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Abstract of the Dissertation

Several Constructions in the Eremenko-Lyubich Class

by

Kirill Lazebnik

Doctor of Philosophy

in

Mathematics

Stony Brook University

2017

We use a theorem of Bishop in [Bis15] to construct several functions in
the Eremenko-Lyubich class B. First it is verified, that in Bishop’s initial
construction [Bis15] of a wandering domain in B, all wandering Fatou com-
ponents must be bounded. Next we modify this construction to produce a
function in B with wandering domain and uncountable singular set. Finally
we construct a function in B with unbounded wandering Fatou components.
It is shown that these constructions answer two questions posed in [OS16].
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1 Introduction

From the dynamical viewpoint, an entire function f : C → C partitions the
plane into two sets. There is the Fatou set, denoted F(f), that consists of
the points where the family (fn)n≥1 is normal. And there is the Julia set -
the complement of the Fatou set, denoted J (f). The Fatou set is open, and
its components are called the Fatou components of f . The Fatou components
are the regions of the plane where the dynamics of f are non-chaotic.

It is not difficult to see that F(f) is invariant under iteration by f . If we
denote U as a component of the Fatou set, it is natural to study the behavior
of the forward iterates fn(U). We use the following definition: U is called
periodic if fn(U) ⊆ U for some n, and preperiodic if U is eventually mapped
into a periodic component. On the other hand U is called a wandering
domain if fn(U) ∩ fm(U) = ∅ over all n 6= m.

Dennis Sullivan proved in [Sul85] that wandering domains do not occur for
polynomials. On the other hand for more general entire functions, wandering
domains are known to exist. We call a function f : C → C transcendental
if f is entire but is not a polynomial. The first example of a transcendental
function with a wandering domain was in fact produced before Sullivans’
result - this was given by Baker in [Bak76].

One can prove no-wandering domain theorems also for certain subclasses
of transcendental functions. We introduce several new terms to define such
subclasses. Given an entire function f : C → C, the singular values of f
are defined as the set of critical values together with the asymptotic values:
w ∈ C is called an asymptotic value if there is a curve γ : [0,∞) → C
approaching ∞ so that f(γ(t)) → w as t → ∞. The singular set of f ,
denoted S(f) is the closure of the set of singular values of f .

Now we define the subclass of transcendental functions as promised: the
Speiser class, denoted S, is the collection of transcendental functions with
finite singular set. This class is supposed to mimic in some sense the poly-
nomials. Indeed, shortly after Sullivan’s theorem, two groups of mathemati-
cians (Goldberg and Keen [GK86], Eremenko and Lyubich [EL92]) proved
the no-wandering domain theorem in the Speiser class.

A slightly more general subclass of transcendental functions is defined
to be the collection of transcendental functions where the singular set is
bounded, but not necessarily finite. This is called the Eremenko-Lyubich
class and is denoted B. The question of whether wandering domains existed
in B was open until recently. In [Bis15] Bishop constructs functions in B
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with wandering domain.
Much of the theory for the class B was developed in [EL92]. There it was

proven that in class B, Fatou components can not escape uniformly to infinity.
In particular this implies that in order for a wandering domain to occur in
class B it would have to oscillate - i.e. return to some compact subset of
the plane infinitely often. The first example of such an oscillating wandering
domain was indeed given in [EL87], however this function was not in class
B. [EL87] also contains other interesting constructions of transcendental
functions with specified dynamics that are built using approximation theory.
Similar work is done in [Her84] where an entire function is built with a simply
connected wandering domain.

Bishop’s construction [Bis15], on the other hand, relies on the folding
theorem, proven in the same paper, that we would like to spend some time
discussing.

A Shabat polynomial is a complex polynomial p(z) with two critical values,
normalized to be ±1. If we look at the preimage p−1[−1, 1] of any such
polynomial, we see a tree in the complex plane - with vertices corresponding
to preimages of ±1. For example the preimage under p(z) = 3z4

8
− z3

2
− 3z2

4
+

3z
2

+ 3
8

with p′(z) = 3
2
(z − 1)2(z + 1) is shown in Figure 1.

−5
3 +1−1

5
3

+ i2
√
2

3

5
3
− i2

√
2

3

−1 +1p(z)

Figure 1: The preimage p−1[−1, 1] of the Shabat polynomial
given by p(z) = 3z4/8− z3/2− 3z2/4 + 3z/2 + 3/8.

On the other hand, if we specify any tree T in the plane, we can produce
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a Shabat polynomial so that p−1[−1, 1] is equivalent to T , that is, there is
a homeomorphism of C taking p−1[−1, 1] onto T . This was first proven by
Grothendieck - see for example [SZ93].

This establishes a correspondence between finite trees in the plane and
Shabat polynomials. The theorem of Bishop we would like to discuss is a
sort of generalization of this correspondence to the ‘infinite case’. Namely,
this theorem establishes a similar correspondence between a certain subclass
of infinite trees and a subclass of transcendental functions.

An illustrative example is the transcendental function cosh(z). The hy-
perbolic cosine has two critical values±1, and one may verify that cosh−1[−1, 1]
is the imaginary axis, with vertices corresponding to multiples of πi. This is
illustrated in Figure 2.

−10

πi

2πi

−πi
−2πi

+1cosh

Figure 2: The preimage of [−1, 1] under the hyperbolic cosine.

Indeed, if one takes any transcendental function f with two critical val-
ues ±1 and no asymptotic values, f−1[−1, 1] is an infinite tree in C. The
collection of such functions with two critical values and no asymptotic values
is a subclass of the Speiser class S and is denoted S2,0.

Bishop’s theorem, on the other hand, starts with an infinite tree T sat-
isfying certain geometric properties, and then produces an f ∈ S2,0 so that
f−1[−1, 1] is a quasiconformal perturbation of T ∗, where T ∗ is T with some
vertices and branches added. Before giving a rigorous formulation of the
theorem’s statement, it is instructive to outline some of the strategy in its
proof.

If we start with an infinite tree T with alternate vertices labeled ±1, we
can denote the components of C\T by Ωj. We would like to keep in mind our
goal is to produce f ∈ S2,0 so that f−1[−1, 1] approximates T . Well each Ωj
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can be mapped conformally to the right half-plane Hr by a map τj. We define
τ on ∪Ωj to be τj in each Ωj. In turn, Hr can be mapped holomorphically
onto C \ [−1, 1] by cosh. This is illustrated in Figure 3.

Ωj

τj

T

Hr

C− [−1, 1]

cosh

Figure 3: A definition of f on a component Ωj of C \ T .

There are several problems to be addressed - first of all, under this com-
position the vertices of T are not necessarily sent to ±1. Moreover, one
would like to define f globally on C as cosh ◦τj on each region Ωj - but there
is no reason to expect that the continuous extensions of cosh ◦τj on either
side of a branch of T match up. The technical work done in [Bis15] is in
replacing the map τ by a map η that agrees with τ outside a small neigh-
borhood of T , so that cosh ◦η is continuous across T and maps vertices of T
to ±1. Moreover, in the course of this construction the tree T is modified by
adding extra branches and vertices, and we call this new tree T ∗. Once this
is achieved, one has a quasiregular map cosh ◦η whose preimage of [−1, 1]
is the tree T ∗. Subsequently, one applies the measurable Riemann mapping
theorem to obtain a quasiconformal φ so that cosh ◦η ◦φ is holomorphic. We
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take f = cosh ◦η ◦ φ as shown in Figure 4.

η

T ∗
Hr

C− [−1, 1]

cosh

φ

f

φ−1(T ∗)

Figure 4: Bishop’s strategy in constructing an entire f .

