2=n

∧B(pn1 ⊗ pn2)

Also

∂(∧B(pn1 ⊗ pn2)) = ∧B(∂(pn1)⊗ ∂(pn2))

Thus in general to a map of the type pj1pj2 . . . pjm we associate a cell of
dimension j1 + j2 . . . jm−m which is attached in gn to the cycle corresponding
to its boundary.

37



Figure 6.4: p2 and p3

Figure 6.5: p4

Since gn are solid cubes, they are contractible. Also, all the cells of gn
correspond to either a function of the form p1 . . . pk . . . p1 or a function of the
form p(a1) . . . pk . . . pl . . . p(an). Thus we have that all cycles created by {pk}
are contractible.
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6.2 C∞ morphism between dgcas

Suppose A and B are also graded commutative and (p1, p2, . . .) is a C∞ mor-
phism from A to B. Recall that the commutative cumulants are defined as
follows.

kn(a1, a2, . . . , an) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
b∈π

p(
∏
i∈b

ai)

Recall that k2 is the same as the Boolean cumulant K2 and thus from the
previous section it follows that k2 is the boundary of the map p2.

Lemma 10. The commutative cumulants can be describes as boundaries of
maps described using p2

Proof. Note that the coefficients of kn are integers that must add up to zero.
Also each term in kn corresponds to all partitions of n. Like in the previous
section we associate a graph Gn whose vertices correspond to the terms of
kn with multiplicities. Edges go between a vertex α and β is the partition
corresponding to β can be obtained from the partition corresponding to α by
splitting one of its subsets into two. Note that since the coefficients of kn add
up to zero, Gn has even number of vertices. Also note that it is a connected
graph. Any two terms corresponding to adjacent vertices in Gn are homotopic
to each other via p2 and occur in kn with opposite signs. Thus we can take
pairs of terms with opposite signs in kn that are homotopic to each other and
use that to describe kn as a boundary.

The third cumulant k3 is given by the formula

k3(a, b, c) = p(abc)− p(ab)p(c)− p(bc)p(a)− p(ca)p(b) + 2p(a)p(b)p(c)

Thus the corresponding graph is
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Figure 6.6:

We can now state the following theorem.

Theorem 9. Let (A, dA) and (B, dB) be two dgcas. Let p be a chain map
from A to B. Let k2, k3 and so on be the cumulants of p. Suppose p is the
first term of a C∞ morphism (p, p2, p3, . . .) where pn : A⊗n → B. Then the
following statements hold.

i) p2 gives a homotopy from the second commutative cumulant k2 to zero.
All the higher cumulants kn are also homotopic to zero using maps cre-
ated by p2 and p1.

ii) p3 gives a homotopy between different ways of making K3 homotopic
to zero. For all the higher Boolean cumulants, homotopies between the
multiple different ways of making them homotopic to zero are homotopic
to each other using p3, p2 and p1.

iii) In general any cycles that are created using the homotopies {pj}nj=1 are

made homotopic to zero using maps made by {pj}j+1
j=1.

Proof. We will construct an n− 1 dimensional cube complex cn corresponding
to kn whose one skeleton is Gn. We first attach two cells corresponding to maps
of the types that are described in figures 6.2 and 6.3. The boundaries of those
maps correspond to 2-cycles in Gn since the edges in Gn. For every j less then
n we attach a j-cube corresponding to maps of the form p1 . . . pk+1 . . . p1 and
p1 . . . pj1 . . . pj2 . . . p1 attached along the cells corresponding to their bound-
aries. Recall that
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∂(pn) = d(pn)−
n∑
k=1

pn(1⊗ . . . d . . .⊗ 1)

=
n−1∑
k=1

pn−1(1⊗ . . . ∧A . . .⊗ 1)−
∑

n1+n2=n

∧B(pn1 ⊗ pn2)

and

∂(∧B(pn1 ⊗ pn2)) = ∧B(∂(pn1)⊗ ∂(pn2))

Thus the boundaries of the cubes correspond to the sum of lower dimensional
cubes.