Notice that it is no longer the case that f−1[−1, 1] is T or even T ∗, but
rather a quasiconformal image of T ∗. But in fact, the support of the dilatation
of the quasiconformal maps may be taken so as to be concentrated in small
areas of the plane. Consequently, this quasiconformal image of T ∗ is in fact
a good geometric approximation of T ∗ and hence also T .

Moreover, it is not essential that T be a tree - many of the arguments will
still hold as long as T is a bipartite graph and no two bounded components
of C \T share a boundary edge. We call such a bounded component of C \T
a D-component and an unbounded component (mapping first to Hr then to
C\ [−1, 1]) an R-component. In the case of a D-component we take τ to map
conformally to the unit disc D rather than Hr. Then rather than following τ
by cosh, we post-compose with z → zd, followed by a quasiconformal map ρ
which is the identity in a neighborhood of the boundary of D and perturbs
the critical value 0. This is illustrated in Figure 5.

For such a graph T we define σ ◦ τ as above for D-components and as
cosh ◦τ for R-components.

It is in this slightly more general setting that we first present a statement
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τj

T

D

D

D

0

0

p(0)

z → zd

ρ

Ωj

Figure 5: The map f on a D-component.

of the theorem more carefully (we will present an alternate version in Section
4). We start by introducing a restriction on the infinite trees we will look at.
We say that T has uniformly bounded geometry if:

(1) The edges of T are C2 with uniform bounds.
(2) The angles between adjacent edges are bounded uniformly away from

zero.
(3) Adjacent edges have uniformly comparable lengths.
(4) For non-adjacent edges e and f , diam(e)/dist(e, f) is uniformly bounded.

We also need to place some restrictions on the conformal maps τ we
described above. For any edge e in the graph T , there are two τ images of e
corresponding to the two sides of e. The τ -size of e is defined as the minimum
of the two lengths of the τ images of e.

Lastly, we define for any r > 0 a neighborhood of T in which the definition
of τ is adjusted, so that we may obtain continuity across the edges of T :

T (r) :=
⋃

e an edge of T

{z ∈ C|dist(z, e) < rdiam(e)}
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It is only in this neighborhood of T (for a choice of r) that new branches
and vertices are added in the construction to yield T ∗.

Now we are ready to state Theorem 7.1 from [Bis15]:

Theorem 1.1. Let T be an unbounded connected graph and let τ be a con-
formal map defined on each complementary domain C \ T as above. Assume
that:

(i) No two D-components of C \ T share a common edge.
(ii) T is bipartite with uniformly bounded geometry.
(iii) The map τ on a D-component with 2n edges maps the vertices to

2nth roots of unity.
(iv) On R-components the τ -sizes of all edges are uniformly bounded from

below.

Then there is an r0 > 0, a transcendental f , and a K-quasiconformal map
φ of the plane, with K depending only on the uniformly bounded geometry
constants, so that f = σ ◦ τ ◦ φ off T (r0). Moreover the only critical values
of f are ±1 - corresponding to the vertices of T , and those critical values
assigned by the D-components.

Indeed Bishop’s example of an f ∈ B with wandering domain is built by
applying the above theorem to a particular graph shown in Figure 8 on page
14 whose vertices and other features we will discuss in the next section. Our
discussion will mimic closely [FGJ15] which contains a lucid exposition of this
construction. The singular set in this example is ±1, 1/2, and a sequence
of complex numbers converging to 1/2. In section two we will present this
construction following the exposition in [FGJ15], modifying some details so as
to provide an example of f ∈ B with wandering domain and an uncountable
singular set.

In the third section of this paper we will verify that the Fatou components
of Bishop’s original construction are indeed bounded. The last section of this
paper is dedicated to modifying this graph in order to construct an f ∈ B
whose wandering Fatou components are unbounded. This last example is also
interesting because this f has only two critical values - the other singular
values are all asymptotic.

We conclude the introduction by describing a motivation for these con-
structions coming from the paper [OS16]. In [OS16] the authors study an
alternative partition of the plane. Rather than partitioning C = J (f)∪F(f)

7



for a given entire function f , one partitions the plane into those points which
stay bounded, escape to infinity, or do neither. More precisely define the
escaping set as I(f) = {z : fn(z) → ∞ as n → ∞}, the set K(f) as those
points which stay bounded under iteration by f , and

BU(f) = C \ [I(f) ∪K(f)]

In other words for any z ∈ BU(f), the orbit (fn(z))n≥1 contains both
bounded and unbounded subsequences. [OS16] contains several theorems
about the set BU(f) for general transcendental functions. They also ask the
following (called question 3 in [OS16]):

Is there a transcendental entire function with an unbounded
wandering domain in BU(f), all of whose iterates are unbounded?

The answer is yes, and we provide such a construction in section 4 of
this paper. [OS16] also studies the ω-limit set Λ(z, f) of a point z in a
wandering domain U . Λ(z, f) is defined as the accumulation set of the orbit
(fn(z))n≥1. Indeed it turns out that for any z1, z2 ∈ U it is the case that
Λ(z1, f) = Λ(z2, f) [Fat20]. Thus we can write Λ(U, f) unambiguously. The
authors of [OS16] ask the following (called question 2 in [OS16])

Is there a transcendental entire function f with a wandering
domain U so that Λ(U, f) is uncountable?

We will detail the construction of such a function in Section 3. Indeed,
Λ(U, f) will contain the uncountable singular set of the function f .
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2 Background

We will discuss here some of the theory of quasiconformal mappings used
throughout this thesis. Some references for this material are [Ahl06], [Hub06]
and [LV73]. We start by stating an analytic definition of quasiconformal
mappings:

Definition 2.1. A homeomorphism f : U → V between two open subsets
U, V ⊂ C is K-quasiconformal (with K ≥ 1), or k-quasiconformal with
k := (K − 1)/(K + 1) if the distributional partial derivatives of f exist, are
locally in L2 and satisfy ∣∣∣∣∂f∂z̄

∣∣∣∣ ≤ k

∣∣∣∣∂f∂z
∣∣∣∣ a.e.

There is a geometric interpretation of the constant K: one considers
infinitesimal circles in the domain of f and the images (infinitesimal ellipses)
in the codomain of f . The supremum of the ratio of the axes of the ellipses,
considered over almost all ellipses, is the constant K.

For a given quasiconformal map f , it is useful to consider its Beltrami
coefficient, denoted µf (z), defined by

µf (z) =

(
∂f

∂z̄

)
/

(
∂f

∂z

)
so that ||µf ||∞ = k < 1 is the dilatation constant of the map f . The
cornerstone of the theory is that given any measurable µ (with ||µf ||∞ < 1)
defined on C, there exists a quasiconformal f so that µf = µ. This is referred
to as the measurable Riemann mapping theorem (see [AB60]):

Theorem 2.2. (measurable Riemann mapping theorem) If U ⊂ C is open,
and µ ∈ L∞(U) with ||µf ||∞ < 1, there exists a quasiconformal mapping
f : U → C so that µf = µ. Moreover, given any other quasiconformal g with
µg = µf , there exists a conformal φ : f(U)→ C so that g = f ◦ φ.

This theorem plays an essential role in this dissertation because we will
often have desirable geometric behavior in some quasiconformal g, and in
order to recover a conformal function with similar properties, we will pre-
compose with an appropriate quasiconformal φ (by invoking the measurable
Riemann mapping theorem) so that g ◦ φ is conformal. It will be important
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to have estimates ensuring that g ◦ φ is close in some sense to g (so that we
don’t lose the desired geometric properties of g), at least in the case when
µg is small in a certain sense. We recount a classic theorem along these lines
due to Teichmuller and Wittich, exposited in [LV73]:

Theorem 2.3. Let f be a K-quasiconformal mapping of the finite plane onto
itself with f(0) = 0 and

I(r) =
1

2π

∫ ∫
|z|<r

µf (z)− 1

|z|2
dσ <∞ for r <∞

Then ∣∣∣∣f(z)

z
− fz(0)

∣∣∣∣ < |fz(0)| ε(|z|) with lim
ε→0

ε(|z|) = 0

where the function ε depends only on K, I and not otherwise on the map-
ping f .
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3 A Transcendental Function with Uncount-

able Singular Set

We will now detail Bishop’s original procedure to produce f ∈ B with wan-
dering domain - but we will introduce some slight modifications to ensure
that the singular set S(f) is uncountable, answering a question in [OS16].
As already mentioned - [FGJ15] is an excellent resource that contains an ex-
position of Bishop’s original construction. We follow [FGJ15] quite closely.

We first build the graph to which we will apply Bishop’s theorem. There
are no adjustments to be made here - we merely summarize the material
contained in [FGJ15]. Consider the half strip:

S+ := {x+ iy ∈ C : x > 0, |y| < π/2}

For any λ ∈ πN+, we have a Riemann map from S+ to the right half plane
Hr given by z → λ ·sinh(z). λ is a parameter we will fix later. We may follow
this Riemann map by cosh so that the composition σ◦τ(z) := cosh(λ sinh(z))
is holomorphic and maps ∂S+ onto [−1, 1]. This is illustrated in Figure 6.

Recall, we would like the alternating vertices of our graph to be sent to
±1. So we will choose ±iπ/2 as two vertices, and we will choose some special
vertices (an ± iπ/2) along the lines y = ±π/2. The real parts an (n ≥ 1) are
defined as

an := cosh−1
(
π

λ

⌈
λ

π
cosh(nπ)

⌉)
where dxe denotes the integer part of the real number x. One may verify
that nπ − 10−1 < an ≤ nπ. In fact we will add all preimages of ±1 on S+

under the map σ ◦ τ :{
i sin−1

(π
λ
k
)

: k ∈ Z and
−λ
π
≤ k ≤ λ

π

} ⋃ {
cosh−1

(π
λ
k
)
± iπ

2
: k ∈ Z and k ≥ π

λ

}
Next we build the D-components of our graph. We consider for all n ≥ 1:

Dn := {z ∈ C : |z − zn| < 1} where zn := an + iπ

Each such Dn is mapped conformally to D by z → z−zn. As explained in
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Hr

C− [−1, 1]

cosh

λ sinhπi
2

0

−πi
2

−λi

λi
S+

Figure 6: The definition of f in S+.

our exposition of Bishop’s theorem, in Dn we define σ◦τ(z) := ρn((z−zn)dn)
where dn ∈ 2N∗ is a parameter to be fixed later, and ρn is a quasiconformal
map. This is illustrated in Figure 7.

We fix these quasiconformal maps ρn so that they fix the boundary of D
and ρn(0) = wn where wn is a parameter to be fixed later in a small neigh-
borhood N1/2 of 1/2. Furthermore we ensure ρn is conformal in 3

4
D and ρn is

Kρ-quasiconformal where Kρ does not depend on n. The precise definition
of ρn is given in [FGJ15]. Notice that the dilatation of ρn is supported on{

z ∈ C :

(
3

4

)1/dn

< |z − zn| < 1

}
which shrinks in area exponentially as dn → ∞. The vertices on ∂Dn are
defined to be the preimages of ±1 under σ ◦ τ , namely the translated (2dn)th

roots of unity.

Next we define vertical segments on our graph connecting each an + iπ/2
to zn − iπ, and from zn + iπ to infinity. We also define a vertical segment
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D

D

D

0

0

p2(0)

z → zd2

ρ2

πi
2

0

−πi
2

a1 + iπ
2

a2 + iπ
2

D1 D2

z2

Figure 7: The definition of f on D-components.

connecting iπ/2 to infinity. We refer the reader to [FGJ15] for the definitions
of vertices along these vertical segments - we will not need them. Finally,
we reflect this construction along the real and imaginary axes to obtain our
final graph pictured in Figure 8.

We omit the argument that this graph satisfies the bounded geometry
conditions needed in order to apply Bishop’s theorem - this is contained in
the proof of Theorem 3.1 from [FGJ15]:

Theorem 3.1. For every choice of the parameters (λ, (dn)n≥1, (wn)n≥1) so
that λ ∈ πN∗, dn ∈ 2N∗, and wn ∈ N1/2 for all n ≥ 1, there exists a transcen-
dental entire function f and a quasiconformal map φ : C→ C so that:

(a) for every z ∈ C, f(z) = f(z) and f(−z) = f(z);

(b) f ◦ φ−1 extends the maps (σ ◦ τ)|S+ and (σ ◦ τ)|Dn for every n ≥ 1:

f(z) =

{
cosh(λ sinh(φ(z))) if φ(z) ∈ S+

ρn((φ(z)− zn)dn) if φ(z) ∈ Dn

(3.1)
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πi
2

0

−πi
2

..

.. ....

..

Figure 8: The graph to which we will apply Bishop’s folding theorem.

(c) f has no asymptotic values; and its set of critical values is
{±1} ∪ {wn : n ≥ 1} (hence f is in class B).

(d) φ(0) = 0, φ(R) = R, φ is conformal in S+ and its dilatation is uni-
formly

bounded above by a universal constant K > 1 which does not depend
on the

parameters.

In the original construction of [Bis15] exposited in [FGJ15], it is shown
how the parameters in the above theorem may be chosen so as to produce
f ∈ B with wandering domain. In the original construction {wn : n ≥ 1}
accumulates only on 1/2, so that the singular set S(f) is countable (this is
clear from Lemma 3.2 of [FGJ15]). We proceed in modifying the construction
so as to ensure that {wn : n ≥ 1} accumulates on an uncountable set so that
S(f) is uncountable. We still continue however to follow the line of argument
in [FGJ15], making adjustments as needed.

Let’s give a sketch of our argument before we begin with details. One
should keep in mind that the map f(z) inside S+ is roughly exp(exp(z)),
expanding out to infinity quickly, whereas f returns the discs Dn back to D.
If we look at two discs we call Dp1 , Dp2 , we can see that f maps Dp1 near the

14



origin, but also there is a preimage f−2(Dp2) of Dp2 near the origin. This is
illustrated in Figure 9.

πi
2

-πi
2

0

Dp1

f(Dp1)

f−2(Dp2)

Dp2

Figure 9: The map f before carefully choosing the parameters.

We will do two things:

(a) shrink f(Dp1) so that it is small enough to fit inside f−2(Dp2)
(b) move f(Dp1) inside f−2(Dp2).

We will complete (a) and (b) over an entire subsequence Dpn of the discs
Dn. Then sub-discs of this subsequence Dpn will be part of our wandering
domains - a disc is moved near the origin, then is iterated towards another
disc farther from the origin, which is again returned near the origin, etc...

(a) is accomplished by adjusting the parameters (dn) - the powers that
‘crush’ the size of the disc Dn, and (b) is accomplished by adjusting the
parameters (wn) - the centers of f(Dn). This takes some work as one needs
parameters that accomplish (a) and (b) simultaneously over this entire sub-
sequence Dpn .

Now we begin constructing a transcendental function with uncountable
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singular set and a wandering domain. Fix some choice of the parameters
(λ, (dn)n≥1, (wn)n≥1) as in Theorem 2.1. We notice that the real line is pre-
served under the map f . We will need the following estimates to establish
the existence of the discs f−n(Dpn) we discussed informally above. We note
that the proof of the following Lemma is quite close to that of Lemma 3.2 in
[FGJ15]. It is included because the author feels the notation and construc-
tions introduced therein are essential to the understanding of this section.