The complex cn is constructed similarly to the complex gn constructed in
the previous section. Since the terms of kn include all permutations of the
inputs, cn consists of n − 1 cubes corresponding to pn with permuted inputs,
glued together in a certain way. Thus for some subset of permutations of j
elements, we have cycles of the form

. . . pj(
∑

(aσ(1), aσ(2) . . . aσ(j)) . . .

Recall that by the definition of a C∞ morphism pj vanishes over the sum of
all shuffle permutations adding up to length j. Thus the map corresponding
to the above sums is zero.

6.3 Structure of a general A∞ morphism

Suppose A and B are A∞ algebras. The compatibility equation still implies
that p2 gives a homotopy between p1(ab) and p1(a)p1(b). However we now
have

p1((ab)c) 6= p1(a(bc))

{p1(a)p1(b)}p1(c) 6= p1(a){p1(b)p1(c)}

There are a triple products mA
3 and mB

3 on A and B respectively, which makes
terms homotopic to each other. When A and B were associative, there were
four different ways of combining three inputs from A using p1 and the binary
products to give one output from B. When A and B are A∞ algebras there
are six different ways that are now homotopic to each other via maps involving
p2, p1, m2 and m3.
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Lemma 11. The cycle created by various homotopies between the several ways
of combining three inputs is homotopic to zero via the homotopy p3.

Proof. Thus if we made a graph G3 with six vertices each corresponding to
ways of combining n inputs, and edges corresponding to appropriate homo-
topies, we get a hexagon. Recall that the equation the p3 satisfies gives the
value of ∂(p3) to be

d(p3)− p3(d̃)

= p2(m2 ⊗ 1 + 1⊗m2)−m2(p1 ⊗ p2 + p2 ⊗ p1)

+p1(m3)−m3(p1 ⊗ p1)⊗ p1

Note that the six terms of the boundary p3 correspond to homotopies be-
tween adjacent vertices of hexagon G3.

Figure 6.7:

Similarly for k4 we get the following polyhedron
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Figure 6.8:

In the context of A∞ algebras the Boolean cumulants are only defined up
to homotopy. In general for every kn there is an n−1 dimensional polyhedron
whose cells correspond to maps which take n inputs that are compositions of
maps pj’s and mj’s.

The Boolean cumulants are defined in the context of A∞ algebras only
up to homotopy. Since the Stasheff associahedra make these different ways
homotopic to each other and indeed different homotopies are homotopic to
each other and so on, we have the following theorem in the context of A∞
cumulants.

Theorem 10. Let A and B be two A∞ algebras. Let p be a chain map from
A to B. Let K2, K3 and so on be the Boolean cumulants of p defined up to
homotopy. Suppose p is the first term of an A∞ morphism (p, p2, p3, . . .) where
pn : A⊗n → B. Then the following statements hold.

i) p2 gives a homotopy from the second Boolean cumulant K2 to zero. All
the different ways of defining the higher Boolean cumulants Kn are also
homotopic to zero using maps created by p2 and p1.

ii) p3 gives a homotopy between different ways of making K3 homotopic
to zero. For all the higher Boolean cumulants, homotopies between the
multiple different ways of making them homotopic to zero are homotopic
to each other using p3, p2 and p1.

iii) In general any cycles that are created using the homotopies {pj}nj=1 are

made homotopic to zero using maps made by {pj}n+1
j=1 .
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Proof. The proof of this theorem follows from the fact that the polyhedrons
corresponding to each pn are contractible. The cells of the polyhedrons corre-
spond to concrete maps constructed using pj and mj for smaller j.

The theorem in the case of C∞ algebras is as follows.

Theorem 11. Let A and B be two C∞ algebras. Let p be a chain map from
A to B. Let k2, k3 and so on be the Boolean cumulants of p defined up to
homotopy. Suppose p is the first term of an C∞ morphism (p, p2, p3, . . .) where
pn : A⊗n → B. Then the following statements hold.

i) p2 gives a homotopy from the second cumulant k2 to zero. All the differ-
ent ways of defining the higher cumulants kn are also homotopic to zero
using maps created by p2 and p1.

ii) p3 gives a homotopy between different ways of making k3 homotopic
to zero. For all the higher Boolean cumulants, homotopies between the
multiple different ways of making them homotopic to zero are homotopic
to each other using p3, p2 and p1.

iii) In general any cycles that are created using the homotopies {pj}nj=1 are

made homotopic to zero using maps made by {pj}n+1
j=1 .