Lemma 3.2. Let f, φ, (λ, (dn)n≥1, (wn)n≥1) be as in Theorem 2.1, and t ∈
[1/2, 5/8]. Suppose the following estimate holds:

∀x ≥ 0,
dφ

dx
(x) ≥ 10

λ
(3.2)

Then the orbit of t under iteration of f escapes to infinity. Moreover there
exists a sequence of Euclidean discs (U t

n)n≥1, together with a subsequence of
positive integers (ptn)n≥1, so that for every n ≥ 1:

(a) U t
n has radius .009( d

dx
fn(t))−1 with ( d

dx
fn(t))−1 ≤ 50−n

(b) U t
n is contained in the disc centered at t and of radius 20( d

dx
fn(t))−1

(c) fk(U t
n) ⊆ S+ ∩H+ for every 0 ≤ k ≤ n− 1, and

(d) fn(U t
n) ⊆ 1

4
D̃t
n where 1

4
D̃t
n := {z ∈ C||z − zptn| ≤ 1/4}

Proof. Let (xtk = fk(t))k≥1 denote the iteration of t under f . We have the
following computation:

d

dx
f(x) =

d

dx
cosh(λ sinh(φ(x))) =

sinh(λ sinh(φ(x)))λ cosh(φ(x))
d

dx
φ(x) ≥

λφ(x)λ
d

dx
φ(x)

where we have used the fact that sinh(r) ≥ r and cosh(r) ≥ 1 for r ≥ 0.
Integrating our assumption (2.2) we have that φ(x)− φ(0) = φ(x) ≥ 10

λ
x so

that:
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d

dx
f(x) ≥ 100x and f(x) ≥ 50x2 − 1 (3.3)

In particular one may verify the orbit (xtk)k≥0 escapes to infinity. More-
over from (2.3) one may compute that:

∀k ≥ 0, xtk+1 − xtk ≥ 11 and
d

dx
f(xtk) ≥ 100 · 1

2
= 50

Now it follows inductively that d
dx
fn(t) ≥ 50n. We define the sequence

(ptn) so that for every n, |xtn − aptn| is minimal. (Recall an is the real part

of a vertex along ∂S+). We define D̃t
n := Dptn . Now we state the geometric

facts that 1
4
D̃t
n ⊆ D(xtn, 5) and that D(xtn, 10) does not intersect D. So

then D(xtn, 10) doesn’t contain any singular values of f . This means that
f−1 has an injective inverse branch on D(xtn, 10) mapping D(xtn, 5) onto a
neighborhood of xtn−1.

We would like to estimate a radius in which this neighborhood of xtn−1 is
contained. Recall some of Koebe’s distortion estimates that for a univalent
function F in the unit disc with F (0) = 0, F ′(0) = 1, that for any z ∈ D:

(a) |F (z)| ≤ |z|
(1− |z|)2

(b)
1− |z|

(1 + |z|)3
≤ |F ′(z)|

Using (a) with

F (z) =
f−1(10z + xtn)− f−1(xtn)

10 · d
dx
f−1(xtn)

gives us that f−1 maps D(xtn, 5) onto a neighborhood of xtn−1 contained
in a disk of radius

10
1/2

(1− 1/2)2
d

dx
f−1(xtn) ≤ 20/50 ≤ π/2

Hence, 1
4
D̃n has a preimage under f in S+ ∩D(xn−1, 5). One may iterate
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this process n times to obtain a preimage of 1
4
D̃n under fn close to xt0 = t.

Again one uses (a) from Koebe’s theorem with the function

F (z) =
(fn)−1(10z + xtn)− (fn)−1(xtn)

10 d
dx

(fn)−1(xtn)

to estimate that this nth preimage is contained in a disc centered at t of
radius:

20(
d

dx
fn(t))−1 ≤ 20

50n

Now one may use (b) of Koebe’s theorem to prove that the nth preimage
of 1

4
D̃n contains a disc of radius:

1

4
·1
4
·
(
d

dz
(fn)−1(zptn)

)
≥ 1

16

1− 5/10

(1 + 5/10)3

(
d

dx
(fn)−1(xtn)

)
≥ .009

(
d

dx
fn (t)

)−1

Next we lift a lemma from [FGJ15] whose proof we will omit (a very
similar statement Lemma 4.6 is proven in Section 4). This lemma states that
there are universal parameters that satisfy the hypotheses in our previous
lemma about the derivative of φ.

Lemma 3.3. There exist a positive real number λ0 ∈ πN∗ and an exponen-
tially increasing sequence (d0n)n≥1 in 2N∗ so that for every choice of parame-
ters (λ, (dn)n≥1, (wn)n≥1) with λ ≥ λ0 and dn ≥ d0n over all n, condition (2.2)
of Lemma 2.2 holds, so that the discs (U t

n)n≥1 specified in lemma 2.2 exist.

So by taking parameters (λ0, (d0n)n≥1, (w
0
n := 1/2)n≥1) as in the above

lemma, and any t ∈ [1/2, 5/8], we have this sequence of discs U t
n so that

fk(U t
n) stays in S+ for k < n and fn(U t

n) ⊆ 1
4
D̃t
n. Moreover since φ is close

to the identity, φ(fn(U t
n)) ⊆ 1

2
D̃t
n. So from our definitions of f in the disc

components, we know fn+1(U t
n) ⊆ D(w0

ptn
= 1/2, (1/2)dptn ).

What we do not have control over yet are the further iterates fk(U t
n) for

k > n + 1. In [Bis15] and [FGJ15] the procedure taken is to further adjust
f so that fn+1(U t

n) ⊆ U t
n+1. One achieves this by carefully adjusting the

critical values (wn). In this way it is understood how all iterates of the discs
U t
n behave and indeed it is not difficult to show then that they belong to a
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wandering domain. In this case the singular set would be±1, t and a sequence
converging to t. We will achieve an uncountable S(f) by instead repeatedly
adjusting f so that fn+1(U t

n) ⊆ U t′
n+1 for some t′ ∈ [1/2, 5/8], t′ 6= t. Namely

we fix now some (any) dense sequence (tn) in [1/2, 5/8], and we will work
to ensure that fn+1(U tn

n ) ⊆ U
tn+1

n+1 . We will need two more lemmas to do
this. The first lemma enables us to choose (dn)n≥1 large enough so that
fn+1(U tn

n ) is crushed sufficiently small to be able to fit into U
tn+1

n+1 (without
compromising the rest of the construction):

Lemma 3.4. Fix (λ0, (d0n)n≥1, (w
0
n := 1/2)n≥1). Then there exists a sequence

of positive real numbers (rn)n≥1 not depending on t so that for every new
choice of parameters (dn)n≥1 with dn ≥ d0n for every n ≥ 1, the corresponding
maps f and φ satisfy the condition of Lemma 2.2 as well, and

∀n ≥ 1, .009

(
d

dx
fn (t)

)−1
≥ rn

In particular, we may assume that for all such parameters and all t ∈
[1/2, 5/8], every Euclidean disc U t

n in Lemma 2.2 has radius larger or equal
than rn, and consequently we may choose (dn) so that for all t:(

1

2

)d
ptn

< rn+1

We omit the proof since it is nearly identical to that of Lemma 3.4 in
[FGJ15] after observing that it suffices to establish the estimate for t = 5/8.
We will now need to let pn := ptnn to simplify notation (In words, pn is the
index of the disc Dpn which is iterated into by f in n steps from U tn

n .)
We have established that we may choose the sequence (dn) sufficiently

large so that fn+1(U tn
n ) is crushed small enough to be able to fit inside U

tn+1

n+1 .
Namely fn(U tn

n ) is contained in a disc of radius 1/4, φ(U tn
n ) is contained in

a disc of radius 1/2, which is then sent inside a disc of radius (1/2)dpn by
σ ◦ η(z) = ρpn((z − zpn)dpn ), and (1/2)dpn is less than the radius of the next
disc U

tn+1

n+1 . The last thing we have to do is adjust the critical values (wn)n≥1
so that fn+1(U tn

n ) actually does land inside U
tn+1

n+1 . Namely if we denote w′n
to be the center of U tn

n , we need to make sure:

fn+1(U tn
n ) ⊆ D(w′n+1, (1/2)dpn )
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From which it will be clear by our previous work that:

fn+1(U tn
n ) ⊆ D(w′n+1, (1/2)dpn ) ⊆ D(w′n+1, rn+1) ⊆ U

tn+1

n+1

For this we need the following lemma:

Lemma 3.5. There is a choice of the parameters (λ, (dn)n≥1, (wn)n≥1) sat-
isfying the hypotheses of Lemma 2.2, so that for large enough n we have:

fn+1(U tn
n ) ⊂ U

tn+1

n+1

Proof. Let (λ0, (d0n)n≥1, (w
0
n := 1/2)n≥1) as in Lemma 2.4. We have that

f(U t1
1 ) ⊆ 1

4
D̃t1

1 . We will adjust f so that ρp1(0) = w′2 (recall that w′2 is
defined to be the center of U t2

2 ) rather than ρp1(0) = 1/2. We call this
new function f1. We note that there is a corresponding correction in φ to
ensure that f1 is still holomorphic. However, even though now we have that
f1(D̃

t1
1 ) ⊆ U t2

2 it may no longer be the case that f1(U
t1
1 ) ⊆ 1

4
D̃t1

1 because of
the correction in φ. But indeed we can fix dp1 as large as we like by Lemma
2.4 so that the dilatation of φ is concentrated on an annulus with as small of
an area as we wish. For example, choose this area so small so that:

sup{|f1(z)− f(z)| : z ∈ D(t1, 1)} < s1 << 1

Here we are using a fact we formulate more precisely at the beginning of
Section 4 - namely that a quasiconformal map whose dilatation is supported
on a small set is close to the identity. In any case, now we know that f1(U

t1
1 ) ⊆

1
4
D̃t1

1 and f 2
1 (U t1

1 ) ⊆ U t2
2 .

Indeed we may proceed iteratively in this way. At step n we adjust ρpn
so that ρpn(0) = w′n+1. By choosing large enough (dpn), one may ensure that
the correction of f in discs centered at {xt0, xt1, ..., xtn+1} of radius 1 is less
than sn << 1, over all t ∈ {t1, ..., tn+1}. Doing this we can see that for k ≤ n,

fk+1(U tk
k ) ⊂ U

tk+1

k+1

We choose the sequence (sn) so that it will sum to be less than some
ε > 0. This ensures that the limit function under this iterative procedure
satisfies:
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fn+1(U tn
n ) ⊂ U

tn+1

n+1

over all n, as needed.

We conclude this section by arguing that the domains Un := U tn
n are

contained in the Fatou set, and that they are contained in different Fatou
components. This will establish that the function f ∈ B we have constructed
above has a wandering domain. It is not so hard to see that the domains Un
are contained in the Fatou set - for any subsequence (fnk) defined on some
Un there will be a subsequence converging to infinity, or if (fnk) does not
contain such a subsequence, there will be a further subsequence converging
to a constant function.

Now suppose by way of contradiction that two of the domains Un1 , Un2

were contained in the same Fatou component, with n1 < n2. But then
fn1(Un1) would be above the horizontal line y = π, whereas fn1(Un2) would
be contained in S+ (below the line y = π). Thus the Fatou component
containing Un1 , Un2 would have to cross y = π (which belongs to the Julia
set of f since f(y = π) ⊂ R), and this is a contradiction.

So we have constructed f ∈ B with wandering domain U and uncountable
S(f). It is also clear that Λ(U, f) is uncountable since Λ(U, f) contains the
accumulation set of any critical point of f . Our next section will prove that
the Fatou components in this construction (or those constructions in [Bis15]
or [FGJ15]) must all be bounded.
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4 Boundedness of Fatou Components in Bishop’s

Construction

Lemma 4.1. The Julia set of f contains the real line: R ⊆ J (f).

Proof. : In the Eremenko-Lyubich class B it is always true that the Julia set
is the closure of the escaping set ([EL92]). Since f ∈ B, it suffices to show
that for x > 0, fn(x) → ∞. We show this by first assuming x > 1 is fixed
and establishing that cosh(λ sinh(φ(x)))−x is always bigger than some fixed
constant so that x iterates to infinity.

cosh(λ sinh(φ(x)))− x
λ>1
> cosh(sinh(φ(x)))− x

sinh(x)>x
>

cosh(φ(x))− x
φ′(x)>1
> cosh(x)− x

Now we estimate the derivative of cosh(x)− x:

d

dx
(cosh(x)− x) = sinh(x)− 1 > x− 1 > 0

This establishes that for fixed x > 1, cosh(λ sinh(φ(x))) − x is always
bigger than some fixed constant, so fn(x) iterates to infinity, as needed. If
x > 0, cosh(λ sinh(φ(x))) > 1 which then iterates to infinity.

J (f) is forwards and backwards invariant. This will help us establish
which parts of the graph belong to J (f). One must be careful however,
since the previously pictured graph (with straight euclidean lines) is not sent
to R. Rather pieces of a quasiconformally distorted graph are sent to R by
f .

But one should keep in mind the quasiconformal distortion is uniformly
close to the identity. Notice that in particular the parts of the graph which
correspond to straight lines are sent to R by f . This means these straight
lines (quasiconformally distorted) are part of the Julia set. We begin to
establish that the wandering Fatou components of f must be bounded (note
that this is not a proposition about the orbits of these Fatou components
which are certainly unbounded):
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Proposition 4.2. Any wandering domain of f must be bounded (as a set).

Proof. : Recall we have already somewhat described the wandering domains
of f in Section 2 - the wandering domains contain the discs Un and their
iterates under f . [FGJ15] establishes that this wandering domain, and its
reflections, are the only wandering domains for f . However a priori it is possi-
ble that the wandering domains are not bounded discs but rather unbounded
domains containing these discs. But our previous lemma about J (f) tells
us any such unbounded Fatou component can not cross the ‘straight-line’
portions of our graph (although it may cross the ‘disc’ portions of the graph
which are not mapped into R by f). This leaves only a few possibilities
(Illustrated in Figure 10) and we will show one-by-one that each possibility
can’t exist.

First of all, suppose we had an unbounded Fatou component contained
inside S+ (as in Figure 10a). We will argue that this unbounded Fatou
component would eventually map to an unbounded component containing
a small disk around some an + iπ. Suppose not, namely assume we have
an unbounded Fatou component U ⊂ S+ so that f(U) is bounded. Recall
that in S+, we know our map is f(z) = cosh(λ(sinh(φ(z)))). There are
two ways that f(U) could be bounded, either (1) λ(sinh(φ(U))) is vertically
unbounded (i.e. has nonempty intersection with |y| > n for all n > 0) or
(2) λ(sinh(φ(U))) is unbounded to the left (i.e. has nonempty intersection
with x < −n for all n > 0). But in case (1) it must then be the case that
cosh(λ(sinh(φ(U)))) has nonempty intersection with the real and imaginary
axes (a contradiction since R ⊂ J (f)) and iR ⊂ J (f)). As for case (2), if
λ(sinh(φ(U))) is unbounded to the left, we know that for all n ≥ 1, fn(U)
must have nonempty intersection with any open neighborhood of 0. On the
other hand, fn(U) leaves S+ for some n, so that some iterate of such a Fatou
component U would have to cross the boundary of S+, a contradiction, since
the boundary of S+ belongs to J (f).