Proof. Much like in the previous cases we construct a CW-complex for every n.
In the case of a C∞ morphism between C∞ algebras the nth complex is made
of the n−1 dimensional polyhedrons corresponding to the Boolean cumulants
in the A∞ case. The cycles that aren’t boundaries in this complex correspond
to sums of pj and mj with permuted inputs. Recall that by the definition of
C∞ algebras we have

mq+r(
∑

σ∈(q,r)−shuffles

(xσ−1(1), xσ−1(2), . . . , xσ−1(q+r))) = 0

and
pq+r(

∑
σ∈(q,r)−shuffles

(xσ−1(1), xσ−1(2), . . . , xσ−1(q+r))) = 0

where µ is the shuffle product. Thus sums of cells corresponding to mq+r and
pq+r applied to shuffle products are cycles in the CW-complex. However these
maps are also boundaries since they are indeed equal to zero. Thus we can add
cells corresponding to the zero map whose boundaries are the above cycles.
Thus the CW-complex is indeed contractible and the corresponding maps are
boundaries.
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6.4 Revisiting the A∞ morphism between forms

and associative cochains

Recall that the map p : Ω([0, 1]) → C∗([0, 1]) is actually the first term of an
A∞ morphism from the differential forms to the associative cochains. The
maps pn are defined by the following formula.

pn(f1(x)dx, f2(x)dx . . . , fn(x)dx)

= (

∫
t1≤t2≤...≤tn

f1(t1)f2(t2) . . . fn(tn)dt1dt2 . . . dtn)dt

Note that all the one forms on the interval are exact. Suppose df1 and df2

are exact forms then

p2(df1, df2) = p2(d(f1, df2)) = ∂(p2)(f1, df2) = K2(f1, df2)

In general for forms df1, df2, df3 and so on we have

pn(df1, df2, . . . , dfn) = pn(d(f1, df2, . . . , dfn)) = ∂(pn)(f1, df2, . . . , dfn)

The above expression is equal to

p1(f1)pn−1(df2, . . . , dfn)± pn−1(f1df2, . . . , dfn)

We can compute these quantities by induction on n. Similar analysis can be
made of the A∞ morphism between the differential forms and the cochains on
an n dimensional simplex. Fewer terms would be zero in higher dimensions
but we can use induction on n to compute each pn

6.5 Conclusion: Associating CW-complexes to

cumulants and maps

In the proofs of the above theorems we associated cell complexes to the cu-
mulants of maps that were a part of some kind of a higher structure. The
vertices of such cell complexes corresponded to the terms of the cumulants.
The edges and faces correspond to maps provided by the higher structure,
which provide appropriate homotopies. In the above theorems the cell com-
plexes end up being contractible. However, one can imagine situations where
the cell complexes have a homotopy type. Further there are several inclusions
of the cell complexes associated with the nth cumulant into the cell complex
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associated with the n + 1th cumulant. There are also inclusions of products
of smaller dimensional cell complexes into a celcomplex corresponding to a
higher dimension. Thus we have a directed system of cell complexes and we
can take the direct limit of such a system.

For instance, suppose A and B are dgcas. Suppose (p1, p2, . . .) is an A∞
morphism from A to B (not necessarily a C∞ morphism). In this situation
there are cycles in the cell complex which correspond to the maps

pn(µ(x1, . . . , xq)⊗ (xq+1, . . . , xq+r))

where q + r = n and µ is the shuffle product. The corresponding cells in the
cell complex create a cycle that is in fact a sphere. The homotopy type of
this cell complex is not trivial. These cycles will continue to exist through
the directed system of cell complexes. The direct limit of the system of cell
complexes will have a non-trivial homotopy type. Thus while the cumulants
themselves are homotopic to zero and can be expressed as boundaries, there
is a homotopy type associated to the cumulants which is not trivial.
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