So we only need to consider the case when our unbounded Fatou compo-
nent contains a small disk around an + iπ. Here there are two possibilities.
(Remember a Fatou component can’t cross the ‘straight-line’ segments of the
graph). Either the Fatou component crosses infinitely many discs Dn (Figure
10b), or the Fatou component is vertically unbounded (Figure 10c).

Consider one of the vertically unbounded components V of the plane with
the graph removed (illustrated in Figure 11). The construction of f relies on
the Riemann map from V to the right half plane. Before arguing that cases

23



πi
2

-πi
2

0

(a) unbounded inside S+
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V

Figure 11: The vertically unbounded component V .
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(B) and (C) can not occur, we will need to understand how this Riemann
map behaves. Notice that if we replace the two half-discs of the boundary
of V with straight line segments, we can write down explicitly the Riemann
map. After a rotation and translation, the Riemann map is z → λ sinh(z). It
is sensible therefore that this slight geometric perturbation of the boundary
of V does not affect the Riemann map near infinity. We give a more rigorous
argument for this.

Lemma 4.3. Consider the Riemann map g from V to the half-strip obtained
by replacing the half-discs in the boundary of V with straight line segments.
Normalize g so that the corners of the half strip are fixed and infinity is fixed.
Then g is uniformly close to the identity near infinity. (See Figure 12).

V g

Figure 12: The map g from V to a half-strip.

Proof. : We use an argument based on the theory of harmonic measure.
Assume the width of the strip is 1 and the two corners are 0, 1. Define
w(x, y) = x on ∂V ∩R, w(x, y) = 0 on the left portion of ∂V and w(x, y) = 1
on the right portion of ∂V . Let g = u+ iv. Let w also denote the harmonic
extension inside V . We first estimate (w − u)(z) for z ∈ V . We denote
bottom as the part of the boundary of V lying on the line y = π/2, and
top as the rest of the boundary of V . dωz denotes harmonic measure on ∂V
at the point z ∈ V .

|(w − u)(z)| ≤
∫
bottom

|w − u| (ζ)dωz(ζ) +

∫
top

|w − u| (ζ)dωz(ζ)

as z →∞, dωz(bottom)→ 0 so that the left summand above vanishes. On
the other hand the summand on the right also vanishes because w, u agree
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on top. This establishes that u(z) → real(z) as z → ∞. It remains to be
shown that v(z)→ imag(z) as z →∞.

To establish this we recall the following estimate for harmonic functions
h:

|∇h(z)| ≤ C

r

∫
D(z,r)

|h|

Now letting h = u− w we have that

|∇(u− w)(z)| ≤ C

r

∫
D(z,r)

|u− w|

and we just finished proving that the integrand tends to zero as z →∞. Then
the Cauchy-Riemann equations allow us to deduce that v(z) → imag(z) as
z →∞, as needed.

Now we understand how our map f behaves in each region of the plane.
In particular in the region V , the Riemann map discussed above is applied,
followed by a rotation/dilation, followed by z → cosh(λ sinh(z)) (up to a
quasiconformal perturbation).

We return to our argument that the Fatou components of f must be
bounded, picking up with case (B). Consider a disc Dn, and let Vn be the
vertical R-component neighboring Dn and Dn+1. Notice that in Vn there is a
preimage curve of (+1,∞) tending to infinity vertically. Moreover, there are
dn preimage segments of [−1, 1] in the disc Dn, and one of these preimage
segments has as one of its endpoints an+i(π−1) (the bottom of the disc Dn).
Thus, by continuity, there is a preimage of [−1,∞) connecting an + i(π − 1)
to ∞ contained in Dn ∪ Vn. Since any Fatou component can not cross this
curve, case (B) can not happen.

What we are left to show is that a vertically unbounded Fatou component
U (Figure 10c) can not exist. Again, we proceed by way of contradiction,
using a hyperbolic geometry argument. We know that all forward iterates
fn(U) remain in the upper half plane. This allows us to estimate the hyper-
bolic distance in fn(U) in terms of the hyperbolic distance in the upper half
plane:
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dfn(U)(f
n(z), fn(w)) > dH(fn(z), fn(w)) (4.1)

Schwarz’s lemma indicates that the left hand side is bounded above by
the hyperbolic distance in the Fatou component U , and so:

dU(z, w) > dH(fn(z), fn(w)) over all n (4.2)

Our contradiction will consist of showing in fact the right hand side
is not bounded, namely by showing the sequence of euclidean distances
|fn(z)− fn(w)| is unbounded. Indeed in S+ our function f acts as exp ◦ exp
which increases |z − w| under iteration, and we have just finished showing
that in the half strip V our function f essentially rotates/dilates V into S+

and exponentiates.
To be more precise, we can consider x, y ∈ R with 0 < x < y and consider

how |x−y| behaves under iteration of the exponential. Let g(x) := ex. Then:

|g(x)− g(y)| =
∫ y

x

etdt >

∫ y

x

exdt > ex |x− y| (4.3)

So indeed

|gn(x)− gn(y)| > enx |x− y| → ∞ as n→∞ (4.4)

Similar estimates hold if we replace 0 < x < y with z, w ∈ S+ and replace
g(z) := ez with g(z) := cosh(λ sinh(z)) - namely the euclidean distance
|fn(z)− fn(w)| is increasing by a definite factor with n provided z, w ∈ S+.
We claim that the image f(U) ⊂ S+ must be unbounded to the right (i.e. has
nonempty intersection with |x| > n over all n > 0). Indeed, the argument
is similar to the one given in case (B) that f can not map an unbounded
domain in S+ to a bounded one. Since the map f differs in definitions on
V and S+ only by a dilation, rotation and the Riemann map g, the same
arguments apply.

So we may choose z ∈ D̃n ∩ U and w ∈ V ∩ U so that real(f(w)) >>
real(f(z)). It is clear that for the first n iterations

∣∣fk(z)− fk(w)
∣∣ increases

by a definite factor. But fn(z), fn(w) lie in a vertical half-strip. However we
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know that fn+1(z) returns near 1/2, whereas lemma 3.3 indicates fn+1(w) ≈
fn+1(|w|), so again |fn+1(z)− fn+1(w)| is increased by a definite factor.

Together these estimates indicate that as k →∞, |fk(z)− fk(w)| → ∞,
and this is our needed contradiction. This concludes our proof that the
wandering Fatou components of f must be bounded.
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5 A Transcendental Function with Unbounded

Wandering Fatou Components

Our goal in this section will be to produce a function f ∈ B with unbounded
wandering Fatou components. This function will have finitely many critical
values but infinitely many asymptotic values. But before we begin we need
two results - the first is a variant of Bishop’s theorem [Bis15] that we discussed
in the introduction.

Suppose as before that we have some infinite tree T with alternate vertices
labeled ±1, and we denote the components of C \ T by Ωj. Instead of
mapping each Ωj conformally to the right half-plane Hr by a map τj followed
by cosh, let us map certain components Ωj conformally to the left-half plane
Hl followed by the exponential map onto D, and then a quasiconformal self-
map of D shifting the asymptotic value 0. This procedure is illustrated in
Figure 13.

Hl

exp

ρ

0

ρ(0)

Ωj

T

Figure 13: The map f on an L-component.

These components that are mapped to Hl will be called L-components
and those that are mapped to Hr as before are called R-components. The
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L-components play the role of the D-components in the previously stated
version of the theorem. With this we can state the version of theorem 7.1
from [Bis15] we need:

Theorem 5.1. Let T be an unbounded connected graph and let τ be a con-
formal map defined on each complementary domain C \ T as above. Assume
that:

(i) No two L-components of C \ T share a common edge.
(ii) T is bipartite with uniformly bounded geometry.
(iii) The map τ on a L-component maps edges to intervals of length 2π

on Hl

with vertices in 2πiZ
(iv) On R-components the τ -sizes of all edges is uniformly bounded from

below.

Then there is an r0 > 0, a transcendental f , and a K-quasiconformal map
φ of the plane, with K depending only on the uniformly bounded geometry
constants, so that f = σ ◦ τ ◦ φ off T (r0). Moreover the only singular values
of f are the critical values ±1 - corresponding to the vertices of T , and those
asymptotic values assigned by the L-components.

The second result we need before beginning our construction is a precise
formulation of the fact (we have already used) that if the dilatation of a
quasiconformal map φ is supported on a ‘small set’, then φ should be close
to the identity. First we formulate precisely what we mean by a ‘small set’.

Definition 5.2. A measurable set E ⊆ R2 is said to be (ε, h) thin if

area(E ∩D(z, 1)) ≤ ε · h(|z|)

over all z ∈ C, where h : [0,∞)→ [0, π2] is a decreasing function so that:∫ ∞
0

h(r)rndr <∞

over all n.

For our purposes we will be able to take ε = 1, h = exp. This definition
is used in the following result:
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Lemma 5.3. (Bishop, personal communication) Suppose φ : C → C is K-
quasiconformal and φ fixes 0, 1, and φ(R) ⊆ R. Furthermore suppose φ is
conformal in the strip {x + iy : |y| < π/2}. Let E = {z : µ(z) 6= 0} where
µ is the dilatation of φ and suppose E is (ε, h)-thin. If ε is sufficiently small
(depending on K,h), then:

1

C
≤ |f ′(x)| ≤ C

for all x ∈ R where C depends on K,h and ε is otherwise independent of
f . If we fix K,h and let ε→ 0, then C → 1.

We return to the task of producing a function f ∈ B with unbounded
wandering Fatou components. Our strategy will be to apply Bishop’s theo-
rem to a tree that we now construct. We start with the region S+ as before:

S+ := {x+ iy ∈ C : x > 0, |y| < π/2}

that is mapped conformally to Hr by z → λ sinh(z), and then holomor-
phically to C \ [−1, 1] by cosh as illustrated in Figure 6. The vertices on
this strip are defined in Section 1. In particular we still have the vertices
(an ± iπ/2) where:

nπ − 10−1 < an ≤ nπ

But we will replace the regions Dn by half-strips Hn:

Hn := {x+ iy ∈ C : an − 1 < |x| < an + 1 and |y| > π − 1}

The domains Hn are just rotations/translations/scalings of the domain
S+. So in particular we already have vertices defined on Hn. Moreover Hn is
mapped conformally to Hr by z → λn sinh(similarity(z)) where similarity(z)
is a rotation/translation/scale, and λn > 0. But in fact we will want the
Hn domains to play the role of L-components in applying Bishop’s theorem.
So we use instead the fact that Hn is mapped conformally to the left half-
plane Hl by z → −λn sinh(similarity(z)). Then by post-composing with
the exponential, Hn is mapped inside the unit disc D. This procedure is
illustrated in Figure 14.
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Figure 14: The map f on an L-component in our construction.

Exactly as in Section 1 we will further postcompose with a quasiconformal
map ρn of the unit disc. We fix these quasiconformal maps ρn so that they
fix the boundary of D and ρn(0) = wn where wn is a parameter to be fixed
later in a neighborhood N1/2 of 1/2. Furthermore we ensure ρn is conformal
in 3

4
D and ρn is Kρ-quasiconformal where Kρ does not depend on n.
We let σ◦τ |Hn denote the composition z → ρn(exp(−λn sinh(similarity(z))))

mapping Hn to D. Notice that this map has the asymptotic value ρn(0) com-
ing from applying σ ◦ τ to the curve γ(t) = an + iπt approaching ∞ in Hn.
It is also important to note that the dilatation of the map σ ◦ τ is supported
on smaller sets with increasing λn.

Lastly we construct vertical segments connecting Hn to S+ and a vertical
segment connecting iπ/2 to ∞. These are the same segments constructed in
Section 1 and have the same vertices. This whole construction is reflected in
the real and imaginary axes to produce the tree pictured in Figure 15.

We invoke Bishop’s theorem to produce an entire function that extends
the above definitions on S+ and Hn up to a quasiconformal perturbation:

Theorem 5.4. For every choice of the parameters (λ, (λn)n≥1, (wn)n≥1) so
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Figure 15: The graph to which we apply Bishop’s folding theorem.
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that λ, λn ∈ πN∗, wn ∈ N1/2 over all n, there exists a transcendental entire
function f and a quasiconformal map φ : C→ C so that:

(a) for every z ∈ C, f(z) = f(z) and f(−z) = f(z);

(b) f ◦ φ−1 extends the maps (σ ◦ τ)|S+ and (σ ◦ τ)|Hn for every n ≥ 1:

f(z) =

{
cosh(λ sinh(φ(z))) if φ(z) ∈ S+

ρn(exp(sinh(similarity(z))) if φ(z) ∈ Hn

(5.1)

(c) f has two critical values ±1; and its set of asymptotic values is
{wn : n ≥ 1} (hence f is in class B).

(d) φ(0) = 0, φ(R) = R, φ is conformal in S+ and its dilatation is uni-
formly

bounded above by a universal constant K > 1 which does not depend
on the

parameters.

The proof of this theorem would consist of verifying that this tree satisfies
the uniformly bounded geometry conditions. But indeed, this work has al-
ready been done - this tree is obtained by copying-and-pasting various parts
of the graph in Section 2.

Our strategy will be to choose parameters (λ, (λn)n≥1, (wn)n≥1) so that we
can guarantee there will be a wandering domain, and we will mostly follow
the logic given in Section 1. Let’s talk informally about our strategy before
we begin any proof. Our wandering domains will contain thin strips in a
subsequence of the domains Hn.

Each of these thin strips is mapped to a bounded domain by σ ◦ τ near
1/2 inside D. Moreover, there is the disc Dn in each thin strip that has an
nth preimage near 1/2 under σ ◦ τ . This is illustrated in Figure 16.

As in Section 2, we need to be able to do two things:

(a) shrink the image f(Stripn) so that it is small enough to fit inside
f−n(Dn)

(b) perturb f(Stripn) so that it actually lies inside f−n(Dn).

(a) is accomplished by choosing the parameters (λn) sufficiently large -
notice that as λn →∞, the image of the strip shrinks to the point ρn(0). So
in fact (λn) plays the role of the exponential powers (dn) in Section 2. On the
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other hand (b) is accomplished by adjusting the values ρn(0) as in Section 2.
And as in Section 2, the difficulty is that these choices are interdependent.

We proceed more rigorously with the following adaptation of Lemma 2.2
whose proof remains unchanged in our current setting by taking t = 1/2:

Lemma 5.5. Let f, φ, (λ, (λn)n≥1, (wn)n≥1) as in Theorem 3.1. If the follow-
ing estimates hold:

∀x ≥ 0,
dφ

dx
(x) ≥ 10

λ
(5.2)

Then the orbit of 1/2 under iteration of f escapes to infinity, and there
exists a sequence of Euclidean discs (Un)n≥1, together with a subsequence of
positive integers (pn)n≥1 so that for every n ≥ 1:

(a) Un has radius .009( d
dx
fn(1/2))−1 with ( d

dx
fn(1/2))−1 ≤ 50−n

(b) Un is contained in the disc centered at 1/2 and of radius 20( d
dx
fn(t))−1

(c) fk(Un) ⊆ S+ ∩H+ for every 0 ≤ k ≤ n− 1, and

(d) fn(Un) ⊆ 1
4
D̃n ⊆ Dn ⊆ Hn where 1

4
D̃n := {z ∈ C||z − zpn | ≤ 1/4}

Next we prove the analogue of Lemma 2.3 establishing that there are
universal parameters satisfying the hypotheses of the previous lemma:

Lemma 5.6. There exists a positive real number λ0 ∈ πN∗ and an increasing
sequence (λ0n) in πN∗ so that for every choice of parameters (λ, (λn)n≥1, (wn)n≥1)
with λ ≥ λ0, λn ≥ λ0n condition (4.2) of Lemma 4.2 holds, and hence the eu-
clidean disks Un exist.

Proof. This is a consequence of Lemma 4.3. Notice that as λ, (λn) increase,
the vertices in the tree move closer together, so that the neighborhood T (r)
where the quasiconformal folding takes place converges to the tree T in the
Hausdorff metric. This means that we may take λ0, (λ0n) large enough so
that T (r) is (1, h(x) = exp(−x)) thin. Lemma 4.3 then applies to tell us
that there is a constant C so that φ′(x) > 1/C. By taking λ0 larger than
max {10C, λ0}, we are assured that condition (4.2) of Lemma 4.5 holds.
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We now define the strips Stripn ⊆ Hn that we discussed informally at the
beginning of this section. The domains Stripn will turn out to be contained in
our unbounded wandering domains. We choose any such unbounded domain
Stripn that contains 1

2
Dn and so that

−λn(sinh(similarity(Stripn))) ∩ {x+ iy ∈ C : x > −n}

is bounded for all n ∈ N. This means that −λn(sinh(similarity(Stripn))) is
horizontally unbounded but not vertically. Recall that similarity(z) here is
a similarity from Hn to S+. We are ensured then that

as λn →∞, diam (exp(−λn(sinh(similarity(Stripn)))))→ 0.
Let us consider a choice of parameters (λ0, (λ0n)n≥1, (wn := 1/2)n≥1) com-

ing from Lemma 4.6. Lemma 4.5 applies then to tell us there exist these
discs Un near 1/2 so that fk(Un) ⊆ S+ for 1 ≤ k ≤ n − 1, and fn(Un) ⊆
1
4
D̃n ⊆ Hpn . In fact since φ is close to the identity (we can ensure this by

perhaps taking λ0n larger) we know φ(fn(Un)) ⊆ 1
2
Dn, and so fn+1(Un) ⊆

f(Strippn) ⊆ D(w0
pn = 1/2, r) where the radius r tends to zero as λ0n tends

to ∞. We need to ensure we can take λ0n large enough so that this radius r
is less than the radius of the next disc Un+1 without compromising the rest
of the construction. This is the purpose of the next lemma which establishes
universal lower bounds on the radii of Un+1.

Lemma 5.7. Fix the parameters (λ0, (λ0n)n≥1, (wn := 1/2)n≥1). Then there
exists a sequence of positive real numbers (rn) so that for every new choice
of parameters (λn) ≥ (λ0n) the corresponding maps f, φ satisfy equation (4.2)
and:

∀n ≥ 1, .009

(
d

dx
fn
(

1

2

))−1
≥ rn

In particular, we may assume that for all such parameters, every Eu-
clidean disk Un in Lemma 4.2 has radius larger than or equal to rn, and
consequently we may choose λn so that the image f(Strippn) has diameter
less than rn+1.

Proof. For every n ≥ 1, let (λjn)j≥1 denote any sequence of increasing se-
quences of positive integers with (λjn) ≥ (λ0n) for all j ≥ 1. For each fixed
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j, the sequence (λjn)n≥1 yields a quasiconformal φj according to Theorem
4.4. But notice that the dilatation constant of φj does not depend on j,
also by Theorem 4.4. This means by compactness that there is a sub-
sequence φjl converging to some φ in compact subsets of C. And since
fj(z) = (cosh(λ sinh(φj(z)))) in S+, we know that (fjl) converges in com-
pact subsets of S+ to f(z) = (cosh(λ sinh(φ(z)))). This means that the radii

rn =
(
d
dx
fn
(
1
2

))−1
of the discs Un must have a positive lower bound for each

fixed n ≥ 1.

Now we have to adjust the quasiconformal maps ρn so that the image
f(Strippn) actually lands inside the next disc Un+1. We let w′n denote the
center of the disc Un. So namely we need to adjust f so that:

f(Strippn) ⊂ D(w′n+1, rn+1)

From which we will deduce by the above lemma that

fn+1(Un) ⊂ f(Strippn) ⊂ D(w′n+1, rn+1) ⊂ Un+1

We do so in the following lemma:

Lemma 5.8. There is a choice of the parameters (λ, (λn)n≥1, (wn)n≥1) sat-
isfying the hypotheses of Lemma 4.2, so that for large enough n we have:

fn+1(Un) ⊂ f(Strippn) ⊂ Un+1

Proof. Let (λ0, (λ0n)n≥1, (w
0
n := 1/2)n≥1) as in Lemma 2.4. We have that

f(U1) ⊆ 1
4
D̃1. We will adjust f so that ρp1(0) = w′2 (recall that w′2 is defined

to be the center of U2) rather than ρp1(0) = 1/2. We call this new function
f1. We note that there is a corresponding correction in φ to ensure that f1 is
still holomorphic. However even though now we have that f1(Stripp1) ⊆ U2

it may no longer be the case that f1(U1) ⊆ 1
4
D̃1 because of the correction in

φ. But indeed we can fix λp1 as large as we like by Lemma 2.4 so that the
dilatation of φ is concentrated on a region with as small of an area as we
wish (small in the sense of definition 4.2). For example choose this area so
small that:
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sup{|f1(z)− f(z)| : z ∈ D(1/2, 1)} < s1 << 1

Now we know that f1(U1) ⊆ 1
4
D̃1 and f 2

1 (U1) ⊆ f(Strippn) ⊆ U2.
Indeed we may proceed iteratively in this way. At step n we adjust ρpn

so that ρpn(0) = w′n+1. By choosing large enough (λn), one may ensure that
the correction of f in discs centered at {1/2, f(1/2), ..., fn(1/2)} of radius 1
is less than sn << 1. Doing this we can see that for k ≤ n,

fk+1(Uk) ⊂ f(Strippk) ⊆ Uk+1

We choose the sequence (sn) so that it will sum to be less than some
ε > 0. This ensures that the limit function under this iterative procedure
satisfies:

fn+1(Un) ⊂ f(Stripn) ⊂ Un+1

over all n, as needed.

We remark that the domains Strippn are contained in the Fatou set, and
that they are contained in different Fatou components. Indeed the reasoning
is nearly identical to the analogous proof given in Section 2 so we omit it.
This establishes that the function f ∈ B we have constructed above has
unbounded wandering domains.

We also would like to remark that according to [Her98] the image of a
Fatou component can miss at most one point in the image Fatou component.
This means that the strips Strippn are contained in a Fatou component but
do not comprise the entire Fatou component. Let Upn be the Fatou compo-
nent containing Strippn . Indeed Strippn maps to only a bounded subset of
Strippn+1

, so that there must be an unbounded preimage of Strippn+1
inside

Upn . In fact Upn must contain an unbounded preimage of Strippk for each
k > n.

Lastly, a word about why this answers question 3 of [OS16]. Namely
we claim that for this function f there is an unbounded wandering domain
in BU(f), all of whose iterates are unbounded. Indeed it is clear that the
Fatou components Upn are unbounded since they contain the unbounded sets
Strippn . Moreover since Strippn ⊂ BU(f), by Theorem 1.1 of [OS16] it is true
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that Upn ⊂ BU(f). Also by the aforementioned result of [Her98] we know
that f(Upn) can miss at most one point of the image Fatou component. It
follows then that the function f we have constructed answers question 3 of
[OS16].
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